
CHAPTER III

INCOMPLETE SYMBOLS

(l) Descriptions. By an " incomplebe " syrnbol we mean a symbol which

is not supposed to have any meaning in isolation, but is only defined in

certaiu contexts. In ordinaty mathema.tics, for exampb, 
fr^od /' "r" 

io-

complete symbols: sometbing has to be supplied before we have anything

significant. Such symbols have what may be called a "definition in use."

Thus if rve put 
Az Az Az

9':a*+W,+Az-,  Df,

we define the u,se of V', but V'?by itself remains without meaning. This dis-

tinguishessuch symbols from rvhat (in a generalized sense) we nray call proper

names: "Socrabes," for example, stands for a certain man, and therefore has

a meaning by itself, without the need of any context' If we supply a context,

as in " socrates is mortal," these rvords express a fact of which Socrates him-

self is a constituent: there is a celtain obiect, narnely Socrates, which does

have the property of mortality, and this object is a constituent of the complex

fact wbich we assert when rve say " Socrates is mortal." But in other cases,

this simple analysis fails us. Suppose we say: "The round square does not

exist." It seems plain that this is a trtte proposition, yet rve cannot regard it

as denying the existence of a certain object called " tbe round square." For

if there were such an object, it would exist: we cannot first assume that there

is a certain object, and then proceed to deny that there is such an object.

Whenever the grammatical subject of a proposition can be supposed not to

exist rvithout rendering the proposition meaningless, it is plain that the

grammatical subject is not a proper name, i'e' not a name directly representing

some object. Thus in all such cases, the proposition must be capable of being

so analysed that rvhat was the grammatical subject shall have disappealed.

Thus when we say " the round square does not exist," we may, as a first

attempt at such analysis, substitute " it is false that there is an object a rvhich

is both ronnd and squale." Generally, rvhen " the so-and-so " is said not tu

exist, we have a proposition of the f&m*

',-Et(ta)(Qa)i '

i .e.  - { (Sc) 
zSa.=n.u:c l ,

or some equivalent. Here the apparent grammatical subject (ta)(Sz) has

completely disappeared; thus in "-El(ta)(0c)," (ta)(Qn) is at inoomplete

sYmbol' 
* cf' pp' so, sr'
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By an ertension of the above argument, it can easily be shown that
(tn)($n)ia always an incomplete symbol. Take, for example, the following
proposition: "Scott is the author of Waverley." [Here 

,'the author of
Waverley" is (ta) (n wrote Waverley).] This proposition expresses an identity;
thus if " the author of Waverley " could be takeu as a proper name, and sup-
posed to stand for some object c, the proposition would be ', Scott is c." But
if o is any one except Scott, this proposition is false; while if c rs Scott, the
ptoposition is " Scott is Scott," which is trivial, and plainly different from
" Scott is the author of Waverley." Cleneraliziug, we see that the proposition

a:(ta)(Su)
is one which may be tlue or may be false, but is never merely trivial, like
o : a ; whereas , if (tu) ($n) were a proper r,u^s, s,: (ta) (fa) would necessarily
be either false or the same as the trivial proposition o:a. We may exprese
ihis by saying that a:(tn)($a) is not a value of the propositional function
a:y, ftom which it follows that (tx)($a) is nob a value of y. But since y
may be anything, it follows that (tu) (Qu) is norhing. lfence, since in use it
has meaning, it must be an incomplete symbol.

It might be suggested that " Scott is the author of Waverley " asserts that
"Scott" and "the author of Waverley" are two names for the same object.
But a little reflection will show that this would be a mistake. tr'or if thar
rvere the rneauing of " scott is the author of waverley," lvhat would be required
for its truth would be that Scott should lrave been cal,l,ed, the author of
Waverley: if he had been so called, the proposition rvould be true, even if
some one else had wr.itten Waverley; while if no one called him so, the pro-
position rvould be false, even if he had written Waverley. But in fact he was
the author of Waverley at a time when no one called him so, and he would
not have been the author if every one had called him so but some one else
had written Waverley. Thus the proposition ,.Seort is the author of Waverley"
is not a proposition about names, like..Napoleon is Bonaparte"; and this
illustrates the sense in which "the author of Waverlev" differe from a true
proper name.

Thus all phrases (other than propositions) containing the word tlw (in lhe
singular) are incomplete symbols: they have a meaning in use, but n<it in
isolation. For "the author of Waverley" cannot mean the sa,me as..Scott,,,
or "Scott is the author of Waverley" would mean the same as,.Scott ie
Scott," which it plainly does notl nor can,.the author of Waverley,'mean
:rnything other than " Scott," or. ,. Scott is tbe author of Waverley " would be
f'alse. Hence "the author of Waverley" means nothing.

ft follow.q frorn the above that we must not attempt to define ,'(rr)(6r),,,

but must de6ne the zsas of this symbol, f.a. the propositions in whose symbolic
cxpression it occure. Now in seeking to define the uses of this symbol, it, is
irnporbant to observe the import of propositions in which it occurs, Take as
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an illustration: "The author of Waverley was a poet." This implies (l) that
'Waverley 

was written, (2) that it was written by one man, and not in collabora-
tion, (B) that the one man who wrote it was a poet. If any one of these fails,
the proposition is false. Thus " the author of 'Slawkenburgius on Noses' was
a poet " is false, because no such book was ever written; " the author of' The
Maid's Tragedy'was a poet" is false, because this play was written by
Beaumont and Fletcher jointly. These two possibilities of falsehood do not
arise if we say " Scott was a poet." Thus our interpretation of the uses of
(tn)(Su) must be such as to allorv for them. Now taking fe to replace
" a wtote Waverley," it is plain that any statemen b apparently about (tn) ($u)
requires (1) (gr) . ( f r )  and (2) Qn.6y.) , ,o.a:y;  herc (1) states Lhat at
least one object satisfies {a, while (2) states that at nxost one object satisfies

$n. Tbe trvo together are equivalent to

which we defined as

(gc)=$a.=, .0:c,

Et (tn) ($a).

Thus "El(rn)($c)" must be part of rvbat is affirmed by any proposition
about (rz) ({r). If our proposition is f l(tn)(Sn1}, wbat is further affirmed is

f", ,t #, . =a . (x: o. Thus we have

f l( tu) (Qa)j '  :  :  (gc) = $n' =, '  n :  c :  fc Df,

i.e."Ihe asatisfying $asalisfiesfa" is to nrean: "There is an object c such
lhat $u is true rvhen, and only when, a is c, and;ft is true," or, more exactly:
"There is a c such that '$n' is always eqnivalent to's is c, '  andJc." In this,
"(ta)($n)" has completely disappeared; tlrus "(to)(fr)" i. merely symbolic,
and does not directly represenl an object, as siugle small Latin letters are
assumed to do*.

The proposibiot "a:(ta)($r)" is easily shown to be equivalent to

" #, . =, . a: a." For, by the definition, it is

(gc) = Sn . =-r. n : c. a. : c,

i .e."therc is a c for which {a.=r.o:c, and this c is a," which is equivalent
to " $a . =b . r: a." Thus " Scott is the author of Waverley " is equivalent to:

"'a u'rote Waverley' is always equivalent to 'a is Scott,"'

i.e. " a wrote Waverley " is true when a is Scott and false wheu c is not Scott.

Thus although "(tn)($a)" has no meaning by itself, it may be substituted
for y in any propositional functionlfy, and we get a significant proposition,
though not a value of.,fy. {*c

When/{(ra)({a)}, as above defined, f<rrms partof some other proposition,
we shall say that (tn)(Qn) bas a second,ary occurrence. When (tc)($a) has
a secondary occrlrrence, a proposition in which it occurs may be true even
when (rn)(So) does not exist. This applies, e.g, to the proposition: "There

* We shaJl generally write "/(rc) ({a)" nther tbm "/{(rr) (Cc)}l'in future.
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i,r no such persotr &s the King of France." We may interpret this as

or as
- [E I (ra) ({a)},

- [(sc). o =(tr)(Qu)\,

if " Qn" stands for " a is King of France." In either case, what is asserted is
tlrat a propositionp in which (ra)({o) occurs is false, aud this propositionp
is thus part of a larger proposition. The sarne applies to such a proposition
a"s the following: " If France were a monarchy, the King of France would be
of the House of Orleans."

It sbould be observed bbat such a proposition as

-f {(ta)($n)i
is anrbiguous; it may deny/{(ro)({a)}, in which case it will be true if
(lz) ({r) does not exist, or it may mean

(gc) = Sn . --n. n : a :, - Jc,
in which case it can only be true if (lr) (fo) erists. In ordinary language,
the latter interpretation would usually be adopted. For example, the propo-
sition " the King of France is not bald " would usually be rejected as false,
being held to mean " the King of France exists and is not bald," rather than
"it, is false that the King of France exists and is bald." When (la)({a)
cxists, lhe trvo interpretations of the ambiguity give equivalent results; but
when (tz)(fo) does not exist, one interpretation is true and one is false. It
is necessary to be able to distinguish these in our notation; and generally, if
we have such propositions as

r l ( tn)(Su).)  .p,
p.> .*( t" ) (Qr),
.1, (tr) ($u) . ) . y(tn) ($n),

and so on, we must be able by our notation to distinguish whether the whole
or only part of the proposition concerned is to,be treated asthe"f(tn)(gu)"
,rf our definition. For this purpose, we will put " [(to) ({a)]" follorved by dots
at the beginning of the part (or whole) which is to be taken as/(lr) (Qa), the
dots being sufficiently numerous to bracket otr rhef (tn)(Qa'1; i.e.JQa)(ga)
is to be everything following the dots until we reach an equal numberofdots
rrot signifying a logical product, or a greater number siguifying a logical pro-
tluct, or the end of the sentence, or the end of a bracket enclosing "[(tx)(Qa)]."
'l'hus

wil l  mean

l)u I

wi l l  mean

[(ru) ($a)]. rlr (rn) ($a) . ) . p
(gc) t Qa. =a. n : c t ̂ l'c : ) . 1t,

.  [ ( t " ) (Qu) l= l t  ( tu)(6a).>.p

(gc) t  $n. =i.  ( t  :  c =, lrc. )  .  7t.
lb is importarrt to distinguish these two, lbr if (tu)(Sa) does not exist, the
lirst is true and the second false. Again

f(ta) ($a)1. 
- lr (ta) (Su)
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will mean
while
will mean

[cEAp.

(gc):Sa.=e.n=c.Naha,

- {[0") (0")] . ,l (ta) (ga)J

- i (Uc) |  Q* . =n. n :  c |  *c].
Here again, when (tu)($a) does not exist, the first is false and the second true.

In order to avoid this ambiguity in propositions containing (ta)(Sa), we
amend our definition, or rather our notation, putting

l(ta) ($n)1. f Qx) (Sa). : : (gc) z gu . =,. a : c z fc Df.
By means of this definition, we avoid any doubt as to the portion of our
whole asserted proposition which is to be treatecl as the,,f (tn)($a)" of lbe
definition. This portion wiII be called the scope of (tu)($a). Thus in

[(tu) (ga)]. f( tu) (gn) .) .  p
the scope of (tn)(Qc) is/(ra)(fa); but in

l(ta) (Sr)l=f (ta) (Qa) . ) . p
the scope is f( ta)(gu),).p;
in 

- { [(ra) (Sa)].JQn)(ga)l
the scope is/(ta)({c); but in

l(tr) (Qu)1. - f( tn) (ga)
the scope is 

-f (ru)(gn).

It will be seen that wben (tu)(ga) has the whole of the proposition
concerned for its scope, the proposition concerned canuot be true unless
El(1o)(+a); but when (tr)($u) has onl-v part of the proposition concerned
for its scope, it may often be true even when (tu) ($n) does not exist. It will
be seen further that when ElQn)($t\, we may enlarge ordiminish the scope
of (ta)(Qa) as much as we please without altering the truth-value of any
proposition in which it occurs.

If a proposition contains two descriptions, say (tn)(Qa) and (ta)({a),
we bave to distinguish which of them has the larger scope, i.e. we have to
distinguish

(1) [(ta) (gn)]z[(tn)Qra)].JlQa) (gn), (ra) (lu)j,
(2) [(rn) (lu)l: lQn) (Sn)] . f l(t,) (gn), (tn) (!ra)].

The first of these, eliminating (tu)($r), becomes
(3) (gc) : gu . = e l ln : c : [(ra;) (rlra)] . f [c, (t t) (l a)],

which, eliminating (tn) (rltn), becomes
(4) (gc)z.ga.=, .  n:cr . (g;g)tnlrn.=n.a -d, l / (c,d,) ,

and the same proposition results if, i; (1), we eliminate first (lz)(r/ro) and
rhen (tu)(Qn). Similarly (2) becomes, when (rr)(fa) and (ra)(rfra) are
eliminated,

(D) (gd,) =.  ̂ l ra .  
=a, tx: d, =. (gc) = $, .  =n. n: c:f  (c, d).

(4,) and (5) are equivalent, so that the truth-value of a proposition contain-
ing two descriptions is independent of the question which has the latger scope.

Irtl cLrtssEs 7I

It will be found that, in most, cases in rvhich descripbions occur, their
xr:ope is, in practice, the smallest proposition enclosed in dots or other brackets
in which they are contained. Thus for example

[(tn) ($u)] . * (t,) (#r). ) . [(rc) (fa)] . 2a Qa) ($a)
will occur much more frequently than

l(ru\ @Ql t rlr (ta) (ga1 . ) . y(tn) (Qn).

l,irr this reason it is convenient to decide that, rvhen the scope of ao occurrence
of (tu)($r) is the smallest proposition, enclosed in dots or other brackets, in
which the occurrence in question is contained, the scope need not be indicated
l,y "[(tr)(Sc)]." Thus eg.

p.)  .a:( tu)($n\
p . ) . l(ta\ ($u)1. a : (tn) ($a) ;

p.) . (Sa).a:( ta)($n)
p . ) . (sa) . l(t n) (Sn)1. a : (t n) (Sc) ;

p . )  .  a{( tn)($u)
p . ) . l\rc) ($n)l . - {a : (t,z) ({o)} ;

p . )  .  -  [a:  ( t t )  ($n)J
p. ) . - [[(tc) (fo)] . a : (ra) ($e.)].

wi l I  nrean
rnd
u'ill mean
l tnd

rvill mean
but
wil l  mean

This convention enables us, in the vast majority of cases that actually
occur, to dispense with the explicib indication of the scope of a descriptive
symbol; and it rvill be found that the convention agrees very closely with the
tncib conventions of ordinary language on this subject. Thus for example, if
" \ tu)(Qn)" is "the so-and-so," "aj(tu)(Qn)" is to be read "a is not the
so-and-so," which would ordinarily be regarded as implying that "the so-and-
so" existsl bui "- {a=(rn)($n)J" is to be read "i t  is not true that a is the
so-and-so," which would generally be allorved to hold if " the so-and-so " does
not exist. Ordinary language is, of course, rather loose and fluctuating in its
irnplications on this matter; but subject to the requirement of definiteness,
our convention seems to keep as near to ordinary language as possible.

In the case rvhen the smallest proposition enclosed in dots or other
lrrackets contains two or more descriptions, we shall assume, irr the absence
of any indication to the contrary, that one which typographically occurs
t:rrlier has a larger scope than one which typographically occurs later. Thus

(ta) ($u) : (tn) (lra)
rvi l l  mean (gc)z gn.=n. n:c : l( tu)( l t) l .c:(ra)( lr t :) ,
rvhile (tn)(rlru):(tu)(Sn)
rvi l l  tnean (gd.)2,!ru.=,. a: d, =l(tn)(ga)l .Qn)(Qa): d.

These two propositions are easily shorvn to be equivalent.

(2) Classes. The symbols f<rr classes, like those for descriptions, are, in
our system, incomplete symbols: their ases are defined, but they themselves
tre not assumed to mean anything at all. That is to say, the uses of such
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symbols are so defined that,wh enthe ilef,niensis substituted for the ilef,niend,um,,
there no longer renrains any symbol which could be supposed to represent
a class. Thus classes, so far as we introduce them, are merely symbolic or
Iinguistic eonveniences, not genuine objects as their members are if they are
indivitluals.

It is an old dispute whether formal logic should concern itself mainly with
intensions or with extensions. In general, logieians whose training was mainly
philosophical have decided for intensions, while those whose training was
mainly mathentatical have decided for extensions. The facts seem to be tbat,
while mathematical Iogic requires extensions, pbilosophical logic refuses to
supply anything except intensions. Our theory of classes recognizes and
reconciles these two appalently opposite facts, by showing that an extension
(which is the same as a class) is an incomplete symbol, whose use always
acquires its meaning through a reference to intension.

fn the case of descriptions, it was possible to proae that they are in-
complete symbols. In the case of classes, we'do not know of any equally
definite proof, though arguments of more or less cogency can be elicited fi.om
the ancient problem of the One and t,he Many*. It is not necessary for our
pnrposes, however, to assert dogmatically that there are no such things as
classes. It is only necessary for us to show tbat the incomplete symbols
which we introduce as representatives of classes yield all the pr,opositions fbr
the s'rke of which classes nighb be thought essential. When this has been
shorvn, the mere principle of economy of primitive ideas leads to the non-
introduction of classes except as incomplete syrnbolq

To explain the theory of classes, it is necessary first to explain the dis-
tinction between entensionnl and ,intensional functions. This is effected by
the follorving def nitions :

The tr'uth-ualue of a proposition is truth if it is true, and falsehood if it is
false. (This expression is due to Frege.)

Two propositions are said lo be equiualenl when they have the saute truth-
value, i.e. when they are both true or both false.

Two propositional functi,ons are said Lo be Jorcnally equiualent when they
are equivalent with every possible argurnent, i.a. when any argument which
satisfies tbe one satis6es the other, and vice versa. Thus "6 is a man " is
formally equivalent to "0 is a featberless biped"; "6 is an even prime" is
formally equivalent to "D is identical with 2."

A function of a function is called efitelzsional when its truth-value lvith auy
argument is the sarne as rvith any formally equivalent argument. That is to

* Briefly, these erguments reduce to the lolloving : If there is such an object as a class, i t
must be iu sme sense one object. Yet it is only of c'lasses lbsl nn ty can be predicated, Elence,
if rve admit classes as objects, ve muet strppose that tbe same objecf can be boih one anil many,
which rems impoesible.
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my,.l'($2) is nn extensional function of $2 if, provided {r2 is formally equiva-
lltrl, trr f2, f (Q2) is equivalent to f (12). Here tbe apparent variables f and
rfe nto rrecessarily of the type from which argunrents can significantly be
rrrplrliud tof We find no need to use as apparent variables any functions
ol' rrorr-ptedicative types; accordingly in tlre sequel all extensional functions
r,orrsir lclcd are in fact functions of predicative functions*.

A frrnction of a function is called intensional when it is not extensioual.

'l'he nature and importance of the distinction between intensional and
r,xbcnsional functions rvill be made clearer by some illustrations. The pro-

;rrsi t ion " 'z is a man'always implies'r is a nrortd, l" ' is an extensional function
ol' the function "d is a man," because we may substitute, for "o is a rnan,"
"rr.'is a featherless biped," or any other statement which applies to the same
objects to which "a is a man " applies, and to no others, But the proposition
",4 bel ieves that 'ra is a man'always irnpl ies 'o is a mortal" '  is an intensional
{irrrction of "6 is a man," because A may never have considered the question
rvlrether featherless bipeds are mortal, or rnay believe wrongly that thele are
feabherless bipeds which are lot mortal. Ttrus even if "ar is a feabherless
biped" is formally equivalent to''a is a man," it by no meails follorvs that a
person who believes that all nlen are mortal must believe that all fcatherless
bipeds are mortal, since he may hnve never thougbt about featherless bipeds,
or have supposed that feattrerless bipeds rvere not alrvays men. Again the
ploposit ion "the nurnber of arguments t lrat iat isly the function $!,2 ts n" is
an extensional function of $12, because iis truth or falsehood is unchanged if
we substi tute for Ql2 any other function which is true whenever {!2 is true,
and false rvhenever $12 is false. But the ploposition "-d asserts that the
number of arguments satisfying Sl2 is n" is an intensional function of Ql2,
since, if,4. asserts this concerning Sl2,he certainly eannot assert it concerning
al l  predicative frrnct ions that are equivalent to Q!2, because l i fe is too sbort.
Again, consider the proprrsition " trvo white men claim to have reached the
North Pole." This proposition states " two argunrents satisfy the function
'd is a white man rvho claims to havc reached the North Pole."' The truth or
falselrood of this propositiou is unaffected if we substitute for "6 is a rvlrite
man who clairns to have leached the North Pole " any other statement which
holds of the same alguments, and of no others. Hence it is an extensional
function. Bnt the pruposibion " j t  is a st lange coincidence tbat two rvhite
men should clainr to have reache,l the North Pole," rvhich states "it is a
strange coincidence that two argurnents sh<-ruld satisfy the function '6 is a
white man rvho claims to lrave reached the North Pole,"' is not equivalent to
"it is a stlange coincidence tlrat tl'o alguments should satisfy the Iirnction
'? is Dr Cook or Conrnandet Peary."' Thus " it is a strange coincidence that

{ ! 6 should be satisfied by trvo argunrents" is an intensional function of $!k.
* Cf.  p.53
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The above instances illustrate the fact that the functions of functions with
which matbematics is specially concerned a,re extensional, and that intensional
I'unctions of functions only occur where non-mathematical ideas are introduced,
such as what somebody believes or affirmg or the emotiong aroused by some
fact. Hence it is natural, in a mathematical logic, to lay special stress on
eatensiow,l functions of fu nctions.

When two functions are formally equivalent, we may say tbat they haae
the same eotension. In this definition, we are in close agreement rvith usage.
We do not assume that there is such a thing as an extension: we merely
tiefine the whole phrase " having the sanre extension." We may now sav that
an extensional function of a function is one rvhose truth or falsehood depends
only upon the extension of its argument. In such a ca,se, it is convenient to
regard the statement concerned as being about the extension. Since exten-
sional functions are many and important, it is natural to regard the extension
as an object, called a olass, which is supposed to be the subject of all the
equivalent statements about various formally equivaleut functions. Thus
eg. if rve say " there were twelve Apostles." it is natural to regard this state-
ment os attributing the property of being twelve to a celtain collection of
men, namely those who were Apostles, ratlier than as attributing the property
of being eatisfied by trvelve arguments to the function "6 u'as an Aposble."
This view is encouraged by the feeling that there is something which is
identical in the case of two functions rvhich " have the same extension." And
if we take such simple problems as " how n-rany combinations can be made of
nthings ?" it seems at first sight necessary that each "combination" should
be a singlo object which can be counted as one. This, however, is certainly
not necessory technically, and rve see no reason to suppose that it is true
philosophically, The technical plocedure by which tbe apparent difficulty is
ovorcolne is as follows.

Wo have seen that an extensional function of a function may be regarded
as o function of the class determined by the argument-function, but that an
intensiorrol furiction cannot be so regarded. In order to obviate the necessity
of giviug different treatment to intensional and extensional functions of

functions, we construct an exteusional function derived from any function of

n proilicntive firnction rl 12, and, having the property of being equivalent to
tlro fulrction from 'which it is derir'&, provideci this function is extensional,
ns woll ns the property of being significant (by the help of the systematic
tnrbiguity of equivalence) with any argument {2 whose arguments are of the
nrrno type as those of g12. The derived function, rvritten "f 12($z)J," rs de-
fined as fr-rllows: Given a function /(rfr ! 2), our derived function is to be "there
is a predicative function which is formally equivalent to Q2 and satisfies/."
If Q2 is a predicative function, our derived firnction will be true whenever

f @2) is true. If f ($2) is an extensional function, and, g2 is a predicative
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funcbion, our derived function willnot be true unless/(f2) is true; thus in
t,hir cuse, our derived function is equivalent tof ($2). If f (62) is not an ex-
t,eneional function, and if Q2 is a predicative function, our deriverl function
ntay sometimes be true when the original function is false. But in any case the
tlcrived function is always extensional.

In order that the derived function should be significant for any function
f?, of whatever order, provided it, takes arguments of the right type, ii is
noceBsury and sufficient that, f (lr t2) should be significant, where "/r ! 2 is any
Ttred,icatiae lunction. The reason of this is that we only require, concerning
trr arguorent $2, the hypothesis that it is formally equivalent to some predi-
ctrt,ive frrnction rlr!2, and for.nral equivalence has the same kind of systematic
trnbiguity as to tJrpe tbat belongs to truth and falsehood, and can therefore
hold between functions of any two different orders, provided the functions
trrke argumelts of the same type. Thus by means of our derived function we
hnve not merely provided extensional functions everywhere in place of in-
tensioral functions, but we have practiatlly removed the necessity for con-
sidering differences of type among functions whose arguments are ol the same
type. This effects the eame kind of simplification in our hierarchy as would
result from never considering any but predicative functions.

If f (\hl2) canbe built up by means of the primitive ideas of disjunctiol,
negation, (").6a, and (go). dr, as is rhe case with all the functions of
functions that explicitly occur in the present work, it will be found that, in
virtue of the systematic ambiguity of tbe above primitive ideas, any function
{2 whose arguments are of the seme type as those of ,ll2 can significantly
be substituted for $12 in / without any other symbolic change. Thus in
such a case what is symbolically, though not really, the same functionlf can
receive as arguments functions of various different types. If, with a given
&rgument 52, fhe function f($2), so interpreted, is equivalent to f(,112)
whenever {12 is formally equivalent to $2,thenf 12($z)} is equivalent to
/({2) provided there is any predicative function formally equivalent to {2.
At this point, we nrake'use of the axiom of reducibility, according to which
there always is a predicative lirnction formally equivalent to {2.

As was explained above, it is convenient to regard an extensional function
of a function as having for its argument not the function, but the class de-
termined by the function. Now we have seen tbat our derived function is
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result, For example, two formally equivalent functions determine the same
class, and conversely, two functions which determine the same class are formally
equivalent. Also-to say that o is a rnember of 2 ($z), f.a of the class determined
by 52, is true when fz is true, and false when {a is false. Thus all the
mathematical purposes for which classes might seem to be required are fullilled
by the purely symbolic objects 2(fz), provided we assume the axiom of
reducibility.

In virtue of the axiom of reducibility, if $2 is any function, there is
a formally equivalent pledicative function lrl2; then tlie class 2(Qz) is
identical with the cbss 2 ("f ! z), so that every class can be delined by a
predicatiue function. Hence the totality of the classes to which a given term
can be significantly said to beloug or not to belong is a legitimate totality,
although the totality of functi,ons rvhich a given term can be significantly
said to satisfy or not to sabisfy is not a legitimate totality. The classes to
which a given term a belongs or does not belong are the classes defined by
o-functions; they are also the classes defined by predicatiue o-furrctious. Let
us call them a-classes. Then "a-classes " form a legitimate totality, derived
from tlrat of predicative a-functions. Hence many kinds of general state-
ments become possible which lvould othellvise involve vicious-circle paradoxes.
These general statements are none of them such as lead to contradictions, and
many of them such as it is vely hard to suppose illegibimate. The fact that
they are rendered possible by the axiorn of reducibility, and tLat they would
ottrerwise be excludetl by tlre vicious-circle principle, is to be regarded as an
argument in favour of the axiorn of leducibility.

The above definition of " the class defined by the function {2," or rather,
ofany proposition in which this phrase occurs, is, in symbols, as follows:

- f  Q @r)1.  :  :  (gV) :  $n.  =, .  r l  t  a t  f t r l t2 l  Df.
In order to recommend this definition, we shail-enumerate fiye rc-quisites
which a deGnition of classes must satisfy, and rve shall then shorv that the
above definition satisfies these five requisites.

We require of classes, if they are to serve the purposes for which thev are
commonly employed, tbat they shall have certain properties, which may be
euumerated as follows. - (1) Every propositional function must detennine a
class, which may be regarded as the collection of all the argumenis satisfying
the function in question. This principle must hold when tbe function is
satisfied byan infinite number of,prgurrrents as rvell as when it is satisfied by
a finite number'. ft nrust hold also rvhen no arguments satisfy the function;
i.e. the "null-class" must be just as good a cla-"s as any other. (2) Two pro-
positional functions rvbich are formally equivalent, i.e. such that any ar.gument
which satisfies either satisfies the other, must determine the same class; tbat
is to say, a class mnst be something wholly determined by its menrbership, so
that e.g. the class " featherless bipeds " is identical rvith the class " men," and

atI  r r l crassEs

lhe class " even primes " is identical rvith the class " numbers identi,sl with 2.'l
(lt) Conversely, two propositional functions which determine the same class
rrrust be forrnally equivalent; in other words, when the class is given, tbe
rrrcrnbership is deterrninate: two different sets of objects cannot yield the same
clws. (4) In the same sense in which tbere are classes (whatever this sense
rnay be), or in sorne closely analogous sense, there urust also be classes of
r:llsses. 'fhus for example " the combinations of a bhings az at a time," where
l,he ra thirrgs form a given class, is a class of classes; each combination of
riz things is a class, and each such class is a nrernber of the specitied set of
rrrnrbinations, which set is therefore a class rvhose meorbers are classes. Again,
thc class of unit classes, or of couples, is absolutely indispensable; the former
is Che number 1, the Iatter the number 2. Thus without classes of classes,
;rr i thmetic becornes impossible. (51 It  must under al l  circunrstances be
rneaningless to suppose a class identical rvith one of its own members. For if
such a supposition had any rneaning "c e a" would be a significant propositional
frrnction*, and so would "a-ea." Hence, by (1) and (4), there rvould be a
class of all classes satisfying the function "a- e a." If we call this class r, we
shall have

d€lc.=L.dN€d.

Since, by our hypothesis , " rc e rc" is supposed significant, the above equi valence,
rvhich holds with all possible values ol'a, holds with the value rc, i.e.

ICEK.=.KNEK,

But this is a contradict ionf. Hence "ae a" and ua-ea" must always be
rneaningless. In general, there is nothing surprising about this conclusion,
but it has two consequences which deserve special notice. In the first place,
a class consisting of only one member must not be identical with that one
member, i.a. we must not have L(x:s. For we have uel'r, and therefore, if
n : L'u, we have L't e L'a, which, rve saw, must, be meaningless. It follows that
'tr:(s" must be absolubely meaningless, not simply false. In the secnnd
place, it might appear as if the class of all classes were er class, i.a. as if
(writing "Cls" for " class") "Cls e Cls" were a true proposition. But this corn-
bination of symbols must be rneaningless; unless, indeed, an arnbiguity exists
in the meaning of "Cls," so that, in "Cls e Cls," the first "Cls" can be supposed
to have a different nreaning from the second.

As regards the above requisites, it is plain, to begin rvith, that, in accordance
with our definition, every propositiotral function S2 determines a class 2 ($z).
Assuming the axiom of reducibility, there rrust alrvays be true propositions
about 2(gz), i.e. tuv.e plopositions of the form "f 12(04}. For suppose f2 is
formally equivalent, fo rll2, aud suppose r/r! 2 satisfies some function /. Then

'As erplainecl in Ohapter I (p. 25), ,.c6d" meaDs .,c is r member of the class e," or,
more shortly, , 'c ie an o." The delinit ion of this expreesion in terms oI our tbeory of clesses
rvill be given sbortly.

f This is the mconal of the ontradictions tliecussed at the entl of Chapter II.
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2 ($z) also satisfiesf flence, given any function {2, there are true propositions

of the form/[2(#t)1, i.e. tnte propositions in which "the class detennined by

{2" is grammatically the subject. This shows that our definition fulfils the

first of our five requisites.

The second and third requisites together demand that the classes 2({z) and

2(r/'z) should be identical when, and only when, their defining functions are

formally equivalent, i.e. lhat' rve should have

2 (Sz):2 (* t ) '= :  $u '  =" \ ta '
Here the meaning of "2($z):2(rlrz)" is to be derived, by means of a trvo-

fold application of the definition of f l2 (Sz)J, from the definition of

rvhich is

"YtZ:012" '
yt2 :012. :  r ( f )  t  f t  yt2.) . f !  0t2 Dr

by the general definition of identity'

In interpreting "2(#z):2(+t):' we will adopt the convention which we

adopted in regatd io (ru)($r) and (ru)(./ro), namely that the incomplete syrnbol

which occurs first is to have the larger scope. Thus 2(fz):2(*t'l becones,

bv our definition,
"  (gX):Qn.=,.X!nzyl2:2( lz) ,

which, by eliminabing 2 (!rz), becomes
(Ey\ z. 6" . = n . X! c; :. (gd) i *n . =- n - 0 ! u z y! 2 : 0'. 2,

which is equivalent bo

GX, 0\  z $n .  =, .  y!  n z l rn .  =, ,  e!  n :  Yl ,  2 :  0!  2,

which, again, is equivalent to
(SX):  6" .  =n.  X! n z l rn .  =, .  Y!  t ,

which, in virtue of the axiom of reducibility, is equivalent to

Qt .  =". l ra.

Thus our definition of the use of 2 ($z) is such as to satisfy the conditions (2)

and (B) rvhich rve laid dorvn for classes, i.e. we have

t 2.2 (Qz) :  2 (*") .  = = $a . = n. *t .

Before considering classes of classes, it rilill be rvell to define nrembership

of a class, i.e. to define the svmbol "ue2(Qz)," which may be read "a is a

member of bhe class detern.rined by Q2:' Since this is a function of the fonn

f lZ(Q4\, it must be derivetl, by means of our general definition of such func-

tions, from the corresponding function/[.f'!2]. We therefore put

uer l l2s: . r f r !e Df.

This definition is only needed in order to give a meaning to"ne2($z)"; tbe

rneaning it, gives is, in virtue of the definititn of f 12 1qz)\,
(S*) :  6y. =v . *!  y :  l r t  u.

It thus appearc lhat "ne7(Sz)" implies {c, since it implies {r!4, and rfr!c

is equivalent to fc; also, in virtue of the axiom of reducibility, {o irnplies

"ne2(gz)," since there is a predicative furrction {r formally equivalent to {,
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n rrd c must satisfy {e, since a (eu hypothesi) satisfies {. Thus in virtue of the
rxiom ofreducibility we bave

| = u e2 (Qu) . :  .  Qr,
'i.e. n is a mernber of the class 2($z) when, and only when, a satisfies the
lirnction f which defines the class.

We have next to consider how to interpret a class of classes, As we have
rfcfined 

-fl2(Q")j, 
rve shall natulally regard a class of clagges as consisting of

l,lrose values ot 2(gz) which satisfy f IZ(Q")}. Let us write afor2($z); then
wo rnay write d(/a) for the class of values of a which satisfy /ai. We shall
rlpply the same definition, and put

F {a$a\1. :  :  (ss) =lB. = e. st B z F lstd} Dr,
rvlrcre "B" stands for any expression of the forrn 2 ('{il z).

Let us take "ye?.(fa)" as an instance of ,F {6(/a)}. Then

| : .  y e d(Ja).  = :  (99) :  fF .  =a.  g l  B : ,y e gld.
. l ' rsb as we put
No we pub

Thus we find
F : . .y e 0 (Jo).  = :  (gg) :  f ts.  = p.  9 l  F,  gt  y.

If we now extend the axiom of reducibility so as to apply to functions of
l i r r rct ions,  i .e.  i f  t te assume

@il , I (*t 2) . =,t, . st (lrr 2),

F r (US) z f 12 (!rt z)l . =-,p . g't 12 (^1,! z)],
F ' (ss) lJB.=p.9rB.
F:.ye6(fo).=." fy.

r l ,  rvould mean

ae! i l2. : . r f !c Df,

yegtd. : .91.y Df.

rr',: casily deduce

' l 'hus

'fhus every function which can take classes as arguments, i.e. every function
,'l firnctions, determines a class of classes, whose members are those classes
rvhich satisfy the determining function. Thus the theory of.classes of classes
,rllirrs no difficulty.

We have next to consider our fifth requisite, namely lhr'i "2 ($z) e 2 (Qz)"
ir Lo be meaningless. Applying our definition of f {2 (gz)1, we find that if this
r:,,1k:ction of symbols had a meaning, it would mean

(gf) :  0, .  =,.  l l  n = lr l  2 e !" ' l '2,
i r'. irr virtue of the definition

aelr t2. : . l ln Df,
(g*)  z Qa .  =n.+!  a t  { t  ( l r ' t  2) .

llrrt, here the symbol '*! (9t 2)" occur:s, which assigns a function as argurnent
1,, ilsclf. Such a symbol is always meaningless, for the reasons explained at
t lr,. lrcginning of Chapter II (pp. 38-af ). Hence "2 (Sz) e2 (Qz)" is meaning-
l,.rs, rr,rrd our fifth and last requisite is fulfilled.

' 'ilre uee of a single letter, such &s c or B, to represent e vorieble class, will be further
o r lr lruinocl shortly.



80 INTR,ODUCTION [cuer.

As in the case of /(rr)({r), so in that of f lZ(#r)}, there is an arnbiguity

as to the scope of 2(+z) it it occurs in a proposition which itself is parb of a

larger proposition. But in the case of classes, since we always have the axiom

of reducibi l i ty, narnely 
(sg) :  fr  .=n. l tru,

which takes the place of E!(rz)({z), it follows that the truth-value of any

proposition in which 2 (fz) occurs is the sarne rvhatever scope we may give to

2 (,Qz),provided the proposition is an extensional function of whatever functions

it may contain. Hence we may adopt the convention that the scope is to be

always the smallest proposition enclosed in dots or brackets inwhich2($z)

occurs. If at any time a larger scope is required, we may indicate it by " l2 ( Qz)1"
followed by dots, in the same way as rve did for [(ta)({,t)].

Similarly rvhen trvo class symbols occur, e g. in a proposition of the form

f 12 (+"),2 (*r)J, we need nob remember rules for the scopes of the trvo symbols,

since all choices give equivalent results, as ib is easy to prove' For the pre-

Iiminary propositions a rule is desirabie, so 1ve can decide that the class symbol

which occurs first in the order of'vriting is to have the larger scope.

The represental,ion of a class by a single letter a can now be understoc,d.

For the denotation of a is ambigtrous, irr so far as it is undecided as to which

of the synrbols 2(Qz),2(^lz),2(yz), etc. i t  is to stand for, where +2',1,2,X2,
etc. are the various determining functions of the class. According to the choice

made, different, ploposibions rcsulL. But trll the lesulting propositions are equi-

valenl by virbuc of the c:rsily pr'ovcd proposition:

" l  = Qn="*f t . )  . f  12 (+z) l  =. f  12 \^ l " r ) l ; '
Hence unlcss rvc rvish to discuss the determining function itself, so that the

notion o1'a class is really not properly present, the ambiguity in the denotation

of a is entirely imma,terial, though, as rve shall see immediately, we are led to

limit ourselves to predicativc determining functions. Thus '/(a)," where a is a

variablc class, is rcally "f {2(Sz)]," where f is a variable function, that is, it is

"(SlJ,) . Q, : " * | a . f \^1,'! 2)',"

rvhelc S is a variable function. But here a difficulby arises which is renroved

by n lirnitation to our practice and by the axiorn of reducibility. Fot the deter-

nrining funcbions +2, +2, etc will be of diff'erenb types, though the axiom of

rc<lncibility secures that some zrre predicative functions. Then, in interpreting

a :rt a virriable in terms of the variation of any deternrining function, rve shall

lru lcrl inbo errors unless we confine ourselves to predicative determining firnc-

t,ions. 'l'hcse errors especially arise in the transition to total variation (cf.

pp. 15, 16). Accordingly

fo : .  (SV) . $! r =,9t 
" 

.  f  I" lr t  2l  Df.

It is the peculiarity of a definition of the use of a single letter fviz. a] for a

v,r,rirblc incomplete symbol that it, though in a sense a real variable, occurs

<rnly in Lhe d.ef,nienilurn, while "f," though a real variable, occurs only in the

tleJiniens.
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'l 'hus ';f0" stands for

,  " (Sg) .$tu=,, ! , t t . f  l$t2J,"
r l r l  (a)  . j f4 '  s tands lor

"(0) '  (sf)  .  gt  n :  
" ! r ' t  n .  f  f^ l t  2i ; '

Ar:trrrrlingly, in rnathematical reasoning, we can dismiss the whole apparatus
.l {irnctions and think only of classes as,'quasi-things," capable of irnmediate
rr,plr:sentation by a single name. The advantages are two-fold: (1) classes are
rlr'l,trrnrined by their membership, so that to one set of nrembers there is one
r'lrr,ss, (2) the "type" of a class is entirely defined by tlre type of its members.

Also a predicative function ofa class can be delined thus

f t  a:  . (Sf) .  4 l  n =, ! t !  n .  f t  [ \h!  2 l  Df.
' l ' lrus rr, predicative function of a class is always a predicative function of any
plr,r l icative determining function of the class, though the converse does not hold.

(3) Relations. \4'ith regard to relations, we have a theory strictly analogous
t,r l,[111 *1t1"n g'e havejust explained as regards classes. Relations in extension,
likc classes, are incomplete symbols. We require a division of functions of two
vrrriu.bles into predicative and non-predicative fLrnctions, again for reasons which
frrve been explained in Chapter I I .  We use the notat ion "$l(u,y)"  for  a

1,rr:dicatiue function of n and y.

We use "Ql(k,0)" for the function as opposed to its values; and we use
". ; ,0Q@,y)" for  the rela, t ion ( in extension) determined by Q@,y).  We put

f Ifti 6 @, y)l . : 3 (s"]") = d (x, y) . = n, y . *t (", y) | f l+t @, 9)] Df.
' l ' lrus evcnwhen/{r/r!(A,i)i i . not an extensional function of I,f lh|+@,y)l
is :t"tt extensional function of f. Hence, just as in the case of classes, we deduce

| :. hfi $ (n, y) : 89 * @, y) . : . 6 @, a) . =,,,. I @, y),
r.a ir, relation is determined by its extension, and vice versa.

On the analogy of the definition of "n e t!r12," we put
0 [^ht @,0)] y .  :  .  +t (a,s) Df*.

'l'his definitiorr, like that of "ne!r! 2," is not introduced f<rr its own sake,
lrrrt  in order to give a meaning to

nPfrS@,y)\y-
'l 'lris meaning, in virtue of our definitions, is

G*) = Q @, y) . = n,y . *r (a, y) = n I*t @, 0)j y,
tc (S^h)26(n,y) .=. .o.* ! (u,y)zr l r l (a,y) ,
rrrrr l  this, in virtue ofthe axiorn ofreducibi l i ty

is  cr lu ivalent to
' l ' l r r rs we have al 'ways

"(sf) '  Q @, y) .  = 
" ,s.  St  (n,y) ; '

Q@'v).

F = u {kfi $ (n,y)} s . = . 6 @,y).
' This definition raises certain questions as to the two senses of a relation, whicb are deali

r r l l r  in +21.
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Whenever the determining function of a relation is not relevanb, we may
replace h0 6 @, y) by a single capital letter. In virtue of the propositions given
above,

F : .  l l :  s  .  = z aRy . :n,a.  a,sy,
t  : .  R:b0Q@,y).= z n&y .  =, ,u.6@,y),

and r .R=hQ@Ry).

Classes of relations, and relations of relations, can be dealt with as classes
of classes were dealt rvith above.

Just as a class rnust not bc capable of being or not being a member of itself,
so a relation must neither be nor not be referent or relatum with respect to
itself. This turns out, to be equivalent to the assertion that {! (6, p) cannot
significantly be either of the arguments a or y in 6l (r, y). This principle, again,
results from the limitation to the possible arguments to a function explained
at the beginning of Chapter IL

We may sum up this rvhole discussion on incornplete symbols as follows.

The use of the symbol " (tu)(Qu)" as if io "f (ta)(gu'i' it d,irectlg represented
an argument to the function/2 is rendered possible by the theorerns

F:.  E!  ( tc)({e).  ) :  (a)  .  fa.)  . f ( tn)($a),
t t (tu) ($n) : (tn) (!ra) . ) ..f (ta) (Sn) : f (ta) (^lru),

F : E ! (ta) ({a) . ) . (rn) (Sr) : (ta) ($n),
| : (rn\ (gr) : (tt) (tltlL) . : . (ru) (,!"a) : (tn) (gr),

I z (t n) (Qx) : (t x) (,lru) . (t a) (!ra) : (t r) (yr.) . ) . (t,r) (gn) : (t a) (yu).

The use of thc syrnbol "h(Q")" (or of a single letter, such as a, to represent
such a symbol) as if, in "f p(gu)]l' rt d,irectly represented an argumenb d to a
function/0, is rendered possible by the theorems

| =(a). fa.) . f  {a@a)|
| = i (gn) : a $lx) . ) . f [a @n)] = f @ fliu)|
r .k(Su):a@r),
t = i ($a) : i (t*). =. k (lc) : i (6r),
t : k ($a) : b (lr) . t (la) : h (yu) . > . h (ga) : i (yu).

Throughout these propositions the types must be supposed to be properlS'
adjusted, rvhere ambiguity is possible.

'Ihe use of the symbol "ifi{S@,y)} " (or of a single letter, such as -rB, to
rcpresent such a symbol) as^if, iL "f lhg +@,y)li' it ilirectly represented an
algrrment -B to a functionfR,is rendered possible b,v the theolems

| : (R) . fR .) ."f {r, Q @, i1l,
|  :  i f i  Q@,y):  a9 * @,y) .)  ." f  {a9 6 @,y) l  =f  lkf i  r l ' (x,y)1,
F. i ro@,y)=69Q@,y),
| = 6fi g (", y) : a0 * @, y). : . ag ̂ h @, y) : i9 Q @, y),
| : hQ g @, y) : h0 I @, D. i9 + @, y) : kO x(*, y) .

) .^0 +@,y): iA x@,y).

l l l l  TNcoMpLETE syMBoLs

'l 'hloughout these propositions the types must be
lr l jusl,cr l  where ambiguity is possible.

sirnilarly the limitatiotzs to the use of tbese symbors can be summed up
rr'r lirlf rws. In the case of (tn)(sa), the chief rva;. i' which its inco.rpleteness
is rrlt:vant is that rve do not always have

(r) ." f " . )  . f  ( tu)(ga),
i  r .  rr  function * 'hich is always true may nevertheless not be true of (tn)(sc).
' l ' l rrs is possible becatse f(tx)(fz) is not a value of f i ,  sothat even *t"n 

" i trrlrrr:s of y[6 are trne, f (ta)(Sc) nay not be trrre. This happens rvhen (la) ({o)
r lrxrs not exist.  Thus for example we have (n).u:r,  buiwe do not trave"

the round seuare: the round square.
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supposed to be properly

' l ' l rc  in lerence

rvi thout having

(n)." fo.)  . f  p;L ' | (ga1

rp!2:y!e.

i* rrrrly valid rvhen E I (r) ($r). As soon as rve know E I er) (fu), the fact that
\t,')(sr) is an incomplete symbol becomes irrelevant so long as rve confine
,'r'sclves to truth-functions* of rvhatever proposition is its scope. But even
rvlrcn E l(tu)(Qa), the incornpleteness of (tc)($n) may be relevant when we
P:'ss outside trutb-functions. For example, George Iy rvished to know rvhether
fir:,tt rvas the author of waverley, i.a. he rvished to know whether a proposition
rr l ' t ;hc form ,,s:(t .r)(fr), ,rvas true. But there rras no proposit ion of th" fo._
" r: : !/" concerning rvbich he wished to kuorv if it rvas true.

In rega.d to classes, the relevance of their incompleteness is somewhat
rlifli'rent. It nray be illustrated by the fact that rve may have

2 (62) : rlr | 2 . 2 ($z\ : Yt 2

l,irr', by a direct application of the definitions, u,e find that,
F:2($z): ,1,  12 .= .  Sx:" l r t  z.

' l ' l r r rs lve shal l  have

I z gr = 
" ̂ !r ! t: . et =, X I u . ) . 2 (Q4 : \h t 2 . 2 (gz) : y t 2,

l r r r t ,  rve shal l  not  nccessar i ly  have r / r  r2:y ' ,2 unt ler  these circunrstances, for
l* ,  funct ions ma5'rvel l  be formal ly equivale ' t  rv i thout beiog iderr t ical j  for
r . \ iuD ple,

a, : Scott .'= , . u: the au thor. of Waverley,
l r r r l ,  the funct ion "2:  the author of  wave' ley" has the property that  George rv
n'islrerl to know rvhether its value rvith the argurreDt ,.scott" was true, rvh"eteas

" Cf. r. 8.



84 INTRODUCTION [cner. rrr

the function " 2: Scott " has no such property, and therefore the two functions
are not identical. Henie there is a propositional function, namely

n:g,e:2.) .y:2,

which holds without any exception, and yet does not hold when fur o we
substitute a class, and for y and z we substitute functions. This is only
possible because a class is an incomplete symbol, and therefore "2($z):r!r12"
is not a value of " n:y:

I t  wi l l  be observed that "012:+'!2" is not an extensional function ol '
rlr ! 2. Thus bhe scope of 2(Qz) is relevant in interpreting the product

2 (6r) : r l ' t  2 . 2 (Sz) : yt 2.
whole of the product as the scope of 2(Qz), the product is

(g0) :  gu ="0 t  n.  0 tD :  l r  tZ .  0 t2 :  y!  2,
and this d,oes imply r l  t2:  y l2.

We may say genera,lly that the fact that 2 (Sz) is an incomplete symbbl
is not relevant so long as lve confine ourselves to extensional functions of
functions, bub is apt to become relevant for other functions of functions.

If we take the
equivalent to
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