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Tlte Problems oJ Logic
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Chapter I  I  I

CONSISTENCY AND THE
DECISION-PROBLEM

$ r .  IwtnoDUcrroN

The problem of consistency is a peculiarity of the
postulational logic. When the principles of logic are
accepted on purely intuitive grounds, there can be
no question concerning their truth and significance.
And if they are both true and significant, they
cannot lead to inconsistency. Even in the semi-
postulational procedure of logistic there is no need
for a proof of consistency. Once the theory of types
is introduced in order to insure significance, the
primitive propositions of a logistic system are known
to be mutually consistent because they are recognized
to be true by immediate inspection. In a postulational
system of logic, on the other hand, the restrictions
of significance are not derived from ontological dis-
tinctions; they are incorporated into the arbitrary
rules of procedure. The starting-point of the pro-
cedure is formed by the postulates which, like the
rules, are also accepted by convention. [Jnder these
circumstances it is always possible to expect, unless
a proof to the contrary is given, the emergence of
a paradox, which was not anticipated when the con-
ventions were introduced, or of a contradiction,
which would disclose that some conventions in the
basis of the system happen to clash with others. But
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within the system the demonstration of theorems may
have gone a long way before one stumbles againsl
inconsistency. Obviously one wants to find the weak-
ness of the foundation not by means of the collapse
of the building but before one has started to build.
For this reason the question whether the postulational
system is contradictory must be decided by theoret-
ical (or metalogical) considerations and not through
the procedure carried on within the system.

A proof of consistency is a demonstration that
with the postulates and rules of the formal system no
two theorems can be deduced which contradict one
another. Thus to prove that the calculus of un-
analysed propositions, i.e. the calculus whose vari-
ables, ?, ?, etc., are interpretable as propositions, is
consistent, one must show that p and e p ate not
both theorems. As explained in $ z, if both p and
N ? are deducible, then any formula 7 is deducible
or is a theorem. .Conversely, if a system contains a
formula which is not a theorem, the system must be
consistent. The presence of unprovable formulas
might be suggested as a practical criterion of con-
sistency, provided one could always decide whether
a given formula is provable or not. But the possi-
biliry of such a decision is itself a problem, known as
the " decision-problem" (Entscheidung problem). The
question is whether there exists, with regard to any
given formula of a postulational.system of logic, a
finite procedure, i.e. a procedure which takes a finite
number of steps, whereby one can determine either
that the formula is a tlteorem or that it is not deduc-
ible. If the formula is a theorem, its interpretation
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must give true propositions for all values of its
variables; if the formula is not a theorem, it may be
self-consistent, i,e. interpretable as true at least for
some values of its variables, or else it is a conffadic-
tion. To establish that the formula is consistent is,
of course, the same thing as showing that its contra-
dictory is not a theorem. Now although one cannot
tell off-hand whether the decision-problem is solv-
able; it is easy to anticipate the general conditions
which a solution would have to satisfy. One condition
is the existence of a property, let us call it the
K-properry, which only deducible formulas of the
system have; the other condition is the possibility of
establishing by a finite procedure with regard to any
given formula whether it has the K-property. The
solution of the decision-problem and of the problem
ofconsistency does not yet mean that the postulational
system is adequate as logic. I-ogic aims at a system
of principles which are always true, i.e. it must
consist of formulas which are true for all values of
the variables. Ffence the postulates for logic must
enable one io sort without residue all the formulas
within the system, i.e. all the formulas expressed in
terms of the undefined elements of the system, into
principles which are theorems and formulas whose
claim to be always true is unfounded and which,
th.erefore, are refutable. A system every formula of
which is either deducible or refutable is called con-
plete. The relation of completeness to consistency
is this: completeness insures that at least one,
consistency that at most one, of two contradictory
formulas is a theorem.
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Confusion in a discussion of consistency might
easily arise if the distinction between posnrlatiotnal
logic and postulational matlrematics is not brought out.
A postulational system is a logic if it contains, besides
variables, constant symbols which are interpretable
as the propositional connectives "if-then" and "it is
false that", or some equivalents of these, and the
logical properties of which are defined by some of
the postulates. A system is a mathematics if its
constants are interpretable as mathematical operators
or relations, such as "plus"r."greater than", and the
like, which do not connect propositions with one
another. The presentation of the postulates for a
mathematics requires either the medium of a sym-
bolic logic or of an ordinary language. F'or example,
the postulates for serial order can be given in terms
of tlie undefined relation " ( ", bv thiee statements
in English:.

(r) Given a class of elements K, if a and b are not
the same elements of K, then either a < b
orb <a.

(z) Given a class of elements K, if a < b, then
a and b arc not the same elements
of K.

(3) Given that a, b, c are elements of K, if a < b
andb(crthena<c.

The same system can be formulated in the symbol-
ism of the Principia Mathematica, if we let "1x"
symbolize "r is an element of K" and "g (*, ))"
stand for "x 1)", as follows:

9o 9r
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(t ') Lf a ."f b . - (a : b))c lg (o, b)v e Q, o)),

(z') l.f o ."f b .S@, b)lc - (o : b).

Q) i " f  o . f  b . . f  c . {  (o,  b)  .s (b,4)c s @,4.

throughout.
The,distinction between a postulational logic and

is true that:

(r) If a and b are two different notes, then either
a is lower than b or b is lower than a;

(z) If a is lower than b, they are different tones;
(S) If a is lower than b and b is lower than a, then

a is lower than r.

And while the notes in their serial order of pitches
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are actually produced any time one runs his fingers
over the keyboard of a piano, the consistency of
the abstract conditions for serial order is thereby
demonstrated. The weakness of the method of con-
crete interpretation is that there can be no assurance
that concrete examples, such as the notes in their
order of pitches, arc available for any given set of
mathematical postulates. But whenever they have no
concrete examoles on hand mathematicians can resort
to abstract interpretation, and this means that consis-
tency of a postulational mathematics is always
provable.*

Of course, proof by interpretation is contingent

* Abstract interpretation gives a sclema of an example instead of
concrete eramples such as the order ofthe notes in an octave and the
Iike. Thus with regard to the system for serial order a sclema may be
constructed by taking three items such that while a serial relation
holds between one item and each of the others, taken in that order
and, between one and the other of the latter items, the same relation
fails to hold for any other permutation of items. To give an illus-
tration, while the serial relation of "being lower in pitch" holds
between do and re, do and mi, and re and mi, it does not hold for
do and do, re and do, re and re, mi and do, mi and re, and mi and ni.
This concrete illustration, however, may be taken as an abstract
schema provided we use do, re, mi not as the names of the notes
C, D, E in the key of C, but as names of any given trio of items in
abstraction from their nature. The consistency of the abstract
erample is seen if we observe that each singular statement as to
whether the relation holds or not is concerned with a different
permutation of the items and, therefore, all the singular statements
which form the abstract example have a different subject-matter
and so cannot be inconsistent. (For a more detailed exposition and
its development, cf. Paul Henie, "ADefinition of Abstract Systems,"
Mizd, r935.)
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upon the assumption that the logic of the medium
(within which the postulates for a mathematics are
introduced) is itself consistent. Thus, from the
postulationalist standpoint, the basic problem of
consistency is concerned with a postulational logic
rather than with mathematics. But herc again a
distinction has to be drawn. Logic may be "pure",
as exemplified by the calculus of unanalysed pro-
positions and the calculus of predicate (cf. $$ 2 and

3), or combined with mathematics. The "conbined
logic" mtst list among its postulates some which
determine the properties of certain constant symbols
in away which makes them interpretable as the basic
mathematical relations of numerical equality and
the like. In anticipation of the following sections it
may be stated that the problems of consistency
artd completeness can be solved for a pure calculus,
but not for a logic combined with mathematics.
The proofs for "pure logic" are given in the order
of increasing complexity of the systems concerned;
first, for the calculus of unanalysed propositions;
next, for the same calculus in combination with the
Iogic of predicates.

$ z. Tur Carculus oF IJNANALvsED Pnoposrrrows

Every symbolic postulational system is based upon
a set of postulates which are expressed in terms of
variables and undefined constant symbols. A set of
postulates for the system of unanalysed propositions
is given by the "primitive propositions" of section A
of the Principia.In the modified version of Grundzilge
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der tlteoretisclzen Logik by Hilbert and Ackermann
the set contains four formulas:

(') (p v p)c ?;
(b)pc(pvq);
@(pYq)c(qvp);
(d) (? c s) c l(, v p) c (r v q)1.

The primitive or undefined symbols are "- "
(read "curl") and "V" (read "wedge"). The sym-
bols " c ", which appears in the formulation of the
postulates, as well as the symbols "." and " 

-" 
g71

always be omitted by means of the following defi-
nit ions:

(r) "p c g" rs defined as " - p Y g"; (z) "? . q" i"
defined as ,. _ (_ ? y _ q),, i and (3),,1t :
g" is defined as "Qt c q) . (g c ?)".

The theorems are derived from (a), (b), (4, @) by
(o) the rules of substitution and (B) the rule of
inference.

(") A given variable can be replaced at each of
its gccurrences within a formula by the same com-
pound expression. For example, one can substitute
"gY ," for "?" in (a) and derive the formula
"l(q Y r) v (q v r)l c (q Y r)".

(p) From the conjunction of p and p c g one c n
defive g.

This abstract system is called the calculus of
unanalysed propositions because it is interpretable in
terms of propositions taken as units, i.e. without
regard to their constituents. Thus (b) can be inter-

9+
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preted as the assertion that "a proposition implies
that either it or some other proposition is true".

The consistency of the'calculus (taken in abstrac-
tion from its interpretations) can be proved by the
test of the truth-table.* The test will convince one
that (a), (b), (4, (d) arc tautologies and that by
means of (o) and (p) nothing but tautologies can
be derived from tautologies. Hilbert and Acker-
mann give an analogous but simplified method of
proof. i

Let every variable be arbitrarily interpreted in
one of two ways, as being either 0 or 71 let "V"
stand for the sign of arithmetical multiplication, and

- p be t if it stands for - 0, and O if it stands for

- z. With this interpretation every postulate gives
0. F'or example, taking (a) in the form " - (? V ?)
Y p", one observes that at least one side of the main
wedge must be interpreted as 0, and therefore the
whole product is 0.f Furthermore, according to

* The use of the truth-table need not depend on logical intuition
provided one does not interpret its symbols T and F (or I and 0)
as, respectively, truth 4nd falsehood. In abstraction from such an
interpretation the truth-table is a table of permutations for two
signs. The truth-function can then be defined by convention, i.e. by
an arbitrary assignment of either T or F to each of their permu-
tations. Thus we might assign 7 to the permutation T T and F
to all other permutations, and define this assignment as constitutive
ofa conjunction.

f For, by convention, p is either 7 or 0. Let p be .1. Then

"-(pYp)Vp" is "-(7VI)V1",  r , r 'h ich is "-LY7",
i.e."0Y 7",i.e.0. Now letp be 0. Then the formula is" -(0Y Q
V0". This gives "- 0V 0", i.e. "7Y 0", i.e, 0. In either case
(a) is 0.
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, the rules (") and (p) only 0 can be derived from the
postulates each of which is 0. Transformations by
(o) cannot change either the range of arithmetical
interpretation or the main structure of the original
formulas, while, in applying (p), the premises p and
? c ? can be identified with a pair of postulates only
if each premise is 0, and this is possible only when
g islikewise 0.* Since all theorems of the system must
be interpreted as 0, the system is consistent t By a
somewhat similar procedure the calculus is shown
to be cornplete.

In order to solve the decision-problem one can
begin by showing that every formula of the system
is transformable into a standard pattern called the
conjunctizte normal Jorm. The transformation is per-
formed with the aid of the following rules (which
are derivable from the postulates):

(a r) The symbols "V" and "." have the asso-
ciative, distributive and commutative
properties;

(a z) The symbols " - ( - p)" and "p" can re-
place one another in any context;

(a 3) The symbol " - (? .?)" i" replaceable by
the symbol " - ?V - ?", and the sym-
bol  "-  (?Y ?)"  by "-  ?.  -  ! " . ,

* Forif9 were -1, "? ? !", i.e. "n?Y gt'would be "7Y 7",
i.e. 1.

f If the system were inconsistent, both 2 and ep would be
theorems. But then at least one of them would be interpreted
as -2.
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(b ,)  pY - ? is a theorem;

(b z) It p is a theorem and g is any formula, then
pY gis atheorem;

(b ) If p is a theorem and 7 is a theorem, then

?.?isatheorem.

Now let an expression be given for transformation
into its normal form. By means of the definitions
(r) and (f) it is cleared of the symbols "J" and
" 

-". 
By means of (a 3) the sign "-" is made to

precede only single variables. By means of (a z) one
gets rid of the reiterated "curl". Finally, by means
of (a r) the expression is formulated as a conjunc-
tion of disjunction s of single proposition-variables witlt
or witltout a single curl eaclr. This gives the normal
conjunctive form. To illustrate each successive step
of the transformation let the original expression be:

(pcq) =(-qc -?).

The successive transformations are :

( -  ?Y g) -(--  gv -  ?)  (By def.  ( r ) ) .

( -  ? Y q) = (qv -  ?)  (By (a z)) .

[ -  ( -  pv q)Y (qv -  ?))
. l -  (qv -  ?)Y (-  ? v r) l  (By def.  ( r )  and (z)  ) .

[ ( - -?.Nq)v(qv -?)f
. l ( -  q .  -  -  ?)v (-  ?v r) l  (By ( '  9) .

l (?.-  q)v (qv -  ?))
. l ( -  q.?) v (  -  ?v q)J (By (a z)) .
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Applications of the distributive law give the con-
junctive normal form:

(pv qv -  ?)  . ( -  gY gY -  p)
. ( -gY -?vq).(pv -?Yq).

The fact that every formula is reducible to its
normal form leads to a solution of the decision
problem because there exists a simple criterion which
determines whether the given normal form is a
theorem. It is a theorem when and only when in each
member of the conjunction, i.e. in each set of dis-
junctions, at least one proposition-variable occurs
once with and once without a curl. If this condition
were not satisfied for some member of the conjunc-
tion, one could "force" this member to take the
truth-value F (interpretable as "false") by assigning
to each proposition-variable without a curl the value
F and to each proposition-variable with a curl the
value 7 (interpretable as "true"). And, of course, if
at least one member of a conjunction is false, the
whole coniunction is also false.

To givi a simple example of a decision whereby
the test by actual deduction is avoided let me take
the formula:

?c(-?)g),

which is transformed into:

-  ?Y ?Y q,

This is the normal form of the original expression,
because it can be taken as a disjunction-member of
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a conjunction which has only one member. It is a
theorem, because ? occurs both with and without a
curl. Observe that this theorem proves that any
proposition can be deduced from an inconsistent
set of postulates. For if a set is inconsistent, both 2
and - p are deducible. But in conjunction with our
theorem, p and - p give 7, which stands for any
proposition.

$ 3. Tnr Celcurus or Punu Locrc

The calculus of unanalysed propositions is a part
of a system of pure logic which also contains for-
mulas with constituents interpretable as predicate-
variables (of the first order and type). If { be such
a constituent, the postulates of the system, in addi-
t ion to (n),(b), (4,@), of  g z,  are:

@ t@) .6 @\ o d (r);
0 6 0) o [(s 4 .d (')].

Besides these new postulates and an obvious
extension of the rule of substitution to cover cases
in which individual and predicate variables occur,
the calculus of pure logic has two additional rules of
inference:

(2" r) From "? c 6 (r)" one can derive
"? c l(*) .4 @)1";

(2r z) From "4 (*) J p" one can derive
" [ (= , )  .6 @)])  ?".

This form of a postulational system of logic can
be interpreted as a logic of propositions with no
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bound-variables except individual-variables. Let us
designate it by the initials P. L.

The proof of consistency of P. Z. depends on the
possibility of "reducing" its deducible formulas to
the theorems of the calculus of unanalysed propo-
sitions. If such a "reduction"-16 be called "?-r"-
duslisn"-is possible for all deducible formulas of
P. L, their contradictiohs cannot be p-reducible or
else some of the theorems of the calculus of unana-
lysed propositions would have to be inconsistent with
one another, which as already proved is not true.
Hence if all deducible formulas of P. L. are
p-reducible, P. L. must be a consistent system.

Now a formula of P. L., applied to a domain of &
individuals (where "P" symbolizes some positive
number), is called a " k-formula" if it is p-reducible.
A p-reduction of a i-formula takes. the following
steps. First, the individual-variables of the original
formula are replaced by values out of the domain of
A individuals, ar, azr... ,  ,rfr;  second, the prefixes
of generality are eliminated by introducing instead
conjunctions or disjunctions taken over the domain
of t individuals; third, each of the propositional
functions with arguments is replaced by a different
proposition-variable.

To illustrate, let the original deducible formula be:

(*)  . l$ # o ((E D.6i l .
Expansion by means of conjunction and dis-

junction gives:

16 orc (S orY .  .  .  vd ni l ) . . . . .
16 nrc (S orv .  .  .v 6 ak)).

IOO
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After the substitution of proposition-variables for
the functions the formula becomes:

l?,  c (?,  v .  .  .v ?o)) . . .  .  . lpo c (?,Y v ?o)) '

which is a theorem of the calculus of unanalysed
propositions. This 2-reduction shows that the
original expression is a t-formula.

The consistency of P. L. can be proved because
it is easy to prove that all its theorems are P-formulas.
The theorems of the calculus of unanalysed propo-
sitions are seen to be A-formulas by immediate
inspection. The postulate (e) is 2-reducible to the
theorem that a conjunction of proposition-variables
implies one of them; and the postulate (/) is2-redu-
cible to the theorem that aproposition-variableimplies
a disjunction of which it is a constituent. Thus both
(a) and Q are A-formulas. As to the rules (Tr) and
(Tr), they are means of deriving E-formulas from
A-formulas because they themselves correspond,
respectively, to the theorems (of the propositional
calculus) that "Tt c (q, . g, . . .?0" is deducible from
the premises "7t c 7r", "7) c gz", . . ., "7t c gn" i
and that "(qrv gzY . . .v go) c p" is deducible from
the premiser "grc ?", .  .  .r "gr) 1r".

While the problem of consistency is solved by
proving .that every theorem - 

is a, k'formula, the
reverse, i.e. a proof that a P-formula is a theorem,
would solve the decision-problem, since one can
always test whether a given formula is a A-formula
by the method of 2-reduction. In conformity with
this consideration the decision-problem has been
solved for several kinds of formuias of P. L.

IOI
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First, l-formulas without bound variables are
theorems because they can be derived bv sabstitution
[in accordance with ihe rules of P. Z.] from the
corresponding theorems of the calculus of unanalysed
propositions.

Second, the decision-problem is solved for k-
formulas with existential prefixes followed bv ex-
pressions which contain i fr"" variables. A. un
example, let the &-formula be:

(= =) ./ (*, l, =).

In a domain of two individuals this formula Eives:

J @,1, *)Y "f (*, J, J),

which, as a 2-formula without bound variables, is
a theorem. Let this theorem be a premise in con-
junction with two others, which ari established as
special forms of postulate (fl:

f @, J, x) c [(= z) ..f (x, t, z));

"f (*, J, /) c [(s ,) ."f (x, J, z)f.

From these three premises the original A-formula
is deducible and therefore it is a theorem.

Third, P-formulas of the second kind but preceded
by non-existential prefixes for all its I variables are
also theorems. This is so because the formulas:

(=yr) .  .  .  (= D. + (o,  b, .  .  . ,  k,  ! r , .  .  . , ) , ) ;
("r) . . .  (*D (= J) . . .G D .  6 (*r , . . . t  x l ,>h, . . . , ! ) ,

can be proved to have equal deducibility; i.e. when
one is a theorem so is the other.
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Fourth, P-formulas of the so-called "unary cal-
culus" whose constituent functions have each at most
one argument are theorems because they can be
reduced to formulas of the third kind. This kind of
reduction is a transformation of the original expres-
sion into its "prenex" normal form, i.e. a form in
which all prefixes precede a matrix which is derived
by substitution from the corresponding conjunctive
normal form of the calculus of unanalysed propo-
sitions.

There is no need to proceed into further details
for a general account of the decision-problem. In
principle the problem remains unsolved, because
there are A-formulas which are not theorems of P. L.:
these are contradictories of formulas which can be
satisfied only in an infinite domain of individuals.
Consider the formula:

(,t (r) . - + @, *) . {l{*, r, z): g (x, y)

. 6 (t, "))r 6 (*, =>) . f,l (= y) . Q @, i.

Its interpretations will show that it cannot be satis-
fied by any finite number of individuals. For example,
if "$ (xr-y)" is interpreted as "the integer ,r is smaller
than the integer y", then it is not true, except for
an infinite number of integers, that "(*) (= y) .

6 @, t)" holds, i.e. that for every integer r there
exists a greater integer y. Since the formulu (n
cannot be true in any finite domain of individuals,
its contradictlr) m:ust be true for all finite domains
of individuals and so must be a t-formula. Neverthe-
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less this *-formula is not a theorem, since it fails
when i is an infinite number.

$ +. G6orr,'s CoNrRrBurroN

. When logic is combined with mathematics, either
in 

lh" logistic manner of the principia (where
mathematical notions and statements are resolved

constructed with the aid of the arithmetized repre-
sentations, and these expressions are then interpret-
able as describing themselves. Some of them are

ro4 r05
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found to be undecidable formulas. We now shall
go over these three divisions at a greater length.

I

The formal object-system F. J. can be built up
by adding to the pure calculus of logic of $ 3 a few
primitive elements and postulates which have an
arithmetical interpretation. The additional primitive
elements (or undefined terms) are:

(t) O (to be interpreted as "the number of zero").

(.2) N (to be interpreted as "the successor of" a
given number).

(l) 6 (to be used as a prefix in expressions of
the form "(t r) . $ x" which stands for "the
smallest integer r such that $ x, if there
exists an r such that S r; otherwise
zero").

For convenience of abbreviation the numbers O,
ff(o), N(l/(o) ), etc., wil l  be written ds zp zr
zz, etc. Thus zu is an abbreviation for "six". The
abbreviations in terms of the z's will be called
"transcriptions". In describing F. ,S. we shall make
use of another abbreviation. Instead of writing "the
expression obtained from { by substituting the
letter a for each occurrence of the free variable x
within 4" *e shall write "Subst (+L)".

The postulates of F. 8. (in addition to the postu-
lates (a), (b), ('), (4, G), U) of $ 3) are:
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(g) x:x.

Q)*:J. : .4@':6U).
(k)  ( r : ,  . (J -  z) .c .  x:  ) .
(I) - (o : l/ (x) ).

(*)N(r) :N( i .?. t ( :J.

(z) The Principle of Mathematical Induction:
From g (o) and 6 (i c 6 NU), g Q) can
be deduced.

The postulates (g), (/t), and (A) determine the
properties of the sign ":" to be interpreted as
numerical equality: a number is equal to itself;
when * is equal toJ|,, one can replace the other in any
context $, and vice versal equality is a transitive
relation.

The interpretation of (4 i. that zerc has no
predecessor: the system F. J. is concerned with
positive integers. According to (n) no two numbers
have the same successor.

In addition to the rules of procedure of the pure
calculus the system F. ,S. contains rules of operation
with the prefix E which are entirely analogous,
,natatis niltandis, to the rules which regulate the
use of the existential and non-existential prefixes.

This sums up the formal properties of F. S.

I I

The primitive elements of F. S. are discrete
entities, they are countable. And any written ex-
pression of F. .9. must obviously be a finite sequence

ro6
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of primitive elements. Flence it is possible to assign
arbitrarily, as a label, a different positive integer to
every different expression (whether it is a primitive
element or a combination of such) in F. 8. This
labelling of symbols in F. .9. is the first step of
aritltmetization.

To arithmetize the primitive elements we write
under each of them its representing number:

0 f f :  -  V C 
-  

3 L (  )
r  2 3 + 5 6 7 8 9 ro rr  12

Any integer > r 3 and : o (mod 3), i.e. any
integer which being divided by 3 gives no residue,
such as rj, t8, etc., will be employed to label
prop os itio n-v ari a b le s p r' ?, etc.

An integer > 13 and : r (mod 3), such as t6,
r9, etc., will represent number-ztariables, ,c, ), etc.

An integer > l3 and : z (mod 3), such as 17,
zo, etc,, will label a function-variable, $, t!, etc.

Obviously a formula, as a sequence of primitive
elements, can be arithmetized by a sequence of the
numbers representing these elements. But it is desir-
able to label each formula by a single number. Let
the original arithmetization of a formula be a certain
sequence of positive integers:

krkr . . ' rk '

It can be correlated with a single nunber defined as
the product:

zhr.3hr. .  . . .?: : ,
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where p,, is the nth prime number in their order of
magnitude.

For example, take the formula in F. J.:

fC: O

As a sequence it is arithmetized into:

t6r  3,  t .

To give it a single number as a label, we must
compute the product:

ztu .3 ' .  j t :  6sss6.27 .  s.

turn with a unique positive integer.
The arithmetization of symbols, formulas, and

proofs gives a lne-lne correspondence.Each element or

rs unlque.
The class of representing positive integers can

now be organized into a slstem. The purpose of this
organization is to represent within th-e alithmetized
medium theoretical (or, according to the postulation-
alists, metalogical) considerations about the object-
system F. S., such as the statement that ,,a celtain

ro8
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formula of F. J. is deducible from another formula
of F. .9." Thus the arithmetized system consists of

/unctions and relations of positive integers which
can be explained by reference to the theoretical (or
metalogical) functions and relations of formulas of
F. J. As an illustrative selection a few symbols of the
arithmetized system are given in the left-hand side
column; their elucidation in terms of the theory of
the system F. J. is given on the right-hand side.

Each of these symbols of arithmetization can be
defined directly, i.e. without reference to F. 8. The
direct definitions given in Girdel's original article,
although cumbersome technically, have the advan-
tage of showing that all the functions and relations
of the arithmetized system are recursive.*

* "4 (*r, . . ., tn) shall be said to be recurtiae with respect to

* (*r,.. . ., xn-L) and y (tcy, . . .t xn+r) i[, for a]l natural numbers

Q (0, rr, . . ., xn) : * (xz, . . ., tn)i

6 G + 7, tz, . . ., xn) : X G,6 (h, rz, . . ., tn), #2, . . ., trcn)."

(K. Gd,del, On Undecidable Prapo.ritiont, 1934, Princeton.)
The pair ofequations gives a recursive definition ofthe function.

In special cases ofrecursive definition any variables on the right side
of the equations can be omittedin any of its occurrences; in the
simplest case the right side of the first equation is a number as in:

f (1) :1;
. f  ( ,  *  1) :" f  ( , ) . (n i  1) ,

which gives a recursive definition ofthe function:

" f ( , ) :1.2. . . .n
A recursive function is computable, i.e. replaceable by a number,

in a finite number of steps, because it must be either a function of -Z
or of some other number (n -f 1). If it is a function of -/, the first
equation of its definition immediately gives its numerical value. If

lContinued on page rrr
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s b (xfr,)

Neg(x)

8b@,i
(An abbreviation

of the preced-
ing symbol)

n G Lx

L (-)

P (-)
xP)

Consist.

Tlze Problems oJ Logic

The number which arithmet-
izes - p, if x arithmetizes
p, where p and - p are for-
mulas of F.J.; otherwise it
is zero.

The arithmetization of Subst

GX), if x, N,, and, a arc,
respectively, arithmetizations
of $, zo, w.

The nth member of the se-
quence of positive integers
correlated with the product
t(. Let the sequence be:
kr, kr, .  .  . ,  kr, .  .  . ,  kn,
.  .  . ,  kn Then: x:  2k .  .  .
?oA. . .  ?o;;and n G L x : kn.
The number of members in
the sequence arithmetized
by *.

r arithmetizes a proof in F. 8.
r arithmetizes a proof of a for-

mula which is arithmetized
bvv

F. J. is a consistent system.

I  IO

Consistency and tlte Decision-Problem

II I
At this stage of the argument we shall use "tran-

scriptions" of the expressions of l-. J. in terms of
the z's with subscripts. Let 6 (*, or. . .) : A, where
ffit flt .. ., and i are positive integers.

Then { (*, u, . . ) ir transcribed into g (z,or
zu . ..) provided g (z*, znt . . .) : ,r. A relation

C6tin4cil flon pagc togj

i t isQ@ f r),  where x * 0, i t  is computable as the function f
of two arguments which, eventually, are shown to be numbers. For
z stands for a number, while { (a) is either the number a, if z : 7,
or it is the function tlt of turo arguments, z and $ (z - 1). The
regression in computation is from # (o + r), through $ (n), to

6 @ - l), and so on until the argument of f is reduced to /,
which is bound to happen no matter how large a is.

Let t'summation" be the function to be written as "sum (,{,
X2r-. . rXr)) '

The recursive definition of ttsummation" is given, for two
numbers, by the equations:

sum (O,1) :1;

sum (.1/(*), jr) : jy'(sum (,,))), where -ly'stands for "successor".
Let # and 1 be, respectively, 2 and -2. Then the repeated appli-

cation of the second equation gives:

sum (r, r, = fll]tjii?,,r,,,
: 1/(.n(I/Gum (Q /) ) ) ).

By means ofthe first equation ofthe recursive definition the last
erpression is transformed into "i/(i/(il(/) ) )" which gives 4 as
the value of"sum (3,7)".

A relatioz R of positive integers frL,...,.r' to be written as

"R (tt, . .., xn)" is recursive ifits ttassociated" function f is recur-
sive. A function { is "associated" with the relation R when the
following conditions are satisfied: 6 (rt,, . ., *r) :0, if the rela-
tion R holds for the same numbers, artd 6 (t1,. . ., xn) : 1, if R
does not hold, i.e. if 

- 
R.

I I I
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R (m, nr. . ) ir transcribed by means of transcribing
its "associated" function.*

Now Godel has proved (and the reader is referred
for the proof to Godel's original paper) that all
recursive functions and relations of positive integers
can be transcribed in terms of z's. But the symbols
of the arithmetized system stand for recursive
functions and relations of the representing integers.
Hence they can also be transcribed, which means
that they can be formulated within F. 8. And since
all of them (in their theoretical explanation or im-
port) refer to F. 8., in transcription they become
expressions of F. ,S. which are about expressions of
F.^.!. In soecial cases some of them are statements
about themselves, just as the syntactical statement
that "Every English sentence contains averb" happens
to be in English, and therefore is about itself.

Consider the formula U (w) of F. ^S. in the con-
struction of which two other formulas of F. .9. are
employed: D (u, o) which is the transcription of the
arithmetized relation * P l; and J (a, o) which is the
transcription of the symbol S b (x,y). The definition
of U (w) is given below on the first line of the righr
hand side column; its representing number or
aithmetization is given on the same line on the left-
hand side.

?

sb(p,p)

U (*): (o) . - D $t,S (w, w))
. Def.

u ('o)
* For the definition of an "associated" function see the last

paragraph of the preceding footnote.
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Thus p is the representing number of U (w). If
we substitute zo for w in U (w), the result is symbol-
ized. by "Subst (Ut*1y)", and the representing
number of this symbol is ,S / (p, p). The expansion
of U (=), in accordance with the definition of
U (*) .g ives:

(t). U (*r) : (r) . - D (2, ,S (zo, zo)).

We can now show that U (r'o) ir interpretable as a
formula which is about itself. First, let the definitions
of U(w) be abbreviated as F(S (w, w)) and let one
of the arbitrary interpretations of F (=) be that "the
number which is transcribed as zn, i.e. the number a,
arithmetizes a formula which has the property /".
Next, we determine the number which is transcribed
by J (r,o, z);it is "the number of the formula which
results from the formula whose number is p when
:;o is substituted for its free variable", i.e. it is
"8|(p,p))". This number represents a formula
which has, so we learn from our interpretation of
F (8 (zo,:;o) ), the property f. But since this number
is the number of F(.f @o,+) ), i.e. of U(zo), the
latter ascribes to itself the propertv/.* Thus U (A)
is an expression which is about itself. This invalidates
Russell's "vicious-circle" principle. At the same
time it gives an instance of an undecidable proposi-
tion, i.e. it can be neither proved nor disproved.

Suppose U (+) is provable. Then there exists (in
* If we let / stand for "false", then F(8 (, ?, , p) ) becomes a

formulation of "This proposition is false", which is intended to
apply to itself.

I  I3
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the arithm etized system) a number t such that
t P ,S b (p, p). In transcription this gives:

(z) D (zo, I (zo, zo)).

On the other hand it follows from (r) that, for the
value A of u:

( : )  -D(ro,S(zr,z)) .

But (z) and (3) contradict one another. Hence if
F. .9. is a consistent system, U (=o) is not provable.

Suppose U (=o) is refutable, i.e. - U (zo) is
provable. This would mean that - (o) . (- D (r:,
S (zo, zr) ), i.e. there exists a number k for which
D (ro, I (zo, zr) ) holds. On the other hand, since
U (r) is not provable, - D (zv, S (=n, zo) ) should
hold for all k. Thus the supposition that U (zf is
refutable also leads to inconsistency.

The fact that U ("n) ir undecidatle can be used to
show that there is no proof of the consistency of the
system F. .S. For if F. ^9. is consisten t, U (*r) is not
provable. In the arithmetized system this gives:

Consist .  c (r)  .  -  Qc P S b Qt,p)))

The transcription of this implication is provable.
And if the transcribed "consist" were provable
U (=n), the transcribed consequent would be prov-
able, and. tJris, we know, is not the case unless F. .9.
rs lnconslstent.

Thus neither the oroblims of consistencv and
completeness, nor th; decision-problem, ."n be
solved for logic which is combined with arithmetic.

T14
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These so-called negative results have forced the
postulationalists to admit that a formal logic cannot
be a comprehensive system, that a common language
such as English is comprehensive at the price of
being inconsistent, and that there is an unending
hierarchy of consistent languages arranged in the
order of increasing comprehensiveness.

To an intuitionalist Giidel's results arc negative
in a different sense. They show that postulational
systems are always inadequate as expressions of the
logic of intuition. Whether this is so because
formulations in terms of clear-cut symbols are too
stiff to do full justice to involved ramifications and
fexible turns of logical thought, is a matter for
general speculation. To be more specifi.c, one might
argue against'mixing up formulas of logic and
mathematics. For so long as Iogic is kept clear of
infinite domains, the decision-problem together with
the problems of consistency and completeness are
solved. And if trouble begins with the infinite, it is
bound to come when arithmetic of positive integers,
which are infinite in number, is joined with logic.
On the other hand, one might look for a deeper
source of evil. One might, for example, suspect that
the undecidable formula U (zr) is "about itself" in
a sense which needs further analysis. This formula
has a certain representing number, and when inter-
preted, it refers to itself as to "the formula which has
that number"; but this reference is a definite
description, and the question of how the reference
by description is possible is far from being explored.
Let U (z) be irreproachable within the abstract

I I5
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framework of a postulational system or even as a
mathematical formula, in a larger context of interpre-
tation its "reference to itself" may be a confirsion
between proposition and propositional function, as
indeed one of the interpretations of U (zo), "This
proposition is f,alse", was shown to be.

I

I
I

I
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Chapter IV

CONCEPTUAL REFERENCE

$ r.  IurnoDucrroN

Objective reference is an element of significance
and nbt of meaning. This is so because oT the fact
that while the connotative content changes from one
proposition to another, all of them are invariably
about something. This something is objective in the
sense that a proposition which is about it, unless
purely verbal, does not refer to a mere word or even
to the connotation of the word but to a thing. F'or
example, when I say that I am fond of tennis, I do
not mean that I am fond of the word "tennis" or of
its definition, I arn concerned with the game itself
as an actual exercise and enjoyment. It would seem
that in speaking or writing about things, one is in
contact with extra-linguistic actuality. Hence arises
the Paradox of obiective reference: "There exists
within discourse antbjective for reference the nature
of which is to be something outside discourse."

This Paradox is not avoided by treating language
as the result of conventions of formation and trans-
formation of sentences. Flowever conventional the
basis of a language may be, it must allow, to use
Carnap's terminology, for the distinction between
real object-sentences and pseudo-object-sentences.
Let us illustrate this distinction by Carnap's own
examples: he contrasts "Babylon was a big town" as


