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MATHEMATICAL LOGIC AS BASED ON
Lt BHBORY. ORGTY Pls .

1ie following theory of symbolic logic recommended itself to
me in the first instance by its ability to solve certain contradictions,
of which the one best known to mathematicians is Burali-Forti’s
concerning the greatest ordinal.* But the theory in question seems
not wholly dependent on this indirect recommendation; it has also,
if I am not mistaken, a certain consonance with common sense
which makes it inherently credible. This, however, is not a merit
upon which much stress should be laid; for common sense is far
more fallible than it likes to believe. I shall therefore begin by
stating some of the contradictions to be solved, and shall then show
how the theory of logical types effects their solution.

I. THE CONTRADICTIONS

(1) The oldest contradiction of the kind in question is the
Lpimenides. Epimenides the Cretan said that all Cretans were liars,
und all other statements made by Cretans were certainly lies. Was
this a lie? The simplest form of this contradiction is afforded by
the man who:says ‘I am lying’; if he is lying, he is speaking the
truth, and vice versa. :

(2) Let w be the class of all those classes which are not members
of themselves. Then, whatever class ¥ may be, ‘x is a @’ is equiva-
lent 1 to ‘x is not an x’. Hence, giving to x the value w, ‘w is a @’ is
¢quivalent to ‘w is not a w’.

(3) Let T be the relation which subsists between two relations
R and S whenever R does not have the relation R to S. Then,

* See below.

I 'T'wo propositions are called equivalent when both are true or both are
fulse,

59



]
60 LOGIC AND KNOWLEDGE

whatever relations R and S may be, ‘R has the relation T to S’is
equivalent to ‘R does not have the relation R to S’. Hence, giving
the value T to both R and S, ‘T has the relation T to 7" is equiva-
lent to ‘T does not have the relation T to T".

(4) The number of syllables in the English names of finite inte-
gers tends to increase as the integers grow larger, and must gradu-
ally increase indefinitely, since only a finite number of names can
be made with a given finite number of syllables. Hence the names
of some integers must consist of at least nineteen syllables, and
among these there must be a least. Hence ‘the least integer not
nameable in fewer than nineteen syllables’ must denote a definite
integer; in fact, it denotes 111,777. But ‘the least integer not name-
able in fewer than nineteen syllables’ is itself a name consisting
of eighteen syllables; hence the least integer not nameable in fewer
than nineteen syllables can be named in eighteen syllables, which
is a contradiction.*

(5) Among transfinite ordinals some can be defined, while others
can not; for the total number of possible definitions is §,, while
the number of transfinite ordinals exceeds &,. Hence there must
be indefinable ordinals, and among these there must bg a least.
But this is defined as ‘the least indefinable ordinal’, which is a
contradiction.} .

(6) Richard’s paradox] is akin to that of the least indefinable
ordinal. It is as follows: Consider all decimals that can be defined
by means of a finite number of words; let E be the class of such
decimals. Then E has &, terms; hence its members can be ordered
as the 1st, 2nd, 3rd, . . . Let N be a number defined as follows: If
the nth figure in the nth decimal is p, let the nth figure in IV be
p+1 (or o, if p=9). Then N is different from all the members of

* This contradiction was suggested to me by Mr. G. G. Berry of the
Bodleian Library. .

t Cf. Koénig, “‘Uber die Grundlagen der Mengenlehre und das Kon-
tinuum-problem’, Math. Annalen, Vol. L.XI (1905); A. C. Dixon, ‘On
“well-ordered” aggregates’, Proc. London Math. Soc., Series 2, Vol. IV,
Part I (1906); and E. W. Hobson, ‘On the Arithmetic Continuum’, ibid.
The solution offered in the last of these papers does not seem to me
adequate.

t Cf. Poincaré, ‘Les mathématiques et la logique’, Revue de Méta-
physique et de Morale (May, 1906), especially sections VII and IX; also
Peano, Revista de Mathematica, Vol. VIII, No. 5 (1906), p. 149 ff.
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E, since, whatever finite value » may have, the nth figure in N is
different from the nth figure in the nth of the decimals composing
7, and therefore N is different from the nth decimal. Nevertheless
we have defined N in a finite number of words, and therefore NV
ought to be a member of E. Thus NN both is and is not a member
of E.

(7) Burali-Forti’s contradiction* may be stated as follows: It
can be shown that every well-ordered series has an ordinal number,
that the series of ordinals up to and including any given ordinal
exceeds the given ordinal by one, and (on certain very natural
assumptions) that the series of all ordinals (in order of magnitude)
is well ordered. It follows that the series of all ordinals has an
ordinal number, Q say. But in that case the series of all ordinals
including Q has the ordinal number Q+ 1, which must be greater
than Q. Hence Q is not the ordinal number of all ordinals.

In all the above contradictions (which are merely selections from
an indefinite number) there is a common characteristic, which we
may describe as self-reference or reflexiveness. The remark of
Epimenides must include itself in its own scope. If all classes, pro-
vided they are not members of themselves, are members of w, this
must also apply to w; and similarly for the analogous relational
contradiction. In the cases of names and definitions, the paradoxes
result from considering non-nameability and indefinability as ele-
ments in names and definitions. In the case of Burali-Forti’s para-
dox, the series whose ordinal number causes the difficulty is the
series of all ordinal numbers. In each contradiction something is
said about all cases of some kind, and from what is said a new case
scems to be generated, which both is and is not of the same kind
ns the cases of which all were concerned in what was said. Let us
go through the contradictions one by one and see how this occurs.

(1) When a man says ‘I am lying’, we may interpret his state-
ment as : “There is a proposition which I am affirming and which
is false’. All statements that ‘there is’ so-and-so may be regarded
as denying that the opposite is always true; thus ‘I am lying’ be-
comes: ‘It is not true of all propositions that either I am not affirm-
ing them or they are true’; in other words, ‘It is not true for all
propositions p that if I affirm p, p is true’. The paradox results

* ‘Una questione sui numeri transfiniti’, Rendiconti del circolo mate-
matico di Palermo, Vol. XI (189%).
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from regarding this statement as affirming a proposition, which
must therefore come within the scope of the statement. This, how-
ever, makes it evident that the notion of ‘all propositions’ is illegiti-
mate; for otherwise, there must be propositions (such as the above)
which are about all propositions, and yet can not, without contra-
diction, be included among the propositions they are about. What-
ever we suppose to be the totality of propositions, statements about
this totality generate new propositions which, on pain of contra-
diction, must lie outside the totality. It is useless to enlarge the
totality, for that equally enlarges the scope of statements about
the totality. Hence there must be no totality of propositions, and
‘all propositions’ must be a meaningless phrase.

(2) In this case, the class w is defined by reference to “all classes’,
and then turns out to be one among classes. If we seek help by
deciding that no class is a member of itself, then w becomes the
class of all classes, and we have to decide that this is not a member
of itself, i.e., is not a class. This is only possible if there is no such
thing as the class of all classes in the sense required by the paradox.
That there is no such class results from the fact that, if we suppose
there is, the supposition immediately gives rise (as in the above
contradiction) to new classes lying outside the supposed total of
all classes.

(3) This case is exactly analogous to (2), and shows that we can

not legitimately speak of ‘all relations’.

(4) ‘“The least integer not nameable in fewer than nineteen syl-
1ables’ involves the totality of names, for it is ‘the least integer such
that all names either do not apply to it or have more than nineteen
syllables’. Here we assume, in obtaining the contradiction, that a
phrase containing ‘all names’ is itself a name, though it appears
from the contradiction that it can not be one of the names which
were supposed to be all the names there are. Hence ‘all names’ is
an illegitimate notion.

(5) This case, similarly, shows that ‘all definitions’ is an illegiti-
mate notion.

(6) This is solved, like (5), by remarking that ‘all definitions’ is
an illegitimate notion. Thus the number E is not defined in a finite
number of words, being in fact not defined at all.*

* Cf. ‘Les paradoxes de la logique’, by the present author, Revue de
Métaphysique et de Morale (September, 1906), p. 645.
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(7) Burali-Forti’s contradiction shows that ‘all ordinals’ is an
illegitimate notion; for if not, all ordinals in order of magnitude
form a well-ordered series, which must have an ordinal number
greater than all ordinals.

Thus all our contradictions have in common the assumption of
a totality such that, if it were legitimate, it would at once be en-
larged by new members defined in terms of itself. .

This leads us to the rule: “‘Whatever involves all of a collection
must not be one of the collection’; or, conversely: ‘If, provided a
certain collection had a total, it would have members only definable
in terms of that total, then the said collection has no total’.*

The above principle is, however, purely negative in its scope.
It suffices to show that many theories are wrong, but it does not
show how the errors are to be rectified. We can not say: ‘When I
speak of all propositions, I mean all except those in which “all
propositions” are mentioned’; for in this explanation we have
mentioned the propositions in which all propositions are men-
tioned, which we can not do significantly. It is impossible to avoid
mentioning a thing by mentioning that we won’t mention it. One
might as well, in talking to a man with a long nose, say: ‘When I
speak of noses, I except such as are inordinately long’, which would
not be a very successful effort to avoid a painful topic. Thus it is
necessary, if we are not to sin against the above negative principle,
to construct our logic without mentioning such things as ‘all pro-
positions’ or ‘all properties’, and without even having to say that
we are excluding such things. The exclusion must result naturally
and inevitably from our positive doctrines, which must make it
plain that ‘all propositions’ and ‘all properties’ are meaningless
phrases.

The first difficulty that confronts us is as to the fundamental
principles of logic known under the quaint name of ‘laws of
thought’. ‘All propositions are either true or false’, for example, has
become meaningless. If it were significant, it would be a proposi-
tion, and would come under its own scope. Nevertheless, some

* When I say that a collection has no total, I mean that statements about
all its members are nonsense. Furthermore, it will be found that the use

- of this principle requires the distinction of all and any considered in

Section I1.
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substitute must be found, or all general accounts of deduction be-
come impossible.

Another more special difficulty is illustrated by the particular
case of mathematical induction. We want to be able to say: ‘If #
is a finite integer, 7 has all propeities possessed by o and by the
successors of all numbers possessing them’. But here ‘all pro-
perties’ must be replaced by some other phrase not open to the
same objections. It might be thought that ‘all properties possessed
by o and by the successors of all numbers possessing them’ might
be legitimate even if ‘all properties’ were not. But in fact this is
not so. We shall find that phrases of the form ‘all properties which
etc.’ involve all properties of which the ‘etc.’” can be significantly
either affirmed or denied, and not only those which in fact have
whatever characteristic is in question; for, in the absence of a cata-
logue of properties having this characteristic, a statement about all
those that have the characteristic must be hypothetical, and of the
form: ‘It is always true that, if a property has the said character-
istic, then etc.” Thus mathematical induction is prima facie incap-
able of being significantly enunciated, if ‘all properties’ is a phrase
destitute of meaning. This difficulty, as we shall see later, can be
avoided; for the present we must consider the laws of logic, since
these are far more fundamental.

II. ALL AND ANY

? Given a statement containing a variable x, say ‘x=x’, we may
affirm that this holds in all instances, or we may affirm any one of
the instances without deciding as to which instance we are affirm-
ing. The distinction is roughly the same as that between the general
and particular enunciation in Euclid. The general enunciation tells
us something about (say) all triangles, while the particular enuncia-
tion takes one triangle, and asserts the same thing of this one tri-
angle. But the triangle taken is any triangle, not some one special
triangle; and thus although, throughout the proof, only one tri-
angle is dealt with, yet the proof retains its generality. If we say:
‘Let ABC be a triangle, then the sides 4B, AC are together greater
than the side BC’, we are saying something about ore triangle, not
about all triangles; but the one triangle concerned is absolutely
ambiguous, and our statement consequently is also absolutely
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ambiguous. We do not affirm any one definite proposition, but an
undetermined one of all the propositions resulting from supposing
/'IBC.‘ to be this or that triangle. This notion of ambiguous asser-
tion is very important, and it is vital not to confound an ambiguous
assertion with the definite assertion that the same thing holds in
all cases.

. The distinction between (1) asserting any value of a proposi-
.tlonal function, and (2) asserting that the function is always true
is present throughout mathematics, as it is in Euclid’s distinctior;
of general and particular enunciations. In any chain of mathe-
matical reasoning, the objects whose properties are being investi-
gated are the arguments to any value of some propositional func-
tion. Take as an illustration the following definition:

~‘We call f(x) continuous for x=a if, for every positive number o
different from o, there exists a positive number e, different from o’
such that, for all values of 8§ which are numerically less than € thé
difference f(a+ 8) — f(a) is numerically less than ¢.’ ’

Here the function f is any function for which the above state-
ment has a meaning; the statement is about f, and varies as f varies.
But the statement is not about o or € or 8, because all possible
values of these are concerned, not one undetermined value. (In
regard to e, the statement ‘there exists a positive number € such
that etc.’ is the denial that the denial of ‘etc.’ is true of all positive
n.uml')ers.) For this reason, when any value of a propositional func-
tion is asserted, the argument (e.g., f in the above) is called a real
variable; whereas, when a function is said to be always true, or to
be not always true, the argument is called an apparent variable.*
Thus in the above definition, f is a real variable, and o, ¢, 8 are
apparent variables.

W}.len we assert any value of a propositional function, we shall
say simply that we assert the propositional function. Thus if we
enunciate the law of identity in the form ‘x=x’, we are asserting
t!lc function ‘x=x’; i.e., we are asserting any value of this func-
tion. Similarly we may be said to deny a propositional function
when we deny any instance of it. We can only truly assert a pro-
positional function if, whatever value we choose, that value is true;

* These two terms are due to Peano, who uses them approximately in
'l I{/c above sense. Cf., e.g., Formulaire Mathématique (Turin, 1903), Vol.
» P 5 ,
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similarly we can only truly deny it if, whatever value we choose,
that value is false. Hence in the general case, in which some values
are true and some false/ we can neither assert nor deny a proposi-
tional function.*

If ¢x is a propositional function, we will denote by ‘(x) . $x’ the
proposmon ‘i is always true’. Similarly ‘(x, ) . ¢ (x, ¥)’ will mean
‘b (x, ) is always true’, and so on. Then the distinction between
the assertion of all values and the assertion of any is the distinction
between (1) asserting (x) .« and (2) asserting $x where x is un-
determined. The latter differs from the former in that it can not
be treated as one determinate proposition.

The distinction between asserting ¢x and asserting (x) . px was,
I believe, first emphasized by Frege.t His reason for introducing the
distinction explicitly was the same which had caused it to be pre-
sent in the practice of mathematicians; namely, that deduction
can only be effected with real variables, not with apparent variables.
In the case of Euclid’s proofs, this is evident: we need (say) some
one triangle ABC to reason about, though it does not matter what
triangle it is. The triangle ABC is a real variable; and although
it is any triangle, it remains the same triangle throughout the argu-
ment. But in the general enunciation, the triangle is an apparent
variable. If we adhere to the apparent variable, we can not perform
any deductions, and this is why in all proofs, real variables have
to be used. Suppose to take the simplest case, that we know ‘px is
always true’, i.e. ‘(x).¢x’, and we know ‘¢x always implies yx’,
i.e. ‘(x).{¢x implies yx}’. How shall we infer “Jx is always true’,
i.e. ‘(x).4x’? We know it is always true that if ¢x is true, and 1f
¢x implies yx, then x is true. But we have no premises to the
effect that ¢x is true and ¢x implies Jx; what we have is: ¢x is
always true, and ¢x always implies x. In order to make our infer-
ence, we must go from ‘px is always true’ to ¢x, and from ‘dx
always implies x’ to ‘¢x implies yx’, where the x, while remaining
any possible argument, is to be the same in both. Then, from ‘¢«’

* Mr. MacColl speaks of ‘propositions’ as divided into the three classes
of certain, variable, and impossible. We may accept this division as
applying to propositional functions. A function which can be asserted is
certain, one which can be denied is impossible, and all others are (in Mr.
MacColl’s sense) variable.

t See his Grundgesetze der Arithmetik (Jena, 1893), Vol. I, § 17, p. 31.
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and ‘¢x implies yx’, we infer ‘Y’ ; thus ix is true for any possible
argument, and therefore is always true. Thus in order to infer
‘(%) «x’ from ‘(x) . x’ and ‘(x) . {px implies x}’, we have to pass
from the apparent to the real variable, and then back again to the
apparent variable. This process is required in all mathematical
reasoning which proceeds from the assertion of all values of one
or more propositional functions to the assertion of all values of
some other propositional function, as, e.g., from ‘all isosceles
triangles have equal angles at the base’ to ‘all triangles having equal
angles at the base are isosceles’. In particular, this process is re-
quired in proving Barbara and the other moods of the syllogism.
In a word, all deduction operates with real variables (or with
constants).

It might be supposed that we could dispense with apparent
variables altogether, contenting ourselves with any as a substitute
for all. This, however, is not the case. Take, for example, the
definition of a continuous function quoted above: in this defini-
tion o, ¢, and 8 must be apparent variables. Apparent variables
are constantly required for definitions. Take, e.g., the following:
‘An integer is called a prime when it has no integral factors except
1 and itself’. This definition unavoidably involves an apparent
variable in the form: ‘If # is an integer other than 1 or the given
integer, 7 is not a factor of the given integer, for all possible values
of ’.

The distinction between all and any is, therefore, necessary to
deductive reasoning, and occurs throughout mathematics; though,
so far as I know, its importance remained unnoticed until Frege
pointed it out.

For our purposes it has a different utility, which is very great.
In the case of such variables as propositions or properties, ‘any
value’ is legitimate, though ‘all values’ is not. Thus we may say:
‘p is true or false, where p is any proposition’, though we can not
say ‘all propositions are true or false’. The reason is that, in the
former, we merely affirm an undetermined one of the propositions
of the form ‘p is true or false’, whereas in the latter we affirm (if
anything) a new proposition, different from all the propositions of
the form ‘p is true or false’. Thus we may admit ‘any value’ of a
variable in cases where ‘all values’ would lead to reflexive fallacies;
for the admission of ‘any value’ does not in the same way create
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new values. Hence the fundamental laws of logic can be stated
concerning any proposition, though we can not significantly say
that they hold of all propositions. These laws have, so to speak, a
particular enunciation but no general enunciation. There is no
one proposition which is the law of contradiction (say); there are
only the various instances of the law. Of any proposition p, we can
say: ‘p and not-p can not both be true’; but there is no such pro-
position as: ‘Every proposition p is such that p and not-p can not
both be true’.

A similar explanation applies to properties. We can speak of any
property of x, but not of all properties, because new properties
would be thereby generated. Thus we can say: ‘If # is a finite
integer, and if o has the property ¢, and m + 1 has the property ¢
provided m has it, it follows that n has the property ¢’. Here we
need not specify ¢; ¢ stands for ‘any property’. But we can not say:
‘A finite integer is defined as one which has every property ¢
possessed by o and by the successors of possessors’. For here it is
essential to consider every property,* not any property; and in
using such a definition we assume that it embodies a property
distinctive of finite integers, which is just the kind of assumption
from which, as we saw, the reflexive contradictions spring.

In the above instance, it is necessary to avoid the suggestions of
ordinary language, which is not suitable for expressing the distinc-
tion required. The point may be illustrated further as follows: If
Jinduction is to be used for defining finite integers, induction must
state a definite property of finite integers, not an ambiguous pro-
perty. But if ¢ is a real variable, the statement ‘n has the property
¢ provided this property is possessed by o and by the successors
of possessors’ assigns to # a property which varies as ¢ varies, and
such a property can not be used to define the class of finite integers.
We wish to say: ‘“z is a finite integer” means: ‘“Whatever pro-
perty ¢ may be, 7 has the property ¢ provided ¢ is possessed by o
and by the succesSors of possessors”.” But here ¢ has become an
apparent variable. To keep it a real variable, we should have to say:
‘Whatever property ¢ may be, “n is a finite integer” means: “n
has the property ¢ provided ¢ is possessed by o and by the succes-
sors of possessors”.” But here the meaning of “z is a finite integer”
varies as ¢ varies, and thus such a definition is impossible. This

* This is indistinguishable from ‘all properties’.
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case illustrates an important point, namely the following: ‘The
scope* of a real variable can never be less than the whole proposi-
tional function in the assertion of which the said variable occurs’.
That is, if our propositional function is (say) ‘¢x implies p’, the
assertion of this function will mean ‘any value of “‘¢x implies p”’
is true’, not ‘ ““‘any value of ¢x is true” implies p’. In the latter, we
have really ‘all values of ¢x are true’, and the x is an apparent
variable. :

III. THE MEANING AND RANGE OF GENERALIZED
PROPOSITIONS

In this section we have to consider first the meaning of proposi-
tions in which the word all occurs, and then the kind of collections
which admit of propositions about all their members.

It is convenient to give the name generalized propositions not
only to such as contain all, but also to such as contain some (un-
defined). The proposition ‘px is sometimes true’ is equivalent to the
denial of ‘not-¢x is always true’; ‘some A4 is B’ is equivalent to the
denial of ‘all 4 is not B’; i.e., of ‘no 4 is B’. Whether it is possible
to find interpretations which distinguish ‘px is sometimes true’
from the denial of ‘not-¢x is always true’, it is unnecessary to in-
quire; for our purposes we may define ‘¢x is sometimes true’ as
the denial of ‘not-¢x is always true’. In any case, the two kinds of
propositions require the same kind of interpretation, and are sub-
ject to the same limitations. In each there is an apparent variable;
and it is the presence of an apparent variable which constitutes
what I mean by a generalized proposition. (Note that there can
not be a real variable in any proposition; for what contains a real
variable is a propositional function, not a proposition.)

The first question we have to ask in this section is: How are we
to interpret the word all in such propositions as ‘all men are
mortal?’ At first sight, it might be thought that there could be no
difficulty, that ‘all men’ is a perfectly clear idea, and that we say of
all men that they are mortal. But to this view there are many ob-
jections.

* The scope of a real variable is the whole function of which ‘any value’
is in question. Thus in ‘dx implies p’ the scope of x is not ¢x, but ‘¢x
implies’ p’.
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(1) If this view were right, it would seem that ‘all men are
mortal’ could not be true if there were no men. Yet, as Mr.
Bradley has urged,* “Trespassers will be prosecuted’ may be per-
fectly true even if no one trespasses; and hence, as he further
argues, we are driven to interpret such propositions as hypotheti-
cals, meaning ‘if anyone trespasses, he will be prosecuted’; i.e.,
if « trespasses, ¥ will be prosecuted’, where the range of values
which x may have, whatever it is, is certainly not confined to those
who really trespass. Similarly ‘all men are mortal’ will mean ‘if x
is a man, x is mortal, where x may have any value within a certain
range’. What this range is, remains to be determined; but in any
case it is wider than ‘men’, for the above hypothetical is certainly
often true when «x is not a man.

(2) ‘All men’ is a denoting phrase; and it would appear, for
reasons which I have set forth elsewhere, that denoting phrases
never have any meaning in isolation, but only enter as constituents
into the verbal expression of propositions which contain no consti-
tuent corresponding to the denoting phrases in question. That is
to say, a denoting phrase is defined by means of the propositions
in whose verbal expression it occurs. Hence it is impossible that
these propositions should acquire their meaning through the de-
noting phrases; we must find an independent interpretation of
the propositions containing such phrases, and must not use these
phrases in explaining what such propositions mean. Hence we can
not regard ‘all men are mortal’ as a statement about ‘all men’.

(3) Even if there were such an object as ‘all mer’, it is plain that
it is not this object to which we attribute mortality when we say
‘all men are mortal’. If we were attributing mortality to this object,
we should have to say ‘all men is mortal’. Thus the supposition that
there is such an object as ‘all men’ will not help us to interpret
‘all men are mortal’.

(4) It Seems obvious that, if we meet something which may be a
man or may be an angel in disguise, it comes within the scope of
‘all men are mortal’ to assert ‘if this is a man, it is mortal’. Thus
again, as in the case of the trespassers, it seems plain that we are

* Logic, Part I, Chapter II.

1 ‘On Denoting’, Mind (October, 1905). [The second paper in this
volume. R.C.M.] .
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really saying ‘if anything is a man, it is mortal’, and that the ques-
tion whether this or that is a man does not fall within the scope of
our assertion, as it would do if the all really referred to ‘all men’.

(5) We thus arrive at the view that what is meant by ‘all men are
mortal’ may be more explicitly stated in some such form as ‘it is
always true that if x is a man, x is mortal’. Here we have to inquire
as to the scope of the word always.

(6) It is obvious that always includes some cases in which x is
not a man, as we saw in the case of the disguised angel. If x were
limited to the case when x is a man, we could infer that x is a mortal,
since if « is a man, x is a mortal. Hence, with the same meaning of
always, we should find ‘it is always true that x is mortal’. But it is
plain that, without altering the meaning of always, this new propo-
sition is false, though the other was.true.

(7) One might hope that ‘always’ would mean ‘for all values of
«’. But ‘all values of &, if legitimate, would include as parts ‘all
propositions’ and ‘all functions’, and such illegitimate totalities.
Hence the values of ¥ must be somehow restricted within some
legitimate totality. This seems to lead us to the traditional doctrine
of a ‘universe of discourse’ within which x must be supposed to lie.

(8) Yet it is quite essential that we should have some meaning
of always which does not have to be expressed in a restrictive hypo-
thesis as to x. For suppose ‘always’ means ‘whenever x belongs to
the class #’. Then ‘all men‘are mortal’ becomes ‘whenever x be-
longs to the class 7, if x is a man, x is mortal’; i.e., ‘it is always
true that if x belongs to the class 7, then, if x is a man, x is mortal’.
But what is our new always to mean? There seems no more reason
for restricting x, in this new proposition, to the class 7, than there
was before for restricting it to the class man. Thus we shall be
led on to a new wider universe, and so on ad infinitum, unless
we can discover some natural restriction upon the possible values
of (i.e., some restriction given with) the function ‘if x is a man, x
is mortal’, and not needing to be imposed from without.

(9) It seems obvious that, since all men are mortal, there can
not be any false proposition which is a value of the function “if x
is a man, x is mortal’. For if this is a proposition at all, the hypo-
thesis ‘x is a man’ must be a proposition, and so must the conclu-
sion ‘x is mortal’. But if the hypothesis is false, the hypothetical
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is true; and if the hypothesis is true, the hypothetical is true.
Hence there can be no false propositions of the form ‘if x is a man,
x is mortal’.

(10) It follows that, if any values of x are to be excluded, they
can only be values for which there is no proposition of the form
“if x is a man, x is mortal’; i.e., for which this phrase is meaningless.
Since, as we saw in (7), there must be excluded values of ¥, it fol-
lows that the function ‘if x is a man, x is mortal’ must have a cer-
tain range of significance,* which falls short of all imaginable values
of x, though it exceeds the values which are men. The restriction
on x is therefore a restriction to the range of significance of the
function ‘if x is a man, x is mortal’.

(11) We thus reach the conclusion that ‘all men are mortal’
means ‘if x is a man, x is mortal, always’, where always means ‘for
all values of the function “if x is a man, x is mortal”’.” This is an
internal limitation upon x, given by the nature of the function; and
it is a limitation which does not require explicit statement, since
it is impossible for a function to be true more generally than for
all its values. Moreover, if the range of significance of the function
is 7, the function ‘if x is an 7, then if x is a man, x is mortal’ has the
same range of significance, since it can not be significant unless its
constituent ‘if x is a man, x is mortal’ is significant. But here the
range of significance is again implicit, as it was in “if x is a man, x
is mortal”; thus we can not make ranges of significance explicit,
sinc€ the attempt to do so only gives rise to a new proposition in
which the same range of significance is implicit.

Thus generally: ‘(x).¢x’ is to mean ‘¢x always’. This may be
interpreted, though with less exactitude, as ‘¢x is always true’, or,
more explicitly: ‘All propositions of the form ¢x are true’, or ‘All
values of the function ¢x are true’.t Thus the fundamental all is
‘all values of a propositional function’, and every other all is deri-
vative from this. And every propositional function has a certain

* A function is said to be significant for the argument x if it has a value
for this argument. Thus we may say shortly ‘¢x is significant’, meaning
‘the function ¢ has a value for the argument x’. The range of significance

of a function consists of all the arguments for which the function is true,
together with all the arguments for which it is false.

t A linguistically convenient expression for this idea is: ‘¢« is true for
all possible values of x’, a possible value being understood to be one for
which ¢x is significant.
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range of significance, within which lie the arguments for which the
function has values. Within this range of arguments, the function
is true or false; outside this range, it is nonsense.

The above argumentation may be summed up as follows:

The difficulty which besets attempts to restrict the variable is,
that restrictions naturally express themselves as hypotheses that
the variable is of such or such a kind, and that, when so expressed, .
the resulting hypothetical is free from the intended restriction.
For example, let us attempt to restrict the variable to men, and
assert that, subject to this restriction, ‘¢ is mortal’ is always true.
Then what is always true is that if x is 2 man, x is mortal; and this
hypothetical is true even when x is not a man. Thus a variable can
never be restricted within a certain range if the propositional func-
tion in which the variable occurs remains significant when the
variable is outside that range. But if the function ceases to be
significant when the variable goes outside a certain range, then the
variable is ipso facto confined to that range, without the need of
any explicit statement to that effect. This principle is to be borne
in mind in the development of logical types, to which we shall
shortly proceed.

We can now begin to see how it comes that ‘all so-and-so’s’ is
sometimes a legitimate phrase and sometimes not. Suppose we say
‘all terms which have the property ¢ have the property . That
means, according to the above interpretation, ‘px always implies
Jix’. Provided the range of significance of ¢x is the same as that of
yx, this statement is significant; thus, given any definite function
$x, there are propositions about ‘all the terms satisfying ¢x’. But
it sometimes happens (as we shall see more fully later on) that
what appears verbally as one function is really many analogous
functions with different ranges of significance. This applies, for
example, to ‘p is true’, which, we shall find, is not really one func-
tion of p, but is different functions according to the kind of pro-
position that p is. In such a case, the phrase expressing the ambi-
guous function may, owing to the ambiguity, be significant
throughout a set of values of the argument exceeding the range
of significance of any one function. In such a case, all is not legiti-
mate. Thus if we try to say ‘all true propositions have the pro-
perty ¢’, i.e., ‘“p is true” always implies ¢p’, the possible argu-
ments to “p is true” necessarily exceed the possible arguments to
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¢, and therefore the attempted general statement is impossible.
For this reason, genuine general statements about all true pro-
positions can not be made. It may happen, however, that the sup-
posed function ¢ is really ambiguous like “p is true”, and if it
happens to have an ambiguity precisely of the same kind as that
of “p is true”, we may be able always to give an interpretation to
the proposition ‘ “p is true” implies ¢p’. This will occur, e.g., if
ép is ‘not-p is false’. Thus we get an appearance, in such cases, of
a general proposition concerning all propositions; but this appear-
ance is due to a systematic ambiguity about such words as true
and false. (This systematic ambiguity results from the hierarchy
of propositions which will be explained later on.) We may, in all
such cases, make our statement about any proposition, since the
meaning of the ambiguous words will adapt itself to any proposi-
tion. But if we turn our proposition into an apparent variable, and
say something about all, we must suppose the ambiguous words
fixed to this or that possible meaning, though it may be quite
irrelevant which of their possible meanings they are to have. This

is how it happens both that il has limitations which exclude ‘all

propositions’, and that there nevertheless seem to be true state-
ments about ‘all propositions’. Both these points will become
plainer when the theory of types has been explained.

It has often been suggested* that what is required in order that
it may be legitimate to speak of all of a collection is that the col-
lection should be finite. Thus ‘all men are mortal’ will be legiti-
mate because men form a finite class. But that is not really the
reason why we can speak of ‘all men’. What is essential, as appears
from the above discussion, is not finitude, but what may be called
logical homogeneity. This property is to belong to any collection
whose terms are all contained within the range of significance of
some one function. It would always be obvious at a glance whether
a collection possessed this property or not, if it were not for the
concealed ambiguity in common logical terms such as true and false,
which gives an appearance of being a single function to what is
really a conglomeration of many functions with different ranges
of significance.

The conclusions of this section are as follows: Every proposition

* E.g., by M. Poincaré, Revue de Métaphysique et de Morale (May,
1906).
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containing all asserts that some propositional function is always
true; and this means that all values of the said function are true,
not that the function is true for all arguments, since there are
arguments for which any given function is meaningless, i.e., has
no value. Hence we can speak of all of a collection when and only
when the collection forms part or the whole of the range of signific-
ance of some propositional function, the range of significance being
defined as the collection of those arguments for which the func-
tion in question is significant, i.e., has a value.

IV. THE HIERARCHY OF TYPES

A type is defined as the range of significance of a propositional
function, i.e., as the collection of arguments for which the said
function has values. Whenever an apparent variable occurs in a
proposition, the range of values of the apparent variable is a type,
the type being fixed by the function of which ‘all values’ are con-
cerned. The division of objects into types is necessitated by the
reflexive fallacies which otherwise arise. These fallacies, as we saw,
are to be avoided by what may be called the ‘vicious-circle prin-
ciple’; i.e., ‘no totality can contain members defined in terms of
itself’. This principle, in our technical language, becomes: ‘What-
ever contains an apparent variable must not be a possible value of
that variable’. Thus whatever contains an apparent variable must
be of a different type from the possible values of that variable; we
will say that it is of a higher type. Thus the apparent variables
contained in an expression are what determines its type. This is
the guiding principle in what follows.

Propositions which contain apparent variables are generated
from such as do not contain these apparent variables by processes
of which one is always the process of generalization, i.e., the
substitution of a variable for one of the terms of a proposition,
and the assertion of the resulting function for all possible values
of the variable. Hence a proposition is called a generalized proposi-
tion when it contains an apparent variable. A proposition contain-
ing no apparent variable we will call an elementary proposition.
It is plain that a proposition containing an apparent variable
presupposes others from which it can be obtained by generaliz-
ation; hence all generalized propositions presuppose elementary
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propositions. In an elementary proposition we can distinguish one
or more terms from one or more concepts; the terms are whatever
can be regarded as the subject of the proposition, while the con-
cepts are the predicates or relations asserted of these terms.* The
terms of elementary propositions we will call individuals; these
form the first or lowest type.

It is unnecessary, in practice, to know what objects belong to the
lowest type, or even whether the lowest type of variable occurring
in a given context is that of individuals or some other. For in
practice only the relative types of variables are relevant; thus the
lowest type occurring in a given context may be called that of
individuals, so far as that context is concerned. It follows that the
above account of individuals is not essential to the truth of what
follows; all that is essential is the way in which other types are
generated from individuals, however the type of individuals may be
constituted.

By applying the process of generalization to individuals occur-
ring in elementary propositions, we obtain new propositions. The

legitimacy of this process requires only that no individuals should .

be propositions. That this is so, is to be secured by the meaning
we give to the word individual. We may define an individual as
something destitute of complexity; it is then obviously not a
proposition, since propositions are essentially complex. Hence
in applying the process of generalization to individuals we run no
risk of incurring reflexive fallacies.

Elementary propositions together with such as contain only
individuals as apparent variables we will call first-order propositions.
These form the second logical type.

We have thus a new totality, that of first-order propositions. We
can thus form new propositions in which first-order propositions
occur as apparent variables. These we will call second-order pro-
positions; these form thesthird logical type. Thus, e.g., if Epimen-
ides asserts ‘all first-order propositions affirmed by me are false’,
he asserts a second-order proposition; he may assert this truly,
without asserting truly any first-order proposition, and thus no
contradiction arises.

The above process can be continued indefinitely. The n+ 1th
logical type will consist of propositions of order », which will be

* See Principles of Mathematics, § 48.
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such as contain propositions of order #z— 1, but of no higher order,
as apparent variables. The types so obtained are mutually exclu-
sive, and thus no reflexive fallacies are possible so long as we re-
member that an apparent variable must always be confined within
some one type.

In practice, a hierarchy of functions is more convenient than one
of propositions. Functions of various orders may be obtained from
propositions of various orders by the method of substitution. 1f p
is a proposition, and a a constituent of p, let ‘p/a’x’ denote the
proposition which results from substituting x for a wherever a
occurs in p. Then p/a, which we will call a matrix, may take the
place of a function; its value for the argument x is p/a‘x, and its
value for the argument a is p. Similarly, if ‘p/(a, )} (x, y)’ denotes
the result of first substituting x for @ and then substituting y for b,
we may use the double matrix p/(a, b) to represent a double func-
tion. In this way we can avoid apparent variables other than indi-
viduals and propositions of various orders. The order of a matrix
will be defined as being the order of the proposition in which the
substitution is effected, which proposition we will call the proto-
type. The order of a matrix does not determine its type: in the
first place because it does not determine the number of arguments
for which others are to be substituted (i.e., whether the matrix is
of the form p/a or p/(a, b) or p/(a, b, c) etc.); in the second place
because, if the prototype is of more than the first order, the argu-
ments may be either propositions or individuals. But it is plain
that the type of a matrix is definable always by means of the hier-
archy of propositions.

Although it is possible to replace functions by matrices, and al-
though this procedure introduces a certain simplicity into the
explanation of types, it is technically inconvenient. Technically,
it is convenient to replace the prototype p by ¢a, and to replace
pla’ix by ¢x; thus where, if matrices were being employed, p and
a would appear as apparent variables, we now have ¢ as our ap-
parent variable. In order that ¢ may be legitimate as an apparent
variable, it is necessary that its values should be confined to pro-
positions of some one type. Hence we proceed as follows.

A function whose argument is an individual and whose value
is always a first-order proposition will be called a first-order func-
tion. A function involving a first-order function or proposition as
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apparent variable will be called a second-order function, and so on.
A function of one variable which is of the order next above that of
its argument will be called a predicative function; the same name
will be given to a function of several variables if there is one among
these variables in respect of which the function becomes predica-
tive when values are assigned to all the other variables. Then the
type of a function is determined by the type of its values and the
number and type of its arguments.

The heirarchy of functions may be further explained as follows.
A first-order function of an individual x will be denoted by ¢ !x
(the letters 4, x, 0, f, g, F, G will also be used for functions). No
first-order function contains a function as apparent variable;
hence such functions form a well-defined totality, and the ¢ in
¢ !x can be turned into an apparent variable. Any proposition in
which ¢ appears as apparent variable, and there is no apparent
variable of higher type than ¢, is a second-order proposition. If
such a proposition contains an individual , it is not a predicative
function of x; but if it contains a first-order function ¢, it is a pre-
dicative function of ¢, and will be written f!(!£). Then f is a
second-order predicative function; the possible values of f again form
a well-defined totality, and we can turn f into an apparent variable.
We can thus define third-order predicative functions, which will
be such as have third-order propositions for their values and second-
order predicative functions for their arguments. And in this way
we can proceed indefinitely. A precisely similar development
applies to functions of several variables.

We will adopt the following conventions. Variables of the lowest
type occurring in any context will be denoted by small Latin
letters (excluding f and g, which are reserved for functions); a
predicative function of an argument x (where x may be of any
type) will be denoted by ¢ !x (where i, x, 0, f, g, F or G may re-
place ¢); similarly a predicative function of two arguments x and y
will be denoted by ¢ ! (x, y); a general function of x will be denoted
by ¢x, and a general function of x and y by ¢(x, ). In ¢x, ¢ can
not be made into an apparent variable, since its type is indeter-
minate; but in ¢ ! x, where ¢ is a predicative function whose argu-
ment is of some given type, ¢ can be made into an apparent variable.

It is important to observe that since there are various types of
propositions and functions, and since generalization can only be
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applied within some one type, all phrases containing the words
‘all propositions’ or ‘all functions’ are prima facie meaningless,
though in certain cases they are capable of an unobjectionable
interpretation. The contradictions arise from the use of such
phrases in cases where no innocent meaning can be found.

If we now revert to the contradictions, we see at once that some
of them are solved by the theory of types. Wherever ‘all proposi-
tions’ are mentioned, we must substitute ‘all propositions of order
n’, where it is indifferent what value we give to 7, but it is essential
that n should have some value. Thus when a man says ‘I am lying’,
we must interpret him as meaning: ‘There is a proposition of order
n, which I affirm, and which is false’. This is a proposition of order
n+1; hence the man is not affirming any proposition of order n;
hence his statement is false, and yet its falsehood does not imply,
as that of ‘I am lying’ appeared to do, that he is making a true state-
ment. This solves the liar.

Consider next ‘the least integer not nameable in fewer than nine-
teen syllables’. It is to be observed, in the first place, that nameable
must mean ‘nameable by means of such-and-such assigned names’,
and that the number of assigned names must be finite. For if it is
not finite, there is no reason why there should be any integer not
nameable in fewer than nineteen syllables, and the paradox col-
lapses. We may next suppose that ‘nameable in terms of names of
the class N’ means ‘being the only term satisfying some function
composed wholly of names of the class N’. The solution of this
paradox lies, I think, in the simple observation that ‘nameable in
terms of names of the class N’ is never itself nameable in terms of
names of that class. If we enlarge N by adding the name ‘nameable
in terms of names of the class N’, our fundamental apparatus of
names is enlarged; calling the new apparatus N’, ‘nameable in
terms of names of the class N”’ remains not nameable in terms of
names of the class N'. If we try to enlarge N till it embraces all
names, ‘nameable’ becomes (by what was said above) ‘being the
only term satisfying some function composed wholly of names’.
But here there is a function as apparent variable; hence we are
confined to predicative functions of some one type (for non-pre-
cative functions can not be apparent variables). Hence we have
only to observe that nameability in terms of such functions is non-
predicative in order to escape the paradox.
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The case of ‘the least indefinable ordinal’ is closely analogous to
the case we have just discussed. Here, as before, ‘definable’ must
be relative to some given apparatus of fundamental ideas; and there
is reason to suppose that ‘definable in terms of ideas of the class N’
is not definable in terms of ideas of the class N. It will be true
that there is some definite segment of the series of ordinals con-
sisting wholly of definable ordinals, and having the least indefin-
able ordinal as its limit. This least indefinable ordinal will be
definable by a slight enlargement of our fundamental apparatus;
but there will then be a new ordinal which will be the least that
is indefinable with the new apparatus. If we enlarge our apparatus
$o as to include all possible ideas, there is no longer any reason to
believe that there is any indefinable ordinal. The apparent force
of the paradox lies largely, I think, in the supposition that if all the
ordinals of a certain class are definable, the class must be definable,
in which case its successor is of course also definable; but there
is no reason for accepting this supposition.

The other contradictions, that of Burali-Forti in particular,
require some further developments for their solution.

V. THE AXIOM OF REDUCIBILITY

A propositional function of x may, as we have seen, be of any
order; hence any statement about ‘all properties of «’ is meaning-
less. (A ‘property of &’ is the same thing as a ‘propositional func-
tion which holds of «’.) But it is absolutely necessary, if mathe-
matics is to be possible, that we should have some method of mak-
ing statements which will usually be equivalent to what we have
in mind when we (inaccurately) speak of ‘all properties of x’. This
necessity appears in many cases, but especially in connexion with
mathematical induction. We can say, by the use of any instead of
all, ‘Any property possessed by o, and by the successors of all
numbers possessing it, is possessed by all finite numbers’. But we
can not go on to: ‘A finite number is one which possesses all pro-
perties possessed by o and by the successors of all numbers posses-
sing them’. If we confine this statement to all first-order properties
of numbers, we can not infer that it holds of second-order pro-
perties. For example, we shall be unable to prove that if m, # are
finite numbers, then m +# is a finite number. For, with the above
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definition, ‘m is a finite number’ is a second-order property of m;
hence the fact that m+ o is a finite number, and that, if m+n is a
finite number, so is m+n+1, does not allow us to conclude
by induction that m+n is a finite number. It is obvious that
such a state of things renders much of elementary mathematics
impossible.

The other definition of finitude, by the non-similarity of whole
and part, fares no better. For this definition is: ‘A class is said to be
finite when every one-one relation whose domain is the class and
whose converse domain is contained in the class has the whole
class for its converse domain’. Here a variable relation appears,
i.e., a variable function of two variables; we have to take all values
of this function, which requires that it should be of some assigned
order; but any assigned order will not enable us to deduce many
of the propositions of elementary mathematics.

Hence we must find, if possible, some method of reducing the
order of a propositional function without affecting the truth or
falsehood of its values. This seems to be what common sense
effects by the admission of classes. Given any propositional func-
tion ¢x, of whatever order, this is assumed to be equivalent, for all
values of x, to a statement of the form ‘x belongs to the class a’.
Now this statement is of the first order, since it makes no allusion
to ‘all functions of such-and-such a type’. Indeed its only practical
advantage over the original statement ¢x is that it is of the first
order. There is no advantage in assuming that there really are such
things as classes, and the contradiction about the classes which
are not members of themselves shows that, if there are classes,
they must be something radically different from individuals. I
believe the chief purpose which classes serve, and the chief reason
which makes them linguistically convenient, is that they provide a
method of reducing the order of a propositional function. I shall,
therefore, not assume anything of what may seem to be involved
in the common sense admission of classes, except this: that every
propositional function is equivalent, for all its values, to some
predicative function. :

This assumption with regard to functions is to be made what-
ever may be the type of their arguments. Let ¢x be a function, of
any order, of an argument x, which may itself be either an indivi-
dual or a function of any order. If ¢ is of the order next above x,
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we write the function in the form ¢ !x; in such a case we will call
¢ a predicative function. Thus a predicative function of an indivi-
dual is a first-order function; and for higher types of arguments,
predicative functions take the place that first-order functions take
in respect of individuals. We assume, then, that every function is
equivalent, for all its values, to some predicative function of the
same argument. This assumption seems to be the essence of the
usual assumption of classes; at any rate, it retains as much of
classes as we have any use for, and little enough to avoid the con-
tradictions which a less grudging admission of classes is apt to
entail. We will call this assumption the axiom of classes, or the
axiom of reducibility.

We shall assume similarly that every function of two variables
is equivalent, for all its values, to a predicative function of those
variables, where a predicative function of two variables is one such
that there is one of the variables in respect of which the function
becomes predicative (in our previous sense) when a value is
assigned to the other variable. This assumption is what seems to
be meant by saying that any statement about two variables defines
a relation between them. We will call this assumption the axiom of
relations or the axiom of reducibility.

In dealing with relations between more than two terms, similar
assumptions would be needed for three, four, . . . variables. But
these assumptions are not indispensable for our purpose, and are
therefore’ not made in this paper.

By the help of the axiom of reducibility, statements about ‘all
first-order functions of &” or ‘all predicative functions of o’ yield
most of the results which otherwise would require ‘all functions’.
The essential point is that such results are obtained in all cases
where only the truth or falsehood of values of the functions con-
cerned are relevant, as is invariably the case in mathematics. Thus
mathematical induction, for example, need now only be stated for
all predicative functions of numbers; it then follows from the
axiom of classes that it holds of any function of whatever order.
It might be thought that the paradoxes for the sake of which we
invented the hierarchy of types would now reappear. But this is
not the case, because, in such paradoxes, either something beyond
the truth or falsehood of values of functions is relevant, or expres-
sions occur which are unmeaning even after the introduction of the
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axiom of reducibility. For example, such a statement as ‘Epimen-
ides asserts ¢’ is not equivalent to ‘Epimenides asserts ¢ !x’, even
though x and ¢ ! x are equivalent. Thus ‘I am lying’ remains un-
meaning if we attempt to include all propositions among those
which I may be falsely affirming, and is unaffected by the axiom of
classes if we confine it to propositions of order n. The hierarchy
of propositions and functions, therefore, remains relevant in just
those cases in which there is a paradox to be avoided.

VI. PRIMITIVE IDEAS AND PROPOSITIONS OF
SYMBOLIC LOGIC

The primitive ideas required in symbolic logic appear to be the
following seven:

(1) Any propositional function of a variable x or of several vari-
ables x, v, 2, . . . This will be denoted by ¢x or ¢(x, v, 2, . . .)

(2) The negation of a proposition. If p is the proposition, its
negation will be denoted by ~ p.

(3) The disjunction or logical sum of two propositions; i.e.,
‘this or that’. If p, g are the two propositions, their disjunction
will be denoted by pv¢.*

(4) The truth of any value of a propositional function; i.e., of
éx where x is not specified.

(5) The truth of all values of a propositional function. This is
denoted by (x).¢x or (x):éx or whatever larger number of dots
may be necessary to bracket off the proposition.t In (x) . ¢x, x is
called an apparent variable, whereas when ¢x is asserted, where
x is not specified, x is called a real variable. '

(6) Any predicative function of an argument of any type; this
will be represented by ¢!« or ¢!a or ¢! R, according to circum-

* In a previous article in this journal, I took implication as indefinable,
instead of disjunction. The choice between the two is a matter of taste; I
now choose disjunction, because it enables us to diminish the number of
primitive propositions. [See ‘The Theory of Implication’, American
Journal of Mathematics, Vol. XXVIII, 1906, pp. 159—202—R.C.M.]

t The use of dots follows Peand’s usage. It is fully explained by Mr.
Whitehead, ‘On Cardinal Numbers’, American Journal of Mathematics,
Vol. XXIV, and ‘On Mathematical Concepts of the Material World’,
Phil. Trans. A., Vol. CCV, p. 472.
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stances. A predicative function of x is one whose values are pro-
positions of the type next above that of «, if x is an individual or a
proposition, or that of values of x if x is a function. It may be
described as one in which the apparent variables, if any, are all of
the same type as x or of lower type; and a variable is of lower type
than x if it can significantly occur as argument to x, or as argument
to an argument to ¥, etc.

(7) Assertion; i.e., the assertion that some proposition is true,
or that any value of some propositional function is true. This is
required to distinguish a proposition actually asserted from one
merely considered, or from one adduced as hypothesis to some
other. It will be indicated by the sign ‘ prefixed to what is asserted,
with enough dots to bracket off what is asserted.*

Before proceeding to the primitive propositions, we need certain
definitions. In the following definitions, as well as in the primitive
propositions, the letters p, g, 7 are used to denote propositions.

p2q.=.~pvg Df.

This definition states that ‘p D¢’ (which is read ‘p implies ¢’)
is to mean ‘p is false or ¢ is true’. I do not mean to affirm that ‘im-
plies’ can not have any other meaning, but only that this meaning
is the one which it is most convenient to give to ‘implies’ in sym-
bolic logic. In a definition, the sign of equality and the letters ‘Df’
are to be regarded as one symbol, meaning jointly ‘is defined to
mean’. The sign of equality without the letters ‘Df’ has a different
meaning, to be defined shortly.

p.qg.=.~(~pv~gq) Df.

This defines the logical product of two propositions p and g, i.e.,
‘p and g are both true’. The above definition states that this is to
mean: ‘It is false that either p is false or ¢ is false’. Here again, the
definition does not give the only meaning which can be given to
‘p and g are both true’, but gives the meamng which is most con-
venient for our purposes.

p=q.=.pJq.qdp Df.

* This sign, as well as the introduction of the idea which it expresses, is
due to Frege. See his Begriffsschrift (Halle, 1879), p. 1, and Grundgesetze
der Arithmetik (Jena, 1893), Vol. I, p. 9.
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That is, p=¢’, which is read ‘p is equivalent to ¢’, means ‘p
implies ¢ and g implies p’; whence, of course, it follows that p and
q are both true or both false.

(gx).¢x.= . ~{(x). ~¢dx} Df.

This defines ‘there is at least one value of x for which ¢x is true’.
We define it as meaning ‘it is false that ¢x is always false’.

x=y.=:(¢):d!x.D.¢!y Df.

This is the definition of identity. It states that x and y are to be
called identical when every predicative function satisfied by x is
satisfied by y. It follows from the axiom of reducibility that if x
satisfies Jix, where ¢ is any function, predicative or non-predicative,
then y satisfies y.

The following definitions are less important, and are introduced
solely for the purpose of abbreviation.

(* 9)-8(x, ) . = : (%) : (¥) - $(%, y) DA,

(@x, y) - $(x, ¥) . = = (q%) : (1Y) - $(*, y) DA,
dx.D, . px:=:(x):dx DyYx DI,
pr.=,.px:=:1(x):1¢dx.= .¢yx Df,

$(%, ¥) - g,y - (%, ¥) = :(x%, ) :4(x, ) . O (%, y) DA,
and so on for any number of variables.

The primitive propositions required are as follows. (In 2, 3, 4,
5, 6, and 10, p, ¢, 7 stand for propositions.)

It

(1) A proposition implied by a true premise is true.

(2) Fipvp.D.p.

(3) Frg.2.pve

(4) F:pvg.D.qvp.

(5) F:pv(gvr).D.qv(pvr).

(6) F:.gO7r.D:pvg.D.pvr.

(7) Fi(x).¢2.2.¢y;
i.e., ‘if all values of ¢& are true, then ¢y is true, where ¢y is any
value’.*

(8) If ¢y is true, where ¢y is any value of ¢4, then (x).dx is
true. This can not be expressed in our symbols; for if we write

* It is convenient to use the notation ¢x to denote the function itself, as
opposed to this or that value of the function.
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‘¢y . D .(x).¢x’, that means ‘¢y implies that all values of ¢% are true,
where y may have any value of the appropriate type’, which is not

in general the case. What we mean to assert is: ‘If, however yis

chosen, ¢y is true, then (x) . $x is true’, whereas what is expressed
by ‘éy.D.(x).¢x" is: ‘However y is chosen, if ¢y is true, then
(x) . $x is true’, which is quite a different statement, and in general
a false one.

(9) F:(x).dx.D .da, where ais any definite constant.

This principle is really as many different principles as there are
possible values of a. Le., it states that, e.g., whatever holds of all
individuals holds of Socrates; also that it holds of Plato; and so on.
It is the principle that a general rule may be applied to particular
cases; but in order to give it scope, it is necessary to mention the
particular cases, since otherwise we need the principle itself to
assure us that the general rule that general rules may be applied
to particular cases may be applied (say) to the particular case of
Socrates. It is thus that this principle differs from (7); our present
principle makes a statement about Socrates, or about Plato, or
some other definite constant, whereas (7) made a statement about
a variable.

The above principle is never used in symbolic logic or in pure
mathematics, since all our propositions are general, and even
when (as in ‘one is a2 number’) we seem to have a strictly parti-
cular case, this turns out not to be so when closely examined. In
fact, the use of the above principle is the distinguishing mark of
applied mathematics. Thus, strictly speaking, we might have
omitted it from our list.

(10) F:o(x).pvéx.D:p.v.(x).dx;
i.e., ‘if “p or x” is always true, then either p is true, or ¢x is always

el

true’.

(11) When f(¢x) is true whatever argument x may be, and
F(¢y) is true whatever possible argument y may be, then {f($x)
. F(¢x)} is true whatever possible argument x may be.

This is the axiom of the ‘identification of variables’. It is needed
when two separate propositional functions are each known to be
always true, and we wish to infer that their logical product is
always true. This inference is only legitimate if the two functions
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take arguments of the same type, for otherwise their logical pro-
duct is meaningless. In the above axiom, x and y must be of the
same type, because both occur as arguments to ¢.

(12) If ¢x . x Dy is true for any possible x, then yix is true for
any possible x.

This axiom is required in order to assure us that the range of
significance of ¢, in the case supposed, is the same as that of
$x .dx Dihx . D .yfx; both are in fact the same as that of dx. We
know, in the case supposed, that Jix is true whenever x .dx Dix
and ¢x.$x Dypx . D . are both significant, but we do not know,
without an axiom, that yix is true whenever yix is significant. Hence
the need of the axiom.

Axioms (11) and (12) are required, e.g., in proving

(%) - (x) . Dipx 2 D . (x) v,
By (7) and (11),
Fzo(x).ga:(x).gxdypw:D 1 dy.dy Dby,
whence by (12),
Fio(x).do:(x) . Dipx s D iy,
whence the result follows by (8) and (10).

(13) Feo(@f):e(x) . = . flx.

This is the axiom of reducibility. It states that, given any func-
tion ¢4, there is a predicative function f!4£ such that Sl is always
equivalent to ¢x. Note that, since a proposition beginning with
(4 f) is, by definition, the negation of one beginning with ‘(f)’,
the above axiom involves the possibility of considering ‘all predi-
cative functions of &’. If ¢« is any function of x, we can not make
propositions beginning with ‘(¢)’ or ‘(54)’, since we can not con-
sider ‘all functions’, but only ‘any function’ or ‘all predicative
functions’.

(14) Feo@f) s (9) 1 d(x, ) .= (%, ).

This is the axiom of reducibility for double functions.

In the above propositions, our x and y may be of any type what-
ever. The only way in which the theory of types is relevant is that
(11) only allows us to identify real variables occurring in different
contents when they are shown to be of the same type by both
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occurring as arguments to the same function, and that, in (7) and
(9), ¥ and @ must respectively be of the appropriate type for argu-
ments to ¢£. Thus, for example, suppose we have a proposition *
of the form (¢) . f!(¢ !4, x), which is a second-order function of x.

Then by (7),
F:(8).f1($12,2).D.f1(§!4 %),

where 12 is any first-order function. But it will not do to treat
(#)-f1($!%,x) as if it were a first-order function of x, and take
this function as a possible value of ! £ in the above. It is such
confusions of types that give rise to the paradox of the Zar.

Again, consider the classes which are not members of themselves.
It is plain that, since we have identified classes with functions,*
no class can be significantly said to be or not to be a member of
itself; for the members of a class are arguments to it, and argu-
ments to a function are always of lower type than the function.
And if we ask: ‘But how about the class of all classes? Is not that a
class, and so a member of itself?’, the answer is twofold. First, if
‘the class of all classes’ means ‘the class of all classes of whatever
type’, then there is no such notion. Secondly, if ‘the class of all
classes’ means ‘the class of all classes of type #, then this is a class
of the next type above ¢, and is therefore again not a member of
itself.

Thus although the above primitive propositions apply equally
to all types, they do not enable us to elicit contradictions. Hence
in the course of any deduction it is never necessary to consider the
absolute type of a variable; it is only necessary to see that the differ-
ent variables occurring in one proposition are of the proper relative
types. This excludes such functions as that from which our fourth
contradiction was obtained, namely: ‘The relation R holds be-
‘tween R and S’. For a relation between R and S is necessarily of
higher type than either of them, so that the proposed function is
meaningless. "

VII. ELEMENTARY THEORY OF CLASSES AND
RELATIONS

Propositions in which a function ¢ occurs may depend, for their
truth-value, upon the particular function ¢, or they may depend

* This identification is subject to a modification to be explained shortly.
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only upon the extension of ¢, i.e., upon the arguments which satisfy
¢. A function of the latter sort we will call extensional. Thus, e.g.,
‘I believe that all men are mortal’ may not be equivalent to ‘I
believe that all featherless bipeds are mortal’, even if men are co-
extensive with featherless bipeds; for I may not know that they
are coextensive. But ‘all men are mortal’ must be equivalent to
‘all featherless bipeds are mortal’ if men are coextensive with
featherless bipeds. Thus ‘all men are mortal’ is an extensional
function of the function ‘x is a man’, while ‘I believe all men are
mortal’ is a function which is not extensional; we will call func-
tions intensional when they are not extensional. The functions of
functions with which mathematics is specially concerned are all
extensional. The mark of an extensional function f of a function
(/) 1% 1s

$la.=,.pla: Dy, i f($18). = .f(!4).

From any function f of a function ¢ ! £ we can derive an associ-
ated extensional function as follows. Put

iAW)} .= :(gd):dtx. =, .Jx:f{$!5 Df.
The function f{£(i;2)} is in reality a function of /%, though not the
same function as f(:£), supposing this latter to be significant. But

it is convenient to treat f{#(z)} technically as though it had an
argument £(2), which we call ‘the class defined by ¢’. We have

Fioga. =, D f{8(#2)}. = . f{2(Y2)},
whence, applying to the fictitious objects #(¢2) and £(i/2) the defini-
tion of identity given above, we find
Fiodx. =, .dx:D . 8(d2)=2(p2).

This, with its converse (which can also be proved), is the dis-
tinctive property of classes. Hence we are justified in treating
£(¢=) as the class defined by ¢. In the same way we put
[ ¥, D) = (@) 6%, 9)- =,y -9x, 2) /B4 9)} DE
A few words are necessary here as to the distinction between
¢!(£, 9) and ¢ !(¥, £). We will adopt the following convention:
When a function (as opposed to its values) is represented in a
form involving # and #, or any other two letters of the alphabet,
the value of this function for the arguments a and b is to be found
by substituting a for £ and & for #; i.e., the argument mentioned
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first is to be substituted for the letter which comes-earlier in the
alphabet, and the argument mentioned second for the later letter.

This sufficiently distinguishes between ¢ ! (£, §) and ¢ ! (9, £); e.g.: .

The value of ¢ !(£, §)for arguments a, b is ¢ !(a, b).

’ " ’ - - b,a ,,¢!(b, a).
5 » Sl %), . a, b, ¢!(b a).
” ” " " " b, a , ¢$!(a,b).
We put
xep!d.=.41x Df,
whence

Firovef(fz). = :(gd):dly.=, Py !lx
Also by the reducibility-axiom we have

@) :dly. =, 4y,
Fixeg(Pz). = ..

This holds whatever x may be. Suppose now we want to con-
sider £(62) edf{£(¢ ! 2)}. We have, by the above,

F oo 8(2) edf {8(d!2)}. = :f{2(Y2)}
=:(dp):ly. =, Py:f{d!s},

B 2(f2)=2(x2) . D 1 8(z)ex . = .. 3(x2)ex,

where x is written for any expression of the form ¢ f{£(¢ ! 2)}.

We put
cs=d{ge).a=2(¢!2)} Df.

Here cls has a meaning which depends upon the type of the appar-
ent variable ¢. Thus, e.g., the proposition ‘cls € ¢ls’, which is a
consequence of the above definition, requires that ‘cls’ should have
a different meaning in the two places where it occurs. The symbol
‘cls’ can only be used where it is unnecessary to know the type; it
has an ambiguity which adjusts itself to circumstances. If we
introduce as an indefinable the function ‘Indiv!’, meaning ‘x is
an individual’, we may put

Kil=d{(g4).a=5($1z.Indiv!z)} Df.

Then Kl is an unambiguous symbol meaning ‘classes of indi-
viduals’.

whence

whence
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We will use small Greek letters (other than e, ¢, ¥, x, 6) to re-
present classes of whatever type; i.e., to stand for symbols of the
form £(¢ ! 2) or #(¢2).

The theory of classes proceeds, from this point on, much as in
Peano’s system; £(¢z) replaces 23(¢z). Also I put

aCB.=:xea.D,.xf DA,
qla.=.(gx).xea Df,
V==%&x=x) Df,
A =x{~(x=2x)} Df,
where A, as with Peano, is the null-class. The symbols T A, 7,
like cls and ¢, are ambiguous, and only acquire a definite meaning
when the type concerned is otherwise indicated.
We treat relations in exactly the same way, putting

afp!(% 9)b. = .4!(a, b) Df,
(the order being determined by the alphabetical order of x and y
and the typographical order of a and b); whence

Fioal@ff(x, )b =:(a8):d(x, 3). =4y -$!(x 3):4!(a, b),
whence, by the reducibility-axiom,
F:a{&d(x, y)}b . = .y(a, b).

We use Latin capital letters as abbreviations for such symbols
as £9y(x, y), and we find

F:.R=S.=:xRy.=, ,.xSy,
where
R=S.=:f!R.J,.f!S Df.

Rel=R{(@¢) . R=4$!(x, y)} Df,
and we find that everything proved for classes has its analogue for
dual relations. Following Peano, we put

anfB=2%(xea.xef) Df,
defining the product, or common part, of two classes;
avB=4%(xea.v.xef) DI,
defining the sum of two classes; and
—a=4%£{~(xea)} Df,

We put
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defining the negation of a class. Similarly for relations we put

RA S=4%y(xRy .xSy) Df,
Ry S =£9(xRy .v.xSy) Df,
~ R =%£9{~(xRy)} Df.

VIII. DESCRIPTIVE FUNCTIONS

The functions hitherto considered have been propositional func-
tions, with the exception of a few particular functions such RA S.
But the ordinary functions of mathematics, such as x?, sin x, log x,
are not propositional. Functions of this kind always mean ‘the
term having such-and-such a relation to x’. For this reason they
may be called descriptive functions, because they describe a certain
term by means of its relation to their argument. Thus ‘sin 7/2’
describes the number 1; yet propositions in which sin 7/2 occurs
are not the same as they would be if 1 were substituted. This ap-
pears, e.g., from the proposition ‘sin /2= 1’, which conveys valu-
able information, whereas ‘1=1’ is trivial. Descriptive functions
have no meaning by themselves, but only as constituents of pro-
positions; and this applies generally to phrases of the form ‘the
term having such-and-such a property’. Hence in dealing with
such phrases, we must define any proposition in which they occur,
not the phrases themselves.* We are thus led to the following
definition, in which ‘(1x) (¢x)’ is to be read ‘the term x which satis-
fies ¢x’.

${(x)(dx)}. = :(gb) :px . =, .x=b:b Df.

This definition states that ‘the term which satisfies ¢ satisfies ¢’
is to mean: ‘There is a term & such that ¢x is true when and only
when x is b, and b is true’. Thus all propositions about ‘the so-
and-so’ will be false if there are no so-and-so’s or several so-and-
so’s. )

The general definition of a descriptive function is

R'y=(wx)(xRy) Df;
that is, ‘R‘y’ is to mean ‘the term which has the relation R to y’.

* See the above-mentioned article ‘On Denoting’, where the reasons for
this view are given at length.

MATHEMATICAL LOGIC 93

If there are several terms or none having the relation R to y, all
propositions about R*y will be false. We put &

El(wx) (¢x). = :(qb):px.=,.x=b Df.

He-re ‘E!(2x) (¢x)’ may be read ‘there is such a term as the x which
satisfies ¢a’, or ‘the x which satisfies x exists’. We have

F:.E!R' .= :(gb):2Ry.=_,.x=b.

The inverted comma in R‘ may be read of. Thus if R is the rela-
tion of father to son, ‘R‘y’ is ‘the father of y’. If R is the relation
of son to father, all propositions about R‘y will be false unless y
has one son and no more.

From the above it appears that descriptive functions are obtained
from relations. The relations now to be defined are chiefly import-
ant on account of the descriptive functions to which they give rise.

Cov=QP{xQy.=, ,.yPx} Df.

Here Cnv is short for ‘converse’. It is the relation of a relation to its
converse; e.g., of greater to less, of parentage to sonship, of preced-
ing to following, etc. We have

F.Cnv'P=(1Q){xQy.= oY PRY
For a shorter notation, often more convenient, we put
P=Cnv‘P Df.

We want next a notation for the class of terms which have the
relation R to y. For this purpose, we put

—
R=df{a=%(xRy)} Df,
whence -
F.R‘Y=4%(xRy).
Similarly we put
R=p#{B=5(xRy)}; Df,

whence -
F.R‘x=g% (xRy).

We want next the domain of R (i.e., the class of terms which have
the relation R to something), the converse domain of R (i.e., the
class of terms to which something has the relation R), and the
field of R, which is the sum of the domain and the converse
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domain. For this purpose we define the relations of the domain,
converse domain, and field, to R. The definitions are:

D=6R{a=%((3y).4Ry)} Df,

a=PR{B=9((ax).*Ry)} Df,
C=yR{y=4((3y):xRy.v.yRx)} Df.

Note that the third of these definitions is only significant when R
is what we may call a homogeneous relation; i.e., one in which, if
xRy holds, x and y are of the same type. For otherwise, however
we may choose x and y, either xRy or yRx will be meaningless.
This observation is important in connexion with Burali-Forti’s
contradiction.

We have, in virtue of the above definitions,

F.D‘R=4£{(qy) .xRy},

F.@‘R=9{(gx).*Ry},
F.C‘R=%£{(qy):xRy.v.yRx},

the last of these being significant only when R is homogeneous.
‘DR’ is read ‘the domain of R’; ‘DR’ is read ‘the converse domain
of R’, and ‘C*R’ is read ‘the field of R’. The letter C is chosen as
the initial of the word ‘campus’,

We want next a notation for the relation, to a class a contained
in the domain of R, of the class of terms to which some member of a
. has:the relation R, and also for the relation, to a class 8 contained
in the converse domain of R, of the class of terms which have the
relation R to some member of 8. For the second of these we put

R.=ipfa=4#(gy).yeB.xRy)} Df.

F.R B=#{(qy).yeB .xRy}.

Thus if R is the relation of father to son, and 8 is the class of
Etonians, R ‘B will be the class ‘fathers of Etonians’; if R is the
relation ‘less than’, and B is the class of proper fractions of the
form 1— 27" for integral values of #, R ‘B will be the class of frac-
tions less than some fraction of the form 1—277; i.e., R ‘B will be
the class of proper fractions. The other relation mentioned above

is (R)..

So that
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We put, as an alternative notation often more convenient,
R“B=R_‘B Df.

The relative product of two relations R, S is the relation which
holds between x and z whenever there is a term y such that xRy
and yRz both hold. The relative product is denoted by R| S. Thus

R|S=%£2{(qy).*Ry.yRz} Df.
We put also
R*=R|R Df.
The product and sum of a class of classes are often required.
They are defined as follows:
s‘c=%£{(qa) .aex .xea} Df,
px==%{aex.D, . xea} Df.

Similarly for relations we put
sA=4£9{(qR) - ReA .xRy} Df,
pA=%9{ReX . Dy .xRy} Df.
We need a notation for the class whose only member is x. Peano
uses «x, hence we shall use «‘x. Peano showed (what Frege also had
emphasized) that this class can not be identified with x. With the

usual view of classes, the need for such a distinction remains a
mystery; but with the view set forth above, it becomes obvious.

We put ‘
c=df{a=g(y=x)} Df,
whence

Fox=9(y=x),

F:Eli‘a.D . i%a=(1x) (xea);

i.e., if a is a class which has only one member, then i‘a is that one

member.*
For the class of classes contained in a given class, we put

Cla=B(8Ca) Df.

We can now proceed to the consideration of cardinal and ordinal
numbers, and of how they are affected by the doctrine of types.

and

* Thus ‘a is what Peano calls ta.
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IX. CARDINAL NUMBERS

The cardinal number of a class « is defined as the class of all
classes similar to a, two classes being similar when there is a one-
one relation between them. The class of one-one relations is de-
noted by |— |, and defined as follows:

11 =h{ny «x'Ry.xRy'.D, y » ,.%=%".y=y'} Df.
Similarity is denoted by Sim; its definition is
Sim=4B{(gR) .Ret—>1.D‘R=a.D‘R=F} Df.

—
Then Sim ‘a is, by definition, the cardinal number of «; this we
will denote by Nc‘a; hence we put

—
Nc=Sim Df.
whence -
F.Nc‘a=Sim ‘a.
The class of cardinals we will denote by NC'; thus
NC=Nc‘cls Df.

o is defined as the class whose only member is the null-class, A,
so that _

o=:‘A Df.
The definition of 1 is

’ 1=a{(g¢) :xea. =, .x=c} Df.
It is easy to prove that o and 1 are cardinals according to the
definition.

It is to be observed, however, that o and 1 and all the other
cardinals, according to the above definitions, are ambiguous sym-
bols, like ¢ls, and have as many meanings as there are types. To
begin with o: the meaning of o depends upon that of A, and the
meaning of A is different according to the type of which it is the
null-class. Thus there are as many o’s"as there are types; and the
same applies to all the other cardinals. Nevertheless, if two classes
a, B are of different types, we can speak of them as having the same
cardinal, or of one as having a greater cardinal than the other,
because a one-one relation may hold between the members of o
and the members of B, even when a and B are of different types.
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For example, let B be ¢“‘a; i.e., the class whose members are the
classes consisting of single members of a. Then «*a is of higher
type than a, but similar to a, being correlated with o by the one-
one relation ¢.

The hierarchy of types has important results in regard to addi-
tion. Suppose we have a class of a terms and a class of 8 terms,
where a and B are cardinals; it may be quite impossible to add
them together to get a class of a and B terms, since, if the classes
are not of the same type, their logical sum is meaningless. Where
only a finite number of classes are concerned, we can obviate the
practical consequences of this, owing to the fact that we can always
apply operations to a class which raise its type to any required
extent without altering its cardinal number. For example, given
any class a, the class «“‘a has the same cardinal number, but is of
the next type above a. Hence, given any finite number of classes
of different types, we can raise all of them to the type which is
what we may call the lowest common multiple of all the types in
question; and it can be shown that this can be done in such a way
that the resulting classes shall have no common members. We
may then form the logical sum of all the classes so obtained, and
its cardinal number will be the arithmetical sum of the cardinal
numbers of the original classes. But where we have an infinite
series of classes of ascending types, this method can not be
applied. For this reason, we'can not now prove that there must
be infinite classes. For suppose there were only 7 individuals al-
together in the universe, where 7 is finite. There would then be 2»
classes of individuals, and 22" classes of classes of individuals, and
so on. Thus the cardinal number of terms in each type would be
finite; and though these numbers would grow beyond any assigned
finite number, there would be no way of adding them so as to get
an infinite number. Hence we need an axiom, so it would seem, to
the effect that no finite class of individuals contains all individuals;
but if any one ‘chooses to assume that the total number of
individuals in the universe is (say) 10,367, there seems no a priori
way of refuting his opinion.

From the above mode of reasoning, it is plain that the doctrine
of types avoids all difficulties as to the greatest cardinal. There is a
greatest cardinal in each type, namely the cardinal number of the
whole of the type; but this is always surpassed by the cardinal
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number of the next type, since, if a is the cardinal number of one
type, that of the next type is 2%, which, as Cantor has shown, is
always greater than a. Since there is no way of adding different
types, we can not speak of ‘the cardinal number of all objects, of
whatever type’, and thus there is no absolutely greatest cardinal.

If it is admitted that no finite class of individuals contains all
individuals, it follows that there are classes of individuals having
any finite number. Hence all finite cardinals exist as individual-
cardinals; i.e., as the cardinal numbers of classes of individuals.
It follows that there is a class of ¥, cardinals, namely, the class of
finite cardinals. Hence R, exists as the cardinal of a class of classes
of classes of individuals. By forming all classes of finite cardinals,
we find that 28° exists as the cardinal of a class of classes of classes
of classes of individuals; and so we can proceed indefinitely. The
existence of ¥, for every finite value of z can also be proved;
but this requires the consideration of ordinals.

If, in addition to assuming that no finite class contains all in-
viduals, we assume the multiplicative axiom (i.e., the axiom that,
given a set of mutually exclusive classes, none of which are null,
there is at least one class consisting of one member from each
class in the set), then we can prove that there is a class of indivi-
duals containing N, members, so that ¥, will exist as an indivi-
dual-cardinal. This somewhat reduces the type to which we have
to go in order to prove the existence-theorem for any given cardinal,
but it does not give us any existence-theorem which can not be
got otherwise sooner or later.

Many elementary theorems concerning cardinals require the
multiplicative axiom.* It is to be observed that this axiom is
equivalent to Zermelo’s,} and therefore to the assumption that

* Cf. Part III of a paper by the present author, ‘On some Difficulties in
the Theory of Transfinite Numbers and Order Types’, Proc. London
Math. Soc. Ser. 11, Vol. 1V, Rart 1.

t Cf. loc. cit. for a statement of Zermelo’s axiom, and for the proof that
this axiom implies the multiplicative axiom. The converse implication
results as follows: Putting Prod ‘k for the multiplicative class of k, consider

zp = R{(ax).xp. D'R = 1*B.@‘R = 1'’x} Df,

and assume o
re Prod ‘Z%cl‘a. R = ix{ (4S). Ser. tSx }.

Then R is a Zermelo-correlation. Hence if Prod ‘Z*¢ ¢la is not null, at
least one Zermelo-correlation for a exists.
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every class can be well ordered.* These equivalent assumptions
are, apparently, all incapable of proof, though the multiplicative
axiom, at least, appears highly self-evident. In the absence of
proof, it seems best not to assume the multiplicative axiom, but
to state it as a hypothesis on every occasion on which it is used.

X. ORDINAL NUMBERS

An ordinal number is a class of ordinally similar well-ordered
series, i.e., of relations generating such series. Ordinal similarity
or Likeness is defined as follows:

Smor=PQO{(gS).Se1—>1.q‘S=C‘Q.P=5|Q|S} Df,
where ‘Smor’ is short for ‘similar ordinally’.

The class of serial relations, which we will call ‘Ser’, is defined
as follows:

Ser=15{xPy. .y~ (x=y):xPy.yP3.D, , ,.xPz:
—> <
xeC‘P.D,.P'xu.xuP'x=C‘P} Df.

That is, reading P as ‘precedes’, a relation is serial if (1) no term
precedes itself, (2) a predecessor of a predecessor is a predecessor,
(3) if x is any term in the field of the relation, then the predecessors
of x together with x together with the successors of x constitute
the whole field of the relation.

Well ordered serial relations, which we will call Q, are defined
as follows:

Q=P{PeSer:a CCP.gqla.d,.q!(a—P“)} Df;
i.e., P generates a well ordered series if P is serial, and any class a
contained in the field of P and not null has a first term. (Note that

P are the terms coming after some term of a).
If we denote by No‘P the ordinal number of a well ordered
relation P, and by NO the class of ordinal numbers, we shall have

R —
No=aP{PeQ .a=Smor‘P} Df,
NO=No‘““Q.

* See Zermelo, ‘Beweis, dass jede Menge wohlgeordnet werden kann’.
Math. Annalen, Vol. LIX, pp. 514-16.
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From the definition of No we have

—>
F:PeQ.D.No*P=Smor ‘P,
b~ (PeQ).D . ~E!No‘P.

If we now examine our definitions with a view to their con-
nexion with the theory of types, we see, to begin with, that the
definitions of ‘Ser’ and Q involve the fields of serial relations. Now
the field is only significant when the relation is homogeneous;
hence relations which are not homogeneous do not generate series.
For example, the relation « might be thought to generate series of
ordinal number w, such as

€ ¢ [4
2,05, 0 et R sy

and we might attempt to prove in this way the existence of w and
®,. But x and «‘x are of different types, and therefore there is no
such series according to the definition.

The ordinal number of a series of individuals is, by the above
definition of No, a class of relations of individuals. It is therefore
of a different type from any individual, and can not form part of
any series in which individuals occur. Again, suppose all the finite
ordinals exist as individual-ordinals; i.e., as the ordinals of series
of individuals. Then the finite ordinals themselves form a series
whose ordinal number is w; thus w exists as an ordinal-ordinal,
i.e., as the ordinal of a series of ordinals. But the type of an ordi-

_ nal-erdinal is that of classes of relations of classes of relations of
individuals. Thus the existence of w has been proved in a higher
type than that of the finite ordinals. Again, the cardinal number of
ordinal numbers of well ordered series that can be made out of
finite ordinals is N,; hence X, exists in the type of classes of
classes of classes of relations of classes of relations of individuals.
Also the ordinal numbers of well ordered series composed of
finite ordinals can be arranged in order of magnitude, and the
result is a well ordered series whose ordinal number is w,. Hence
w, exists as an ordinal-ordinal-ordinal. This process can be re-
peated any finite number of times, and thus we can establish the
existence, in appropriate types, of ¥, and w, for any finite value
of n.

But the above process of generation no longer leads to any
totality of all ordinals, because, if we take all the ordinals of any
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given type, there are always greater ordinals in higher types; and
we can not add together a set of ordinals of which the type rises
above any finite limit. Thus all the ordinals in any type can be
arranged by order of magnitude in a well ordered series, which
has an ordinal number of higher type than that of the ordinals
composing the series. In the new type, this new ordinal is not the
greatest. In fact, there is no greatest ordinal in any type, but in
every type all ordinals are less than some ordinals of higher type.
It is impossible to complete the series of ordinals, since it rises to
types above every assignable finite limit; thus although every seg-
ment of the series of ordinals is well ordered, we can not say that
the whole series is well ordered, because the ‘whole series’ is a
fiction. Hence Burali-Forti’s contradiction disappears.

From the last two sections it appears that, if it is allowed that
the number of individuals is not finite, the existence of all Cantor’s
cardinal and ordinal numbers can be proved, short of R, and we,.
(It is quite possible that the existence of these may also be demon-
strable.) The existence of all finite cardinals and ordinals can be
proved without assuming the existence of anything. For if the
cardinal number of terms in any type is n, that of terms in the next
type is 2. Thus if there are no individuals, there will be one class
(namely, the null-class), two classes of classes (namely, that con-
taining no class and that containing the null-class), four classes
of classes of classes, and generally 271 classes of the nth order.
But we can not add together terms of different types, and thus we
can not in this way prove the existence of any infinite class.

We can now sum up our whole discussion. After stating some
of the paradoxes of logic, we found that all of them arise from the
fact that an expression referring to all of some collection may it-
self appear to denote one of the collection; as, for example, ‘all
propositions are either true or false’ appears to be itself a proposi-
tion. We decided that, where this appears to occur, we are dealing
with a false totality, and that in fact nothing whatever can signific-
antly be said about all of the supposed collection. In order to give
effect to this decision, we explained a doctrine of types of variables,
proceeding upon the principle that any expression which refers
to all of some type must, if it denotes anything, denote something
of a higher type than that to all of which it refers. Where all of
some type is referred to, there is an apparent variable belonging to
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tl}at type. Thus any expression containing an apparent variable is of
higher type than that variable. This is the fundamental principle
of the doctrine of types. A change in the manner in which the types
are constructed, should it prove necessary, would leave the solu-
tion pf contradictions untouched so long as this fundamental
principle is observed. The method of constructing types explained
a.bove was shown to enable us to state all the fundamental defini-
t10n§ o.f mathematics, and at the same time to avoid all known con-
_tradlctlons. And it appeared that in practice the doctrine of types
1s never relevant except where existence-theorems are concerned
or where applications are to be made to some particular case. ’
Thfa theory of types raises a number of difficult philosophical
questions concerning its interpretation. Such questions are, how-
ever, essentially separable from the mathematical developrr;ent of
the theory, and, like all philosophical questions, introduce ele-
ments of uncertainty which do not belong to the theory itself. It
seemed better, therefore, to state the theory without reference to

philosophical questions, leaving these to be dealt with indepen-
dently.

On the Relations of Universals and Particulars

In this essay we find Russell moving toward the logical atomism of
1918 but with his ideas still in a state of transition. Read as the
Presidential Address to the Aristotelian Society (of London) in the
autumn of 1911, it was published for the members at the time and
later appeared in the PROCEEDINGS for 1911-12. As the appended
note of 1955 indicates, Russell no longer accepts the argument for the
existence of particulars given here, although he rejects it on the basis
of parsimony rather than the fact that it can be proved wrong. (It
cannot be proved either way.) The question of universals and parti-
culars is a fundamental one in philosophy, and Russell’s treatment
is cogent and clear, so that in spite of his later views on the validity
of this argument for particulars, I recommend this paper to students
of contemporary philosophy.

Shortly after reading this paper Russell began his first period of
association with Ludwig Wittgenstein, whose views were to exert a
degree of influence on Russell’s thinking for about seven years (i.e.
until Russell became a neutral monist in late 1918 or early 1919).
The comparison of this paper with those of 1914, 1918, and 1919
Sfollowing will thus provide some index to Wittgenstein’s effect on
Russell’s work.



