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ELEMENTARY CALCULUS OF
PROBABILITY

$ 9. The Probability Implication

Ih inrestigation of the coneept of probability begins with an analysis of
t bcal structure of probability statements. The problem, which so far
b not been given sufficient attention in the mathematical calculus of prob-
6ft-v, is amenable to precise solution with symbolic methods. Symbolic
Ldi has devised means of characterizing the logical form of a statement
r3rnt regard to its content; these methods can be extended to include a
*qrteriza,tion of probability statements. The formalization of the prob-
rEr-c statement, in fact, is one of the first objectives in the philosophy of
Ebibility.

To consider a typical probability statement: when a die is thrown, the
rt,F'r*nce of face I is to be expected with the probability f. This statement
h the logical form of a relation. It is not asserted unconditionally that face 1
ril eppear with the probability f; the assertion, rather, is subject to the
clition that the die be thrown. If it is thrown, the occurrence of face 1

- 

to be expected with the probability $; this is the form in which the prob-
frt statement is asserted. No one would say that the probability of finding
I & on the table with face 1 up has the value $, if the die had not been
bsn- Probability statements therefore have the character of an implica-
fu; they contain a first term and a second term, and the relation of prob-
fry b asserted to hold between these terms. This relation may be called
Sfrility implication. It is represented by the symbol

sfo ie the only new symbol that the p'robabilitv calculus adds to the symbols
d tle calculus of logic. Its connection with logim,l implicattion is indicated
tr6e form of the symbol: a bar is drawn across the sign of logical implica-
h,Iil'hereas the logical implication corresponds to statements of the kind,
Tr b true, then b is true", the probability implication expresses statements
dft ki''d, "If o is true, then b is probable to the degree p".

Ee terms between which the probability implication holds are usually
El& Let c be the event, "The die is thrown", and y the event, "The die
L cme to rest on the table"l then a probability implication betweeiThe

6ents is asserted. We recognize a,t once that this requires a more exact
'We speak of a definite probability only when the event is char-
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46 ELEMENTARy cALcULUS on pRoBABrLrry

acterized in a certain manner, namely, as an event y in which face 1 is up.
This means that the event E is regarded as belonging to a certain class B.
We are dealing with a class, since the individual features of the event y are
disregarded in the statement. It does not matter on what part of the table
the die lies, or in which direction its edges point,; only the attribute of having
face 1 up is considered. Thus the event y is characterized only as to whether
it can be said to belong to the class B. The same applies to the event u, since
we do not consider with what force the die is thrown or what angular momen-
tum is imparted to it;lve demand only that rbe a throw of the die, that it
belong to a certain class d. Therefore we write the probability statement
intheform reA+EeB (1)

This forrnulation, however, requires modification. We.must express the
fact that the elements of the classes are given in a certain order, for instance,
in the order of time. In other words, the event r belongs to the discrete
sequence of the events fr1, fr2, . 14 . . , while at the same time the event
gr belongs to a corresponding secluence Ub Uz, . Ut, . . . There is a one-ole
correspondence between the elements of the two sequences, expressed by
equality of subscripts, and we assert only a probability implication between
the corresponding elements r;, ga, so that we write, instead of (1),

r ;eA+yaeB
p

The corirdination of the event sequences is necessary for the following reason.
We do not wish to say that the probability implication holds, for instance,
between the event r; of throwing the die and the event U+t of obtaining a
certain result. When we merely state that the event rt of throwing the die
occurs, we have not yet asserted that the ev€nt fi;11 of throwing the die will
also occur and that, therefore, a probability for the occurrence of the event
9l+r exists.

However, even (2) does not completely represent the form of the prob-
ability statement; we must add the assertion that the same probability im-
plication holds for each pair na, y;. This generalization is expressible by two
all-operators, meaning, "for all r; and for all g/t". Using an abbreviation,
\Me can reduce the two all-operators to one by placing only the subscript i
in the parentheses of the operator. Thus the probability statement is written

( i )  ( rnrA>y6e B)

This expression represents the final form of the probability statement: ?he
probability statement is a general implication between statements concerning a
class metnbership of the elements oJ certa,in giuen sequences.

(2)

(3)
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To illustrate this formulation of the probability statement: a relation of
the kind described is employed in dealing with the probability of a case of
influenza leading to death. We do not speak unconditionally of the prob-
ability of the death of the patient, but, only of the probability resulting from
the fact that he has contlacted influenza. Here again are trvo classes-the
class of influenza cases and the class of fatal cases-and the probability
implication is asserted to hold betrveen them. If r; is interpreted as a result
of medical diagnosis, A as an influenza case, Ai as the state of the patient
after one week of illness, and B as the death of the patient, then this example
of a probability statement from the field of medicine has the form (3).

Another example is the probability of hitting a target during a rifle match.
Here r; represents the single shot, y; the hit scored at the target, B the class
of hits within a certain range, and / the class to which the rifleman belongs
according to his ability. The probability of a hit will be different according
to the contestant's degree of skill. Here again the probability is determined
only when the classes ,4 and B are chosen.

An example from physics is the bombardment of nitrogen by d-rays,
or helium nuclei. There is a certain probability that a helium nucleus will
eject a hydrogen nucleus from the nitrogen atom. Let A represent the class
of a-rays, r; the hit of an individual helium nucleus, arrd A; the event
produced by it. The event results in the occasional emission of a hydrogen
nucleus, that is, it belongs to the class B. Although it is not possible to observe
directly the causal connection between the helium nucleus and the released
hydrogen nucleus, we assume, nevertheless, a one-one correspondence between
ti &nd /;. Using a very weak radioactive preparation that rarely emits helium
nuclei, we can employ the temporal coincidence observed for the a-rays
and the hydrogen rays as a criterion of the correspondence.

In the previous examples, r; and y; stand in the relation of cause to effect,
but other instances can easily be found in which !; represents the cause and
rr the effect. In this case we carry out a reverse inference, from the effect to
the probability of a certain cause, for example, in investigating the cause of
a cold. And there are other examples for which the relation rito y6 is of a still
different type. There exists a probability that a certain position of the barome-
ter indicates rain, but there is no direct causal connection between the two
events. In other words, one is not the cause of the other. Rather, the two
events are effects produced by a common cause, which leads to their concat-
enation in terms of probabilities. It is easily seen that these examples also
tonform to the logical structure of (3).

The analysis presented shows that the probability implication can be re-
r:rded as a relation between classes. The class ,4. will be called tlne reference
ciass,' the class B, the attribute cZoss. It is the probability of the attribute B
-..uat is considered with reference to A. It must be added, however, that the
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48 ELEMENTARY CAT]CULUS OF PROBABILI T

probability relation between the two classes ,4. and B is determined only
after the elements of the classes are put into a one-one correspondence and
ordered in sequences. For instance, the probability implication holding be'
tween the birth and the subsequent death of an infant-the rate of infant
mortality-differs from one country to another, that is, it differs according
to the sequence of events for which the statistics are tabulated. Even for an
individual die there exists a particular pair r6y; of sequences, and it is au
assertion derived from experience that the probability remains the same for
different dice. Therefore, strictly speaking, the probability implication must
be regarded as a three-term relation between two classes and a sequence pair.
The pair of sequences provides the domain with respect to which the prob-
ability implication assumes a determinate degree. Later the conception is
extended to combinations of more than two sequences. The signifi.cance of
the order of sequences is the subject of chapter 4.

Because of the equivalence that exists between classes and propositional
functions, formula (3) may be expressed in a somewhat different way. Ac-
cording to (2, $ 7), we may use instead of the statement r e .d. the corre-
sponding propositional functional /(c) and, similarly, instead of y eB, the
corresponding propositional functional g(g). Then we must express the one-one
correspondence between the sequences of r and, y by a one-one functional
e(r,y) in order to determine for each r the corresponding value E. Thus (3)
assumes the form

(r) (u)lf (r) . e(n,a) + s (a)l

In this form it is not necessary to employ the subscript i, if the order of the
elements is regarded as understood.

A special kind of probability implication is included in the general form
(3) or (a). It may happen that the sequences coincide and that the elements
n; and !; are identical. The function e(r,y) then reduces to the identity
relation. We thus obtain, instead of (3) and (4),

( i ) ( r ;eB+&eB*)
p

(r) tf@) + g(r)l
9

Since it refers to a probability implication within the same sequence, this
form will be called an internal probability impli,cation.It is employed in many
important problems of probability, particularly in social statistics. Examples
are the probability that an inhabitant of Bavaria suffers from goiter, or that
a new-born baby is a boy. In such c&s€s fi; is not represented by an event
but by a person or an object that may possess the two properties B and
Br simultaneously. In more strictly statistical applications, the internal form

(4)

{.oJ

(6)
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cd the probability statement prevails to so high a degree that it is usually
nade the basis of the probability calculus. Yet it would not be advisable to
restrict the probability statement to this special form, since there are numerous
dher cases in which the more general types (3) or (4) are used. In particular,
tbe application of the probability concept to the causal connection of events
uould be impossible if it were not based on the more general form of the
probability statement as given above.

$ 10. The Abbreviated Notation

The form of the probability statement as given in (3, $ 9) is rather compli-
eated. An abbreviated notation, therefore, will be used for the development
ar the calculus of probability. Abbreviation is possible because certain prop-
rries of formula (3, $ 9) occur in all probability statements in a similar man-
rer. and can be suppressed in a simplified notation.

The probability statement has been written, so far,

( f )  (o;e A+y;cB)
p

This formula will be abbreviated to the form

(A +o B) (2)

The transition from the abbreviated to the detailed notation is controlled by
:be following rule:

Rrrn or rRANsLATroN. For euerg capital letter K substtitute the erpressi,on
:, e K. using lor d,ifierent aapital letters dtifrerent aariables tr;, A; . . , with the
mF,.:oipt i, but the same uariable rq, for the capital letters Ky Kz . . . In front
ry all parentheses containing capital letters place the symbol i within q,n all-
w-atrator.

The method of abbreviation, as is seen from the rule, amounts to leaving
qwt the specification of the sequence pair, an omission that is permissible
rrrause in probability statements the elements of the sequence pair never
otrtrr as free, but always as bound, variables. In the abbreviated notation,
graentheses play the part of the all-operator; therefore, biackets must be
wll if generalization is not to be indicated. Furthermore, the difference
kreen the two kinds of negation that exist for general statements is ex-
nrEs€d as follows: in one case the negation bar is placed only above the
tryression written within parentheses; in the other it is extended above the
Irrintheses. We thus define

(A+B):  or  Q)(r ;eA+g;e B)
?p

(A+B):  u @)(r ;cA+y;cB)
p9

(1)

(3)

(4)
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The use of parentheses for the expression of the generalization applies also
to formulas not containing the sign of the probability implication, and allows
us to go from a class to a statement. Thus, .A ) B is a class, and (r4. I B)
is a statement; according to the rule of translation, this statement has the
form (20b, $ 7) and is therefore identical with A c B. Adding parentheses
to a class symbol means, in this notation, that the class is identical with the
universal class and thus leads to the meaning expressed explicitly in (24, $ 7):

If compound classes are used, like the class .d ) B, the rule of translation
leads to the simple result: different capital letters mean nauower couple
classes; equal capital letters with different subscripts mean simple classes.
Couple classes containing implication or equivalence signs are interpreted
by analogy with (13 and 14, $ 7). The subscripts headed by circumflexes
are dispensable for couple classes because their function is taken over by
the difference of the capital letters. Class inclusion for difrerent capital letters,
i.e., for n&rrower couple classes, means a relation similar to the one illus-
trated in figure 3, $ 7, for which the two circles are drawn in different planes,
one on top of the other; corresponding points represent the couples of ele-
ments. Since for all practical purposes the narrower couple classes behave
like simple classes, it is permissible to forget about the distinction for tech-
nical manipulations. The treatment of the general probability implication is
technically not different from that of the internal probability implication.

A further abbreviation may be introduced. For many applications, par-
ticularly in mathematical calculations, we must solve the probability impli-
cation (2) for the degree p. We denote the degree p by P(A,B), reading this
symbol as "the probability from ,4 to 8". Some writers call this "the relative
probability of B with respect to A". But in the present notation, the natural
order, from the known to the unknown element of the relation, is used, thus
introducing the same order of terms that is used in the implication o ) b.
The expression "probability from A to B" has the same grammatical form
as the geometrical expression "distance from ,4. lo 8", which also designates
a relation. The order shows clearly that probabilities are treated as relations, ,
in correspondence with the definition given in $ 9. The calculus of probability
in its usual form includes absolute as well as relative probabilities. The word
"absolute" must be interpreted merely as an abbreviated notation, applylng
when the first term, the reference class, is dropped as being understood.
Thus when it is said that there is the absolute probability I for a f.ace of the
die, it is understood that the reference class is represented by the throwing
of the die. This suppression of a first term has led to some confusion.

Instead of (2), then, the equation is written

P(A,B) : p
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The p-symbol is a numeriu,l tunctm,lbLat is, a functional variable the special
values of which are mrmbers.r It leads to statements only when it is used
within mathematical equations. The P-symbol need not be considered as a
primitive symbol; it can be reduced to the symbol of the probability impli-
eation by the definition

\P(A,B) : pl : ,, (A 
7 

B) (5)

The symbol P(A,B) itself is not defined-only the expression P(A,B) : 'p.
This is permissible sinee the symbol P(A,B) never occurs alone, but only in
zuch equations. Thus a mere defi,rvittioninuseisgiven for P(A,B). The equality
sign used with this symbol represents aritbmetical equality, i.e., equality
between numbers. In the foregoing account of symbolic logic the sign was
not explained because the rather complicated connection between logic and
arithmetic could not be demonstrated. It may suffice to say that mathematical
equality can be reduced to the basic logical operations.2 The uegation of a
statement of mathematical equality is denoted by the inequality sign I.
The notation by means of the P-symbol is called mathematical notation; that
in terms of the +-symbol, imptioo,tionol, notation.

Another abbreviation is now introduced. Sometimes we omit the statement
d the degree of probability and write

(A + B) (6)

This relation is called indeterminate.probability implicntion. Since it is not
pcmissible simply to drop one constituent within a formula, a definition
nust be used to connect (6) with the symbols previously defined:

(A + B) : or (l p) (A +.8)

lAe abbreviation (6) therefore means, "There is a p such that there exists
htreen 24, and B a determinate probability implication of -the degree p".

Passing from (6) to the detailed notation we obtain; according to the iule
dtranslation, r a'  \a + B) :  u (1d b) @r'  A +Y;e B) (8)

tlc all-operator is placed after the existential operator, so that (8) represents
& stronger form in the sense of (9, $ 6).

Tbe value p is often written within separate parentheses behind the prob-
rttrty implication: (l s) (A 

X 
B).(q : p) (e)

-e-rSp. 
arz.

t It h an identity of classes of a higher type. See ihid., | 44. 
,-t

(7)
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This is merely a more convenient way of writing and has the same meaning
as (2). We need this form because we shall later obtain for the probability
degree p expressions that are too involved to be written as subscripts of the
symbol of the probability implication. The resulting parentheses in the ex-
pression (S: d do not indicate an all-operator for the detailed notation
because they do not contain capital letters.

The abbreviations given in this section will be useful in the following pres-
entation of the theory of probability. In particular, it is an advantage that
even in the abbreviated notation the symbols of the propositional operations
can be manipulated according to the rules of the propositional calculus,
although these synbols are placed between class symbols (that is, between
capital letters) and thus represent class operations. This is possible because
of the isomorphism of the two calculi (see $ 7).

$ 11. The Rule of Existence

Thelormal structure of probability statements has been explained, but nothing
has been said so far about their meaning. The laws of the probability impli-
cation can be completely developed, however, without interpretation. Dis-
cussion of the problem of interpretation will be deferred to a later section.

As a consequence, a method cannot yet be provided whereby we can deter-
mine whether, if two classes are given, a probability implication holds between
them; in other words, we cannot yet ascertain the eristence of a probability
implication. I{owever, this impossibility need not disturb us at this point.
We assume the existence of some probability implications to be given; and
we deal only with the question of how to derive new probability implications
from the given ones. This operation exhausts the purpose of the probability
calculus.

The existence of a probability implication I regard, in general, as a syn-
thetic statement that cannot be proved by the calculus. The calculus can
only transfer the existence character; with its help we c&n infer, from the
known existence of certain probability implications, the existence of new ones.
The property of transference by the calculus is, in part, directly expresSed
by the form of the axioms; some of the axioms, such as rrr and rv, directly
assert the existence of new probability implications if certain others are given.
However, these particular ca,ses of transference do not suffi.ce; for the transfer
property will be required in a more general manner, as will be seen later. We
must f;e able to assert that whenever the numerical value of a probability
impiication is determined by given probability implications, this probability
imflIication does exist. It will become obvious ($ 17) that this existence is
frtit self-evid'ent, but must be asserted separately. The following postulate is
therefore introduced.
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Rur,p or EXISTENCE.
(A 

- 
B), prouided the

f .

If the numerical uahrc p oI a probability impLication
probabili.ty implttcation eri,sts, is determined bg giuen

profAiHfu impl;ications according to the rules of the calcuhn, then this probability
inpdlntion (A +.8) erists.

p

The rule of existence is not an axiom of the calculus; it is a rule formulated
iLr the metalanguage, analogous to the rule of inference or the rule of substi-
tution (see $ 5). It must be given an interpretation even in the formal treat-
ment of the calculus. There must exist a formula that can be demonstrated
r the calculus and that expresses the probability under consideration as a
rathematical function of the given probabilities, with the qualification that
:he function be unique and free from singularities for the numerical values
:--ed. This is what is meant by the expression, "determined according to
-jre rules of the calculus".l

$ 12. The Axioms of Univocality and of Normalization

F:om the discussion of the logical form we turn to the formulation of the
'.;rs of the probability implication. As explained above, an interpretation
,: probability is not required for this purpose. The laws will be formulated

-. 
e s]-stem of axioms for the probability implication-that is, as a system

-: .,-'gical formulas that, apart from logical s;rmbols, contains only the sl.rnbol
.: :he probability implication. Among the logical s;,mbols, the logical impli-
:-r::,,n occurs, and is thus used in formulating the laws of the probability
- : lcetron.

T:e s1'stem to be constructed is called the system of axioms of the prob-
r.:,-'i]-calculus. The name is justified by the fact that it is possible to derive
::-- these axioms the formulas that are actually used in all applications of
-;* ;robability calculus. When, at a later stage, an interpretation of prob-
.l*:, ;; is presented by means of statements about statistical frequencies, it
r-- -:r possible to give another foundation to the axioms, showing that they
l--: i=ivable from the given interpretation of probability. For the present,
fr:"Ei;trr. no use is made of the connection between probabilities and fre-
llr- - --: instead, the axiom system is regarded as a system of formulas by
s:r:l the properties of the probability concept are determined. By this
ar:,:eiure the axiomatic system of the probability calculus assumes a func-
?.L ,'-:nparable to that of the axiomatic system of geometry, which, in a
nn?r i- wer-. determines implicitly the properties of the basic concepts of
u-.==::]-. that is, of the concepts "point", "line", "plane", and so on (see $ 8).

- l= 
-:-e 

of existence can be replaced onl5'incompletely b1'arioms. See footnote, p.61.
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IVe begin with the first two groups of axioms:

r' urvrvocer'rrY 
@ # q) ) [(A = B).(A + B)= (A)]

par

[LNonuel lzar loN 1 r /^D\r /q-- \ / r  D\ / - -  r \  J
1. (A )B) )  (3 d (A+ B).(p:  1)

Group rr will be discussed first. The degree of probability is asserted by
tt,2 to be a positive number, including 0 as an extreme case. That p cannot
be greater than I is not ineorporated into the axioms because it will be de'
rived as a theorem in $ 13. The normalization to values in the interval from
0 to l, end points included, is restricted to the case where the class A is not

empty. The condition is expressed by the term (A), which meaffi, according

to the rule of translation (see p. 49), (i)(ae .r4.), or, what is the same,
(ji)(r, e A). The significance of this condition will be explained presently.

Axiom rr,1 establishes a connection between the logical implication and
the probability implication. Whenever a logical implication exists between
,4, and B, there exists also a probability implication of the degree l; the
converse does not hold, however. It follows from a simple consideration that
the reverse relation cannot be maintained. For the demonstration we use the
formula corresponding to rr,1:

(A)B) r  ( tp)  (e7D.@: o) (1)

the necessity of which seems clear, though the exact derivation will be given
later.

Formula (1) states that whenever an impossibility exists, a probability
implication of the degree 0 exists also. For this case it is easy to illustrate
why the reverse condition cannot be required. For instance, if we prick a
sheet of paper with a needle, the probability (at least for a mathematical
idealization of the problem) of hitting a given point is equal to 0; nevertheless
a certain point is hit each time. Thus the probability 0 does not entail impos-
sibility. Consequently, in order to remain free of contradictions, we must
assert that certainty does not follow from the probability l. Rather, certainty
and the probability 1 stand in the relation of a narrower to a more compre-
hensive concept; certainty is a special case of the probability 1 (see $ 18).

The relation of the two concepts is thus made clear in a very simple man-
nerl the mysterious conception, which is occasionally voiced, that certainty
and the probability I are incomparable concepts is untenable. On the con-
trary, the relation between the logical and the probability implication as
expressed by rr,l represents an important relation holding between the two

p

W fe+B)r(p>0)
P

2.
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cmeepts, which connects the logic of the probability implication with classical

lFiE- At this point the axiom system of probability difrers from that of
1|refry. The concepts ttpointt', "linet', ttplanett, and so on, occurring in
ilfetry, are of a type different from that of logical concepts; for that
lure they can never assume the meaning of logical concepts, even for a
qecial case.

The formulation of the univocality axiom r is clarified by the preceding
raarks on the connection of the logical and the probability implication. It is
oibrious that the univocality of the degree of probability must be demanded.
t't first sight we might try to formulate univocality by

(A+B).(A*B).(p *  q)
Pg

ffosever, this formula leads to contradictions. They result from the fact that
im. n.l the logical implication was considered to be a special case of the prob-
*ility implication. Certain properties of the logical implication prevent the
rertion of (2) with complete generality. This is due to an above-mentioned
groperty of the logical adjunctive implication, according to which a false
poposition implies any proposition. In logic thiq fact is expressed by the
?qtu'd;'o od absurdurn 

@ ) B).(a ) B) = (r{-) (B)

Formula (3) is a generalization of (19, $ 4). It is proved by transforming the
lst sjde of (3) by meaffi of (6o, $ 4), applying (4c, $ 4) and using (5d and
5a ! 1). Addition of the parentheses, meaning extension to an all-statement,
fu of course always permissible for tautologies. Logic thus admits an &m-
bi3tty of logical implication, but this case is restricted to the condition (,4.).
Tbe ambiguity is transferred to the probability implication, since (3) with
s-l and (1) lead to the relation

( l{)  )  ( l  p) ( l  s)  ( t  
7 

D.(A + B).(p :  1).(s :  0) (4)

ln case of (r{) being true, the right side of the formula is valid, in contra-
&ti,on to (2). Instead of (2) we therefore write axiom r, which brings the
rnbiguity of the probability implication into a form analogous to the a,mbigu-
iqr of logical implication. The condition p * q must be written in front of r,
+im the expressions in brackets, contrary to (3), do not show whether we
11p de+ling with different probability degrees.

In order to clarify r, it may be remarked that this axiom has the same
rcaning as the following implications:

@78).(A-oB).(p # q) I  ( , { )

6))@+B).(A+B)

(2)

(5)

(6)
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These two formulas result when formula (74, $ 4) is used to dissolve the'
equivalence in r into implications going in both directions. In this case the
expression (p * q) is dropped at the left side of (6); the condition is redun-
dant because (6) holds likewise if the condition is not satisfied, that is, if
p : q. From (6) is derived 

1,1; r 1a + ^A; (Z)

Since p can be chosen completely ut ,uoJo-, the formula states that for the
case (,4) any degree of probability may be asserted to hold between A arLd B.
Formula (7) goes beyond (4) so far as it extends the ambiguity to any chosen
degree of probability, including even values greater than I or smaller than 0.r

The ambiguity thus admitted is harmless because it applies only to the
case in which the first sequence does not contain a single element c; belonging
to the class .A. This follows b_ecause, according to the translation rule,

(A) : p1 (i)(r;cA) (8)

In the case (,4), therefore, the probability cannot be used to determine expec-
tations of the events B because the event A is never realized, and so the plu-
rality of values cannot lead to practical inconveniences. It seems reasonable,
in such a case, to consider the probability implication between,4. and B with
respect to the sequence pafi xg; as not defined at all and, therefore, to allow
the assertion of any value for the degree of probability. This generalization
of the probability concept extends it beyond practical needsl the extension
is required because we wish to incorporate in the probability concept-as a
special case-the logical implication as it is formulated in symbolic logic. The
univocality, however, is always guaranteed if at least a single element ci of
the sequence belongs to the class .A; it does not matter whether the corre.
sponding Ui belongs to the cla,ss B. For, using the tautological equivalence
provided by the propositional calculus,

a.b)c:  a.UYc: dv6-vc = d,YcvE =d-.evE = a.E)E (9)

and substituting for a: (A + B).(A-> B)

f.or b: (p * q)

for c: (I)

we derive from (5) the formula

(A = B).(A = B).(A) I  (p :  q)

(10)

(1 1)

I The latter extension is necessary because otherwise the system of axioms would lead to
contradictions, as J. C. C. McKinsey and S. C. Kleene have pointed out. See my note on
probability implication in Bull,. Amer. Moth. Soc.,Yol. 47, No.4 (194U p. 265. It is for thig

reason that in this article I introduced for axiom rr,2 the condition (d), which the German
edition of this book does not contain.
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Itrhen the double negation is removed and the translation rule (p. 49) and
:,irmula (13, $ 6) are applied, we obtain

(A+B).(A=r) . ( f  0 @;eA)t(p:  q) (12)

Thb means that the univocality of the degree of probability is guaranteed
: there is at least one element r;that belongs to the class ,{.

It is a result of the axioms r and rr that the probability implication &ssumes
'i.e function of an extension of logical implication, the general implication
'-troduced in (3, $ 6). The latter is to be regarded as a special case of a prob-
siility implication, a,s we may recognize particularly from the form (6, $ 9).
Inis conception permits a more precise formulation of the concept of physical

-r. 
n'hich was interpreted above as a general implication ($ 6). Closer in-

=Eiction reveals that general implications that are absolutely certain can
.i-'c'ur only if they are tautologies. The uncertainty of synthetic implications
.,iginates from the fact that any conceptual formulation of a physical event
:=presents an idealization; the application of the idealized concept can possess
:.n-ly the character of probability (p. 8). The expressibn, "It follows according
to a physical law", must therefore be represented, strictly speaking, not by
i general implication but by a probability implication of a high degree
see $ 85). Upon this fact rests the great importance of the probability impli-
:*tion: all laws of nature are probability implications.

There is an important difference between logical implication and prob-
r'r'ility implication. To the general implication (A ) B) corresponds an indi-
:i,lual implication a)b, as defined by the truth tables 1,B ($4). For prob-
ability implication such an individual relation is not used; the expression
t 

7 
U, therefore, need not be considered as a meaningful expression. Only

'. a fictitious sense can the degree of probability, holding for the entire

-quence, 
be transferred to the individual case. Like the meaning of an indi-

idual connective implication of the synthetic kind (see $ 6), that of an indi-
::,lual probability implication is constructed by a transler of meaning trom
'-,e general to the particulnr u,se. This transfer makes understandable why a
i:tquency interpretation of the degree of probability can be applied to single
e;ents, though only in a fictitious sense. The problem will be considered
.rter (see $ 72).

$ 13. The Theorem of Addition

-\ sell-known theorem of the probability calculus is that the probability of a
,:gical sum is determined by the arithmetical sum of the individual prob-
rbilities, provided the events are mutually exclusive. For instance, the prob-
r,eility of obtaining face 1 or 2 by throwing a die is calculated to be $a;:3.
for the addition it is essential that only one of the two faces can lie on top;
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otherwise this manner of calculating would be unjustified. The theorem is
usually called the theorem of addtition, and it must now be formulated as an
axiom.

The condition of exclusion could be written in the form (B I C), but it is
sufficient to use the weaker statement

(A.B ) e) (la)

which can be derived from (B ) C), whereas the latter formula is not derivable
from (1o). Although (1o) appears to be nons5rmmetrical with respect to B
and C, this is actually not so; for, because of (6a and 5a, $ 4), formula (1a)
is equivalent to (a.c t B) (rb)

By the use of (1o) the theorem of addition may be written as follows:

III. TneonEM oF aDDrrroN

(A 
7 

B).(a 
7 

C).(A.B r c) r  (3')  ( /  
?B v c) .(r  :  p * q)

The addition theorem is a formula that expresses the transfer property of
the calculus: it states a rule according to which the character of existence
is transferred. It asserts the existence of the probability implication for the
logical sum, if the individual probability implications are given. Nonetheless,
we recognize the indispensability of the rule of existence ($ 11). For it is the
existence rule that permits us to reverse the addition theoreml with its help
we c&n derive the theorem

@7B).@iBv c).(a.B )  c)  )  ( t  q)  (a1c).(q:  r  -  p)  (2)

This theorem cannot be obtained from axiom ul alone, since the latter asserts
existence only if the individual probabilities are given. The implicans of (2)
differs from that of the axiom in that it contains only one individual prob-
ability and, moreover, the probability of the logical sum. Yet we recognize
that the degree g of the probability implication, stated on the right side of (2),
is determined by the addition theorem, provided this probability implication
exists. Because of the univocality axiom r, the probability q, if it exists, must
assnme a value that, when added to p, furnishes the value r, that is, q : r - p.
Now we can apply the existence rule, and the existence of the probability
implication (e 

T Q can be asserted.

The form of the relation (2) makes it clear that axiom rrr can be only par-
tially reversed. The existence of the probability of the logical sum is uot
sufficient for the reversal; one of the two individual probabilities must also
be given. Otherwise the degree of probability, q, would be undetermined, and
the existence rule would not be applicable. The restricting condition is neces-



$ 13. THE THEoREM oF aDDrrroN 59

sar;e because otherwise it would be possible to infer quite generally (A + C),

that is, the existence of a probability implication for any event. The teltium

ron dattn (1e, $4) and the formula (l r) (A +C v C). (r : 1), which is

obtained from it by the help of (8c, $ 4) and axiom tr,l, would give this result.
The unwarranted generalization is made impossible by the existence rule,
rshich demands that the probabilities under consideration be determined by
those given.

The idea expressed in (2) is of great importance in the logical construction
of the probability calculus. It is the validity of reversed formulas like theorem
i2) and thus of the existence rule upon which rests the possibility of operating
with numerical values of probabilities according to the rules of algebra.
N-hen we no longer incorporate the condition of exclusion into the formula,
stating it only in the context, we may write, introducing the P-notation,

P(A,B v C) : P(A,B) + P(A,C) (3)

Ifith this way of writing we express the fact that the rules by which mathe-

"'qtical equations are manipulated can be applied to probability formulas.
Thus it is permissible to proceed from (3) to the formula

P(A,C): P(A,B vC) - P(A,B) (4)

The admissibility of this step is expressed in theorem (2). TVe recognize that
the mathematical symbolization of the probabiJity calculus is made possible
by a particular property of this calculus, a property that requires a special
formulation. The property is expressed by the rule of existence in combina-
tion with the axiom of univocality.

Certain difficulties arise from the fact that we cannot incorporate into the
mathematical symbolization the condition of exclusion, presupposed for (3)
end (.1), but must, add it verbally. A formula that is not dependent on condi-
tions to be added in the context will be developed later (see $ 20).

A remark must be made concerning the univocality of the P-symbol.
Since univocality of a probability P(A,B) is restricted to the case that A is
mt empty, the P-symbol has only in this case the character of a numerical,
lurd,or, a number variable determined by the argument in parentheses. In
order to make equations like (3) hold also in the case of an empty class A,
;,be convention is introduced that such equations then represent eristential
tsl,ements of the form, "There is a numerical value for the dependent prob-
riiility that, satisfies the equation when the independent probabilities are
gisen". For instance, (3) states for an empty class ,4 that, if for P(/.,B) and
P _l,C) any values are given, there is a probability value among those holding
;{E P(A,B v C) that satisfies (3). AII equations, in this case, will represent
risial statements, because, if /. is empty, a probability with ,4. in the first
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term will have all real numbers as its values; the existential statement will
therefore be trivially satisfied. The advantage of this convention is that it
allows us to drop, for probability equations, the condition stating that ,4' is
not empty. The equations also hold in the contrary case, but then they say
nothing. For the implicational mode of writing, no such convention is needed,
since axiom rn and formula (2) are existential statements and lead to univocal
values of the probabilities only if .4. is not empty. The convention as to the
P-symbol is therefore in agreement with the rule of translation (p. a9).

In the greater part of this book the mathematical notation will be employed.
Except in this section and the next, the axioms formulated in the implica-
tional notation will no longer be used as a basis for further derivations. Their
place will be taken by theorems in the P-notation, derived from them. The
trausition to the P-notation restricts the logical operations to the inner part
of the P-symbols. Supplementary remarks will be made in the context when-
ever other restricting conditions, on which the validity of the formulas
depends, are added.

'We now derive a few theorems that have been used in the preceding section.
Because of the tertti,um non ilattn, the formula (A)B vB) is always true,
and we obtain the general formula

( l r ) ( ,4+BvB;.(r : t )
t

P(A,B v,B; : 1
'We may therefore add formula (5) to (A + B). The conditions of theorem (2)

are satisfied il we substitute .B for C, since (A .B ) B) also is always valid.
lVe thus obtain the theorem

(d 
iB) 

r (t u) (e 7 4. (u : L - p)

In the P-notation the theorem is written

P(A,B)*P(A,B):1 (7)

This formula is called the rule of the complement.
We can now demonstrate that the probability degree, for which we postu-

lated in rr,2 only the nonnegative character, can never become greater than 1.
We can complement the term B by its negation to constitute a complete
disjunction. Considering the fact expressed in rt,Z that both probabilities
occurring in (7) cannot be negative, we obtain from (7) the relation

or, in the P-notation.

(5)

(5',)

(6)

o<P(/ . , .B)<1

Furthermore, we have from rr,l and (6) the theorem

(A)B)r( lp)(AiB).(p:0)

(8)

.* (9)
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The mathematical symbolization of the calculus of probability may be
illustrated by another problem. Given the three classes Br, Br,83, which are
mutually exclusive but do not form a complete disjunction, and given the
tbree probabilities

P(A,&v Br) P(A,B|V B3) P(A,Bsv B) (10)

rse wish to infer from them the existence of the three individual probabilities

P(A,B) P(4,8,) P(4,83) (1 1)

Theorem (2) is not applicable, because none of the individual probabilities
is known to exist. However, we obtain from the addition theorem the equations

P(A,B) + P(4,8,) :  P(A,hv Bz)

P(A,Bz) + P(A,BI) :  P(A,Bzv Bs)

P(A,83) a P(A,B) : P(A,Bsv B)

(12)

They can be solved for the individual probabilities:

e(A,BL) : +[p(A,BLvBr) + P(A,Bs vBt - p(A,B2v B3)]

P(A,Bz) : +lP(A,Bt vBr) + P(A,82 vBr) - P(A,Bzv B)l (13)
p(A,83) : l lp(A,Bt vBt + p(4,B2 vBe) - p(A,hv Br)l

The three individual probabilities (11) are therefore determined according
to {13) by the or-probabilities (10); and it follows from the rule of existence
that when (10) is given, the existence of (11) is also assertable. Owing to the
mle of existence, we can apply, in the calculus of probabilities, the procedure
of eliminating unknown quantities from a system of equations and use it to
f,nd new existing probabilities. Probability equations, therefore, d,etermine
tri-stenu, that is, the existence of any of the probabilities occurring in an
equation is secured if all the other probabilities are known to exist.l

$ 14. The Theorem of Multiplication

The fourth and last group refers to an axiom that determines the probability

'.f a combination of terms. It is a well-known theorem of the probability
crelculus that the probability of a combination-that is, the probability of a
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logical product-is represented by the arithmetical product of certain indi-
vidual probabilities. This is the mult;ipucation theorem of the probability
calculus. The theorem is formulated by the following axiom:

IV. TnnonnM oF MULTrPr,rcATroN

(A + B).(A.B+ C) :  ( .3w) (A + B.C).(w :  p .  u)

For the first time we deal with probability expressions in which the prob.
ability implication refers to three different classes, two of them occurring
either in the first or in the second term. This does not cause any difrculty,
because the translation rule b. ag) determines the transition to ihe detailed
notation for formulas of this kind also. In this case the domain of the prob-
ability implication is a triplet of sequences.

By a procedure of the kind used for the theorem of addition we can derive
the converse of the multiplication theorem. We obtain two difrerent conver-
sions, since the three events A,B,c do not occur sJ[nmetrically in rv, whereas
rrr is s;rmmetrical with respect to B and C:

The proof of the theorems is based on the rule of existence, which applies
because it can be demonstrated that the probability implications occurring
on the right in (1) and (2) are determined by those on the left. Because o]
theorems (1) and (2), axiom rv can be replaced by the more comprehensive
formula, written in the P-notation,

P(A,B.C) :  P(A,B) .  P(A.B,C) (3)

Theorems (1) and (2) mean that formula (3) can be solved according to the
rules for mathematical'equations for each of the individual probabilities
occurring. Here again it is seen that the mathematical formalization of the
probability calculus depends on the validity of the existence rule, as ex-
plained in $13.

Formula (3) is always true and does not require any restricting condition
to be added verbally in the context, as was necessary for (8, $ 13). Formula
(3) will therefore be used in further discussion of the theorem of multiplica-
tion, without going back to axiom rv. The form selected here for theorem (B),
characterized by the occurrence of three classes and of a term having two
classes in the place of the reference class, has long been applied in the British

@ 7 B).(A 7 B.c) r ( l  u) (A.B 
iq (" : #)

(A.B 7 c).(a I B.c) ) (l p) (e 
i n) (, : T)

(1)

(2)
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and the American literature.l It has been used in the axiomatic construction
in this work because only in this form is the axiom always eorrect. The
probability from A to the logical product B.C can be calculated only if the
probability from A to B as weII as that from A.B to C is given.

In mathematical presentations the probability P(.4.8,C) is usually called
"the relative probability of C with respect to 8". This notation does not
seem advisable because all probabilities are relative, and, furthermore, be-
cause the probability under consideration cannot, be characterized by B and C
alone but requires class .A also.

For example, the probability that a person sufrering from diphtheria sub-
sequently contracts nephritis and dies is represented by a probability of the
f.orm P(A,B.C), A denoting diphtheria; B, nephritis; and C, death. The
probability is calculated as the product of the probability that a person
sufiering from diphtheria contracts nephritis, and the probability that a per-
son dies who gets nephritis after having had diphtheria. The latter prob-
ability is different from the one that a, person suffering from nephritis will
die, since a patient who has had diphtheria is weakened and therefore is in
greater peril of losing his life. This consideration shows why the last prob-
ability occurring in (3) must be characterized by three classes.

Another example is the probability that a thunderstorm follows a hot
summer day with a subsequent change in the weather, which splits up into
the product of two probabilities: the probability that a thunderstorm will
follow a hot day and the probability that a change in the weather will follow
a thunderstorm that was preceded by a hot day. The second probability is
smaller than the probability that any thunderstorm brings with it a change
in the weather, because the corwectiae thunderstorms produced by local heat
eonditions usually do not result in a change in the weather, in contradistinc-
tion to lrontol thunderstorms. The example illustrates once more the necessity
of characterizing by three classes the probability that occurs in the last
term of (3).

It must be regarded as a special case if two classes sufEce for this term-
a ease arising when the actual three-class probability is equal to a certain
two-class probability. Such specialization result's if

P(A.B,C) : P(A,C)

Then (3) &ssumes the form of the speci,al theorem of malt;ipl;iu'tion:

P(A,B.C) :  P(A,B) '  P(A,C)

(4)

(5)
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The condition (a) is paraphrased by the statement: the euents B and C are
rnutually independent with respect fo A (see also $ 23). For example, the prob
ability that a sudden gust of wind will capsize two sailboats is obtained as
the product of the probability that the wind overturns one boat by the cor-
responding probability concerning the other boat. The two probabilities need
not be the same, since the two sailboats may be of difierent construction.
It is, however, necessary for (5) that the probability of the second boat's
turning over be independent of whether the first boat turns over.

Another specialization of (3) is obtained if ,4. can be represented as the
product of two events ,4r and .42 such that

P(Ar.Az,B) :  P(A',B) P(Ar.A2.B,C) :  P(Ar.B,C) (6)

In this case (3) leids to

P(A|.A2,B.C) :  P(A"B) .P(A|.B,C) (7)

If we add the specialization analogous to (4)

P(Az.B,C) :  P(Az,C)

P(Ar.Az,B.C) :  P(Ar,B) .P(A;,C)

This case may be illustrated by the throwing of two dice: dr refers to the
throwing of one die and Ag to the throwing of the other. However, (g) would
not be permissible without the conditions (6) and (8).

A third specialization results if

P(A.B,C) :  P(B,C)
Then (3) becomes p(a,B.c) : p(A,B) . p(B,c)

we obtain
(8)

(e)

(10)

(1 1)

Examples of this kind occur in certain causal chains: a may be represented
by the occurrence of a storm; B, the falling of a tree; C, an accident caused
by the falling tree. For the application of (11), however, we must inquire in
each case whether (10) is satisfied.

The preceding discussion reveals that specializations of the multiplication
theorem-some of which are used as axioms in representations of the proh.
ability calculus-do not, provide formulas that are always true. They result
from the general form (3) only for special cases. The latter are characterized
by the equality of certain probabilities having difrerent references classes,
as stated in (4), (6), (8), (10). It follows that the question whether one of the
special forms of the multiplication theorem can be applied is reduced to a
question of the same type as that of how to determine the numerical value
of a probability. rt is always known whether two probabilities are equal
when the probabilities themselves are known. using the general form (3),
or the form of axiom rv, for the theorem of multiplication eliminates cqqtain
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ical difficglties tbat were connected with this theorem in the history of the

fculw 
of probability.

| 
" $ 15. Reduction of the Multiplication Theorem

to a Weaker Axiom


