
SPACE AND GEOMETRY FROM TTIE

POINT OF VIEW OF PHYSICAL

INQUIRY.l

Our notions of space are rooted in our physiologi-

cal organism. Geometric concepts are the product
of the idealization of. plrysical experiences of space.
Systems of geometry, finally, originate in the logicol
classification of the conceptual materials so obtained.
All three factors have left their indubitable traces in
modern geometry. Epistemological inquiries re-
garding space and geometry acmrdingly concern
the physiologist, the psychologist, the physicist, the
mathematician, the philosopher, and the logician
alike, and they can be gradually carried to their
definitive solution only by the consideration of the
widely disparate points of vie\il which are here of-

, fered.
Awakening in early youth to full consciousness,

we find ourselves in possession of the notion of a

spate surrounding and encompassing our body, in
which space move divers bod,i,es, now altering and
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now retaining their size and shape. It is impossible
for us to ascertain how this notion has been begot-
ten. Only the most thoroughgoing analysis of ex-
periments purposefully and methodically performed
has enabled us to conjecture that inborn idiosyn-
cracies of the body have cociperated to this end with
simple and crude experiences of a purely physical
character.

SnnsarronAl AND Locarrve euer.rrns.
An object seen or touched is distinguished not

only by a sensational quality (as .,red,,' .,rough,',

"cold," etc.), but also by a locatiae quality (as ,,to

the left," t'above," t'before," etc.). The sensational
quality may remain the same, while the locative
quality continuously changes; that is, the same sen-
suous object may move in space. phenomena of this
kind beingagain and again induced by physico-phys-
ilogical circumstances, it is found that however va-
ried the accidental sensational qualities may be, the
same order of locative qualities invariably occurs, so
that the latter appear perforce as a fixed and perma_
nent system or register in which the sensational
qualities are entered and classified. Now, although
these qualities of sensation and localitv can be ex_
cited only in conjunction with on. 

"noih.r, 
and can

make their appearance only concomitantly, the im_
pression nevertheless easily arises that the more fa_
miliar systef,n of locative qualities is given antece_
dently to the sensational qualities (Kant).

Extended objects of vision and of touch consist
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of more or less distinguishable sensational qualities,
conjoined with adjacent distinguishable, contin-
uously graduated locative qualities. If such objects
rnove, particularly in the domain of our hands, we
perceive them to shrink or swell (in whole or in
part), or we perceive them to remain the same; in
other words, the contrasts characterizing their
bounding locative qualities change or remain con-
stant. In the latter case, we call the objects rigid.
By the recognition of permanency as coincident with
spatial displacement, the various constituents of our
intuition of space are rendered comparable with one
arother,-2t first in the physiological sense. By the
comparison of different bodies with one another, by
the introduction of physical measures, this compar-
ability is rendered quantitative and more exact, and
so transcends the limitations of individuality. Thus,
in the place of an individual and non-transmittable
intuition of space are substituted the universal con-
cepts of geometry, which hold good for all men.
Each person has his own individual intuitive space;
geomefric space is common to all. Between the
space of intuition and metr'ic space, which contains
physical experiences, we must distinguish sharply.

RrBuaNr's Pnvsrcer- CoNcBptroN oF GEoMETRy.

The need of a thoroughgoing epistemological
elucidation of the foundations of geometry induced
Riemann,' about the nriddle of the century just

rueber db Egpotkesen, wel,ahe itrer Geotnetrie sw Glrwnilo
li.egen. G'6tlilgeu, 1867.

FRoM TrrE porNT o,F vrEw oF prrysrcs gz

closed, to propound the question of the nature of
space; the attention of Gauss, I-obach€vski, and
Bolyai having before been drawn to the empirically
hypothetical character of certain of the fundamental
assumptions of geometry. In characterizing space
as a special case of a multiply-extended ,,magni-
tudg" Riemann had doubtless in mind some g.eo-
metric construct, which may in the same manner be
imagined to fill all space,-for example, the system
of Cartesian co-ordinates. Riemann further asserts
that "the propositions of geometry cannot be deduced
from general conceptions of magnitude, but that the
peculiar properties by which space is distinguished
from other conceivable triply-extended magnitudes
can be derived from experience only. . . .These
facts, like all facts, are in no wise necessary, but
possess empirical certitude only,-they are hyp+
theses." Like the fundamental assumptions of
every natural science, so also, on Riemann,s theory,
the fundamental assumptions of geometry, to which
experience has led us, are merely idealizations of.
experience.

In this physical conception of geometry, Riemann
takes his stand on the same ground as his master
Gauss, who once expressed the conviction that it
was impossible to establish the foundations of
geometry entirely a priori,, and who further as_
serted that "we must in humility confess that if
number is exclusively a product of the mind, space

rBriaf oon Gauss an Beseel,27, Januar 1829.
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possesses in addition a reality outside of our mind,
of which reality we cannot fully dictate a priori the
laws."t

Axer,ocrBs or Spacp wrrn Cor.ons.

Every inquirer knows that the knowledge of an
object he is investigating is materially augmented
by cornparine it with related objects. Quite natur-
ally therefore Riemann looks about him for objects
which offer some analogy to space. Geometric
space is defined by him as a triply-extended contin-
uous manifold, the elements of which are the points
determined by every possible three co-ordinate val-
ues. He finds that "the places of sensuous objects
and colors are probably the only concepts [src]
whose modes of determination form a multiply-ex-
tended manifold." To this analogy others were add-
ed by Riemann's successors and elaborated by them,
but not always, I think, felicitously.'?

L Brief aon Gauss an Bessel, April 9, 1830.-The phrase,
"Number is a product or creation of the mind,tt has gince
been repeateclly used by mathematicians. Unbiased psycho-
logical observation informs us, however, that the formation of
the concept of number is just as much initiated by experience
as the formation of geometric concepts. We must at least
know that virtually equitolent objects exist in multiple and
unalterable form before concepts of number can originate.
Experiments in counting also play an important part in fhe de-
velopment of arithmetic.

2 When acoustic pitch, intensity, and. tdmbre, when chromatic
tone, saturation, ancl luminous intensity are proposed as au-
alogues of the three dimensions of space, few persons will be
eatisfieal. Timbrq, like chromatic tone, is dependent on several
variables. Eence, if the analogy has any meaning whatever,
several dimengions will be found.to correrponcl to ti,mbre and,
chromatic tone.
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Comparing sensation of space with sensation of.
color, we discover that to the continuous series
"above and below," "right and left,', ,.near and far,,,
correspond the three sensational series of mixed col_
ors, black-white, red-green, blue-yellow. The sys_
tem of sensed (seen) places is a triple continuous
manifold like the system of color-sensations. The

sensation. For from the psycho-physiological point
of view "right and left" as little permii of being
interchanged with "above and below,, as do red
and green with black and white. It is only when
we compare geometric space with the system of col_
ors that the objection is apparently justified, But
there is still a great deal lacking to the establish_
ment of a complete analogy between the space of in-
tuition and the system of color-sensation. Whereas
nearly equal distances, in sensuous space are imme_
diately recognized as such, a like remark cannot be
made of differences of colors, and in this latter prov_
ince it is not possible to compare physiologically the
different portions with one another. And, further_
more, even if there be no difficulty, by resorting to
physical experience, in characterizing every coloi of
a system by three numbers, just as the places of
geometric space are characterized, and so in creat_
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ing a metric system similar to the latter, it will
nevertheless be difficult to find anything which cor-
responds to distance or volume and which has an
analogous physical significance for the system of
colors.

Axer.ocrns or Specn wrrn TruB.

There is always an arbitrary element in analogies,
for they are concerned with the coincidences to
which the attention is directed. But between space
and time doubtless the analogy is fully conceded,
whether we use the word in its physiological or its
physical sense. In both meanings of the term, space
is a triple, and time a simple, continuous manifold.
A physical event, precisely determined by its condi-
tions, of moderate, not tco long or too short dura-
tion, seems to us physiologically, nozp and at any
other time, as having the same duration. Physical
events which at any time are temporarily coinci-
dent are likewise temporarily coincident at any other
time. Temporal congruence exists, therefore, just

as much as does spatial congruence. Unalterable
physical temporal objects exist, therefore, as much
as unalterable physical spatial objects (rigid bodies).
There is not only spatial but there is also temporal
substantiality. Galileo employed corporeal pheno,m-
ena, like the beats of the pulse and breathing, for the
determination of time, just as anciently the hands
and the feet were employed for the estimation of
space.
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The simple manifold of. tonal sensations is like-
wise analogous to the triple manifold of space-sen-
sations.r The comparability of the different parts
of the system of tonal sensations is given by the
possibility of directly sensing the musical interual.
A metric system corresponding to geometric space
is most easily obtained by expressing tonal pitch in
terms of the logarithm of the rate of vibration. For
the constant musical interval we have here the ex-
pression,

n'
log 

n 
: log ,x' -1og n:log r - log 7' : s6nsf.,

where n', n denote the rates, and ,', r the periods of
vibration of the higher and tl-re lower note respec-
tively. I'he difference between the logarithms here
represents the constancy of the length on displace-
ment. The unalterable, substantial physical object
r,vhich we sense as an interval is for the ear tempor-
ally determined, whereas the analogous object for
the senses of sight .and touch is spatially deter-
mined. Spatial measure seems to us simpler solely
because we have chosen for the fundamental meas-
ure of geometry distance itself , which remirins un-
alterable for sensation, whereas in the province of
tones we have reached our measure only by a long
and circuitous physical route.

r My attention was <lrawn to this analogy in 1863 by my
stucly of the organ of hearing, ancl I have eince then further
doveloped the subject. Seo my Arnlgsit of the Sensotions.
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DrprnnBNcES oF THE Ar.rer,ocrrs.

Having dwelt on the coincidences of our analo-
gized constructs, it now remains for us to emphasize
their differences. Conceiving time and space as sen-
sational manifolds, the objects whose motions are
made perceptible by the alteration of temporal and
spatial qualities are characterized by other sensa-
tional qualities, as colors, tactual sensations, tones,
etc. If the system of tonal sensations is regarded
as analogous to the optical space of sense, the
curious fact results that in the first province the
spatial qualities occur alone, unaccompanied by sen-
sational qualities corresponding to the objects, just
as if one could see a place or motion without seeing
the object which occupied this place or executed this
motion. Conceiving spatial qualities as organic
sensations which can be excited only concomi'tantly
with sensational qualities,' the analogy in question
does not appear particularly attractive. For the
manifold-mathematician, essentially the same case
is presented whether an object of definite colo,r
moves continuously in optical space, or whether an
object spatially fixed passes continuously through
the manifold of mlors. But for the physiologist
and psychologist the two cases are widely different,
not only because of what was above adduced, but
also, and specificaly, because of the fact that the
system of spatial lualities is very familiar to us,
rvhereas we can represent to ourselves a system of

r Compare supra, page 14 et seq.
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color-sensations only laboriously and artificially, by
m@ns of scientific devices. Color appears to us as
an excerpted member of a manifold the arrange-
ment of which is in no wise familiar to us.

Trrn ExrnNsroN or SyMsoLs.

The manifolds here analogized with space are,
like the color-system, also threefold, or they repre-
sent a smaller number of variations. Space con-
tains surfaces as twofold and lines as onefold mani-
folds, to which the mathematician, generalizing,
might also add points as zero-fold manifolds. There
is also no difficulty in conceiving analytical mechan-
ics, with Lagrange, as an analytical geometry of
four dimensions, time being considered the fourth
co-ordinate. In fact, the equations of analytical
geometry, in their conformity to the co-ordinates,
suggest very clearly to the mathematician the en-
tension of these considerations to an unlimited
lorger number of dimensions. Similarly, physics
would be justified in considering an extended mate-
rial continuim, to each'point of which a tempera-
ture, a magnetic, electric, and gravitational poten-
tial were ascribed, as a portion or section of a multi-
ple manifold. Employment with such symbolic
representations must, as the history of science
shows us, bv no means be regarded as entirely un-
fruitful. Symbols which initially app€ar to have no
meaning whatever, acquire gradually, after subjec-
tion to what might be called intellectual experi-
menting, a lucid and precise significance. Think
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only of the negative, fractional, and variable expo-
nents of algebra, or of the cases in which important
and vital extensions of ideas have taken place which
otherwise would have been totally lost or have made
their appearance at a much later date. Think only
of the so-called imaginary quantities with which
mathematicians long operated, and from which they
even obtained important results ere they were in a
position to assign to them a perfectly determinate
and withal visualizable meaning. But symbolic rep-
resentation has likewise the disadvantage that the
object represented is very easily lost sight of, and
that operations are continued with the symbo,ls to

1!!!!"quently 
no object whatever corresponds.'

furnish their essontial agsistance. A aymbolical representation
of a method of calculation has the same significanco for a
mathematician ag a moclel or a vieualisable working hyaothesis

the other. It is scareely possible to light directly on au opera-

tion like o&, B:ul operating with such symbols leacls us to

attribute to them an intelligible meaning. Mathematicians
worketl many years 'with expressions like cos r t y'-l sio ,
ancl with exponentials having imaginaly exponents before
in the struggle for aclapti,ng concept and rymbol to each other
the idea that hacl been gdminating for a century finally found
erpression in 1806 in Argantl, viz., that a relationship coultl bo
conceivecl between magnitude and ilircotlon by which y'-T
was representecl as a mean clireetion-proportional between * I
ancl - 1.
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Axornpn Vrrw on RmlremN's MeNlnolo.

It is easy to rise to Riemann's conception of an
n-f.old, continuous manifold, and it is even possible
to realize and visualize portions of such a manifold.
Let or,o2tostet. . . .  c.n+r be any elements whatso-
ever (sensational qualities, substances, etc.). If we
conceive these elements intermingled in all their
possible relations, then each single composite will be
represented by the expression

opt *  azaz * ogas * aa11an41: r2

where the coefficients o satisfy the equation
or.  I  oz *  " ,  *  on+r:  r .

fnasmuch, therefore, as n of these coeffrcients o may
be selected at pleasure, the totality of the composites
of the n + | elements will represent an n-fold con-
tinuous manifold.l As co-ordinates of a point of
this manifold, we may regard expressions of the
form

'n  n f ( : - \  r^-^--^-- i^  
' - - l  

o- \

{, 
or I \% ), 

Ior exampre, loC\qi.

But in choosing definitign of distance, or that of
any other notion analogous to geornetrical concepts,
we shall have to proceed very arbitrarily unless ar-
perimces of the manifold in question inform us that
certain metric concepts have a real meaning, and are
therefore to be preferred, as is the case for geomet-

I If the six funalamental color-sengations were totally intl+
penclent of one another, the system of color-songationi would
represent a ffvefolcl manifold. Since they aro contraetod in
pairs, the cFtem correlponde to a three-fokl manifold.



rc6 sPAcE AND GEoMETRY

ric space with the definitionr derived from the volum-

inal constancy of bodies for the element of distances

d.f :dr'l dy'* d.z', and as is likewise the case

for sensations of tone with the logarithmic expres-

sion mer-rtioned above. In the majority of cases

rvhere such an artificial construction is involved,

fixed points of this sort are wanting, and the entire

consideration is therefore an ideal one. The anal-

ogy with space loses thereby in completeness, fruit-

fulness, and stimulating Power.

Mnesunn or CunveruRE, AND Cunv,rrune or
Specn.

In still another direction Riemann elaborated
ideas of Gauss; beginning with the latter's investi-

gations concerning curved surfaces. Gauss's meas-

ure of the curvature' of a surface at any point is

given by the expression & : 
ff 

*n.r" ds is an ele-

ment of the surface and do is the superficial element

of the unit-sphere, the limiting radii of which are

parallel to the limiting normals of the element ds.

This measure of curvature may also be expressed in

the form p: |^ , where pvPz lte- the principal
PtPz

radii of curvature of the surface at the point in

question. Of special interest are the surfaces whose

measure of curvature for all points has the same

'Comp. supra, p. 73" et passdm.

t Disquisttinnes generoles circa sugterfictes curaas, 1827.
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value,-the surfaces of constant curvature. Con-
ceiving the surfaces as infinitely thin, non-distensi-
ble, but flexible bodies, it will be found that sur-
faces of like curvature may be made to coincide by
bending,-as for example a plane sheet of paper
wrapped round a cylinder or cone,-but cannot be
made to coincide with the surface of a sphere. Dur-
ing such deformation, fl?lt even on crumpling, the
proportional parts of figures drawn in the surface
remain invariable as to lengths and angles, provided
we do not go out of the two dimensions of the sur-
face in our measurements. Conversely, likewise,
the curvature of the surface does not depend on its
conformation in the third dimension of space, but
solely upon its interior proportionalities. Riemann,
now, conceived the idea of generalizing the notion
of measure of curvature and applying it to spaces
of three or more dimensions. Conformably there-
to, he assumes that finite unbounded spaces of con-
stant positive curvature are possible, corresponding
to the unbounded but finite trvo-dimensional surface
of the sphere, while rvhat we commonly take to be
infinite space would correspond to the unlimited
plane of curvature zero, and similarly a third spe-
cies of space would correspond to surfaces of neg-
ative curvature. Just as the figures drawn upon a
surface of determinate constant curvature can be
displaced witl-rout distortion upon this surface only
(for example, a spherical figure on the surface of
its sphere only, or a plane figure in its plane only),
so should analogous conditions necessarily hold for
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sDatial figures and rigid bodies' The latter are

.'"p"Ute o"f free motion only in spaces 
- 
of constant

.ui'u",ur., as Helmholtzr has shown at length' Just

as the shortest lines of a plane are infinite' but on

the surface of a sphere occur as great circles of defi-

,ril nni,. length, closed and reverting into them-

selves, so Riemann conceived in the three-dimen-

ti"""f'space of positive curvature analogues of the

.,r"igni rit. 
"ni 

th. plane as finite but unbounded'

gu, it.r. is a difficuity here' If we possessed the

notion of a measure oi curvature for a four-dimen-

sional space' the transition to the special case of

three-dimensional space could be easily and ration-

"ily 
.*".rt.d; but the passage from the special to

,tt" *or. general ca" inuoluts a certain arbitrari-

na.r, 
"nd,-as 

is natural, different inquirers have

"J"p,"a 
here different courses2 (Riemann and Kro'

necker). The very fact that for a one-dimensional

.p".. (" curved line of any sort) a m-easure of curv-

"iur" 
ao", not exist having the significance of an in-

terior measure, and that such a measure first occurs

in connection with two-dimensional figures' forces

,ipon u, the question whether and to what extent

something 
"n"logou, 

has any meaning for three-

dimensional figures. Are we not subject here to an

illusion, in that we operate with symbols to which

p.rt 
"pt 

nothing real corresponds' or at least noth-

TGb", die Thatsachen, welche -cler_ 
Geometrie zu Gruncle

t i" g"oi. ; ;'-cait1 n g et N,a chr ibht e n, 7868, June 3'

2 ComDare, for example, Kronecker, " Ueber Svsteme von

Functionen mehrerer v'{iiiur'i' ;*-iii' a'- nnu"ei akoilemtc'

1869.
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ing representable to the senses, by means of which
we can verify and rectify our ideas?

Thus were reached the highest and most univer-
sal notions regarding space and its relations to
analogous manifolds which resulted from the con-
viction of Gauss concerning the empirical founda-
tions of geometry. But the genesis of this convic-
tion has a preliminary history of two thousand
years, the chief phenomena of which we can perhaps
better survey from the height which we have now
gained.

Tne Eanry DrscovpnrEs rN Gpounrny.

The unsophisticated men, lvho, rule in hand, ac-
quired our first geometric knorvledge, held to the
simplest bodily objects (figures): the straight line,
the plane, the circle, etc., and investigated, by means
of forms which could be conceived as combinations
of these simple figures, the connection of their
measurements. It cculd not have escaped them that
the mobility of a body is restricted when one and
then two of its points are fixed, and that finally it
is altogether checked by fixing three of its points.
Granting that rotation about an axis (two points),
or rotation about a point in a plane, as likewise dis-
placement with constant contact of two points with
a straight line and of a third point with a fixed
plane laid through that straight line,-granting that
these facts were separately obserued, it would be
known how to distinguish between pure rotation,
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pure displacement, and the motion compounded of

these two independent motions' The first geometry

was of cotlrse not based on purely metric notions,

but made many considerable concessions to the ph-y-

siological factors of sense'' Thus is the appearance

explained of two different funclamental measures:

the (straight) length and the angle (circular meas-

ure). The straight line was conceived as a rigid

mobile body (measuring-rod), and the angle as the

rotation of a straight line rvith respect to another

(measured by the arc so described). Doub'tless no

one ever clemanded special proof for the equality of

angles at the origin described by the same rotation.

Additional propositions concerning angles resulted

quite easily. Turning the line b about its intersec-

tion with c so as to describe the angle " (Fig' l4)'

and after cofhcidence with c turning it again about

! ' ig. 14.

tOomp. supra, p. 83.
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its intersection with a til l it coincides with o and so
describes the angle F, we shall have rotated b from
its initial to its final position a through the angle p.
in the same sense.' Therefore the exterior angle p
- o f  B, and since p* y:2R, also o * ,0 * y:
zR. Displacing (Fig. r5) the rigid system of lines
a, b, c, which intersect at r, within their plane to the
position z, the line a always remaining within itself,
no alteration of angles rvill be cansed by the mere

motion. The sum of the interior angles of the tri-
angle r 2 3 so produced is evidently z R. The same
consideration also throws into relief tl.re properties

n'lg. 16.
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of parallel lines. Doubts as to whether successive

rotation about several points is equivalent to rota-

tion about one point, whether pwre displacement is

at all possible,-which are justified when a surface

of curvature differing from zero is substituted for

the Euclidean plane,-could never have arisen in

the mind of the ingenuous and delighted discoaerer

of these relations, at the period we are considering'

The study of the movement of rigid bodies, which

Euclid studiously avoids and only covertly intro-

duces in his principle of congruence, is to this day

the device best adapted to elementary instruction in

geometry. An idea is best made the possession of

ih. l""tn.t by the method by which it has been

found.

Dpuucrrvp Grourtnv.

This sound and naive conception of things van-

ished and the treatment of geometry underwent es-

sential modifications when it became the subject of

, professional and, scholarly contemplation. The ob-
ject now was to systematize the knowledge of this

province for purposes of individual survey, to sepa-

rate what was directly cognizable from what was

deducible and deduced, and to throw into distinct

relief the thread of deduction. For the purpose of

instruction the simplest principles, those most easily

gained and appg.rently free from doubt and contra-

diction, are placed at the beginning, and the remain-

der based upon them. Efforts were made to reduce
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these initial principles to a minimum, as is observ-
able in the systern of Euclid. Through this en-
deavor to support every notion by another, and to
leave to direct knowledge the least possible scope,
geometry was gradually detached from the empiri-
cal soil out of which it had sprung. People accus-
tomed themselves to regard the derived truths as of
higher dignity than the directly perceived truths,
and ultimately came to demand proofs for proposi-
tions which no one ever seriously doubted. Thus
arose,-as tradition would have it, to check the on-
slaughts of the Sophists,-the system of Euclid with
its logical perfection-and finish. Yet not only were
the ways of research designedly concealed by this
artificial method of stringing propositions on an
arbitrarily chosen thread of deduction, but the var-
iecl organic connection between the principles of
geometry was quite lost sight of.l This system was
more fitted to produce narrow-minded and sterile
pedants than fruitful, productive investigators.

r Euclicl'e system fqscinated thinkers by its logical excel.
lonees, ancl its drawbacks were overlookecl amicl this aclmiration.
Great inquirers, eveD in recent times, have been miglecl into
following Euclid's example in the presentation of the results
of their inquiries, ancl so into actually concealing their methocls
of investigation, to the great cletriment of science. But sci
enco is not a feat of legal casuistry. Scientific presentation
aims go to expound all the grounds of an idea so that it, can
at any timo be thoroughly examiued as to its tenability antl
power. The learner is not to be led half-blinclfolcletl. Thero
therefore arose in Germany among philosophers ancl eclucation-
ists a healthy reaction, which proceeclecl mainly from Herbart,
Schopenhauer, and Trendelenburg. The efrort was made to
introduce greater perspicuity, more genotic methocls, and logi-
cally more lucid clemonstrations into geometry.
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And these conditions were not improved when
scholasticism, with its preference for slavish com-
ment on the intellectual products of others, culti-
vated in thinkers scarcely any sensitiveness for the
rationality of their fundamental assumptions and
by way of compensation fostered in them an exag-
gerated respect for the logical form of their deduc-
tions. The entire period from Euclid to Gauss suf-
fered more or less from this affection of mind.

Eucun's Frrrrr Posrur.erB.

Among the propositions on u'hich Euclid based
his system is found the so-called Fifth Postulate
(also called the Eleventh Axiom and by some the
Twelfth) : "If a straight line meet two straight
lines, so as to make the two interior angles on the
same side of it taken together less than two right
angles, these straigtrt lines being continually pro-
duced, shall at length rneet upon that side on which
are the angles which are less than two right an-
gles." lpclid easily proves that if a straight line
falling on two other straight lines makes the alter-
nate angles equal to each other, the two straight
lines will not meet but are parallel. But for the
proof of the converse, that parallels make equal
alternate angles with euery straight line falling on
them, he is obliged to resort to the Fifth Postulate.
This converse is equivalegt to the proposition that
only one parallel to a straight line can be drawn
through a point. Further, by the fact that with the
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aid of this converse it can be proved that the sum
of the angles of a triangle is equal to two right an-
gles and that from this last theorem again the first
follows, the relationship between the propositions in
question is rendered distinct and the fundamental
significance of the Fifth Postulate for Euclidean
geometry is made plain.

The intersection of slowly converging lines lies
without the province of construction and observa-
tion. It is therefore intelligible that in view of the
great importance of the assertion contained in the
Fifth Postulate the successors of Euclid. habituated
by him to rigor, should, even in ancient times, have
strained every nerve to demonstrate this postulate,
or to replace it by some immediately obvious propo-
sition. Numberless futile efforts were made from
Euclid to Gauss, to deduce this Fifth Postulate from
the other Euclidean assumptions. It is a sublime
spectacle which these men offer: laboring for cen-
turies, from a sheer thirst for scientific elucidation,
in quest of the hidden sources of a truth which no
person of theorv or of practice ever really doubted !
With eager curiosity we follow the pertinacious ut-
terances of the ethical power resident in this human
search for knowledge, and with gratification we
note how the inquirers gradually are led by their
failures to the perception that the true basis of
geometry is experience. We shall content ourselves
with a few examples.
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Seccsenr's Tntonv or Pener-r.er.s.

Among the inquirers notable for their contribu-
tions to the theory of parallels are the Italian Sac-
cheri and the German mathematician Lambert. In
order to render their mode of attack intelligible, we
will remark first that the existence of rectangles and
squares, which we fancy we constantly observe, can-
not be demonstrated without the aid of the Fifth
Postulate. Let us consider, for example, two con-
gruent is'osceles triangles ABC, DBC, having right
angles at A and D (Fig. 16), and let them be laid
together at their hypothenuses BC so as to form the

equilateral quadrilateral ABCD; the first twenty-
seven propositions of Euclid do not suffice to deter-
mine the character and magnitude of the two equal
(right) angles at B and C. For measure of length
and measure of angle are fundamentally different
and directly not comparable; hence the first propo'

sitions regarding the connection of sides and angles
are qualitatiae only, and hence the imperative neces-

sity of a quantitatiae theorem regarding angles, like
that of the angle-sum. Be it further remarked that
theorems analdgous to the twenty-seven planimetric
propositions of Euclid may "be set up for the surface

Flg. 16,
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of a sphere and for surfaces of constant negative
curvature, and that in these cases the analogous
construction gives respectively obtuse and acute an-
gles at B and C.

Saccheri's cardinal achievement was his form of
stating the problem.l If the Fifth Postulate is in-
volved in the remaining assumptions of Euclid,
then it will be possible to prove without its aid that
in the quadrilateral ABCD (Fig. 17) having right
angles at A and, B and AC:BD, the angles at C
and D likewise are right angles. And, on the other
hand, in this event, the assumption that C and D

.t/Cr---#tD

X'ls. 17.

are either obtuse or acute will lead to contradicti'ons.
Saccheri, in other words, seeks to draw conclusions
frorn the hypothesis of the right, the obtuse, or the
acute angle. He shows that each of these hypothe-
ses will hold in all 'cases if it be proved t'o hold in
one. It is needful to have only one triangle with

its angles =, tR in order to demonstrate the univer-
sal validity of the hypothesis of the acute, the right,
or the obtuse angle. Notable is the fact that Sac-
cheri also adverts ta phrysico-geometrical experi-

I Eualiiles ab omni, naeao odnildaattx, Milan, 1733. German
translation in Engel ancl Staeckel'e Dia Theorie iler Parall,el-
linian. I'eipsic, 1895.
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ments which support the hypothesis of the right
angle. If a line CD (Fig. t7) join the two extremi-
ties of the equal perpendiculars erected on a straight
line AB, and the perpendicular dropped on AB f.rom
any point N of the first line, viz., NM, be equal to
CA:DB,then is the hypothesis of the right angle
demonstrated to be correct. Saccheri rightly does
not regard it as self-evident that the line which is
equidistant from another straight line is itself a
straight line. Think only of a circle parallel to a
great circle on a sphere which does not represent a

f,'lg. 18. ['lg. 19.

shortest line on a sphere and the two faces of which
cannot be made congruent.

Other experimental proofs of the correctness of
the hypothesis of the right angle are the following.
If the angle in a semicircle (Fig. r8) is shown to be
a r ight  angle,  "*  9:R, then is zol  zB:zR,
the sum of the angles of the triangle ABC. If the
radius be subtended thrice in a semicircle and the
line joining the first and the fourth extremity pass
through the center, we shall have at C (Fig. 19)
3o:2R, and consequentty each of the three tri-
angles will hfte the angle-sum zR. The existence
of equiangular triangles of different sizes (similar
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triangles) is likewise subject to experimental proof.
For (Fig. zo) if. the angles at B and C give B + I +
7 * c:4R, so also is 4R the angle-sum of the
quadrilateral BCB'C'. Even Wallis' (1663) based
his proof of the Fifth Postulate on the assumption
of the existence of similar triangles, and a modern
geometer, Delbceuf, deduced from the assumption
of similitude the entire Euclidean geometry.

The hypothesis of the obtuse angle, Saccheri fan-

Irlg. 20.

cied he could easily refute. But the hypothesis of
the acute angle presented to him difficulties, and in
his quest for the expected contradictions he was car-
ried to the most far-reaching conclusions, which
Lobachdvski and Bolyai subsequently rediscovered
by methods of their own. Ultimately he felt com-
pelled to reject the last-named hypothesis as incom-
patible with the nature of the straight line; for it
-'nog.l 

""a 
Staecket, loc. cit., p. 2l et oeq.
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led to the assumption of different kinds of straight
lines, which met at infinity, that is, had there a com-
mon perpendicular. Saccheri did much in anticipa-
tion and promotion of the labors that were subse-
quently to elucidate these matters, but orhibited
withal toward the traditional views a certain bias.

LeMeBnr's lwvesrrcerroNs.

Lambert's treatiser is atlied in method to that of
Saccheri, but it proceeds farther in its conclusions,
and gives evidence of a less constrained vision.
Lambert starts from the consideration of a quadri-
lateral with three right angles, and examines the
consequences that would follow from the assumption
that the fourth angle was right, obtuse, or acute.
The similarity of figures he finds to be incompatible
with the second and third assumptions. The case of
the obtuse angle, which requires the sum of the an-
gles of a triangle to exceed zR, he discovers to be
realized in the geometry of spherical surfaces, in
which the difficulty of parallel lines entirely van-

n ishes. This leads him to the conjecture that the
case of the acute angle, where the sum of the angles
of a triangle is less than zR, might be realized on
the surface of a sphere of imaginary radius. The
amount of the departure of the angle-sum f.rom zR
is in both cases proportional to the area of the tri-
angle, as may be demonstrated by appropriately di-

lPublishecl in 1766. Engel antl Staeckel, Loc cit,, p. 152 ot
Beq.
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viding large triangles into small triangles, which on
diminution may be made to approach as near as we
please to the angle-sum zR. Lambert advanced
very closely in this conception to the point of view
of modern geometers. Admittedly a sphere of im-
aginary radius, r1/-, is not a visualizable geo-
metric construct, but analytically it is a surface hav-
ing a negative constant Gaussian measure of curva-
ture. It is evident again fr'om this example how
experimenting with symbols also may direct inquiry
to the right path, in periods where other points of
support are entirely lacking and where every help
ful device must be esteemed at its worth.l Even
Gauss appears to have thought of a sphere of im-
aginary radius, as is obvious from his formula for
the circumference of a circle (Letter to Sclrumacher,

July rz, I83r). Yet in spite of all, Lambert actu-
ally fancied he had approached so near to the proof
of the Fifth Postulate that what was lacking could
be easily supplied.

Vrnw op Geuss.

We may turn now to the investigato,rs whose
views possess a most radical significance for our
conception of geometrl, but who announced their
opinion only briefly, by word of mouth or letter.
"Gauss regarded geometry merely as a logically con-
sistent system of constructs, with the thmry of par-
allels placed at the pinnacle as an axiom; yet he had

r See note, p. 104.
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reached the conviction that this proposition could
not be proved, though it was known trom erperi-
ence ,-for example, from the angles of the triangle
joining the Brccken, Hohenhagen, and Inselsberg,
-that it rvas approximately correct. But if this
axiom be not conceded, then, he contends, there re-
sults from its non-acceptance a different and entirely
independent geometry, which he had once investi-
gated and called by the name of the Anti-Euclidean

-A

^\

A

Ftg.21.

geometry." Such, according to Sartorius von Wal-
tershausen, was the view of Gauss.t

" 
RESEARCHES or.Srorz.

Starting at this point, O. Stolz, in a small but
very instructive pamphlet,z sought to deduce the
principal propositions of the Euclidean geometry
from the purely observable facts of experience. We
shall reproduce here the most important point of
Stolz's brochure. Let there be given (trig. zr) one
-i 

m*r *^ Geilachhiis, Leipsie, 1856.
t"Das letzte Axiom cler Geometrie,tt lteri,cltte tles naturw..

meitrici,n. Vereins zu Innsbruck, 1886, pp. 2b-34.
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large triangle ABC having the angle-sum 2R. We
draw the perpendicular AD on BC, complete the
figure by BAE g ABD and CAF e. ACD, and add

equal. A rectangle can be divided into two congru_
ent rectangles by a perpendicular erected at the
middle point of one of its sides, and by continuing
this procedure the line of divisio,n may be brough-t

Flg. zz.

to any point lve please in the divided side. And the
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right-angled triangles having smaller sides,-so
that zR, therefore, results for the angle-sum of
eaery triangle if it holds true exactly oI one. By the
aid of these propositions which repose on observa-
tion we conclude easily that the two opposite sides
of a rectangle (or of any so-called parallelogram)
are everyl\rhere, no matter how far prolonged, the
same distance apart, that is, never intersect. Th.y
have the properties of the Euclidean parallels, and
may be called and defined as such. It likewise fol-
lows, now, from the properties of triangles and rect-
angles, that two straight lines which are cut by a
third straight line so as to make the sum of the in-
terior angles on the same side of them less than two
right angles will meet on that side, but in either
direction from their point of intersection will move
indefinitely far away from each other. The straight
line therefore is infinite. What was a groundless
assertion stated as an axiom or an initial principle
may as inference have a sound meaning.

" GBourrRy AND Prrysrcs Corupenpo.

Geometry, accordingly, consists of the application
of mathematics to experiences concerning space.
Like mathematical physics, it can become an exact
deductive science only on the condition of its repre-
senting the objects of experience by means of
schematizing and idealizing concepts. Just as me-
chanics can assert th€ constancy of masses or reduce
the interactions between bodies to simple accetera-
tions only aithi.n the lim,its of errors of obseruation,
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so likelrise the existence of straight lines, planes, the
amount of the angle-sum, etc., can be maintained
only on a similar restriction. But just as physics
sometimes finds itself constrained to replace its ideal
assumptions by other more general ones, viz., to put
in the place of a constant acceleration of falling bod-
ies one dependent on the distance, instead of a con-
stant quantity of heat a variable quantity,-so a
similar procedure is permissible in geometry, when
it is demanded by the facts or is necessary tempor-
arily for scientific elucidation. And now the en-
deavors of Legendre, Lobach6vski, and the two
Bolyais, the younger of whom was probably indi-
rectly inspired by Gauss, will appear in their right
light.

Trre CowrnrBuTroNs or I-osncgEvsKr AND
Bor-ver.

Of the labors of Schweickart and Taurinus, also
contemporaries of Gauss, we will not speak. Lr.-
bach6vski's works were the first to become known
to the thinking world and so productive of results
(t829). Very soon afterward the publication of
the younger Bolyai appeared (1833), which agreed
in all essential points with Lobach6vski's, departing
from it only in the form of its developments. Ac-
cording to the originals which have been made al-
most cornpletely accessible to us in the beautiful
editions of Engel and Staeckel,l it is permissible to
-1 

AGa^ sur Geechdchte iler nichteukliilischen Geornetrid.
L N. I. Lobatechefskij. Leipzig, 1899.
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assume that Lobach€vski also undertook his inves-
tigations in the hope of becoming involved in con-
tradictions by the rejection of the Euclidean axiom.
But after he found himself mistaken in this expec-
tation, he had the intellectual courage to draw all
the consequences from this fact. Lobach6vski gives
his conclusions in synthetic form. But we can
fairly well imagine the general analyzing considera-
tions that paved the way for the construction of his
geometry.

From a point lying outside a straight line g (Fig.
zg) a perpendicular p is dropped and through the

Flg. 23.

same point in the plane pg a straight line la is drawn,
making with the perpendicular an acute angle s.
Making tentatively the assumption that g and h do
not meet but that on the slightest diminution of the
angle s they wo'uld meet, we are at once forced by
the homogeneity of space to the conclusion that a
second,line fr having the same angle s similarly de-
ports itself on the other side of the perpendicular.
Hence all non-intersecting lines drawn through the
same point arJ'situate between h and k. The latter
form the bounda,ri,es betwe'en the intersecting and
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non-intersecting lines and are called by Lobach6v-
ski porallels.

In the Introduction to his New Elements of
Geometry (t8AS) Lobachdvski proves himself a
thorough natural inquirer. No one would think of
attributing even to an ordinary man of sense the
crude view that the "parallel-angle" was very much
less than a right angle, when en slight prolongation
it c'ould be distinctly seen that they would intersect.
The relations here considered admit of representa-
tion only in drawings that distort the true propor-
tions, and we have rather to picture to ourselves
that in the dimensions of the illustration the vari-
ation of s from a right angle is so small that h
and k are to the eye undistinguishab'ly coincident.
Prolonging, now, the perpendicular p to a point be-
yond its intersection with h, and drawing through
its extremity a nelv line / parallel to h and therefore
parallel also to g, it follows that the parallel-angle
.s' must necessarily be less than s, if h and I arc not
again to fulfill the conditions of tlle Euclidean case.
Continuing in the same manner, the prolongation of
the perpendicular and the drawing of parallels, we
obtain a parallel-angle that constantly decreases.
Considering, now, parallels which are more remote
and consequently converge more rapidly on the side
of convergence, we shall logically be compelled to
assume, not to be at variance with the preceding
supposition, that on approach or on the decrease of
the length of the perpendicular the parallel-angle
will again increase. The angle of parallelism,
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therefore, is an inverse function of the perpendicu-
lar p, and has been designated by Lobach6vski by
fi (P). A group of parallels in a plane has the ar-
rangement shown schematically in Figure 24. They
all approach one another asymptotically toward the
side of their convergence. The homogeneity of
space requires that every "strip" between two paral-
lels can be made to coincide with every other strip
provided it be displaced the requisite distance in a
longitudinal direction.

Flg. 24.

If a circle be imagined to increase indefinitely, its
radil will cease to intersect the moment the increas-
ing arcs reach the point where the convergence of
the radii corresponds to parallelism. The circle then
passes over into the so-called "bound,ary-line." Sim-
ilarly the snrface of a sphere, if it indefinitely in-
crease, will pass into what Lobach6vski calls a
"bound,a,ry-srwface." The boundary-lines bear a
relation to the bountary-surface analogbus to that
which a great circle bears to the surface of a sphere.
The geometry of the surface of a sphere is inde-
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pendent of the axiom of parallels. But since it can
be demonstrated that triangles formed from boun-
daryJines on a boundary-surface no more exhibit
an excess of angle-sum than do finite triangles
on a sphere of infinite radius, consequently the
rules of the Euclidean geometry likewise hold
good f'or these boundary-triangles. To find points
of the boundary-line, we determine (FiS. 25)
in a bundle of parallels, ao, bB, c!, d8. . . . . .
lying in a plane points d, b, c, d in each of these par-
allels so situated with respect to the point o in oo

. i'-ft
F<

d2 d1

\ / " I

r.ls,. 25,

that I aab- L Fba, /- oo4: L yca, L oad, :

/ - \da. . . . .Owing to the sameness of  the ent i re
construction, each of the parallels may be regarded
as the "a,rit'' of the boundary line, which will gen-
erate, when revolved about this axis, the boundary-
surface. Likewise each of the parallels may be re-
garded as the axis of the boundary-surface. For
the same reason all boundaryJines and all boundary-
surfaces are congruent. The intersection of every
plane with the boundary-surface is a circle; it is a
boundaryJine only when the cutting plane contains
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the axis. In the Euclidean geometry there is no
boundary-line, nor boundary-surface. The analo-
gues of them are here the straight line and the plane.
If no boundary-line exists, then necessarily must
any three points not in a straight line lie on a circle.
Hence the younger Bolyai was able to replace the
Euclidean axiom by this last postulate.

Let aa, b9, cy be a system of parallels, and ae,
a1€1, a2€2. .a system of boundary-lines, each of which
systems divides the other into equal parts (Fig. z5).
The ratio to each other of any two boundary-arcs
between the same parallels, e. g., the arcs oc - u
and, arez: s6', is dependent therefore solely on their
distance ?p?tt aar: s. We may put generally
i l?

V: eE , where & is so chosen that e shall be the

base of the Naperian system of logarithms. In this
manner exponentials and by means of these hyper-
bolic functions are introduced. For the angle of

parallelism we obtain s: cotlu(D : 
" 

t . If

f  :o,  s: f  ;  i f .  p:  @, s:o.
, An example will illustrate the relation of the Lo-
bachdvskian to the Euclidean and spherical geom-
etries. For a rectilinear Lobachdvskian triangle
having the sides a,b, c, and the angles A, B, C, we
obtain, when C is a right angle,

sinh ft: sinhfsin A.
Here sinh stands fbr the hyperbolic sine,

sinhr:+
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whereas sin r:
2t

or, einh,r : ?.+fi-fr * 14* ......,

and sin 
tc x" f f 't :  i l - ] - : ! - I l - i l - f  

. . . . . .

Considering the relations sin(ri):r (sinh n), or
sinh (ri) : f sin r, involved in the foregoing form-
ula, it will be seen that the above-given formula for
the Lobach6vskian triangle passes over into the

formula holding for the spherical triangle, viz., sin ft
.c: sin f sin A, when Ff is put in the place of fr in

the former and k is considered as the radius of the
sphere, which in the usual formuh assumes the
value unity. The re-transformation of the spherical
formula into the Lobach6vskian by the same method
is obvious. If fr be very great in comparison with
a and c, we may restrict ourselves to the first mem-
ber of the series for sinh or sin, obtaining in both

"*"r, f, 
-f,sin A or a:csin A, the formula of

plane Euclidean geometry, which we may regard as

a limiting case of both the Lobach6vskian and spher-
ical geometries for very large values of &, or for
h: q. It is likewise perrnissible to say that all
three geometries coincide in the domain of the infi-
rritely small.

rF. Engel, N. I. Lobatechefekij, Zwei geometrdeclw Abltonil
fungen, Leipaicr 1899.
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Tno DrrrnnnNr SysreMS oF GBouprny.

As we see, it is possible to construct a self-consist-
ent, non-contradictory system of geometry solely on
the assumption of the convergence of parallel lines.
True, there is not a single observation of the geomet-
rical facts accessible to us that speaks in favor of
this assumption, and admittedly the hypothesis is at
so great variance with our geometrical instinct as
easily to explain the attitude toward it of the earlier
inquirers like Saccheri and Lambert. Our imagina-
tion, dominated as it is by our modes of visualizing
and by the familiar Euclidean concepts, is competent
to grasp only piecemeal and gradually Lobach6v-
ski's views. We must suffer ourselves to be led here
rather by mathematical concepts than by sensuous
images derived from a single narrow portion of
space. But we must grant, nevertheless, that the
quantitative mathematical concepts by which we
through our own initiative and within a certain arbi-
trary scope represent the facts of geometrical expe-
rience, do not reproduce the latter with absolute ex-
acJitude. Different ideas can express the facts with
the same exactness in the domain accessible to ob-
servation. The facts must hence be carefully dis-
tinguished from the intellectual constructs the for-
mation of which they suggested. The latter-con-
cepts-must be consi,stent with observation, and
must in addition be logically in accord with one an-
other. Now thesedwo requirements can be fulfilled
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.in more thon one manner, and hence the different
systems of geometry.

Manifestly the labors of Lobachdvski were the
outcome of intense and protracted mental effort,
and it may be surmised that he first gained a clear
conception of his system from general considera-
tions and by analytic (algebraic) methods before he
was able to present it synthetically. Expositions in
this cumbersome Euclidean form are by no means
alluring, and it is possibly due mainly to this fact
that the significance of Lobach6vski's and Bolyai's
labors received such tardy recognition.

Lobachdvski developed only the consequences of
the modification of Euclid's Fifth Postulate. But if
we abandon the Euclidean assertion that "two
straight lines cannot enclose a space," we shall ob-
tain a companion-piece to the Lobachdvskian geom-
etry. Restricted to a surface, it is the geometry of
the surface of a sphere. In place of the Euclidean
straight lines we have great circles, all of which
intersect twice and of which each pair encloses two
spherical lunes. There are therefore no parallels.
Riemann first intimated the possibility of an analo-
gous geometry for three-dimensional space (of
positive curvature),-a conception that does not ap
pear to have occurred even to Gauss, possibly owing
to his predilecti'on for infinity. And Helmholtz,l
who continued the researches of Riemann physically,
neglected in his turn, in his first publication, the de-

I 
''Ueber tlie thatsEchlichen Grundlagen tler Geometrier t t

Wissensch. Abtnnill., 1866. II., p. 610 et seq.
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velopment of the Lobach6vskian case of a space of
negative curvature (with an imaginary parameter
h). The consideration of this case is in point of
fact more obvious to the mathematician than it is to
the physicist. Helmholtz treats in the publication
mentioned only the Euclidean case of the curvature
zero and Riemann's space of positive curvature.

Appr-rcesrl-rry oF rnB Drrrenpnr SvsrEMs ro

RBer-rrY.

We are able, accordingly, to represent the facts
of spatial observation with all possible precision by
both the Euclidean geometry and the geometries of
Lobachdvski and Riemann, provided in the two lat-
ter cases we take the parameter E large enough.
Physicists have as yet found no reason for depart-
ing from the assumption &: ep 6f the Euclidean
geometry. It has been their practice, the result of
long and tried experience, to adhere steadfastly to
the simplesf assumptions until the facts forced their
complication or modification. This accords likewise
with the attitude of all great mathematicians to-
ward applied geometry. The deportment of phys-
icists and mathematicians toward these ques-

tions is in the main different, but this is
explained by the circumstance that for the
former class of inquirers the physical facts are of
most significance, geometry being for them merely
a convenient implement of investigation, while for
the latter class these very questions are the main

{

if

I
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material of research, and of greatest technical and
particularly epistemological interest. Supposing a
mathematician to have modified tentatively the sim-
plest and most immediate assumptions of our geo-
metrical experience, and supposing his attempt to
have been productive of fresh insight, certainly
nothing is more natural than that these researches
should be prosecuted farther from a purely mathe-
matical interest. Analogues of the geometry we
are familiar with, are constructed on broader and
more general assumptions for any number of di-
mensions, with no pretension of being regarded as
more than intellectual scientific experiments and
with no idea of being applied to reality. In sup-
port of my remark it will be sufficient to advert to
the advances made in mathematics by Clifford,
Klein, Lie, and others. Seldom have thinkers be-
come so absorbed in revery, or so far estranged from
reality, as to imagine for our space a number of
dimensions erceeding the three of the given space
of sense, or to conceive of representing that space
by any geometry that departs appreciably from the
Euclidean. Gauss, Lobach6vski, Bolyai, and Rie-
mann were perfectly clear on this point, and cannot
certainly be held responsible for the grotesque fic-
tions which were subsequently constructed in this
domain.

It little accords with the principles of a physicist
to make suppositions regarding the deportment of
geometrical constructs in infinity and in non-acces-
sible places, then subsequently to compare them

I



136 SPACE AND GEOMETRY

with our immediate experience and adapt them to

it. He prefers, like Stolz, to regard what is directly

given as the source of his ideas, which he likewise

considers applicable to what is inaccessible until

obliged to change them. But he too may be ex-

tremely grateful for the discovery that there exist

seaeral sufficing geometries, that we can make shift

also with a finite space, etc.,-grateful in short, for

the abolition of certain conuentional barriers of'

thought.
If we lived on the surface of a planet with a tur-

bid, opaque atmosphere and if, on the supposition

that the surface of the earth was a plane and our

only instruments were square and chain, we were

to undertake geodetic measurements; then the in-

crease in the excess of the angle-sum of large tri-

angles would soon compel us to substitute a spher-

ometry for our planimetry. The possibi,lity of' an-

alogous experiences in three-dimensional space the

physicist cannot as a matter of. principle reject, al-

though the phenomena. that would compel the ac-

ceptance of a Lobachdvskian or a Riemannian ge-

ometry would present so odd a contrast with those

to which we have been hitherto accustomed, that no

one r,vill regard their actual occurrence as probable'

The question whether a given pkysical object is

a straight line or the arc of a circle is not properly

formulated. A stretched chord or a ray ol light is

certainlv neither tfie one nor the other. The ques-

tion is simply whether the object so spatially reacts

that it conforms better to the one concept than to
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the other, and whether with the exactitude which is
sufficient for us and obtainable by us it confo,rms at
all to any geometric concept. Exclutling the latter
case, the question arises, whether we can in practice
remove, or at least in thought determine and make
allowance for, the d,eaiation from the straight line
or circle, in other words, correct the result of the
measurement. But we are dependent always, in
practical measufements, on the comparison of. phys-
rccl objects. If on direct investigation these coin-
cided with the geometric concepts to the highest at-
tainable point of accuracy, but the indirect results
of the measurement deviated more from the theory
than the consideration of all possible errors per-
mitted, then certainly we should tre obliged to
change our physico-metric notions. The physicist
will do well to await the occurrence of such a situa-
tion, while in the meantime the mathematician may
be allowed full and free scope for his speculations.

Trrn CoNcnprs oF Metrrnuerrcs AND Prrysrcs.

Of all the concepts which the natural inquirer
employs, the simplesl are the concepts of space and
time. Spatial and temporal objects conforming to
his conceptual constructs can be framed with great
eractness. Nearly every observable daniati,on can
be eliminated. We can imagine any spatial or tem-
poral construct realized without doing violence to
any fact. The other physical properties of bodies
are so intimately interconnected that in their case
arbitrary fictions are subjected to narrow restric-
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tions by the facts. A perfect gas, a perfect fluid, a
perfectly elastic body does not exist; the physicist
knows that his fictions conform only approximately
and by arbitrary simplifications to the facts; he is
perfectly aware of the deviation, which cannot be re-
moved. We can conceive a sphere, a plane, etc.,
constructed with wnlimited e*o,ctness, without run-
ning counter to any fact. Hence, when any new
physical fact occurs which renders a modification of
our concepts necessary, the physicist always prefers
to sacrifice the less perfect concepts of physics rather
than the simpler, more perfect, and more lasting
concepts of geometry, which form the solidest
foundation of all his theories.

But the physicist can derive in another direction
substantial assistance from the labors of geometers.

Our geometry refers always to objects of sensuous
experience. But the moment we begin to operate
with mere things of thought like atoms and mole-
cules, which from their very nature can nezter be
made the objects of sensuous contemplation,' we ate
under no obligation whatever to think of them as
ifanding in spatial relationships which are peculiar
to the Euclidean three-dimensional space of our sen-
suous experience. This may be recommended to the
special attention of thinkers who deem atomistic
speculations indispensable.'

IWhile gtill an upholcler ol the atomic theory, I rought to
erplain the line"epect* of gasm by the vibrationg ol the atomic
coistituents of d gai.noletule with respect to another. Tho
diftculties whicb ihere encounteretl .auggestecl to me (1863)
tbe idea that non-sensuous things dicl not neceesarily have to

3'ROM TrJE POINT OF VIEW OF pIrySrCS I3g

Tnn RBr,euvrry oF Ar,r, Sparrer, Rrr.atroxs.

Let us go back in thought to the origin of geom-
etry in the practical needs of life. The recognitio,n
of the spatial substantiality and spatial invariability
of spatial objects in spite of their movements is a
biological necessity for human beings, for spatial
quantity is related directly to the quantitative satis-
faction of our needs. When knowledge of this so,rt
is not sufficiently provided for by our physiological
organization, we employ our hands and feet for
comparing the spatial objects. When we begin to
compare bod,ies with one another, we enter the
domain of physics, whether we employ our hands
or an artificial measure. AIl ,physical d,eterminations
are relatiae. Consequently, likewise all geomet-
rical determinations possess validity only relatively
to the measure. The concept of measurement is
a concept of relation, which contains nothing not
contained in the measure. In geometry we sim-
ply assume that the measure will always and every-
where coincide with that with which it has at
some other time and in'some other place coincided.
But this assumption is determinative of nothing con-

be picturecl in our sensuous spae€ of three dimersione. Ia thir
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cerning the measure. In place of spatial physiolog'

icol equality is substituted an altogether differently
defined physical equality, which must not be con-
founded with the former, no more than the indica-
tions of a thermometer are to be identified w{th the
sensation of heat. The practical geometer, it is true,

determines the dilatation of a heated measure, by
means of a measure kept at a constant temperature,
and takes account of the fact that the relation of con-
gruence in question is disturbed by this non-spatial
physical circumstance. But to the pure theory of
space all assumptions regarding the measure are for-

eign. Simply the physiologically created habit of
regarding the measure as invariable is tacitly but un-
justifiably retained. It would be quite superfluous
and meaningless to assume that the measure, and

therefore bodies generally, suffered alterations on

displacement in space, or that they remained un-

changed on such displacement,-a fact which in

its turn could only be determined by the use of a

n€w measure. The relatiaity of. all spatial relations
is made manifest by these considerations.

INrnoouctroN oF tnp' Norrox or NuMsBn.

If the criterion of spatial equality is substantially
modified by the introduction of measure, it is sub-
jected to a still f,prther modification, or intensifica-

tion, by the introduction of the notion of. number
into geometry. There is nicety of distinction gained

by this introduction which the idea of congruence

FROM THE POINT OF VrEIV OF pllysrcs I4I

alone could never have attained. The application
of arithmetic to geometry leads to the notion of in-
co?nmensurability and irrationality. Our geometric
concepts therefore contain adscititious elements not
intrinsic to space; they represent space with a cer-
tain latitude, and, arbitrarily also, with g.reater pre-
cision than spatial observation alone could possibly
ever realize. This imperfect contact between fact
and concept explains the possibility of different sys-
tems of geometry.l

SrcNrn'rceNcE oF rup MBracEoMETRrc MovB-
MENT.

The entire movement which led to the transforma_
tion of our ideas of geometry must be characterized

pectation that it will long continue, and redound not
only to the great advancement of mathematics and
geometry, especially in an epistemological regard,
but also to that of the other sciences. This move-
ment was, it is true, powerfully stimulated by a few
eminent men, but it sprang, nevertheless, not from
an individual, but from a general need. This
will be seen from the difference in the pro_
lft r"rfa bo too much to expect of matter that it shoultlrealize all the atomistic fantasi:es of tne physlcist. $; 6;;BpTe: as.-a* object of e,xperie=nce, can. harhty be expect'ecl tdeatiefy all.the ideae of-thC mathematician, th-ougi th6re be noqouDc whatevor a8 to the general valuo of their-investigatiots.
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fessions of the men who have taken part in it. Not
only the mathematician, but also the philosopher
and the educationist, have made considerable contri-
butions to it. So, too, the methods pursued by the
different inquirers are not unrelated. Ideas which
Leibnitzt uttered recur in slightly altered form in
Fourier,z l-obach6vski, Bolyai, and H. Erb.s The
philosopher IJeberweg,n closely approaching in his
opposition to Kant the views of the psychologist
Beneke,6 and in his geometrical ideas starting from
Erb (which later writer mentions K. A. Erbo as his
predecessor) anticipates a go'odly portion of Helm-
holtz's labors.

Sulr*renv.

The results to which the preceding discussion has
led, may be summarized as follows:

r. The source of otrr geometric concepts has
been found to be experience.

2. The character of the concepts satisfying the

" 
1 See above pp. 66-67.
2 S6onces ile l'Ecole NormaJe, D6bats. Vol. I., 1800, p. 28.
! H. Erb, Grossherzoglieh Baclischer Finanzrath, Dde Pro-

bl,eme iler gerail,en Ldni,e, iles Wi,nkels unil iler ebenm Eldake,
Eeidelberg, 1846.

' ''Die Principien der Geometrie wissenschaftlich tlarge-
stellt. " Archio fiir Pkilol,ogic wnd Pdilagogdk. 1851. Re-
printetl in Brasch'g Welt- unitr Lebensansalwuntng F. Ueber-
uegs, Leipzig,1889, pp. 263-317.

E Logdk al,s Kwrxtl,ghre des Denkens, Berlin, 1842, YoI. II.,
pp. 5r-55.

c Zw Mathematdk unil Logdla, Eeidelberg, 1821. f was un.
abls to era.mins tbig work.
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same geometrical facts has been shown to be many
and varied.

3. By the comparison of space with other mani-
folds, more general concepts have been reached, of
which the geometric represents a special case. Geo-
metric thought has thus been freed from conven-
tional limitations, heretofore imagined insuperable.

4, By the demonstration of the existence of
manifolds allied to but different from space, en-
tirely new questions have been suggested. What
is space physiologically, physically, geometrically?
To what are its specific properties to be attributed,
since others are also conceivable? Why is space
three-dimensional, etc.?

With questions such as these, though we must not
expect the answer to.day or to-morrow, we stand
before the entire profundity of the domain to be
investigated. We shall say nothing of the inept
strictures of the Beotians, whose coming Gauss
predicted, and whose attitude determined him to re-
serve. But what shall we say to the acrid and cap-
tious criticisms to whidh Gauss, Riemann and their
associates have been subjected by men of highest
standing in the scientific world ? Have these men
never experienced in their own persons the truth
that inquirers on the outermost boundaries of
knowledge frequently discover many things that
will not slip smoothly into all heads, but which are
not on that account arrant nonsense? True, such
inquirers are liable to error, but even the errors of
some men are often more fruitful in their conse-
quealces than the discoveries of others.
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