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PREFACE

HE mathematical treatment of the principles of mathematics, which is

the subject of the present work, has arisen from the conjunction of two
different studies, both in the main very modern. On the one hand we have
the work of analysts and geometers, in the way of formulating and systematising
their axioms, and the work of Cantor and others on such matters as the theory
of aggregates. On the other hand we have symbolic logic, which, after a
necessary period of growth, has now, thanks to Peans and his followers,
acquired the technical adaptability and the logical comprehensiveness that are
essential to a mathematical instrument for dealing with what have hitherto
been the beginnings of mathematics. From the combination of these two
studies two results emerge, namely (1) that what were formerly taken, tacitly
or explicitly, as axioms, are either unnecessary or demonstrable; (2) that the

same methods by which supposed axioms are demonstrated will give valuable
results in regions, such as infinite number, which had formerly been regarded
as inaceessible to human knowledge.  Hence the scope of mathematics is
onlarged both by the addition of new subjects and by a backward extension

into provinces hitherto abandoned to philosophy.

The present work was originally intended by us to be comprised in a
second volume of The Principles of Mathematics. With that object in view,
the writing of it was begun in 1900. But as we advanced, it became in-
creasingly evident that the subject is a very much larger one than we had
supposed; moreover on many fundamental questions which had been left
obscure and doubtful in the former work, we have now arrived at what we
believe to be satisfactory solutions. It therefore became necessary to make
our book independent of The Principles of Mathematics. We have, however,
avoided both controversy and general philosophy, and made our statements
dogmatic in form. The justification for this is that the chief reason in favour
of any theory on the principles of mathematics must always be inductive,
t.e. it must lie in the fact that the theory in question enables us to deduce
ordinary mathematics. In mathematics, the greatest degree of self-evidence
15 usually not to be found quite at the beginning, but at some later point;
hence the carly deductions, until they reach this point, give reasons rather
for believing the premisses because true consequences follow from them, than
for believing the consequences because they follow from the premisses.

In constructing a deductive system such as that contained in the present
work, there are two opposite tasks which have to be concurrently performed.
On the one hand, we have to analyse existing inathematics, with a view
to discovering what premisses are employed, whether these premisses are
mutually consistent, and whether they are capable of reduction to more
fundamental premisses. On the other hand, when we have decided upon our
premisses, we have to build up again as much as may seem necessary of the
data previously analysed, and as many other consequences of our premisses
as are of sufficient general interest to deserve statement. The preliminary
labour of analysis does not appear in the final presentation, which merely
sets forth the outcome of the analysis in certain undefined ideas and
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identical with ¢ or not identical with . It follows (as will be proved in %20:81)
that, if “¢a” and “4ra” are both significant, the class of values of z for which
“¢u” is significant is the same as the class of those for which “w” is signi-
ficant, i.e. two types which have a common member are identical. )

In the following proof, the chief point to observe is the use of %10:221.
There are two variables, ¢ and @, t0 be identified. In the first use, we depend
upon the fact that ¢a and 2 = ¢ both oceur in both (4)and (5): the occurrence
of gba. in both justifies the identification of the two @’s, and when these have
been identified, the occurrence of # — @ in both justifies the identification of
the. two #’s. (Unless the a’s had been already identified, this would not be
lggﬂnma‘oe, because “z=qa" is typically ambiguous if neither # nor ¢ is of
gtven type.) The second use of %10-221 is Justified by the fact that both ¢a
and ¢ oceur in both (2) and (6).

%133. l-::¢>av~¢a.D:.¢wv~¢w.z:x=a.v.x={=a

Dem.

Fo%2:11. db.gavedn 1)
F.(1).Simp. 3!—:¢av~¢a.3.¢mv~¢w (2)
FLo%211. Odbtiz=a.v.z+a (3)
F.(3).Simp. DI-:.cl)avN(j)a.D:m:a.v.x:l:a 4)
I-.eie13‘101.Comm.3l-:.¢av~¢a.3:m=a.3.¢xv~¢>w (5)
Fo(4).(5).%1013221 . >

Fridaveoda.Div=a.v.atq:. ~ Ho : o
l—.(z).(ﬁ)i10~13-221.:> P emgn2ie=a I gevgs 6
l..

::¢av~¢>a.3.¢wv~¢>x:.¢av~¢a.D:x:a,.v.xz{:a:.
pave~da.diz=0a.D.¢zv~oa (7)

F.(7).Simp.D

l-::¢>av~¢a.D.¢xv~¢w:.¢av~¢a.D:m:a.v.x+a (8)

F.(8).%5385. Dl—::¢>av~¢>a.D:.¢xv~¢w.5:w=a.v.x:{:a::
D F. Prop

¥14. DESCRIPTIONS

Summary of %14.

A description 1s a phrase of the form “the term which ete.,” or, more
explicitly, “ the term @ which satisfies ¢p2,” where ¢@ is some function satisfied
by one and only one argument. For reasons explained in the Introduction
(Chapter IIT), we do not define “the @ which satisfies ¢2,” but we define any
proposition in which this phrase occurs. Thus when we say: “The term =
which satisfies ¢ satisfies ¥2,” we shall mean: “There is a term b such that
¢ is true when, and only when, # is b, and b is true.” That is, writing
“(1) (px) ” for “ the term @ which satisfies ¢z,” yr (12) (p2) is to mean

(Ab) 1 pz o=y x=b: b,

This, however, is not yet quite adequate as a definition, for when (12) (¢=)
oceurs in a proposition which is part of a larger proposition, there is doubt
whether the smaller or the larger proposition is to be taken as the “r(12) ().
Take, for example, ¥ (12) (¢2) . D . p. This may be either

(qb): pr.=p.x=biyb:D.p
or (Hb) oz =g.x=bryb.D.p.
If “(gb): pz.=x.x=0>0" 18 false, the first of these must be true, while the
second must be false. Thus it is very necessary to distinguish them.

The proposition which is to be treated as the “~r (12:) (¢pa)” will be called
the scope of (1z) (¢p#). Thus in the first of the above two propositions, the
scope of (12)(¢px) is ¥ (12) (), while in the second it is r (22) (pz). D . p.
In order to avoid ambiguities as to scope, we shall indicate the scope by
writing ¢ [(12)(¢2)]” at the beginning of the scope, followed by enough dots
to extend to the end of the scope. Thus of the above two propositions the

first 1s
[(2) (pz)] - ¥ (12) (p2) . D . p,
[(m) ()] 2 ¥ (12) (p2) . D . p.

Thus we arrive at the following definition :
#1401, [(1z) (px)] . (12) (pz) . =: (D) : pz . =, . o =b: yb Df
It will be found in practice that the scope usually required is the smallest
proposition enclosed in dots or brackets in which “(12) (¢px)” occurs. Hence
when this scope is to be given to (12) (¢z), we shall usually omit explicit
mention of the scope. Thus e.g. we shall have
a ¥ (1) (pz) .= ) ipz.=p.z=brakb,
~la=(0z)(¢n)} .= ~{(d) 2. =, x=bra=0b.

while the second is
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Of these the first necessarily implies (5b): ¢w.=,.2x=>0, while the second
does not. We put
%1402, E! (1) (¢pz) . =:(gd): ¢pw.=,.0=b Df

This defines: “The satisfying ¢2 exists,” which holds when, and only
when, ¢# is satisfied by one value of # and by no other value.

When two or more descriptions occur in the same proposition, there is
need of avoiding ambiguity as to which has the larger scope. For this purpose,
we put
#1403, [(12) ($e), (1) (Ya)] . £ (1) (), (1) ()] « =

(@) ($)] : [(12) (Y2)] - £ {(0) ($), (1) ()} D

It will be shown (%14:118) that the truth-value of a proposition containing
two descriptions is unaffected by the question which has the larger scope.
Hence we shall in general adopt the convention that the description occurring

first typographically is to have the larger scope, unless the contrary is expressly
indicated. Thus e.g.

(12) (¢p) = (1) (Yr)
will mean (@D : .= z=b:b=(12) (Yar),
te. (@) =g 0=br.(qe) i Y. =40 =c: b=c.
By this convention we are able almost always to avoid explicit indication of

the order of elimination of two or more descriptions. If, however, we require
a larger scope for the later description, we put

*1404. [(12) (Y)] . /() ($), (12) ()] .
[O2) (), (1) (p2)] - f {(12) (p), (1) ()} Df

Whenever we have E!(1z) (¢px), (1) (pz) behaves, formally, like an ordinary
argument to any function in which it may occur. This fact is embodied in
the following proposition :

*¥1418. F: B! (12) (¢2). D1 (2). Yz . D .y (1z) (pz)

That is to say, when (12) (¢x) exists, it has any property which belongs to
everything. This does not hold when (1) (¢) does not exist ; for example,
the present King of France does not have the property of being either bald
or not bald,

It (1) (px) has any property whatever, it must exist. This fact is stated
in the proposition :

#1421, k1 (12) (¢2) . DL E Y (1) (pa)

This proposition is obvious, since “E!(1z)(¢x)” is, by the definitions, part
of “Ar (1) (¢&).” When, in ordinary language or in philosophy, something is
said to “exist,” it is always something described, i.e. it is not something
immediately presented, like a taste or a pateh of colour, but something like
“matter” or “mind” or “ Homer” (meaning “the author of the Homeric

.
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poems ”), which is known by description as “the so-and-so,” and is thu.s of
the form (72) (¢px). Thus in all such cases, the existence of the (grgmmatlgal)
subject (122) (¢«) can be analytically inferred from any true propositlon having
this grammatical subject. It would seem that the word “ existence” cannot
be significantly applied to subjects immediately given; .. not onliy does our
definition give no meaning to “E!a,” but there is no reason, in phllosopby, to
suppose that a meaning of existence could be found which would be applicable
to immediately given subjects.

Besides the above, the following are among the more useful propositions
of the present number.

#14202. bz .=, a=b:=: (1) (dp2)=bi=:dx.=,. b=2:=:b=(1z) (o)

From the first equivalence in the above, it follows that
%14:204. F: E! (1) (¢z) . = . () . (1z) (p) =]

Le. (1z)(px) exists when there is something which (12) (¢=) is.

We have
%14:205. F: 4 (12) (P2) . = (gd) « b= (1) () . b

Le. (1) (¢x) has the property ¥ when there is something which is (12) (¢=)
and which has the property .

We have to prove that such symbols as “(12) (¢=) ” obey the same rulfzs
with regard to identity as symbols which directly represent objects. To this,
however, there is one partial exception, for instead of having

(12) () = (12) (o),
we only have
#14:28. F:E!(12) (¢2).=.(12) (pz) = (1z) (px)

Le. “(12)(¢x)” only satisfies the reflexive property of identity if (1) (¢)
exists.

The symmetrical property of identity holds for such symbols as (12) (¢=),
without the need of assuming existence, 7.e. we have
*14'13. Fia=(2)(dx).=.(12)(dx)=0a
¥14:131. F: (12) (pz) = (12) (Yrz) . = . (1z) (Yz) = (1) (Pp2z)

Similarly the transitive property of identity holds without the need of
assuming existence. This is proved in %14:14:142-144.

#1401, [(12) (p2)] A (12) (Ppr) . =: (b)) 1 Pz . = ez =b: b Df
%1402, E!(12)(¢p2).=:(qd):pz.=,.2=D Df
¥1403. [(12) (o), (12) (y0)] . £ [(32) ($), (12) ()} - = 3
[(12) ($)] : [(1) ($o)] - £ (1) (), (30) (¥} D
K404 [(12) ()] . £1(00) (), (1) ()} . =«
[(12) (¥a), (1) ($)] - £ {(12) (), (12) ()} DE
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w141 b [(12) ()] A (10) (Pm) =2 (D)t . =4 0= b b
[#4:2 . (%14°01)]
In virtue of our conventions as to the scope intended when no scope is
explicitly indicated, the above proposition is the same as the following :

*14101. F o4 (12) ($p2) . = : (HD) 1 v =y aw =i b [%14:1]
#1411, FLEl(12) (¢z).=:(qb) 1 .=, .2 =D [#4:2 . (%14:02)]
$14111. b 1. [(1) (Ya)] - £{(12) (), (12) (Ya)) . =

(@b, o)1 pr.=p.a=biya.=,.z=c: f(d,c)

I

Dem.
F.o#d2 . (%14:0403). D
ki [(0) (Ya)] . £ (1) (), (1) ()] . = 1.
[(12) (Y2)] 2 [(2) (p)] . [ {(12) (pa), (12) (Yraw)} 2.

[¥141] = [(2) (Yw)] i (D) : b=y =D 1 (b, (12) (Yz)} =
[#141] =:(go) Yz . =p.2=c(gb) 1 dz.=,.a=b:f(bc):.
[¥1155]=:. (gb, o) s pw . =puw=ciYw. =, 0=0: f(b, ¢):: D F.Prop

*#14°112. ki f () (¢2), (12) ()} . =

(@b o)idpz.=p.a=b:ya.=,.0=c: f(b,c)
[Proof as in %14-111]

In the above proposition, we assume the convention explained on p. 174
after the statement of %14-03.

¥14113. F: [(2) (Y)]. /{(12) ($), (1) ()} . =
[#14111-112]

This proposition shows that when two descnptmns oceur in the same pro-
position, the truth-value of the proposition is unaffected by the question which
has the larger scope.

#1412, F: El(12) (). D:dpw.py.D, . o=y
Dem.
Foxld1l Ob:iHp.d:(gb):dz.=,.a=b (1)
F.#d38.%10°1.%11'118.D
Frgr.=,.0=b:D:da.dy.=,,.2=b.y=b.
[%13172] dpy.w=y (2)
Fo(2).4101123.  DFi(gb)igr.=,.a=0b:D: gbx @Y« Dyy.x=y(3)
F.(1).(3). JDF.Prop
#14121. brndo. =, . o=b:dar.=,.2=c:D.b=c¢

Dem.

>

-f{02) ($2), (12) (Y)}

F.%101.DF:.Hp.D:¢pb.=

[%13:15] D:gpb:h.

[Ass] Ddib=c:i.D
14122 bz .=, . 2=b:

e o S i~
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Dem.

F.%1022. Drudw.=,.0=bi=:1¢z.Dy.0=b:a=b.D,.¢x:

[%13-191] =:¢z.dp.aw=b: ¢ 1)

Foxd71. dbingz.d .a=b:Ddigpw.= .Ppr,x=b

[¥10:11:27] DF:i¢pa.Dp.x=b:D:¢pa.=,.pr. 0=

[%10-281] D:(E{z).¢x.z.(gx).¢x.x=b

[¥13-195] =.¢b (2)
F.o(2).%582.0F:dpo.Dp.a=b:(qa). pr:=:1¢x.D,.a=b: b 3)
F.(1).(8). DF.Prop

The two following propositions (¥14:123:124) are placed here because of
the analogy with %14:122, but they are not used until we come to the theory
of couples (%55 and *56).
¥14'123. b (2, w). =,y 2=2 . w=7:
(g, w).dppz=ax.Ww=y:d(z y):

¢z, w) Dy 2= w=y: (g2, w). (2, w)

i

Dem.
F.x11-31. dbud(z,w).=p.2=z. w=y:

¥

=16, W) Dy 2= W=Y:12=2.W=Y.Dyu. (2, w)

[*13-21] =:1¢(s,w). D 2= w=y: (2 ¥y) (1)
F.oxd71. Dbz, w).d.z=z.w=y:

Ddid(z,w).=.¢(z,w). 2= w=y:.
[¥111132] DFid(z, w).dpp.2=z.w=1y:

D:d(s,w) .= u-P(z,w) 2= w=y:
[#11-341] d:i(gz, w).-ple,w).=.(z, w) . p(z, w).2=x. w=1y.
[%13-22] =.¢(z, y) (2)
F.o(2).#582.0F: (2, w). Dppe2=.w=y:(qz w). ¢z, w):

=:9(5w). Dpu-2=2.w=y:d(2,y) (3)
F.(1).(3). DF.Prop

#14124. L. (go, )1 p (2, w) . Sy 2=z W=7y
=: (g2 y)-d@ )i (e, w) e d(U,0) Dypup-2=u. w=1v
Dem.

F.%14123.%327.D

Fro(ge, v): d(z W) S t=aw=y:D.(4z,y). d(z,7) (1)
Fok111.%347.D gz, w) . =y 2= w =y

Ddip(zw).p(u,v).dz=z.w=y.u=z.v=y.
[%18172] Dduz=u.w=v (2)
F.(2).%111135.D
Fo(ge,y)id(aw). = p.2=0. w=1y:
Digp(s,w).dp(u,v).Dz=u.w=vy 3)
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F.(3).%1111:8.D
Fo(@5,9): 6 (5 0) . e s = =y :
2:p(5w) e p(u,0) . Dy up =t w=1 (4)
Fo#kll1. Dbz, y): dp (2, w). ¢ (u,v). Dwup Z=U. W=D
Qid@y)id(2,w).d(2,y) . Dpy.z=a.w=y:
[%5°33] ; 2:p(@,y):idp(s,w). Dy 2=z w=1y:
[%14:123] dipe,w). =y pz=z.w=y 5)
F.(5).%11-11-34:45 . D
Fo(@ay)-d(@y)id(z,w) ¢ (u,v) . Dy puv-2=u. w=0:
d:(qdz, y): VW) ey g E =2 W= 6
F.(1).(4).(8).DF.Prop ek i
#1413, F:a=(12)(¢z).=.(12) (d2) =0
Dem.
FLoxl4el. dbuna=02)(dz).=:(gb): pa.=p.x=b:a=b 1)
l-.*13‘16.*4‘36.3!‘:.¢w.5x.x=b:a=b:§-¢zc Zp.x=bib=a:
[%10-11-281] Db (gb):pzx.=,.z=b:a

Q“

({g[b) ¢r.=,.x=b:b=a:
1 (12) (o) =a (2

IH IlI Il

[%14°1]
F.(1).(2). JF. Prop
This proposition is not an “mmediate consequence of %1316, because
“a=(12)(¢x)” is not a value of the function “x# =9 Similar remarks
apply to the following propositions.
#14°131. F: (12) (p2) = (12) (Yrz) . = . (12) (Yz) = (12) (Pp)
Dem.
Fo#141. Db (12) () = (12) (Yow) . = 1. (D) : . =@ = b b= (1) (Yrz) 1.

[¥14-1] =:(gd):.pr.=s.a0=bu(gc):Yya.=,.0=c:b=c:.
[(¥116] =:(ge)syz.=p.a=c:(gb):pr.=,.0=b:b=c:.
[#141] =:(ge)tyz.=p.x=c:(1z)(pz)=c:.

[¥14:13] =:. (He) sz . =, 2 =c: c = (12) () .

[%14-1] =:. (1z) (Yz) = (12) (pz) :: D F . Prop

In the above proposition, in accordance with our convention, the descriptive
expression (1z) (¢px) is eliminated before (12) (yrz), because it occurs first in
“(1z) (¢pw) = (1) () ”; but in “(12) (Yz) = (1) (pz),” (12) (Yz) is to be first
eliminated. The order of elimination makes no difference to the truth-value,
as was proved in %14-113.

The above proposition may also be proved as follows:
FLl4111. D F 1. (12) (p) = (12) (Yriz)

(@b e)idr.=p.2=biyz.=,.
(ghe)ivar.=.a=c: ¢z .=,.
: (12) (Yr2) = (12) () 2. D . Prop

[

[%4:3.%1316.%1111:341]
[#¥112.%14111]

(11|
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%1414, F:a=b.b=(12)(pz).D.a=(1z)(Pz) [%1313]
%14:142. F:a=(12)(dp2) . (12) (Ppz) = (12) (Yz) . D . a= (1) (Y )
Dem.
Fokl4l.DFu:Hp. D (gb):pr.=,.2=bia=0>:.
(o). =gz =c:c=(12) (Yx):.

[%18195] digpr.=.x=a:(gc): pz .= =c:c=(12) (Ya):.
[#10-35] Di(ge)t-pr.=g.x=a:dpr.=.x=c:c=(12) (Ya):.
[%14°121] dun(ge)tpr.=p.x=ara=c:c=(1z) ().

[*327.%13195] D:ia=0x)(Ya):: I F. Prop
*14:144. | : (12) (pz) = (12) (V) . (1) (Yrx) = (12) (x) - D . (12) () = (1) (x )
Dem.
F.%14111.DF:Hp. D (ga,b) t o= o =a:yw.=,.o=b:ra=bu.
(e, d) iz . =g.x=c:xyz.=.c=d:ic=d:.

[%13:195] di(fa):pz.=p.e=aiYr. =z c=0:
(gc):x[fx.:—x.xzc:xw.zx.xzc:.
[%11-54] di(fa,c):dpr.=p.z=a:1Yx.=.2=0:
Y&y E=C 1YL« ST =C i
[*14:121.%11°42] D (&, 0) 1 pr . S =1 YT =5 T=C:10=C".
[%14'111] J:. (12) (¢pz) = (12) (x) :: D k. Prop

14145, +: a = (12) (¢pz) . @ = (12) (Yrz) . D . (12) (p) = (12) (Yr)
Dem.

B4l Dbia=02)(dz).=:(gb):pz.=5.x=bia=b:
[%¥13195] . =:1dr.Z.0=0 1)
F.(1).%141.DFuHp.=t.¢dz.=.a=a:(gb):ya.=y.a=bra=b:.
[#10°35] =n(gh) .= x=a:yar.=.x=b:a=b:.
[#14:111] D (12) (pz) = (1) (Yx) 1: D k. Prop
#1415, F: (1) (pw)=b. D 2 [(12) (¢p)} » = b
Dem.

F.xl141.D

F:Hp. Di(ue)ipz.=p.a=cic=b:.

[¥13195] Dz .=, . 2=b (1)

F.(1).%141.D
FaHp. D {(z)(da)].=: (o) io=b.=.s=c:vyo:
[%13192] tyb:i D k. Prop
¥14'16.  F:. (12) (d2) = (12) (Yz) . D : x [(12) ()} - =« x {(12) (Yr)}
Dem.

il

Fokldl.DFaHp.D:(ygb): .= 2 =0:0=02)(Yx) (1)
F.kldl.Dbargpa. =, =012

x ((2) (p)} -

(1l

s(ge)ra=b.=,.x=c:yc:
xb (2)

[¥13:192)
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Fo#kl41315. 3 F 0. b= (12) (Y2) . D xb . = . x {(12) (Y} 3)
F.(2).(8). Dbidw.=,.2=b:b=(1z)(Ya):

d: — 4
F.(1).(4).%10128.D F. Prop x{02) (g} - = (Gm) (b)) ()

*¥1417. b (z)(po)=b.=:4 ! (12) (¢px) . =y . ¥ 1D

Dem.
F.%14:15.%10:11-21.D
Fr(12)(¢p2)=0.D: 41 (12) (Ppa) . =y . Y 1] (1)

Fo#101.#422 . Dby la = o=b:y ! (12)(¢px). =y . Y1 b
' D:(12)(px)=b.=.b=b:

[¥13:15] D: (1) (dr)=0b (2)

F.(2). Exp.%101123.D \
l-::(gx):x!x.Ex.w=b:3:.\[r!(m)((j;x).Ew.\[r!b:D.(7m)(¢w)=b 3)

Fo%121. DF:i(gy)ixle.=,.2=0 (4) ‘
Fo(8).(4). Dkt 1(12) (¢z) . =y oY 101D . (1) (p) = (5)
F.(1).(5).DF.Prop

It should be observed that we do not have
(z)(¢z)=b.=:4 1 (12) (¢p2) . Dy . Y 1]
for, if ~E(12)(¢z), ¥ ! (12) (pz) is always false, and therefore
V1 (12) (bz) . Dy o 1D

holds for all values of 5. But we do have

#14171. b (2)(¢po)=b.=:4 1. Dy . ¥ 1 (12) (p)

Dem.
F.ox14:17. Dbz (1) (¢pa)=0.D:41b.Dy . ! (12) (Ppz) 1)
F.%101.%121.DF IOy (1) (pz) : Db =b.D . (1) (px)=b:
[%1315] D: (1) (pz)=b (2)

F.(1).(2). 2 F. Prop
#1418, b E!(2)(¢z). D1 (w) .. D . (12) (Pa)

Dem.
F.%101. DF:(2).Ya.D.b:
[Fact) Obngr.=p.x=b:(z).Ya:D:ipr.=,.0=b1yb:
[#1011-28] D b= (gb) s po .=y -2 =b: (2) . Aw: D:(qb): pz.=,. 2 =b:b:.
[¥1035] Dkl (gb):de.=p.o=br(2). Yz D:(gh) 1 dpa .=y a=b:yb:.
[¥14:111] D+ E1(2) (po): (@) .z D i (1) (po) 1. D F . Prop

The above proposition shows that, provided (1) (¢) exists, it has (speaking
formally) all the logical properties of symbols which directly represent objects.

Hence when (1) (¢x) exists, the fact that it is an incomplete symbol-becomes
irrelevant to the truth-values of logical propositions in which it occurs.
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%142, F.(mz)(@=a)=a
Dem.
F.%14101. D k() (z=a)=a.=:(gb):x=a.=,.2=b:b=qa:
[%13-195] =i1z=0q.5,.2=0 1)

F.(1).Id. DF.Prop
%14:201. F:E! (12)(dz). D . (qx) . px

Dem. .
F.ox1411.0F:.Hp.D: (gh): pw .=, 2=b:
[%10°1] D:(gb):pb.=.b=b:
[%1315] D:(gb).¢b:.DF. Prop

%14202. Fidpr.=,.2=0:=:(12)(pz)=b:=:1¢dz.=,.b=2:=:b=(12) (p=)
Dem.
Fox141.0F: (1) (p2)=b.=:(qo): pz. =y .2 =cic=b:
[¥13195] t¢r.=y.2=0:1.DF. Prop
[The second half is proved in the same way as the first half.]
%14'203. F:. E!(12) (pa) . =: (o) P2 : pr . Py . Dpy- 2=y
Dem.
F.%14:12201. DFuE!(z)(dz).d: (o). Pz dpz. ¢y .y y.2=y (1)

I

F.%10'1. Dbigbidr.dy.dyy.x=y:D:¢pb:dz.¢pb.D,.x=b:
[%5:33] D:igpb:¢pz.D,.x=b:
[%13-191] Dig=b.D,.da:
¢z.,.x=b:
[%10-22] Ddigo.=,.2=b (2)
F.o(2).%10128. D k. (gb):pb: px .y . Dy y -2 =y:D:i(gb) : Pz . = . =b 1.
[#10-35] Db (gd).pbidpz.dy .y . 2=y::(gb):pr.=,.x=0b:
[¥1411] 2:ElGa) (¢2)  (3)

F.(1).(3). D F.Prop
%14204. F:. E! (12) (pz) . =: (gd) . (12) (Pp2) =b

Dem.
F.%14:202.%10°11.D

Fr@)ndz.=.o=b:=:1(12)(p2z)=5b:.D
[#10-281] ks (gb) t P . =, .z =b:=: (gb) . (1) (Ppa) =b (1)
F.(1).%14:11.DF. Prop

#*14-205. F: 4 (12) (¢pz) . = . (D) . b= (1) () - Yrb [%14:202:1]

¥14:21. F:v (12)(pz). D . B! (12) (p)

Dem.
F.%141.2
b {(12) (pa)} - D (gd) s pz o =4 =bzb:
[¥10°5] d:(gd):ipx.=p.x=b:
[#14-11] J:E!(1z)(¢px):. D F . Prop
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This proposition shows that if any true statement can be made about
(1z) (¢p=), then (12) (px) must exist. Its use throughout the remainder of the
work will be very frequent.

When (12) (pz) does not exist, there are still true propositions in which
“(1) (pa)” oceurs, but it has, in such propositions, a secondary occurrence,
in the sense explained in Chapter III of the Introduction, v.e. the asserted
proposition concerned is mnot of the form + (1z)(pz), but of the form
L (12) (p)}, in other words, the proposition which is the scope of (1z) (¢px)
is only part of the whole asserted proposition.

%1422, F:E! () ($2).=. ¢ (12) (¢z)

Dem.

F.%14122. Dliundzw.=,.2=0:D. qsb (1)

F.(1) %471 .DFi .=, . 2=0 d).x =, x=bi¢b:.

[¥1011-281] Dbt (qgb):dpr.=,.a= b =:(gb)idpr.=,.x=bigb:.

[#14:11-101] D F:E!(1z)(¢px).=. ¢(1x) (¢z): D +. Prop

As an instance of the above proposition, we may take the following: “The
proposition ‘ the author of Waverley existed’ is equivalent to ‘the man who
wrote Waverley wrote Waverley.”” Thus such a proposition as “the man
who wrote Waverley wrote Waverley ” does not embody a logically necessary
truth, since it would be false if Waverley had not been written, or had been
written by two men in collaboration. For example, “the man who squared
the circle squared the circle” is a false proposition.
%14:23. F:1E!(2) (2. Yx).=. ¢ {(12) (dz . Ya)}

Dem.
F.%1422.0F: E! (12) (¢pz . ) .
[#10°5.%3-26] D: ¢ {(12) (P . Yrx)} (1)
F.%1421.DF: ¢ {(12) (P . Yrz)} . D . Bt (12) (P . ) (2)
F.(1).(2).2F.Prop

Note that in the second line of the above proof %105, not only %326, is
required. For the scope of the descriptive symbol (12) (¢a . Yrz) is the whole
product ¢ {(12) (pz . V)] . {(12) (P . Yr2)}, so that, applying %14-1, the
proposition on' the right in the first line becomes

(Ab): pz oAy =y =b:Ppb.Yb
which, by %105 and %326, implies
(@D pz Az =, x=b: b,
€. ¢ {(12) (pz . Yz)}.
%1424, F: E!(2) (). =:[(12) (px)]: py .=y . y=(12) (pz)

Dem.

Fox141.DF e [(2) (p)] 2 py - =y y=(12) (Pp)
=:(gh):py.=y.y=bidy.=,.y=0b:
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[%4-24.%10-281] (b)Y by .=y y=bs
[%14-11] : B (12) (pz):. D F . Prop

This proposition should be compared with %14:241, where, in virtue of the
smaller scope of (1z) (¢x), we get an implication instead of an equivalence.

#14:241. F:. EY(12)(dpz). D= Py . =, .y =(1%) ()

{11l

Dem.
F.%14203.OFx:Hp.D:¢y.-dpa-D.y=x:.
[Exp] Diugy.digx.d.y=x
[%1011-21] Dbz Hp.D:¢y.Dd:¢z. D, y=a
[#4:71] dipy.=:dyidpr.d,.y=u5
[%13-191] S1y=0.;.¢pz:¢px.z.y=2a:
[%10-22] Sipr.=.Y=2a:
[%14-202) =:1y=(12)(¢z):: D . Prop

#%14242. b pz.=,.x=b:D:yb.=. Y (12) (pz) [¥14202:15]
*¥14:25. +: E!(1z)(¢x). D : pz px . = . (12) ()

Dem.
F.%4:84.%1027271. Db i pw.=p. 2 =b: Dt pe DpYyw.=:2=0.Dy. Ya:
[%13191] =:yb:
[¥14:242] =y (@) (¢2) Q)

F.o(1).%101123. D F s (gb) s o=z . =D
D:¢z e .= (1) (pz)  (2)
F.(2).%1411. DF.Prop
#1426, F: E!(12) (¢pz). D1 (q2). pz. Y. =Y {(12) (p2)} . = . P I Y
Dem.

F.%1411.D

FeHp.D:i(gb)idpr.=,.2=b 1)
F.%10811. Dt ¢pr.=,.a=b: D dpz.Ya.=.x=b. Y.

[%10-281] D (). pr Yz =.(go).x=b. Y.
[%13:195] =.Yb.

[#14:242] I S
F.(2). %10111:23. D

Feo(gb)idpz.=p.a=0b:D: (). pz. Yz .= . [(12) ()} 3)

Fo(1).(3).%1425.DF. Prop
%1427, F:@ El(12) (). D : pz =Y
Dem.

=. (1) (¢) = (12) (yw)

F.%4:8621 . Dbugr.= .a=b:dndpr.=.Yaw:=:¢yz.=.2=0 (1)
F.(1).%101127 . Db o=, a=b: D ()t pz .= Y= yz.=.x=b:.
[#10-271] Ddidr.=.Yx:i=iYzr.=,.x=b:

[%14-202] =:b= (1) (Y¥z):

[#14242] = 1 (15) ($0) = (19) (¥) ()

F.(2).%1011-23 . %1411. D} . Prop
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%14271. F:i.pz.=;.Ya: D1 E!(12) (¢2) .= . B (12) ()
Dem.

F.%486. DFugr=yz.didr.=.2=b:= qmc =.2=b:
[%10:1127] D F:: Hp. D (w): 4) Ewr=bis:yr.=.2=0b:
[%10271] Diu(@)idpr.=.x=b:=:(2):Yr.=.0=b::
[¥1011-21]D F:: Hp. di(b)inpz.=.o=bi=:yr.=,.x=b:.
[#10-281] di(gb)idpr.=s.o=b:=:(gdb):Yr.=,.2=0b::
D F.Prop
*¥14:272. Fida .=, .Yz D2y (12) (p2) . = . x (12) (Yrz)
Dem.

F.%486. Dliuda=yz.didas.=.2=bi=:ya.=.2=0b:.
[¥10-11'414]D F:: Hp. Pz .= x=bi=:1Yz.=,.x=b:

= b: = =

D z %
[Fact] dida.=.ax=biybi=:yw.=,.z=biyb:
[%10-1121] Dt ::Hp. Di(b)inpr.=p.x2=biybi=iyr.=. 2=bzyb:.
[%10-281] du(gb):pr.=p.2=bixbi=
(b)Y .=, 2=bzyb:.
[%14:101] Dy () (pr).=.x (m) (Yrz) 22 D k. Prop
The above two propositions show that E!(1z)(¢z) and x (1z)(¢z) are
“extensional” properties of $#, v.e. their truth-value is unchanged by the
substitution, for ¢, of any formally equivalent function 2.
¥14:28. F:E!(1z)(¢z).=.(12) (dp2)= (12) (dx)
Dem.
F.%1315.%473. Db ¢z .=p.a=bi=:1dz.=,.0=b:b=b (1)
F.(1).%1011:281. D
Fr(gd):dpz.=,.2=0b:
F.(2).%14111.DF. Prop
This proposition states that (12) (¢z) is identical with itself whenever it
exists, but not otherwise. Thus for example the proposition “the present
King of France is the present King of France ” is false.

The purpose of the following propositions is to show that, when E!(12) (¢2),
the scope of (1) (¢a) does not matter to the truth-value of any proposition
in which (12)(¢x) occurs. This proposition cannot be proved generally, but
it can be proved in each particular case. The following propositions show
the method, which proceeds always by means of %14-242, ¥10-23 and %14-11.
The proposition can be proved generally when (12)(¢x) occurs in the form
x (1) (¢px), and y (1z) (pz) occurs in what we may call a “ truth-function,” 7.e.
a function whose truth or falsehood depends only upon the truth or falsehood
of its argument or arguments. This covers all the cases with which we are
ever concerned. That is to say, if x (1) (¢z) occurs in any of the ways which
can be generated by the processes of ¥1—sx11, then, provided E!(1z) (),
the truth-value of f{[(1z) (pz)] . x (1z) (p)} is the same as that of

[(12) (p)] - f {x (12) ($=)}.

il

(qb):pr.=5.x=b:b=b (2)
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This is proved in the following proposition. In this proposition, however, the
use of propositions as apparent variables involves an apparatus not required
elsewhere, and we have therefore not used this proposition in subsequent
proofs.

%143, Finp=q.D,4.-f(P)=f(@Q): El(1z)(px):D:

S {[(z) ($2)] - x (12) (o)} - = . [(12) ()] - f {x (1) ($)}

. %14:242.D

Lpr. .= x=0:D:[(12) (dx)]. x (12) (px) . = . xb 1)

F.(1).OFup=q.0p 4. f(P)=f(@Q):¢pr.=p.2=b:D:
Sll02)(p2)] . x () ($2)} - = - S (xb)  (2)

F.%14:242.D

b .=p.2=0:2:[(12)(pz)]. f{x (12) (pz)} . =. f(xD) (3)
F.(2).(8).D
Fip=q.0p - f(P)=f(@Q):pz.=.2=b:D:
S {[02) ($2)] - x (12) ()} - = . [(12) (p2)] - / {x (1) ($2)} (4)
F.(4).%1023.%1411.DF. Prop
The following propositions are immediate applications of the above. They
are, however, independently proved, because %143 introduces propositions
(p, q namely) as apparent variables, which we have not done elsewhere, and
cannot do legitimately without the explicit introduction of the hierarchy of
propositions with a reducibility-axiom such as %121,

%14:31. F:2E! () (¢2). D [(12)(2)] - pv x (12) (Ppz) .
) = 1 p.v. [(10) ($0)] . x (1) ($)
em.

F.o%14242 . D ki g =y 2 =0:D: [(12)(px)]. pv x (17) (¢w).£. pv xb (1)

Fo%14242 . D F i =p 0 =01: D :[(12) (pa)] - x (1) (Pp) . =

[#4:37] 2:pv[()(¢2)]x (12) (p2) . = P v xb 2

Fo(1).(2).DFgw.=.x=b:D:[(1z)(dpz)]- pvx(m)(qlw)
=.pv[(2)(¢2)] x (12) ($2) (3)

Dem.

T T

F.(3).%1023.%1411.D F. Prop

The following propositions are proved in precisely the same way as %1431 ;
hence we shall merely give references to the propositions used in the proofs.

%¥14:32. F:i#. E! (1) (¢pz).=:[(12) (p2)] . ~x (12) ().
= .~ {[(12) (¢2)] - x (1) ($)}
[%14:242 . %4°11 . %1023 . %14-11]

The equivalence asserted here fails when ~E ! (12) (¢p2). Thus, for example,
let ¢y be “y is King of France.” Then (12)(¢x)=the King of France. Let
xy be “y is bald” Then [(1z)(¢x)] .~y (12) (¢«) . = . the King of France
exists and is not bald; but ~{[(12) (¢=)] . x (1z) (=)} . = . it is false that the
King of France exists and is bald. Of these the first is false, the second true.
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Either might be meant by “the King of France is not bald,” which is am-
biguous; but it would be more natural to take the first (false) interpretation
as the meaning of the words. If the King of France existed, the two would be
equivalent ; thus as applied to the King of England, both are true or both false.

#14:33. L E!(12) (¢2) . D . [(12) (¢px)] . p Dy (12) () .
=:p.2.[(1) (¢2)] . x (12) (p)
[#14:242 . %4°85 . %1023 . %14°11]

*14:331. F:: E! (1) () . I :. [(12) (p2)] « x (12) (d2) D p .

=:[(1x) (pz)] . x (1) (Ppz) . D . p
[%4-84 . 14242 . %1023 . %14°11]

*14:332. F :: E (12) (¢pz) . D 1. [(12) (¢p2)] . p = x (12) () . =
1p = [(12) (¢2)] . x (12) (p2)
[#4-86 . %14°242 . %1023 . %14-11]

#1434 Fip:[(12) ()] . x (12) () : = : [(12) (Pp2)] 2 p - x (1) (pz)
This proposition does not require the hypothesis E! (1) (¢).
Dem.

F.%141.2
Frop:[(2)(p2)] . x (12) (pz) i =:p:(qb) i pw .=y =b:yb:

[%10:35] =:(gb)ipidr.=p.x=b:yb:

[%14-1] =:[(1)(dpz)]: p.x (12) (pz):. D F . Prop

Propositions of the above type might be continued indefinitely, but as they
are proved on a uniform plan, it is unnecessary to go beyond the fundamental
cases of pvg, ~p, pDgand p.q.

It should be observed that the proposition in which (12) (¢x) has the
larger scope always implies the corresponding one in which it has the smaller
scope, but the converse implication only holds if either (a) we have E ! (1) (¢=)
or (b) the proposition in which (17) (¢z) has the smaller scope implies
E!(12) (¢z). The second case occurs in %1434, and is the reason why we
get an equivalence without the hypothesis E!(1z)(¢a). The proposition in

which (12) (¢2) has the larger scope always implies E ! (12) (¢=), in virtue of
*14-21.

SECTION C

CLASSES AND RELATIONS

%20. GENERAL THEORY OF CLASSES
Summary of %20.

The following theory of classes, although it provides a notation to represent
them, avoids the assumption that there are such things as classes. This it does
by merely defining propositions in whose expression the symbols representing
classes oceur, just as, in %14, we defined propositions containing descriptions.

The characteristics of a class are that it consists of all the terms satisfying
some propositional function, so that every propositional function determines a
class, and two functions which are formally equivalent (z.e. such that whenever
either is true, the other is true also) determine the same class, while conversely
two functions which determine the same class are formally equivalent. When
two functions are formally equivalent, we shall say that they have the same
extension. The incomplete symbols which take the place of classes serve the
purpose of technically providing something identical in the case of two functions
having the same extension ; without something to represent classes, we cannot,
for example, count the combinations that can be formed out of a given set of
objects.

Propositions in which a function ¢ occurs may depend, for their truth-
value, upon the particular function ¢, or they may depend only upon the
eatension of ¢. In the former case, we will call the proposition concerned an
intensional function of ¢; in the latter case, an extensional function of ¢.
Thus, for example, (x).¢pz or (Fgz).¢z is an extensional function of ¢,
because, if ¢ is formally equivalent to +r, de. if ¢z .=,.Yz, we have
(2) . ¢z .= . (@) . Y and (gz) . ¢z .= . (). Y2. But on the other hand
“I believe (z).¢x” is an intensional function, because, even if ¢z .=, .y,
it by no means follows that I believe (2) .y« provided I believe (z).$pa. The
mark of an extensional function f of a function ¢! 2 is

Pla.=p.Yle: Dy 1 f(P12).=.f(Y!2).
(We write “¢12” when we wish to speak of the function itself as opposed to
its argument.) The functions of functions with which mathematics is specially
concerned are all extensional.

When a funetion of ¢ !% is extensional, it may be regarded as being
about the class determined by ¢ ! 2, since its truth-value remains unchanged
so long as the class is unchanged. Hence we require, for the theory of classes,
a method of obtaining an extensional function from any given function of a
function. This is effected by the following definition:



