SPACE AND GEOMETRY FROM THE
POINT OF VIEW OF PHYSICAL
INQUIRY.?

Our notions of space are rooted in our physiologi-
cal organism. Geometric concepts are the product
of the idealization of physical experiences of space.
Systems of geometry, finally, originate in the logical
classification of the conceptual materials so obtained.
All three factors have left their indubitable traces in
modern geometry. Epistemological inquiries re-
garding space and geometry accordingly‘c.oncern
the physiologist, the psychologist, the physmlsti 1.:he
mathematician, the philosopher, and the logician
alike, and they can be gradually carried to their
definitive solution only by the consideration of the
widely disparate points of view which are here of-
fered.

Awakening in early youth to full consciousness,
we find ourselves in possession of the notion of.a
space surrounding and encompassing our b.ody, in
which space move divers bodies, now altering and

F

iT ghall endeavor in this essay to define my attitude as &
physicist toward the subject of metageometry so called. De-
tailed geometric developments will have to be sought in the
sources. 1 trust, héwever, that by the employment of illustra-
tions which are familiar to every one I have made my exposi-
tions as popular as the subject permitted.
94
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now retaining their size and shape. It is impossible
for us to ascertain how this notion has been begot-
ten. Only the most thoroughgoing analysis of ex-
periments purposefully and methodically performed
has enabled us to conjecture that inborn idiosyn-
cracies of the body have codperated to this end with
simple and crude experiences of a purely physical
character.

SENSATIONAL AND LoCATIVE QUALTIES.

An object seen or touched is distinguished not
only by a seunsational quality (as “red,” “rough,”
“cold,” etc.), but also by a locative quality (as “to
the left,” “above,” “before,” etc.). The sensational
quality may remain the same, while the locative
quality continuously changes; that is, the same sen-
suous object may move in space. Phenomena of this
kind being again and again induced by physico-phys-
ilogical circumstances, it is found that however va-
ried the accidental sensational qualities may be, the
same order of locative qualities invariably occurs, so
that the latter appear perforce as a fixed and perma-
nent system or register in which the sensational
qualities are entered and classified. Now, although
these qualities of sensation and locality can be ex-
cited only in conjunction with one another, and can
make their appearance only concomitantly, the im-
pression nevertheless easily arises that the more fa-
miliar system of locative qualities is given antece-
dently to the sensational qualities ( Kant).

Extended objects of vision and of touch consist
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of more or less distinguishable sensational qualities,
conjoined with adjacent distinguishable, contin-
uously graduated locative qualities. If such objects
move, particularly in the domain of our hands, we
perceive them to shrink or swell (in whole or in
part), or we perceive them to remain the same; in
other words, the contrasts characterizing their
bounding locative qualities change or remain con-
stant, In the latter case, we call the objects rigid.
By the recognition of permanency as coincident with
spatial displacement, the various constituents of our
intuition of space are rendered comparable with one
another,—at first in the physiological sense.. By the
comparison of different bodies with one another, by
the introduction of physical measures, this compar-
ability is rendered quantitative and more exact, and
so transcends the limitations of individuality. Thus,
in the place of an individual and non-transmittable
intuition of space are substituted the universal con-
cepts of geometry, which hold good for all men.
Each person has his own individual intuitive space;
geomejric space is common to all. Between the
space of intuition and metric space, which contains
physical experiences, we must distinguish sharply.

RieMANN’S PrYSICAL CONCEPTION OF GEOMETRY.

The need of a thoroughgoing epistemological
elucidation of the foundations of geometry induced
Riemann,® about the middle of the century just

1Ueber die Hypothesen, welche der Geometrie zu Grunde
liegen. Gottingen, 1867.
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closed, to propound the question of the nature of
space; the attention of Gauss, Lobachévski, and
Bolyai having before been drawn to the empirically
hypothetical character of certain of the fundamental
assumptions of geometry. In characterizing space
as a special case of a multiply-extended “magni-
tude,” Riemann had doubtless in mind some geo-
metric construct, which may in the same manner be
imagined to fill all space,—for example, the system
of Cartesian co-ordinates. Riemann further asserts
that “the propositions of geometry cannot be deduced
from general conceptions of magnitude, but that the
peculiar properties by which space is distinguished
from other conceivable triply-extended magnitudes
can be derived from experience only....These
facts, like all facts, are in no wise necessary, but
possess empirical certitude only,—they are hypo-
theses.” Like the fundamental assumptions of
every natural science, so also, on Riemann’s theory,
the fundamental assumptions of geometry, to which
experience has led us, are merely idealizations of
experience, ;

In this physical conception of geometry, Riemann
takes his stand on the same ground as his master
Gauss, who once expressed the conviction that it
was impossible to establish the foundations of
geometry entirely a priori,' and who further as-
serted that “we must in humility confess that if
number is exclusively a product of the mind, space

' Brief von Gauss an Bessel, 27. Jannar 1829.
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possesses in addition a reality outside of our mind,
of which reality we cannot fully dictate a priori the
laws.”*

ANALOGIES OF SpaceE witTH COLORs.

Every inquirer knows that the knowledge of an
object he is investigating is materially augmented
by comparing it with related objects. Quite natur-
ally therefore Riemann looks about him for objects
which offer some analogy to space. Geometric
space is defined by him as a triply-extended contin-
uous manifold, the elements of which are the points
determined by every possible three co-ordinate val-
ues. He finds that “the places of sensuous objects
and colors are probably the only concepts [sic]
whose modes of determination form a multiply-ex-
tended manifold.” To this analogy others were add-
ed by Riemann’s successors and elaborated by them,
but not always, I think, felicitously.?

! Brief von Gauss an Bessel. April 9, 1830.—The phrase,
‘‘Number is a product or creation of the mind,’’ has since
been repeatedly used by mathematicians. Unbiased psycho-
logical observation informs us, however, that the formation of
the concept of number is just as much initiated by experience
as the formation of geometric concepts. We must at least
know that virtually equivalent objects exist in multiple and
unalterable form before concepts of number can originate.
Experiments in counting also play an important part in the de-
velopment of arithmetic.

2 When acoustic pitch, intensity, and timbre, when chromatic
tone, saturation, and luminous intensity are proposed as an-
alogues of the three dimensions of space, few persons will be
satisfied. T'imbdre; like chromatic tone, is dependent on several
variables. Hence, if the analogy has any meaning whatever,
several dimensions will be found fo correspond to timbre and
chromatic tone.
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Comparing sensation of space with semsation of
color, we discover that to the continuous series
“above and below,” “right and left,” “near and far,”
correspond the three sensational series of mixed col-
ors, black-white, red-green, blue-yellow. The sys-
tem of sensed (seen) places is a triple continuous
manifold like the system of color-sensations. The
objection which is raised against this analogy, viz.,
that in the first instance the three variations (di-
mensions) are homogeneous and interchangeable
with one another, while in the second instance they
are heterogeneous and not interchangeable, does not
hold when space-sensation is compared with color-
sensation. For from the psycho-physiological point
of view “right and left” as little permit of being
interchanged with “above and below” as do red
and green with black and white. It is only when
we compare geometric space with the system of col-
ors that the objection is apparently justified. But
there is still a great deal lacking to the establish-
ment of a complete analogy between the space of in-
tuition and the system of color-sensation. Whereas
nearly equal distances. in sensuous space are imme-
diately recognized as such, a like remark cannot be
made of differences of colors, and in this latter prov-
ince it is not possible to compare physiologically the
different portions with one another. And, further-
more, even if there be no difficulty, by resorting to
physical experience, in characterizing every color of
a system by three numbers, just as the places of
geometric space are characterized, and so in creat-
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ing a metric system similar to the latter, it will
nevertheless be difficult to find anything which cor-
responds to distance or volume and which has an
analogous physical significance for the system of
colors.

ANALOGIES OF SPACE WITH TIME.

There is always an arbitrary element in analogies,
for they are concerned with the coincidences to
which the attention is directed. But between space
and time doubtless the analogy is fully conceded,
whether we use the word in its physiological or its
physical sense. In both meanings of the term, space
is a triple, and time a simple, continuous manifold.
A physical event, precisely determined by its condi-
tions, of moderate, not tco long or too short dura-
tion, seems to us physiologically, now and at any
other time, as having the same duration. Physical
events which at any time are temporarily coinci-
dent are likewise temporarily coincident at any other
time. Temporal congruence exists, therefore, just
as much as does spatial congruence. Unalterable
physical temporal objects exist, therefore, as much
as unalterable physical spatial objects (rigid bodies).
There is not only spatial but there is also temporal
substantiality. Galileo employed corporeal phenom-
ena, like the beats of the pulse and breathing, for the
determination of time, just as anciently the hands
and the feet were employed for the estimation of
space.
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The simple manifold of tonal sensations is like-
wise analogous to the triple manifold of space-sen-
sations.! The comparability of the different parts
of the system of tonal sensations is given by the
possibility of directly sensing the musical interval.
A metric system corresponding to geometric space
is most easily obtained by expressing tonal pitch in
terms of the logarithm of the rate of vibration. For
the constant musical interval we have here the ex-
pression,

’

n
log -~ = log W’ —logn=1log—log v’ = const,

where #’, n denote the rates, and +’, = the periods of
vibration of the higher and the lower note respec-
tively. The difference between the logarithms here
represents the constancy of the length on displace-
ment. The unalterable, substantial physical object
which we sense as an interval is for the ear tempor-
ally determined, whereas the analogous object for
the senses of sight .and touch is spatially deter-
mined. Spatial measure seems to us simpler solely
because we have chosen for the fundamental meas-
ure of geometry distance itself, which remains un-
alterable for sensation, whereas in the province of
tones we have reached our measure only by a long
and circuitous physical route.

! My attention was drawn to this analogy in 1863 by my
study of the organ of hearing, and I have since them further
developed the subject. See my Analysis of the Sensations.
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DIFFERENCES OF THE ANALOGIES.

Having dwelt on the coincidences of our analo-
gized constructs, it now remains for us to emphasize
their differences. Conceiving time and space as sen-
sational manifolds, the objects whose motions are
made perceptible by the alteration of temporal and
spatial qualities are characterized by other sensa-
tional qualities, as colors, tactual sensations, tones,
etc. If the system of tonal sensations is regarded
as analogous to the optical space of sense, the
curious fact results that in the first province the
spatial qualities occur alone, unaccompanied by sen-
sational qualities corresponding to the objects, just
as if one could see a place or motion without seeing
the object which occupied this place or executed this
motion. Conceiving spatial qualities as organic
sensations which can be excited only concomitantly
with sensational qualities,* the analogy in question
does not appear particularly attractive. For the
manifold-mathematician, essentially the same case
is presented whether an object of definite color
moves continuously in optical space, or whether an
object spatially fixed passes continuously through
the manifold of colors. But for the physiologist
and psychologist the two cases are widely different,
not only because of what was above adduced, but
also, and speciﬁcaflﬁly, because of the fact that the
system of spatial qualities is very familiar to us,
whereas we can represent to ourselves a system of

1Compare supra, page 14 et seq.
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color-sensations only laboriously and artificially, by
means of scientific devices. Color appears to us as
an excerpted member of a manifold the arrange-
ment of which is in no wise familiar to us.

TuE EXTENSION OF SYMBOLS.

The manifolds here analogized with space are,
like the color-system, also threefold, or they repre-
sent a smaller number of variations. Space con-
tains surfaces as twofold and lines as onefold mani-
folds, to which the mathematician, generalizing,
might also add points as zero-fold manifolds. There
is also no difficulty in conceiving analytical mechan-
ics, with Lagrange, as an analytical geometry of
four dimensions, time being considered the fourth
co-ordinate. In fact, the equations of analytical
geometry, in their conformity to the co-ordinates,
suggest very clearly to the mathematician the ex-
tension of these considerations to an unlimited
larger number of dimensions. Similarly, physics
would be justified in considering an extended mate-
rial continuum, to each’ point of which a tempera-
ture, a magnetic, electric, and gravitational poten-
tial were ascribed, as a portion or section of a multi-
ple manifold. Employment with such symbolic
representations must, as the history of science
shows us, by no means be regarded as entirely un-
fruitful. Symbols which initially appear to have no
meaning whatever, acquire gradually, after subjec-
tion to what might be called intellectual experi-
menting, a lucid and precise significance. Think
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only of the negative, fractional, and variable expo-
nents of algebra, or of the cases in which important
and vital extensions of ideas have taken place which
otherwise would have been totally lost or have made
their appearance at a much later date. Think only
of the so-called imaginary quantities with which
mathematicians long operated, and from which they
even obtained important results ere they were in a
position to assign to them a perfectly determinate
and withal visualizable meaning. But symbolic rep-
resentation has likewise the disadvantage that the
object represented is very easily lost sight of, and
that operations are continued with the symbols to
which frequently no object whatever corresponds.

*As a young student I was always irritated with symbolie
deductions of which the meaning was not perfeetly clear and
palpable. But historical studies are well adapted to eradicat-
ing the tendency to mysticism which is so easily fostered and
bred by the somnolent employment of these methods, in that
they clearly show the heuristic function of them and at the
same time elucidate epistemologically the points wherein they
furnish their essential assistance. A symbolical representation
of a method of calculation has the same significance for a
mathematician as a model or a visualisable working hypothesis
has for the physicist. The symbol, the model, the hypothesis
runs parallel with the thing to be represented. But the paral-
lelism may extend farther, or be extended farther, than was
originally intended on the adoption of the symbol, Since the
thing represented and the device representing are after all
different, what would be concealed in the one is apparent in
the other. It is scarcely possible to light directly on an opera-

tion like a%_ But operatirg with such symbols leads us to

attribute to them an intelligible meaning. Mathematicians
worked many years with expressions like cos z X V — 1sin g
and with exponentials having imaginary exponents before
in the struggle for adapting concept and symbol to each other
the idea that had been géfminating for a century finally found
expression in 1806 in Argand, viz., that a relationship could be
conceived between magnitude and direction by which vV —1
was represented as a mean direction-proportional between + 1
and — 1.
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ANOTHER VIEW oF RIEMANN’S MANIFOLD.

It is easy to rise to Riemann’s conception of an
n-fold continuous manifold, and it is even possible
to realize and visualize portions of such a manifold.
Let a,, a5, 04,0,.... cpyy be any elements whatso-
ever (sensational qualities, substances, etc.). If we
conceive these elements intermingled in all their
possible relations, then each single composite will be
represented by the expression

a0+ ayd, Fagas -+ ... Cp11pt1— 1,
where the coefficients « satisfy the equation
a1+a2+a3+ ...... Cpypy = 1.

Inasmuch, therefore, as # of these coefficients « may
be selected at pleasure, the totality of the composites
of the #» 4+ 1 elements will represent an »n-fold con-
tinuous manifold.* As co-ordinates of a point of
this manifold, we may regard expressions of the
form

am am a

@ Of f ( ?), for example, log(-af’).

But in choosing definitipn of distance, or that of
any other notion analogous to geometrical concepts,
we shall have to proceed very arbitrarily unless ex-
periences of the manifold in question inform us that
certain metric concepts have a real meaning, and are
therefore to be preferred, as is the case for geomet-

tIf the six fundamental color-sensations were totally inde-
pendent of one another, the system of color-semsations would
represent a five-fold manifold. Since they are contrasted in
pairs, the system corresponds to a three-fold manifold.
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ric space with the definition* derived from the volum-
inal constancy of bodies for the element of distances
ds*=dx?* + dy* + d2*, and as is likewise the case
for sensations of tone with the logarithmic expres-
sion mentioned above. In the majority of cases
where such an artificial construction is involved,
fixed points of this sort are wanting, and the entire
consideration is therefore an ideal one. The anal-
ogy with space loses thereby in completeness, fruit-
fulness, and stimulating power.

MEeASURE OF CURVATURE, AND CURVATURE OF
SPACE.

In still another direction Riemann elaborated
ideas of Gauss; beginning with the latter’s investi-
gations concerning curved surfaces. Gauss’s meas-
ure of the curvature® of a surface at any point is

given by the expression k& =£ where ds is an ele-

ment of the surface and de is the superficial element
of the unit-sphere, the limiting radii of which are
parallel to the limiting normals of the element ds.
This measure of curvature may also be expressed in
I
P1P2

radii of curvature of the surface at the point in
question. Of special interest are the surfaces whose
measure of curvature for all points has the same

the form k= where pup: are the principal

’

1 Comp. supra, p. 74%et passim.

2 Disquisitiones generales circa superficies curvas, 1827.
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value,—the surfaces of constant curvature. Con-
ceiving the surfaces as infinitely thin, non-distensi-
ble, but flexible bodies, it will be found that sur-
faces of like curvature may be made to coincide by
bending,—as for example a plane sheet of paper
wrapped round a cylinder or cone,—but cannot be
made to coincide with the surface of a sphere. Dur-
ing such deformation, nay, even on crumpling, the
proportional parts of figures drawn in the surface
remain invariable as to lengths and angles, provided
we do not go out of the two dimensions of the sur-
face in our measurements. Conversely, likewise,
the curvature of the surface does not depend on its
conformation in the third dimension of space, but
solely upon its interior proportionalities. Riemann,
now, conceived the idea of generalizing the notion
of measure of curvature and applying it to spaces
of three or more dimensions. Conformably there-
to, he assumes that finite unbounded spaces of con-
stant positive curvature are possible, corresponding
to the unbounded but finite two-dimensional surface
of the sphere, while what we commonly take to be
infinite space would correspond to the unlimited
plane of curvature zero, and similarly a third spe-
cies of space would correspond to surfaces of neg-
ative curvature. Just as the figures drawn upon a
surface of determinate constant curvature can be
displaced without distortion upon this surface only
(for example, a spherical figure on the surface of
its sphere only, or a plane figure in its plane only),
so should analogous conditions necessarily hold for
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spatial figures and rigid bodies. The latter are
capable of free motion only in spaces of constant
curvature, as Helmholtz! has shown at length. Just
as the shortest lines of a plane are infinite, but on
the surface of a sphere occur as great circles of defi-
nite finite length, closed and reverting into them-
selves, so Riemann conceived in the three-dimen-
sional space of positive curvature analogues of the
straight line and the plane as finite but unbounded.
But there is a difficulty here. If we possessed the
notion of a measure of curvature for a four-dimen-
sional space, the transition to the special case of
three-dimensional space could be easily and ration-
ally executed; but the passage from the special to
the more general case involves a certain arbitrari-
ness, and, as is natural, different inquirers have
adopted here different courses? (Riemann and Kro-
necker). The very fact that for a one-dimensional
space (a curved line of any sort) a measure of curv-
ature does not exist having the significance of an in-
terior measure, and that such a measure first occurs
in connection with two-dimensional figures, forces
upon us the question whether and to what extent
something analogous has any meaning for three-
dimensional figures. Are we not subject here to an
illusion, in that we operate with symbols to which
perhaps nothing real corresponds, or at least noth-

1¢Ueher die Thatsachen, welche der Geometrie zu Grunde
liegen.”’ Géttinger N ?chrichten, 1868, June 3.

2 Compare, for exainple, Kronecker, ‘‘Ueber Systeme von
Functionen mehrerer Variablen.’’ Ber. d. Berliner Akademie,
1869.
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ing representable to the senses, by means of which
we can verify and rectify our ideas?

Thus. were reached the highest and most univer-
sal notions regarding space and its relations to
a1.1a1.ogous manifolds which resulted from the con-
v_1ct10n of Gauss concerning the empirical founda-
tions of geometry. But the genesis of this convic-
tion has a preliminary history of two thousand
years, the chief phenomena of which we can perhaps

be’gter survey from the height which we have now
gained.

THE EARLY DISCOVERIES IN (GEOMETRY.

'.l“he unsophisticated men, who, rule in hand, ac-
q}11red our first geometric knowledge, held toy the
simplest bodily objects (figures) : the straight line
the plane, the circle, etc., and investigated, by means’
of forms which could be conceived as combinations
of these simple figures, the connection of their
measurements. It could not have escaped them that
the mobility of a body is restricted when one and
.then two of its points are fixed, and that finally it
is alto.gether checked by fixing three of its points
Granting that rotation about an axis (two points)'
or rotation about a point in a plane, as likewise dis:
placement with constant contact of two points with
a straight line and of a third point with a fixed
plane laid through that straight line,—granting that
these facts were separately observed, it would be
known how to distinguish between pure rotation,
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pure displacement, and the motion compounded of
these two independent motions. The first geometry
was of course not based on purely metric notions,
but made many considerable concessions to the phy-
siological factors of sense.® Thus is the appearance
explained of two different fundamental measures:
the (straight) length and the angle (circular meas-
ure). The straight line was conceived as a rigid
mobile body (measuring-rod), and the angle as the

Fig. 14.

rotation of a straight line with respect to another
(measured by the arc so described). Doubtless no
one ever demanded special proof for the equality of
angles at the origin described by the same rotation.
Additional propositions concerning angles resulted
quite easily. Turning the line b about its intersec-
tion with ¢ so as to describe the angle a (Fig. 14),
and after coincidence with ¢ turning it again about

Comp. supra, p. 83.
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its intersection with q till it coincides with a and so
describes the angle B, we shall have rotated & from
its initial to its final position a through the angle p
in the same sense. Therefore the exterior angle p
=a+ B, and since u+y=2R, also a + B+ y=
2R. Displacing (Fig. 15) the rigid system of lines
a, b, ¢, which intersect at 1, within their plane to the
position 2, the line a always remaining within itself,
no alteration of angles will be caused by the mere

a
a

3
ﬁ\!ﬂ\a
i 7, iy S

g

1.

1
w
¢

Fig. 15.

motion. The sum of the interior angles of the tri-
angle 1 2 3 so produced is evidently 2 R. The same
consideration also throws into relief the properties

*C. R. Kosack, Beitrige zu einer systematischen Entwickel-
ung der Geometrie aus der Anschauung, Nordhausen, 1852, I
was able to see this programme through the kindness of Prof.
F. Pietzker of Nordhausen. Similar simple deductions are
found in Bernhard Recker’s Leitfaden fiir den ersten Unter-
richt in der Geometrie, Frankfort on the Main, 1845, and in
the same author’s treatise Ueber die Methoden des geo-
metrischen Unterrichts, Frankfort, 1845, 1 gained access to
the first-named book through the kindness of Dr. M. Schuster
of Oldenburg.
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of parallel lines. Doubts as to whether successive
rotation about several points is equivalent to rota-
tion about ome point, whether pure displacement is
at all possible,—which are justified when a surface
of curvature differing from zero is substituted for
the Euclidean plane,—could never have arisen in
the mind of the ingenuous and delighted discoverer
of these relations, at the period we are considering.
The study of the movement of rigid bodies, which
Euclid studiously avoids and only covertly intro-
duces in his principle of congruence, is to this day
the device best adapted to elementary instruction in
geometry. An idea is best made the possession of
the learner by the method by which it has been
found.

DepucTivE GEOMETRY.

This sound and naive conception of things van-
ished and the treatment of geometry underwent es-
sential modifications when it became the subject of

» professional and scholarly contemplation. The ob-
ject now was to systematize the knowledge of this
province for purposes of individual survey, to sepa-
rate what was directly cognizable from what was
deducible and deduced, and to throw into distinct
relief the thread of deduction. For the purpose of
instruction the simplest principles, those most easily
gained and apparently free from doubt and contra-
diction, are placed at the beginning, and the remain-
der based upon them. Efforts were made to reduce
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these initial principles to a minimum, as is observ-
able in the system of Euclid. Through this en-
deavor to support every notion by another, and to
leave to direct knowledge the least possible scope,
geometry was gradually detached from the empiri-
cal soil out of which it had sprung. People accus-

tomed themselves to regard the derived truths as of
higher dignity than the directly perceived truths,
and ultimately came to demand proofs for proposi-
tions which no one ever seriously doubted. Thus
arose,—as tradition would have it, to check the on-
slaughts of the Sophists,—the system of Euclid with
its logical perfection and finish. Yet not only were
the ways of research designedly concealed by this
artificial method of stringing propositions on an
arbitrarily chosen thread of deduction, but the var-
ied organic connection between the principles of
geometry was quite lost sight of.* This system was
more fitted to produce narrow-minded and sterile
pedants than fruitful, productive investigators.

*Euclid’s system fascinated thinkers by its logical excel-
lences, and its drawbacks were overlooked amid this admiration,
Great inquirers, even in recent times, have been misled into
following Euclid’s example in the presentation of the results
of their inquiries, and so into actually concealing their methods
of investigation, to the great detriment of sciemce. But sci
ence is not a feat of legal casuistry. Scientific presentation
aims so to expound all the grounds of an idea so that it can
at any time be thoroughly examined as to its tenability and
power. The learner is not to be led half-blindfolded. There
therefore arose in Germany among philosophers and education-
ists a healthy reaction, which proceeded mainly from Herbart,
Schopenhauer, and Trendelenburg, The effort was made to
introduce greater perspicuity, more genetic methods, and logi-
cally more lucid demonstrations into geometry.
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And these conditions were not improved when
scholasticism, with its preference for slavish com-
ment on the intellectual products of others, culti-
vated in thinkers scarcely any sensitiveness for the
rationality of their fundamental assumptions and
by way of compensation fostered in them an exag-
gerated respect for the logical form of their deduc-
tions. The entire period from Euclid to Gauss suf-
fered more or less from this affection of mind.

EvucLip’s FIFTH POSTULATE.

Among the propositions on which Euclid based
his system is found the so-called Fifth Postulate
(also called the Eleventh Axiom and by some the
Twelfth) : “If a straight line meet two straight
lines, so as to make the two interior angles on the
same side of it taken together less than two right
angles, these straight lines being continually pro-
duced, shall at length meet upon that side on which
are the angles which are less than two right an-
gles.” Epnclid easily proves that if a straight line
falling on two other straight lines makes the alter-
nate angles equal to each other, the two straight
lines will not meet but are parallel. But for the
proof of the converse, that parallels make equal
alternate angles with every straight line falling on
them, he is obliged to resort to the Fifth Postulate.
This converse is equivalegt to the proposition that
only ome parallel to a straight line can be drawn
through a point. Further, by the fact that with the
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aid of this converse it can be proved that the sum
of the angles of a triangle is equal to two right an-
gles and that from this last theorem again the first
follows, the relationship between the propositions in
question is rendered distinct and the fundamental
significance of the Fifth Postulate for Euclidean
geometry is made plain.

The intersection of slowly converging lines lies
without the province of construction and observa-
tion. It is therefore intelligible that in view of the
great importance of the assertion contained in the
Fifth Postulate the successors of Euclid, habituated
by him to rigor, should, even in ancient times, have
strained every nerve to demonstrate this postulate,
or to replace it by some immediately obvious propo-
sition, Numberless futile efforts were made from
Euclid to Gauss, to deduce this Fifth Postulate from
the other Euclidean assumptions. It is a sublime
spectacle which these men offer: laboring for cen-
turies, from a sheer thirst for scientific elucidation,
in quest of the hidden sources of a truth which no
person of theory or of practice ever really doubted!
With eager curiosity we follow the pertinacious ut-
terances of the ethical power resident in this human
search for knowledge, and with gratification we
note how the inquirers gradually are led by their
failures to the perception that the true basis of
geometry is experience. We shall content ourselves
with a few examples.
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SACCHERI’S THEORY OF PARALLELS.

Among the inquirers notable for their contribu-
tions to the theory of parallels are the Italian Sac-
cheri and the German mathematician Lambert. In
order to render their mode of attack intelligible, we
will remark first that the existence of rectangles and
squares, which we fancy we constantly observe, can-
not be demonstrated without the aid of the Fifth
Postulate. Let us consider, for example, two con-
gruent isosceles triangles 4BC, DBC, having right
angles at 4 and D (Fig. 16), and let them be laid
together at their hypothenuses BC so as to form the

B D

===

Fig. 16.

equilateral quadrilateral ABCD; the first twenty-
seven propositions of Euclid do not suffice to deter-
mine the character and magnitude of the two equal
(right) angles at B and C. For measure of length
and measure of angle are fundamentally different
and directly not comparable; hence the first propo-
sitions regarding the connection of sides and angles
are qualitative only, and hence the imperative neces-
sity of a quantitative theorem regarding angles, like
that of the angle-sum. Be it further remarked that
theorems analégous to the twenty-seven planimetric
propositions of Euclid may be set up for the surface
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of a sphere and for surfaces of constant negative
curvature, and that in these cases the analogous
construction gives respectively obtuse and acute an-
gles at B and C.

Saccheri’s cardinal achievement was his form of
stating the problem.* If the Fifth Postulate is in-
volved in the remaining assumptions of Euclid,
then it will be possible to prove without its aid that
in the quadrilateral 4BCD (Fig. 17) having right
angles at 4 and B and AC = BD, the angles at C
and D likewise are right angles. And, on the other
hand, in this event, the assumption that ¢ and D

C ol D
y. | i B
Flg. 17.

are either obtuse or acute will lead to contradictions.
Saccheri, in other words, seeks to draw conclusions
from the hypothesis of the right, the obtuse, or the
acute angle. THe shows that each of these hypothe-
ses will hold in all cases if it be proved to hold in
one. It is needful to have only one triangle with

VIA

its angles £ 2R in order to demonstrate the univer-
sal validity of the hypothesis of the acute, the right,
or the obtuse angle. Notable is the fact that Sac-
cheri also adverts to physico-geometrical experi-

1 Euclides ab omni naevo vindicatus. Milan, 1733. German

translation in Engel and Staeckel’s Die Theorie der Parallel-
linien. Leipsic, 1895.



118 SPACE AND GEOMETRY

ments which support the hypothesis of the right
angle. If a line CD (Fig. 17) join the two extremi-
ties of the equal perpendiculars erected on a straight
line AB, and the perpendicular dropped on 4B from
any point N of the first line, viz., NM, be equal to
CA = DB, then is the hypothesis of the right angle
demonstrated to be correct. Saccheri rightly does
not regard it as self-evident that the line which is
equidistant from another straight line is itself a
straight line. Think only of a circle parallel to a
great circle on a sphere which does not represent a

Fig. 18. Fig. 19.

shortest line on a sphere and the two faces of which
cannot be made congruent.

Other experimental proofs of the correctness of
the hypothesis of the right angle are the following.
If the angle in a semicircle (Fig. 18) is shown to be
a right angle, ¢« + 8==R, then is 2a 4+ 28 =2R,
the sum of the angles of the triangle ABC. If the
radius be subtended thrice in a semicircle and the
line joining the first and the fourth extremity pass
through the center, we shall have at C (Fig. 19)
3ea==2R, and consequently each of the three tri-
angles will hdve the angle-sum 2R. The existence
of equiangular triangles of different sizes (similar
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triangles) is likewise subject to experimental proof.
For (Fig. 20) if the angles at B and C give 8 4 8 +
y+ e==4R, so also is 4R the angle-sum of the
quadrilateral BCB’C’. Even Wallis' (1663) based
his proof of the Fifth Postulate on the assumption
of the existence of similar triangles, and a modern
geometer, Delbceuf, deduced from the assumption
of similitude the entire Euclidean geometry.

The hypothesis of the obtuse angle, Saccheri fan-

A

B:

Fig. 20.

cied he could easily refute. But the hypothesis of
the acute angle presented to him difficulties, and in
his quest for the expected contradictions he was car-
ried to the most far-reaching conclusions, which
Lobachévski and Bolyai subsequently rediscovered
by methods of their own, Ultimately he felt com-
pelled to reject the last-named hypothesis as incom-
patible with the nature of the straight line; for it

! Engel and Staeckel, loc. cit., p. 21 et seq.
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led to the assumption of different kinds of straight
lines, which met at infinity, that is, had there a com-
mon perpendicular. Saccheri did much in anticipa-
tion and promotion of the labors that were subse-
quently to elucidate these matters, but exhibited
withal toward the traditional views a certain bias.

LAMBERT'S INVESTIGATIONS.

Lambert’s treatise' is allied in method to that of
Saccheri, but it proceeds farther in its conclusions,
and gives evidence of a less constrained vision.
Lambert starts from the consideration of a quadri-
lateral with three right angles, and examines the
consequences that would follow from the assumption
that the fourth angle was right, obtuse, or acute.
The similarity of figures he finds to be incompatible
with the second and third assumptions. The case of
the obtuse angle, which requires the sum of the an-
gles of a triangle to exceed 2R, he discovers to be
realized in the geometry of spherical surfaces, in
which the difficulty of parallel lines entirely van-
ishes. This leads him to the conjecture that the
case of the acute angle, where the sum of the angles
of a triangle is less than 2R, might be realized on
the surface of a sphere of imaginary radius. The
amount of the departure of the angle-sum from 2R
is in both cases proportional to the area of the tri-
angle, as may be demonstrated by appropriately di-

Published in 1766. Engel and Staeckel, loc cit., p. 152 et
geq. )
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viding large triangles into small triangles, which on
diminution may be made to approach as near as wg
please to the angle-sum 2R. Lambert advanced
very closely in this conception to the point of view
of modern geometers. Admittedly a sphere of im-
aginary radius, V' — 1 is not a visualizable geo-
metric construct, but analytically it is a surface hav-
ing a negative constant Gaussian measure of curva-
ture. It is evident again from this example how
experimenting with symbols also may direct inquiry
to the right path, in periods where other points of
support are entirely lacking and where every help-
ful device must be esteemed at its worth.* Even
Gauss appears to have thought of a sphere of im-
aginary radius, as is obvious from his formula for
the circumference of a circle (Letter to Schumacher,
July 12, 1831). Yet in spite of all, Lambert actu-
ally fancied he had approached so near to the proof
of the Fifth Postulate that what was lacking could
be easily supplied.

ViEw oF GAUss.

We may turn now to the investigators whose
views possess a most radical significance for our
conception of geometry, but who announced their
opinion only briefly, by word of mouth or letter.
“Gauss regarded geometry merely as a logically con-
sistent system of constructs, with the theory of par-
allels placed at the pinnacle as an axiom; yet he had

! SBee note, p. 104,
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reached the conviction that this proposition could
not be proved, though it was known from experi-
ence,—for example, from the angles of the triangle
joining the Brocken, Hohenhagen, and Inselsberg,
—that it was approximately correct. But if this
axiom be not conceded, then, he contends, there re-
sults from its non-acceptance a different and entirely
independent geometry, which he had once investi-
gated and called by the name of the Anti-Euclidean
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geometry.” Such, according to Sartorius von Wal-
tershausen, was the view of Gauss.!

RESEARCHES OF SToLzZ.

Starting at this point, O. Stolz, in a small but
very instructive pamphlet,® sought to deduce the
principal propositions of the Euclidean geometry
from the purely observable facts of experience. We
shall reproduce here the most important point of
Stolz’s brochure. Let there be given (Fig. 21) one

! Gauss cum Ged(ichtn@s, Leipsie, 1856.

*¢¢Dag letzte Axiom der Geometrie,’’ Berichte des naturw.
medicin. Vereins zu Innsbruck, 1886, pp. 25-34.
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large triangle ABC having the angle-sum 2R. We
draw the perpendicular 4D on BC, complete the
figure by BAE © ABD and CAF ® ACD, and add
to the figure BCFAE the congruent figure CBHA'G.
We obtain thus a single rectangle, for the angles
E, F, G, H are right angles and those at A,C A,
B are straight angles (equal to 2R), the boundary
lines therefore straight lines and the opposite sides
equal. A rectangle can be divided into two congru-
ent rectangles by a perpendicular erected at the
middle point of one of its sides, and by continuing
this procedure the line of division may be brought

n ‘ - s led
P Q
.
\\-.
A — i B
Fig. 22.

to any point we please in the divided side. And the
same holds true of the other two opposite sides. It
is possible, therefore, from a given rectangle ABCD
(Fig. 22) to cut out a smaller AMPQ having sides
bearing any proportion to one another. The diag-
onal of this last divides it into two congruent right-
angled triangles, of which each, independently of
the ratio of the sides, has the angle-sum 2R, Every
oblique-angled triangle can by the drawing of a per-
pendicular be decomposed into right-angled trian-
gies, each of which can again be decomposed into
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right-angled triangles having smaller sides,—so
that 2R, therefore, results for the angle-sum of
every triangle if it holds true exactly of one. By the
aid of these propositions which repose on observa-
tion we conclude easily that the two opposite sides
of a rectangle (or of any so-called parallelogram)
are everywhere, no matter how far prolonged, the
same distance apart, that is, never intersect. They
have the properties of the Euclidean parallels, and
may be called and defined as such. It likewise fol-
lows, now, from the properties of triangles and rect-
angles, that two straight lines which are cut by a
third straight line so as to make the sum of the in-
terior angles on the same side of them less than two
right angles will meet on that side, but in either
direction from their point of intersection will move
indefinitely far away from each other. The straight
line therefore is infinite. What was a groundless
assertion stated as an axiom or an initial principle
may as mference have a sound meaning.

> (GEOMETRY AND Puvsics COMPARED.

Geometry, accordingly, consists of the application
of mathematics to experiences concerning space.
Like mathematical physics, it can become an exact
deductive science only on the condition of its repre-
senting the objects of experience by means of
schematizing and idealizing concepts. Just as me-
chanics can assert thé constancy of masses or reduce
the interactions between bodies to simple accelera-
tions only within the limits of errors of observation,
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so likevsise the existence of straight lines, planes, the
amount of the angle-sum, etc.,, can be maintained
only on a similar restriction. But just as physics
sometimes finds itself constrained to replace its ideal
assumptions by other more general ones, viz., to put
in the place of a constant acceleration of falling bod-
ies one dependent on the distance, instead of a con-
stant quantity of heat a variable quantity,—so a
similar procedure is permissible in geometry, when
it is demanded by the facts or is necessary tempor-
arily for scientific elucidation. And now the en-
deavors of Legendre, Lobachévski, and the two
Bolyais, the younger of whom was probably indi-
rectly inspired by Gauss, will appear in their right
light.

THE CONTRIBUTIONS OF LOBACHEVSKI AND
BoLyal

Of the labors of Schweickart and Taurinus, also
contemporaries of Gauss, we will not speak. Lo-
bachévski’'s works were the first to become known
to the thinking world and so productive of results
(1829). Very soon afterward the publication of
the younger Bolyai appeared (1833), which agreed
in all essential points with Lobachévski’s, departing
from it only in the form of its developments. Ac-
cording to the originals which have been made al-
most completely accessible to us in the beautiful
editions of Engel and Staeckel,’ it is permissible to

1 Urkunden eur Geschichte der nichteuklidischen Geometrie,
L. N. I. Lobatschefskij. Leipzig, 1899.
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assume that Lobachévski also undertook his inves-
tigations in the hope of becoming involved in con-
tradictions by the rejection of the Euclidean axiom.
But after he found himself mistaken in this expec-
tation, he had the ntelleciual courage to draw all
the consequences from this fact. Lobachévski gives
his conclusions in synthetic form. But we can
fairly well imagine the general analyzing considera-
tions that paved the way for the construction of his
geometry.

From a point lying outside a straight line g (Fig.
23) a perpendicular p is dropped and through the

Fig. 28.

same point in the plane pg a straight line 4 is drawn,
making with the perpendicular an acute angle s.
Making tentatively the assumption that g and 4 do
not meet but that on the slightest diminution of the
angle s they would meet, we are at once forced by
the homogeneity of space to the conclusion that a
second line k& having the same angle s similarly de-
ports itself on the other side of the perpendicular.
Hence all non-intersecting lines drawn through the
same point are situate between 4 and k. The latter
form the boundaries between the intersecting and
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non-intersecting lines and are called by Lobachév-
ski parallels.

In the Introduction to his New Elements of
Geometry (1835) Lobachévski proves himself a
thorough natural inquirer. No one would think of
attributing even to an ordinary man of sense the
crude view that the “parallel-angle” was very much
less than a right angle, when on slight prolongation
it could be distinctly seen that they would intersect.
The relations here considered admit of representa-
tion only in drawings that distort the true propor-
tions, and we have rather to picture to ourselves
that in the dimensions of the illustration the vari-
ation of s from a right angle is so small that A
and k are to the eye undistinguishably coincident.
Prolonging, now, the perpendicular p to a point be-
yond its intersection with k, and drawing through
its extremity a new line / parallel to s and therefore
parallel also to g, it follows that the parallel-angle
s” must necessarily be less than s, if # and / are not
again to fulfill the conditions of tie Euclidean case.
Continuing in the same manner, the prolongation of
the perpendicular and the drawing of parallels, we
obtain a parallel-angle that constantly decreases.
Considering, now, parallels which are more remote
and consequently converge more rapidly on the side
of convergence, we shall logically be compelled to
assume, not to be at variance with the preceding
supposition, that on approach or on the decrease of
the length of the perpendicular the parallel-angle
will again increase. The angle of parallelism,
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therefore, is an inverse function of the perpendicu-
lar p, and has been designated by Lobachévski by
Il (p). A group of parallels in a plane has the ar-
rangement shown schematically in Figure 24. They
all approach one another asymptotically toward the
side of their convergence. The homogeneity of
space requires that every “strip” between two paral-
lels can be made to coincide with every other strip
provided it be displaced the requisite distance in a
longitudinal direction.

e
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Fig. 24.

If a circle be imagined to increase indefinitely, its
radil will cease to intersect the moment the increas-
ing arcs reach the point where the convergence of
the radii corresponds to parallelism. The circle then
passes over into the so-called “boundary-line.” Sim-
ilarly the surface of a sphere, if it indefinitely in-
crease, will pass into what Lobachévski calls a
“boundary-swrface.” The boundary-lines bear a
relation to the bounflary-surface analogous to that
which a great circle bears to the surface of a sphere.
The geometry of the surface of a sphere is inde-
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pendent of the axiom of parallels. But since it can
be demonstrated that triangles formed from boun-
dary-lines on a boundary-surface no more exhibit
an excess of angle-sum than do finite triangles
on a sphere of infinite radius, consequently the
rules of the Euclidean geometry likewise hold
good for these boundary-triangles. To find points
of the boundary-line, we determine (Fig. 25)
in a bundle of parallels, ae, b8, ¢y, dd......
lying in a plane points a, b, ¢, d in each of these par-
allels so situated with respect to the point ¢ in ge

Fig. 25.
that £ eab= £ Bba, [ sac= [ yca, [ aad =
Ldda. . ... Owing to the sameness of the entire

construction, each of the parallels may be regarded
as the “axis” of the boundary line, which will gen-
erate, when revolved about this axis, the boundary-
surface. Likewise each of the parallels may be re-
garded as the axis of the boundary-surface. For
the same reason all boundary-lines and all boundary-
surfaces are congruent. The intersection of every
plane with the boundary-surface is a circle; it is a
boundary-line only when the cutting plane contains
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the axis. In the Euclidean geometry there is no
boundary-line, nor boundary-surface. The analo-
gues of them are here the straight line and the plane.
If no boundary-line exists, then necessarily must
any three points not in a straight line lie on a circle.
Hence the younger Bolyai was able to replace the
Euclidean axiom by this last postulate.

Let aa, bB, cy be a system of parallels, and ae,
a,61, 326;. .a system of boundary-lines, each of which
systems divides the other into equal parts (Fig. 25).
The ratio to each other of any two boundary-arcs
between the same parallels, e. g., the arcs ae=u
and a,e; =/, is dependent therefore solely on their
distance apart as,=x. We may put generally

x
LA, , where & is so chosen that e shall be the
base of the Naperian system of logarithms, In this
manner exponentials and by means of these hyper-
bolic functions are introduced. For the angle of

parallelism we obtain s= cot}ir(p) =e¢ %. If
p=o0,s=7F;if p= o, s=o0.

> An example will illustrate the relation of the Lo-
bachévskian to the Euclidean and spherical geom-
etries. For a rectilinear Lobachévskian triangle
having the sides @, b, ¢, and the angles 4, B, C, we
obtain, when C is a right angle,

sinh l‘_:= sinh%sin A,

Here sinh stands for the hyperbolic sine,
e’—e?

sinh ¥y = 2

Fia—

~

e e ————— -
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whereas sin & = ————
. x 2 x* X
or, smhx:l—-,+3—i+g—,+F+ ..... o

. x x 2 X
and smx=1—!—-3—!-+ﬁ—7!
Considering the relations sin(#¢) =1¢ (sinh #), or
sinh (#4) =1 sin #, involved in the foregoing form-
ulz, it will be seen that the above-given formula for
the Lobachévskian triangle passes over into the

. . .. a
formula holding for the spherical triangle, viz., sin %
= sin —; sin A, when ki is put in the place of %4 in

the former and % is considered as the radius of the
sphere, which in the usual formule assumes the
value unity. The re-transformation of the spherical
formula into the Lobachévskian by the same method
is obvious. If k be very great in comparison with
a and ¢, we may restrict ourselves to the first mem-
ber of the series for sinh or sin, obtaining in both

cases, —%:—;— sin 4 or a==csin A, the formula of

plane Euclidean geometry, which we may regard as
a limiting case of both the Lobachévskian and spher-
ical geometries for very large values of &, or for
k= o. It is likewise permissible to say that all
three geometries coincide in the domain of the infi-
nitely small.

'F. Engel, N. I. Lobatschefskij, Zwei geometrische Abhand-
lungen, Leipsie, 1899.
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THE DIFFERENT SYSTEMS OF GEOMETRY.

As we see, it is possible to construct a self-consist-
ent, non-contradictory system of geometry solely on
the assumption of the convergence of parallel lines.
True, there is not a single observation of the geomet-
rical facts accessible to us that speaks in favor of
this assumption, and admittedly the hypothesis is at
so great variance with our geometrical instinct as
easily to explain the attitude toward it of the earlier
inquirers like Saccheri and Lambert. Our imagina-
tion, dominated as it is by our modes of visualizing
and by the familiar Euclidean concepts, is competent
to grasp only piecemeal and gradually Lobachév-
ski’s views. We must suffer ourselves to be led here
rather by mathematical concepts than by sensuous
images derived from a single narrow portion of
space. But we must grant, nevertheless, that the
quantitative mathematical concepts by which we
through our own initiative and within a certain arbi-
trary scope represent the facts of geometrical expe-
rience, do not reproduce the latter with absolute ex-
actitude, Different ideas can express the facts with
the same exactness in the domain accessible to ob-
servation. The facts must hence be carefully dis-
tinguished from the infellectual constructs the for-
mation of which they suggested. The latter—con-
cepts—must be consistent with observation, and
must in addition be logically in accord with one an-
other. Now thesed4wo requirements can be fulfilled

___.-h..—...L-.‘—:.._M_.h_A,__.__..__l__,_- S 2l
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in more than one manner, and hence the different

systems of geometry.

Manifestly the labors of Lobachévski were the
outcome of intense and protracted mental effort,
and it may be surmised that he first gained a clear
conception of his system from general considera-
tions and by analytic (algebraic) methods before he
was able to present it synthetically. Expositions in
this cumbersome Euclidean form are by no means
alluring, and it is possibly due mainly to this fact
that the significance of Lobachévski’s and Bolyai’s
labors received such tardy recognition.

Lobachévski developed only the consequences of
the modification of Euclid’s Fifth Postulate. But if
we abandon the Euclidean assertion that ‘“‘two
straight lines cannot enclose a space,” we shall ob-
tain a companion-piece to the Lobachévskian geom-
etry. Restricted to a surface, it is the geometry of
the surface of a sphere. In place of the Euclidean
straight lines we have great circles, all of which
intersect twice and of which each pair encloses two
spherical lunes. There are therefore no parallels.
Riemann first intimated the possibility of an analo-
gous geometry for three-dimensional space (of
positive curvature),—a conception that does not ap-
pear to have occurred even to Gauss, possibly owing
to his predilection for infinity. And Helmholtz,*
who continued the researches of Riemann physically,
neglected in his turn, in his first publication, the de-

1¢¢Ueber die thatsiichlichen Grundlagen der Geometrie,’’
Wissensch. Abhandl., 1866. IL, p. 610 et seq.
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velopment of the Lobachévskian case of a space of
negative curvature (with an imaginary parameter
k). The consideration of this case is in point of
fact more obvious to the mathematician than it is to
the physicist. Helmholtz treats in the publication
mentioned only the Euclidean case of the curvature
zero and Riemann’s space of positive curvature.

APPLICABILITY OF THE DIFFERENT SYSTEMS TO
REALITY.

We are able, accordingly, to represent the facts
of spatial observation with all possible precision by
both the Euclidean geometry and the geometries of
Lobachévski and Riemann, provided in the two lat-
ter cases we take the parameter k large enough.
Physicists have as yet found no reason for depart-
ing from the assumption £= » of the Euclidean
geometry. It has been their practice, the result of
long and tried experience, to adhere steadfastly to
the simplest assumptions until the facts forced their
complication or modification. This accords likewise
with the attitude of all great mathematicians to-
ward applied geometry. The deportment of phys-
icists and mathematicians toward these ques-
tions is in the main different, but this is
explained by the circumstance that for the
former class of inquirers the physical facts are of
most significance, geometry being for them merely
a convenient implement of investigation, while for
the latter class these very questions are the main
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material of research, and of greatest technical and
particularly epistemological interest. Supposing a
mathematician to have modified tentatively the sim-
plest and most immediate assumptions of our geo-
metrical experience, and supposing his attempt to
have been productive of fresh insight, certainly
nothing is more natural than that these researches
should be prosecuted farther from a purely mathe-
matical interest. Analogues of the geometry we
are familiar with, are constructed on broader and
more general assumptions for any number of di-
mensions, with no pretension of being regarded as
more than intellectual scientific experiments and
with no idea of being applied to reality. In sup-
port of my remark it will be sufficient to advert to
the advances made in mathematics by Clifford,
Klein, Lie, and others. Seldom have thinkers be-
come so absorbed in revery, or so far estranged from
reality, as to imagine for our space a number of
dimensions exceeding the three of the given space
of sense, or to conceive of representing that space
by any geometry that departs appreciably from the
Euclidean. Gauss, Lobachévski, Bolyai, and Rie-
mann were perfectly clear on this point, and cannot
certainly be held responsible for the grotesque fic-
tions which were subsequently constructed in this
domain.

It little accords with the principles of a physicist
to make suppositions regarding the deportment of
geometrical constructs in infinity and in non-acces-
sible places, then subsequently to compare them
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with our immediate experience and adapt them to
it. He prefers, like Stolz, to regard what is directly
given as the source of his ideas, which he likewise
considers applicable to what is inaccessible until
obliged to change them. But he too may be ex-
tremely grateful for the discovery that there exist
several sufficing geometries, that we can make shift
also with a finite space, etc.,—grateful in short, for
the abolition of certain comventional barriers of
thought.

If we lived on the surface of a planet with a tur-
bid, opaque atmosphere and if, on the supposition
that the surface of the earth was a plane and our
only instruments were square and chain, we were
to undertake geodetic measurements; then the in-
crease in the excess of the angle-sum of large tri-
angles would soon compel us to substitute a spher-
ometry for our planimetry. The possibility of an-
alogous experiences in three-dimensional space the
physicist cannot as a matter of principle reject, al-
though the phenomena that would compel the ac-
ceptance of a Lobachévskian or a Riemannian ge-
ometry would present so odd a contrast with those
to which we have been hitherto accustomed, that no
one will regard their actual occurrence as probable.

The question whether a given physical object is
a straight line or the arc of a circle is not properly
formulated. A stretched chord or a ray of light is
certainly neither the one nor the other. The ques-
tion is simply whether the object so spatially reacts
that it conforms better to the one concept than to
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the other, and whether with the exactitude which is
sufficient for us and obtainable by us it conforms at
all to any geometric concept. Excluding the latter
case, the question arises, whether we can in practice
remove, or at least in thought determine and make
allowance for, the deviation from the straight line
or circle, in other words, correct the result of the
measurement. But we are dependent always, in
practical measurements, on the comparison of phys-
ical objects. If on direct investigation these coin-
cided with the geometric concepts to the highest at-
tainable point of accuracy, but the indirect results
of the measurement deviated more from the theory
than the consideration of all possible errors per-
mitted, then certainly we should be obliged to
change our physico-metric notions. The physicist
will do well to await the occurrence of such a situa-
tion, while in the meantime the mathematician may
be allowed full and free scope for his speculations.

TaE CoNncEPTS OF MATHEMATICS AND PHYSICS.

Of all the concepts which the natural inquirer
employs, the simplest are the concepts of space and
time. Spatial and temporal objects conforming to
his conceptual constructs can be framed with great
exactness. Nearly every observable deviation can
be eliminated. We can imagine any spatial or tem-
poral construct realized without doing violence to
any fact. The other physical properties of bodies
are so intimately interconnected that in their case
arbitrary fictions are subjected to narrow restric-
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tions by the facts. A perfect gas, a perfect fluid, a
perfectly elastic body does not exist; the physicist
knows that his fictions conform only approximately
and by arbitrary simplifications to the facts; he is
perfectly aware of the deviation, which cannot be re-
moved. We can conceive a sphere, a plane, etc.,
constructed with unlimited exaciness, without run-
ning counter to any fact. Hence, when any new
physical fact occurs which renders a modification of
our concepts necessary, the physicist always prefers
to sacrifice the less perfect concepts of physics rather
than the simpler, more perfect, and more lasting
concepts of geometry, which form the solidest
foundation of all his theories.

But the physicist can derive in another direction
substantial assistance from the labors of geometers.
Our geometry refers always to objects of sensuous
experience. But the moment we begin to operate
with mere things of thought like atoms and mole-
cules, which from their very nature can never be
made the objects of sensuous contemplation, we are
under no obligation whatever to think of them as
s,tanding in spatial relationships which are peculiar
to the Euclidean three-dimensional space of our sen-
suous experience. This may be recommended to the
special attention of thinkers who deem atomistic
speculations indispensable.*

*While still an upholder of the atomic theory, I sought to
explain the line-spectsa of gases by the vibrations of the atomic
constituents of a gas-molecule with respect to another. The
difficulties which I here emcountered suggested to me (1863)
the idea that non-semsuous things did not necessarily have to
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THE RELATIVITY OF ALL SPATIAL RELATIONS.

Let us go back in thought to the origin of geom-
etry in the practical needs of life. The recognition
of the spatial substantiality and spatial invariability
of spatial objects in spite of their movements is a
biological necessity for human beings, for spatial
quantity is related directly to the quantitative satis-
faction of our needs. When knowledge of this sort
is not sufficiently provided for by our physiological
organization, we employ our hands and feet for
comparing the spatial objects. When we begin to
compare bodies with one another, we enter the
domain of physics, whether we employ our hands
or an artificial measure. All physical determinations
are relative. Consequently, likewise all geomet-
rical determinations possess validity only relatively
to the measure. The concept of measurement is
a concept of relation, which contains nothing not
contained in the measure. In geometry we sim-
ply assume that the measure will always and every-
where coincide with that with which it has at
some other time and in some other place coincided.
But this assumption is determinative of nothing con-

be pictured in our sensuous space of three dimensions. In this
way I also lighted upon analogues of spaces of different num-
bers of dimensions. The collateral study of various physio-
logieal manifolds (see footnote on page 98 of this book) led
me to the problems discussed in the conclusion of this paper.
The notion of finite spaces, convergi.nf parallels, ete.,, which
can come only from a historical study of geometry, was at that
time remote from me. I believe that my erities would have
done well had they not overlooked the italicised paragraph.
For details see the notes to my Erhaltung der Arbeit, Prague,
1872,
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cerning the measure. In place of spatial physiolog-
ical equality is substituted an altogether differently
defined physical equality, which must not be con-
founded with the former, no more than the indica-
tions of a thermometer are to be identified with the
sensation of heat. The practical geometer, it is true,
determines the dilatation of a heated measure, by
means of a measure kept at a constant temperature,
and takes account of the fact that the relation of con-
gruence in question is disturbed by this non-spatial
physical circumstance. But to the pure theory of
space all assumptions regarding the measure are for-
eign. Simply the physiologically created habit of
regarding the measure as invariable is tacitly but un-
justifiably retained. It would be quite superfluous
and meaningless to assume that the measure, and
therefore bodies generally, suffered alterations on
displacement in space, or that they remained un-
changed on such displacement,—a fact which in
its turn could only be determined by the use of a
new measure. The relativity of all spatial relations
is made manifest by these considerations.

INTRODUCTION OF THE NOTION OF NUMBER.

If the criterion of spatial equality is substantially
modified by the introduction of measure, it is sub-
jected to a still further modification, or intensifica-
tion, by the introduction of the notion of number
into geometry. There is nicety of distinction gained
by this introduction which the idea of congruence
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alone could never have attained. The application
of arithmetic to geometry leads to the notion of in-
commensurability and irrationality. Our geometric
concepts therefore contain adscititious elements not
intrinsic to space; they represent space with a cer-
tain latitude, and, arbitrarily also, with greater pre-
cision than spatial observation alone could possibly
ever realize. This imperfect contact between fact
and concept explains the possibility of different sys-
tems of geometry.*

SIGNIFICANCE OF THE METAGEOMETRIC MOVE-
MENT.

The entire movement which led to the transforma-
tion of our ideas of geometry must be characterized
as a sound and healthful one. This movement,
which began centuries ago but is now greatly inten-
sified, is not to be looked upon as having tem-linated.
On the contrary, we are quite justified in the ex-
pectation that it will long continue, and redound not
only to the great advancement of mathematics and
geometry, especially in an epistemological regard,
but also to that of the other sciences. This move-
ment was, it is true, powerfully stimulated by a few
emll?ent men, but it sprang, nevertheless, not from
an individual, but from a general need. This
will be seen from the difference in the pro-

*It would be too much to expect of matte i
realize all the atomistic fanta:igs of the ph;siz?sa;:'.; 1%:11(;1(1)1()(1
Bpace, as an ol_)Ject of experience, can hardly be expect’ed to,
satisfy all the ideas of the mathematician, though there be no
doubt whatever as to the general value of their investigations.



142 SPACE AND GEOMETRY

fessions of the men who have taken part in it. Not
only the mathematician, but also the philosopher
and the educationist, have made considerable contri-
butions to it. So, too, the methods pursued by the
different inquirers are not unrelated. Ideas which
Leibnitz' uttered recur in slightly altered form in
Fourier,® Lobachévski, Bolyai, and H. Erb.® The
philosopher Ueberweg,* closely approaching in his
opposition to Kant the views of the psychologist
Beneke,® and in his geometrical ideas starting from
Erb (which later writer mentions K. A. Erb® as his
predecessor) anticipates a goodly portion of Helm-
holtz’s labors.

SuMMARY.

The results to which the preceding discussion has
led, may be summarized as follows:

1. The source of our geometric concepts has
been found to be experience.

2. The character of the concepts satisfying the

21 See above pp. 66-67.
* Séances de 1’Ecole Normale. Débats. Vol. 1., 1800, p. 28.

*H. Erb, Grossherzoglich Badischer Finanzrath, Die Pro-
bleme der geraden Linie, des Winkels und der ebenen Fliiche,
Heidelberg, 1846.

4¢¢‘Die Principien der Geometrie wissenschaftlich darge-
stellt.”’ Archiv fir Philologie und Péddagogik. 1851. Re-
printed in Brasch’s Welt- und Lebensanschauung F. Ueber-
wegs, Leipzig, 1889, pp. 263-317.

* Logik als Kunstlghre des Denkens, Berlin, 1842, Vol. II.,
pp. 51-55.

¢ Zur Mathematik und Logik, Heidelberg, 1821. I was un-
able to examine this work.

e
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same geometrical facts has been shown to be many
and varied.

3. By the comparison of space with other mani-
folds, more general concepts have been reached, of
which the geometric represents a special case. Geo-
metric thought has thus been freed from conven-
tional limitations, heretofore imagined insuperable.

4. By the demonstration of the existence of
manifolds allied to but different from space, en-
tirely new questions have been suggested. What
is space physiologically, physically, geometrically?
To what are its specific properties to be attributed,
since others are also conceivable? Why is space
three-dimensional, etc.?

With questions such as these, though we must not
expect the answer to-day or to-morrow, we stand
before the entire profundity of the domain to be
investigated. We shall say nothing of the inept
strictures of the Bceotians, whose coming Gauss
predicted, and whose attitude determined him to re-
serve. But what shall we say to the acrid and cap-
tious criticisms to which Gauss, Riemann and their
associates have been subjected by men of highest
standing in the scientific world? Have these men
never experienced in their own persons the truth
that inquirers on the outermost boundaries of
knowledge frequently discover many things that
will not slip smoothly into all heads, but which are
not on that account arrant nonsense? True, such
inquirers are liable to error, but even the errors of
some men are often more fruitful in their conse-
quences than the discoveries of others.
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