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APPENDIX II

THE STRUCTURE OF THE SYSTEM OF STRICT IMPLI-
CATION?

The System of Strict Implication, as presented in Chapter V
of A Survey of Symbolic Logic (University of California Press,
1918), contained an error with respect to one postulate. This
was pointed out by Dr. E. L. Post, and was corrected by me
in the Journal of Philosophy, Psychology, and Scientific Method
(XVIT [1920], 300). The amended postulates (set A below)
compare with those of Chapter VI of this book (set B below) as
follows:

! This appendix is written by Mr. Lewis, but the points demonstrated are,
most of them, due to other persons.

Groups II and III, below, were transmitted to Mr. Lewis by Dr. M,
Wajsberg, of the University of Warsaw, in 1927. Dr. Wajsberg’s letter also
contained the first proof ever given that the System of Strict Implication is
not reducible to Material Implication, as well as the outline of a system which
is equivalent to that deducible from the postulates of Strict Implication with
the addition of the postulate later suggested in Becker’s paper and cited below
as C11. Itisto be hoped that this and other important work of Dr. Wajsberg
will be published shortly.

Groups I, IV, and V are due to Dr. William T. Parry, who also discovered
independently Groups II and III. Groups I, I, and 1II are contained in his
doctoral dissertation, on file in the Harvard University Library. Most of the
proofs in this appendix have been given or suggested by Dr. Parry.

It follows from Dr. Wajsberg’s work that there is an unlimited number
of groups, or systems, of different cardinality, which satisfy the postulates
of Strict Implication. Mr. Paul Henle, of Harvard University, later-dis-
covered another proof of this same fact. Mr. Henle’s proof, which can be
more easily indicated in brief space, proceeds by demonstrating that any
group which satisfies the Boole-Schrider Algebra will also satisfy the postu-
lates of Strict Implication if ¢p be determined as follows:

¢p = 1 when and only when p > 0;

6p = 0 when and only when p = 0.
This establishes the fact that there are as many distinet groups satisfying
the postulates as there are powers of 2, since it has been shown by Huntington
that there is a group satisfying the postulates of the Boole-Schroder Algebra
for every power of 2 (“Sets of Independent Postulates for the Algebra of
Logic,’’ Trans. Amer. Math. Soc., V [1904], 309).

The proof of (14), p. 498, is due to Y. T. Shen (Shen Yuting).
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Al. pqg.3.q9p Bl. pgq.3.¢qp

A2, gp.3.p B2. pg.3.p

A3. p.3.pp B3. p.3.pp

A4, plgr).3.49(pm) B4 (pgrr.3.p(gr)
A5. pi3~(~p) B5. p3~(~p)

A6. p3qg.qir:d4.p3r B6. pig.qg3r:d.p4dr
A7, ~0p3~p B7. p.p3g:3.¢q

A8. pdq.3.~0¢3~0D B8. ¢(pgqg)40p

B9. (dp,q :~(p3q).~(p3~q)

The primitive ideas and definitions are not identical in the
two cases; but they form equivalent sets, in connection with the
postulates.

Comparison of these two sets of postulates, as well as many
other points concerning the structure of Strict Implication, will
be facilitated by consideration of the following groups. Each of
these is based upon the same matrix for the relation pg¢ and
the function of negation ~p. (This is a four-valued matrix which
satisfies the postulates of the Boole-Schréder Algebra.) The
groups differ by their different specification of the function ¢p.
We give the fundamental matrix for p ¢ and ~p in the first case
only. The matrixfor p 3 g, resulting from this and the particular
determination of ¢p, is given for each group:

Group I

S .

pgll 23 4|~ o 3|1234

111234 4 1)1]2444
pl2|2 2 44| 3 1222414

31343412 1(3]|24214

414 4441 3142222
Group II Grour III
o1 321123 4 ol 3112 3 4
11|14 3 4 1|1 4 4 4
2442111133 121144
1413|1414 13 (1414
4114|1111 4y 4|1 111
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Grovur IV Grour V
6l 211 2 3 4 6l 41 2 3 4
2 111333 1 112 4 3 ¢4
2 21113 3 2(212 233
231313 1 312 42 4
44 (1111 314|222 2

The ‘designated values,’ for all five groups, are 1 and 2; that
is, the group is to be taken as satisfying any principle whose
values, for all combinations of the values of its variables, are
confined to 1 and 2. (In Groups II, III, and IV, 1 alone might
be taken as the designated value: but in that case it must be
remembered that, since

(Hp,q):~p3q) .~(pa~g):.=:.~[(p, @) :p4g.v.p~q],

B9 would be satisfied unless p4g.v.p3~¢ always has the
value 1. It is simpler to take 1 and 2 both as designated values;
in which case B9 is satisfied if and only if ~(p3¢).~(p3~q)
has the value 1 or the value 2 for some combination of the values
of p and ¢.)

All of these groups satisfy the operations of ‘Adjunction,’
‘Inference,” and the substitution of equivalents. If P and @
are functions having a designated value, then P Q will have a
designated value. If P has a designated value, and P 4@Q has
a designated value, then @ will have a designated value. And if
P = Q—that is, if P4@Q.Q 3P has a designated value—then
P and @ will have the same value, and for any function f in the
system, f(P) and f(Q) will have the same value.

The following facts may be established by reference to these
groups:

(1) The system, as deduced from either set of postulates, is
consistent. Group I, Group II, and Group III each satisfy
all postulates of either set. For any one of these three groups,
B9 is satisfied by the fact that ~(p4¢q).~(p 3~¢) has a desig-
nated value when p=1 and ¢ = 2, and when p =1 and
qg = 3.

(2) The system, as deduced from either set, is not reducible
to Material Implication. For any one of the five groups,
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~(p~q) .4.p4q hasthe value 3or4 when p=1 and ¢= 2.
None of the ‘paradoxes’ of Material Implication, such as
p.>.¢2p and ~p.>.p>g, will hold for any of these groups
if the sign of material implication, 3, is replaced by 4 through-
out.

(8) The Consistency Postulate, B8, is independent of the set
(B1-7 and B9) and of the set Al-7. Group V satisfies B1-7,
and satisfies ~(p3¢q).~(p4~g) for the values p=1, ¢ = 2.
It also satisfies A1-7. But Group V fails to satisfy B8: B8 has
the value 4 when p = 2 and ¢ = 3, and when p = 2 and ¢ = 4.

(4) Similarly, A8 is independent of the set A1-7, and of the
set (B1-7 and B9). For Group V, A8 has the value 4 when
p=1 and ¢ = 3, and when p =2 and ¢= 3.

(5) Postulate B7 is independent of the set (B1-6 and B8, 9),
and of the set (A1-6 and A8). Group IV satisfies B1-6, BS,
and B9, and satisfies A1-6 and A8. But for this group, B7 has
the value 3 when p = 1 and ¢ = 2, and for various other com-
binations of the values of p and gq.

(6) Similarly, A7 is independent of the set (A1-6 and A8)
and of the set (B1-6 and B8, 9). F¥or Group IV, A7 has the
value 3 when p = 1 and when p = 3.

That the Existence Postulate, B9, is independent of the set
B1-8, and of the set A1-8, is proved by the following two-element
group, which satisfies B1-8 and A1-8:

pgl 1 O |~p o3 10
1]1 00 1 1’10
0‘00‘1 0“0 11

(This is, of course, the usual matrix for Material Implication,
with the function ¢p specified as equivalent to p.) For this
group, ~(p4¢) . ~(p 3~¢) has the value O for all combinations
of the values of p and q.

Dr. Parry has been able to deduce B2 from the set (B1 and
B3-9). However, the omission of B2 from the postulate set of
Chapter VI would have been incompatible with the order of
exposition there adopted, since the Consistency Postulate is
required for the derivation of B2. Whether with this exception
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the members of set B are mutually independent has not been
fully determined.

The question naturally arises whether the two sets A1-8 and
B1-8 are equivalent. I have discovered no proof but believe
that they are not. B1-8 are all deducible from A1-8: and A1-7
are all deducible from B1-8. The question is whether A8 is
deducible from B1-8. If it is not, then the system as deduced
from the postulate set of Chapter VI, B1-9, is somewhat ‘stricter’
than as deduced in the Survey from set A.

The logically important issue here concerns certain conse-
quences which enter the system when A8 is introduced. Both
Dr. Wajsberg and Dr. Parry have proved that the principle

p3g.3:q4r.3.p3r

is deducible from A1-8. I doubt whether this proposition should
be regarded as a valid principle of deduction: it would never
lead to any inference p4r which would be questionable when
P3¢ and ¢4r are given premises; but it gives the inference
g4r.3.p3r whenever pd4g is a premise. Except as an
elliptical statement for “p4g¢.g3r:3.p4r and p4q is
true,” this inference seems dubious.

Now as has been proved under (3) above, the Consistency
Postulate, B8, is not deducible from the set (B1-7 and B9).
Likewise the principle mentioned in the preceding paragraph is
independent of the set (B1-7 and B9): Group V satisfies this
set, but for that group the principle in question has the value 4
when p=1, ¢=3, and r = 1, as well as for various other
values of p, g, and r. But Group V also fails to satisfy B8, as
was pointed out in (3) above. If it should hereafter be discovered
that the dubious principle of the preceding paragraph is deducible
from the set B1-9, then at least it is not contained in the system
deducible from the set (B1-7 and B9); and I should then regard
that system—to be referred to hereafter as S1—as the one which
coincides in its properties with the strict principles of deductive
inference. As the reader will have noted, Chapter VI was so
developed that the theorems belonging to this system, S1, are
readily distinguishable from those which require the Consistency
Postulate, BS.

SYSTEM OF STRICT IMPLICATION 497

The system as deduced either from set A or from set B leaves
undetermined certain properties of the modal functions, ¢p,
~0p, 0~p, and ~0~p. In view of this fact, Professor Oskar
Becker ? has proposed the following for consideration as further
postulates, any one or more of which might be added to either set:

C10. ~0~p 3 ~0~ ~0~p

Cll. opd~0~0p

Cl2. p3~0~0p
(Becker calls C12 the ‘“Brouwersche Axiom.”)

'When A1-8, or B1-9, are assumed, the second form in which
C10 is given can be derived from the first, since the converse
implication, ~¢~ ~0~p 4 ~0~p, is an immediate consequence of the
general principle, ~0~p 4p (18-42 in Chapter VI). The second
form of C11 is similarly deducible from the first.

An alternative and notationally simpler form of C10 would be

C10-1 04p3¢ép 6 0p = op

(As before, the second form of the principle can be derived
from the first; since the converse implication, ¢p 3¢ ¢p, is an in-
stance of the general principle p 3 ¢p, which is 18-4 in Chapter
VI, deducible from A1-8, or B1-9.)

Substituting ~p for p, in C10-1, we have

op = ~0 ~0p

0 0~p 3 0~p ‘ (a)
(@) . = . ~0~p 320 O~p . = o ~O~D 3 ~0~ ~0~D.

And substituting ~p for p in C10, we have

~0~(~p) 3 ~0~ ~0~(~p) (b)

(b) e = . ~0p3~0~~0p. = .~p3~00p.= .0 0p30p.
(The principles used in these proofs are 12-3 and 12-44 in

Chapter VI.)
For reasons which will appear, we add, to this list of further

postulates to be considered, the following:

C13. ¢ op
That is, “For every proposition p, the statement ‘p is self-
consistent’ is a self-consistent statement.”

2 See his paper “Zur Logik der Modalitéten,” Jahrbuck fiir Philosophie und
Phanomenologische Forschung, XI (1930), 497-548.
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Concerning these proposed additional postulates, the following
facts may be established by reference to Groups I, II, and III,
above, all of which satisfy the set A1-8 and the set B1-9:

(7) C10, C11, and C12 are all consistent with A1-8 and with
B1-9 and with each other. Group III satisfies C10, C11, and
C12.

(8) C10, C11, and CI2 are each independent of the set
A1-8 and of the set B1-9. For Group I, C10, C11, and C12
all fail to hold when p = 3.

(9) Neither C11 nor C12 is deducible from the set (A1-8
and C10) or from the set (B1-9 and C10). Group II satisfies
C10; but C11 fails, for this group, when p = 2 or p = 4; and
C12 fails when p = 2.

(10) C13 is consistent with the set A1-8 and with the set
B1-9. Group I satisfies C13.

(11) C13 is independent of the set A1-8 and of the set
B1-9, and of (A1-8 and C10, Cl11, and C12) or (B1-9 and C10,
C11, and C12). Group III satisfies all these sets; but for this
group, C13 fails when p = 4.

When A1-8, or B1-9, are assumed, the relations of C10, C11,
and C12 to each other are as follows:

(12) C10 is deducible from C11. By C11 and the principle
~(~p) = p,

~0~p = ~[0(~p)] = ~[~0 ~0(~p)] = ¢[~0(~p)]
= ~0 ~0(~0 ~p) = ~0[~0 ~0(~p)]
= ~0[0(~p)] = ~0{~[~(0~p)]} = ~0w ~0mp.

(13) C12 also is deducible from C11. By 18-4 in Chapter
VI, p 3 9p; and this, together with C11, implies C12, by A6 or
by B6.

(14) From C10 and ©12 together, C11 is deducible. Sub-
stituting ¢p for p in C12, we have

Op 4 ~0 ~0 0. (a)

And by Cl10-1, ~¢ ~0¢p = ~0 ~¢p. Hence (a) is equivalent
to C11.

From (12), (13), and (14), it follows that as additional
postulates to the set A1-8, or the set B1-9, C11 is exactly equiva-
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lent to C10 and C12 together. But as was proved in (9), the
addition of C10 alone, gives a system in which neither C11 nor
C12 is deducible.

Special interest attaches to C10. The set A1-8, or the set
B1-9, without C10, gives the theorem

~o~ QD o 3L~ = D,

This is deducible from 19-84 in Chapter VI. It follows from this
that if there should be some proposition p such that ~¢~ ~0~p
is true, then the equivalences

D = ~0~p and ~~p = ~o~ ~O~p

would hold for that particular proposition. And since, by
19-84 itself, all necessary propositions are equivalent, it follows
that if there is any proposition p which is necessarily-necessary—
such that ~0~~0~p is true—then every proposition which is
necessary is also necessarily-necessary; and the principle stated
by C10 holds universally. But as was proved in (8), this prin-
ciple, ~0~p = ~~ ~0~p, is not deducible from A1-8 or from
B1-9. Hence the two possibilities, with respect to necessary
propositions, which the system, as deduced from A1-8 or from
B1-9, leaves open are: (a) that there exist propositions which
are necessarily-necessary, and that for every proposition p,
~o~p = ~0~ ~9~p; and (b) that there exist propositions which
are pecessary—as 20- 21 in Chapter VI requires—but no proposi-
tions which are necessarily-necessary. This last is exactly what
is required by C13, ¢ ¢p. Substituting here ~p for p, we have,
as an immediate consequence of C13, ¢ ¢~p. This is equivalent
to the theorem ‘“For every proposition p, ‘p is necessarily-
necessary’ is false”: ¢ ¢~p = O~ ~0~p = ~(~0~ ~4~p) [by the prin-
ciple ~(~p) = p}. Thus C10 expresses alternative (a) above; and
C13 expresses alternative (b). Hence as additional postulates,
C10 and C13 are contrary assumptions.

(As deduced from Al1-8, the system leaves open the further
alternative that there should be no necessary propositions, or
that the class of necessary propositions should merely coincide
with the class of true propositions; but in that case the system
becomes a redundant form of Material Implication.)
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From the preceding discussion it becomes evident that there
is a group of systems of the general type of Strict Implication
and each distinguishable from Material Implication. We shall
arrange these in the order of increasing comprehensiveness and
decreasing ‘strictness’ of the implication relation:

81, deduced from the set B1-7, contains all the theorems of
Sections 1-4 in Chapter VI. It contains also all theorems of
Section 5, in the form of T-principles, but not with omission of
the T. This system does not contain A8 or the principle

P3g.3:g4r.3.p3r.

However, it does contain, in the form of a T-principle, any
theorem which could be derived by using A8 as a principle of
inference: because it contains

P3q.~0g:4.~0p;
and hence if (by substitutions) p<4¢ becomes an asserted prin-

ciple, we shall have
T.~0g:3.~0p.

When the Existence Postulate, B9, is added, this system S1
contains those existence theorems which are indicated in Section
6 of Chapter VI as not requiring the Consistency Postulate, BS.

S2, deduced from the set B1-8, contains all the theorems of
Sections 1-5 in Chapter VI, any T-principle being replaceable
by the corresponding theorem without the 7. When the Exist-
ence Postulate, B9, is added, it contains all the existence theorems
of Section 6. Whether 82 contains A8 and the principle

pig.3:g3r.4.p4r
remains undetermined. If that should be the case, then it will
be equivalent to S3.
S3, deduced from E{phe set A1-8, as in the Survey, contains all
the theorems of 82 and contains such consequences of A8 as
Pig.3:g4r.3.p4r.
If B9 is added, the consequences include all existence theorems
of 82,

For each of the preceding systems, S1, 82, and 83, any one of
the additional postulates, C10, C11, C12, and C13, is consistent
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with but independent of the system (but C10 and C13 are mutu-
ally incompatible).

84, deduced from the set (B1-7 and C10), contains all theorems
of 83, and in addition the consequences of C10. A8 and B8 are
deducible theorems. 84 is incompatible with C13. C11 and
C12 are consistent with but independent of 84. If B9 be added,
the consequences include all existence theorems of S2.

85, deduced from the set (B1-7 and Cl11), or from the set
(B1-7, C10, and C12), contains all theorems of S4 and in addition
the consequences of C12. If B9 be added, all existence theorems
of 82 are included. A8 and B8 are deducible theorems. 85 is
incompatible with C13.

Dr. Wajsberg has developed a system mathematically equiva-
lent to S5, and has discovered many important properties of it,
notably that it is the limiting member of a certain family of
systems. Mr. Henle has proved that S5 is mathematically
equivalent to the Boole-Schréder Algebra (not the Two-valued
Algebra), if that algebra be interpreted for propositions, and the
function ¢p be determined by:

¢p = 1 when and only when p # 0;
¢p = 0 when and only when p = 0.

In my opinion, the principal logical significance of the system 85
consists in the fact that it divides all propositions into two
mutually exclusive classes: the intensional or modal, and the
extensional or contingent. According to the principles of this
system, all intensional or modal propositions are either neces-
sarily true or necessarily false. As a consequence, for any modal
proposition—call it pm—
0(pm) = (Pm) = ~0~(pm),
and O~(pm) = ~(pm) = ~0(Pm).
For extehsional or contingent propositions, however, possibility,
truth, and necessity remain distinct.
Prevailing good use in logical inference—the practice in

mathematical deductions, for example—is not sufficiently precise
and self-conscious to determine clearly which of these five systems
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expresses the acceptable principles of deduction. (The meaning
of ‘acceptable’ here has been discussed in Chapter VIII.)
The issues concern principally the nature of the relation of
‘implies’ which is to be relied upon for inference, and certain
subtle questions about the meaning of logical ‘necessity,” ‘possi-
bility’ or ‘self-consistency,” etc.—for example, whether C10 is
true or false. (Professor Becker has discussed at length a number
of such questions, in his paper above referred to.) Those inter-
ested in the merely mathematical properties of such systems of
symbolic logic tend to prefer the more comprehensive and less
‘strict’ systems, such as S5 and Material Implication. The
interests of logical study would probably be best served by an
exactly opposite tendency.

APPENDIX III

FINAL NOTE ON SYSTEM S,
January 5, 1959

This Appendix is intended to supplement Chapter VI which
presents the calculus of Striet Implication, 82, and Appendix 1T
concerning the series of related systems S1—S5.

An adequate summary of the literature pertinent to these
two topics which has appeared since the first publication of this
book in 1932 would not be possible within reasonable limits of
space here. But inasmuch as what is included in this present
edition will stand as the permanent record of Strict Implication
there are four items brief account of which should be set down.

J. C. C. McKinsey has shown that the postulate 11.5 in
Chapter VI (B5 in Appendix II) is redundant, being deducible
from the remainder of the set.!

E. V. Huntington contributed additional theorems which are
important for understanding the logical import of the Consistency
Postulate, 19.01, and for the comparison of Strict Implication
with Boolean Algebra, to be mentioned later.2

Two basic theorems in Section 5 of Chapter VI—supposedly
theorems requiring the Consistency Postulate—can be proved
without that assumption and are included in S1.

W. T. Parry has supplied the proof that the systems S2 and
83 are distinct, thus completing proof that all five of the systems
S1—S85 are distinet from one another.?

The first three of these topics can be covered summarily by
proving additional theorems, so numbered that the place where
they can be interpolated in the development as given in Chapter
VI will be indicated. A few other theorems, omitted in the
original edition but helpful for one reason or another, will be
included here.

The first group of theorems gives the derivation of 11.5;
12.29 below. The proof as given by McKinsey is here simplified,
taking advantage of the fact that, in Chapter VI, no use of 11.5
is made in proof of any theorem prior to 12.3.

1J. C. C. McKinsey, “A Reduction in the Number of Postulates for C. I.
Lewis’ System of Strict Implication,” Bull. Amer. Math. Soc., Vol. 40 (1934),
pp. 425-427.

2 E. V. Huntington, “Postulates for Assertion, Conjunction, Negation, and
Equality,” Proc. Amer. Acad. of Aris and Sciences, Vol. 72 (1937), No. 1, pp. 1-
44

W, T. Parry, ‘“The Postulates for ‘Strict Implication’,”” Mind, Vol. XLIII,
N. 8. (1934), No. 169, pp. 78-80.

I am also indebted to Professor Parry for adding to my list of the errata
needing correction and other assistance,

503
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12.27 ~{~[~(~p)]} 3 p

12.25: ~(~p)/p] {~[~(~p)]} 3 ~(~p) (1)
11.6] (1) .12.25: 3 Q.E.D.

1228 ~p = ~[~(~p)]

12:2: ~[~(~p)l/p; plg] 12:27. = : ~p 4 ~=(~p)] (1)
1225 : ~p/p] ~[~(-p)] 4 =p Pl
11.03] (1).(2) : = Q.E.D.

12.29 p 4 ~(~p)

12.1] ~0(p~p) . 3 . ~6(p ~p) (1)
12:28] (1)~ = : . ~0(p~p) . 3 . ~0{p ~[~(~p)]} (2)
11.02] (2). = : 12.1. 3 Q.E.D.

12.3 = ~(~p)

[11 03] 12.25.12.29 : = Q.E.D.

The next group are simple and obvious theorems, omitted in
Chapter VI but helpful for the comparison of Strict Imphcatlon
with Boolean Algebra.

12.91 p~p. 3 .¢q

[112~/]pq--*p (1)
[12.3,12.6] (1) = Q.E.D.

12.92 p~p.= .9~

12.91 : g~g/ql p~p. 3 .q~¢ (1)
12.91 : g/p; p ~p/q] g~q. 3 .p~p 2)
11.03] (1) . (2) = Q.E.D.

12.93 ~0p.=.p 3 ~p
12.7, 12 3] ~op . = -~<>[p ~(~p)] (1)
11. 02] (1) = QE.D

12:94 ~0~p .= .~p 4 p
12:93 : ~p/p] ~0~p . = :~p. 4 .~(~p) (1)
12.3] (1) = Q.E.D.

12.95 .= .~(p 3 ~p)
12 11] ~(~o ) . = . ~(~0p) (1)
12.3, 12.93] ci) = Q.E.D.

12.96 = .~(~p 4 D)
[12 95, 12.3]

136 pv~p.=.qV~
[12.11, 12.92, 11.01, 12.3]

13.7 PV D
[12 91 ~p[p; ~q/q] ~p ~(~p) . ~q (1)
[12.42,11.01] (1) 4 Q.E.D.

FINAL NOTE ON SYSTEM 8, 505

Theorems 19+57 and 1958 of Section 5 in Chapter VI do not
require the Consistency Postulate, 19.01. Proof of them from
postulates and theorems of S1 exclusively follows. Two conse-
quences are added.

1636 p.q~q: = .q~¢ (See 19.57)
11:2] g~g.p: 3 1 g~g (1)
12.91) g~q. 3 .p (2)
16+33] (2) . =:.g~q. 3 1q~q.p (3)
11.03) (1) .(3) : =1 g~g.p: = .q~g 4)
12.15] (4) = Q.E.D.

1637 p.=:p. v q~q (See 19+58)
12. 91] ~g. 3 (1)
16.34, 13 11] (1) PPV .qg~g: 34 .D (2)
132l p. 3 :p. Vv .q~ (3)
11.03] (2).(3) : = Q.E.D.

16:38 p.=:p.q Vv ~q
[12.3] p = ~(~p)
16.37] =i~(~p.V .qg~)
11.01,12.3] = : ~(~p) . ~(g ~q)
12.3,11.01] =:p.~q v ¢
13.11] =!p.gVva~

16:39 pv~p.=:pV~p.Vv,.
[12-11] ~(p ~p) = .~(p ~p) (1)
[16-36] (1) . = : ~(p~p) . = .~(p~p . ~q) (2)
[11.01] (2) . =:.~»p Vv Dp.=:.~pVDP.V .q 3)
(13.11] (3) = QE.D.

The group of theorems which follows are all of them important
in connection with the topic of the ‘paradoxes of Strict Implica-
tion’, to be discussed in conclusion. Proofs of 16.395, 19.86
and 19.87 are due to Huntington, and proofs of the others are
to be found in his paper cited above. The first, 16-395, is a
theorem in S1; the remainder of the group are theorems in S2.

16:395 pqg. 3 .p: = .~0(r~r)
12. 11] ~<>(r ~r) . = . ~0(r~r)
12.92] = . ~0(p ~p)
16.36, 12:15] = .~0(p~p.q)
12.5] =.~0(pq.~p)
11.02] =:pgqg.3 .p
19.85 ~0(p~q) . 3 .~0(r~r)
19.01 : p ~q/p]l 6(p~q.q) . 3 .0(p~q) (1)
12+5,16+36) (1) . = : 0(g~q) - 3 . 0(p~q) (2)

12492] (2) . = :0(r~r). 3 .0(p~q) (3)
12.44] (3) = Q.E.D.
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19.86 ~p.3 .r 47

12:3,12:7] (1) . = : ~0p . 3 . ~0(r ~
11.02] (2)]=(2\),.E.D. a8 = @

1987 p1g.4 :p.=.pq
16+33] 19:85. = : . ~0(p~q) . 3 : ~(p~q) . ~0(r~r)
i(li.gg]f)] =:.p4qg.3:p3q.~0~r
. =::p3¢g.3:.p3q:pq. 4.
16.33] =::!p3q.93:. 7 pd P
p.4.pq:pg. 3.
{11.03] = Q.E.D. pa-rd P
1988 p3qg.=:p.=.pgq
[11.03,12:1] p. = .pg: 3 :p.3 .pqg:pq.3 .p (1)
112 p. 4 .pg:pg.3 .p:.3:p.3.pqg (2
[11.6] (). (2): 3 :.p.=.pg: 3 :p.3.pg (3)
[16-33] 3) . =:.p.= pg: 4 .p 43¢ 4)
[11.03] (4) .19.87 : = Q.E.D.
19.89 [-Op.=:p.=.q~g
19:88]p 4 ~p.=:p.=.p~p 1
(12.92](1) . =:.p3~p.=:p.=.¢~g E2g
[18-12] (2) = Q.E.D.
19.891 ~o~p . =:1p.=.q Vv ~q
[19:89 : ~p/p]~0~p . = 1 ~p. = .g~q
[11.03] SR I N R R I R

(12-45, 12.3]
(11-01, 12.3]
[11.03]

i~g~g) A p:p 3 ~(g~g)
gV ~q.3pip.d .qV ~q
p.=.9qV ~q

o<

We turn to the fourth item mentioned in our introd
uct
remarks: Parry’s proof that the principle o

Ppi3qg.3:g47r.4.p3r,

deducible from the postulates of S3 (A1—8 in Appendi
is not deducible from the postulates o§ S82. On thip;ppﬁ?rg Ivgf)a
could not do better than to quote his succinct demonstration
in t}tlf paper cited a}mlbove:
_ “In answer to this question as to the two sets of )
it will here be shown that A8, and the consequencepg?hi?t—wé
referred to by Mr. Lewis, are independent of B1—9, 1. e., that
they cannot be deduced from set B by the admitted popera,tiuns
Thl‘S‘ fact can be .demonstrated by the matrix method as follows :—.
(1) The eight numbers, 0 to 7, are taken as ‘elements’;
the numbers 6 and 7 are said to be the ‘designated values’. ’

19-85 : ~p/q] ~0[p ~(~p)] . 3 .~0(r ~r) (1)
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“(2) The ‘primitive ideas’ of the System of Strict Implica-
tion are given matrix (or extensional) definitions in terms of the

elements, as follows:

~p=7—-p
p op pq| 01234567
01 0/00000000
1 5 1101010101
2 7 200220022
3 7 3101230123
4 7 4100004444
5 7 5/01014545
6 7 6100224466
7 7 7101234567

“From these tables, with the definitions 11.02 and 1103,
the tables for p 4 gand p = ¢ are readily constructed. (1 p) f(p)
has a designated value if and only if f(p) has a designated value
for some substitution of an element for p.

“(3) All the postulates of set B are found to be ‘satisfied’;
i. e., if we make any substitution of elements for the variables of a
postulate, and calculate according to the matrix definitions, the
result is a designated value.

‘“(4) If certain principles are satisfied, any principle derivable
from them by means of the operations used for proof is also
satisfied.

“(5) Tinally, A8 and certain consequences of set A are
not satisfied, hence are not derivable from set B by the admitted
operations. 1f we substitute 1 for p, 0 for ¢, in A8, the result is 0.
(Even if we weaken the main relation of A8 to material implica-
tion, the prineiple is not satisfied.) That the principle mentioned
above,

pig.4:q¢3r.3.p3r

is not satisfied, is shown by the substitution 1,0,0 for p,q,r
respectively.”

Let us add, however, that although the above-mentioned
principle. is not provable in $2, we can derive in 82, from any
premise of the form P 4 @, a corresponding conclusion 3 R .
3 . P 3 R, as Parry has shown by the following proof-schema:

Given P 3 @Q; Toprove@ 3 R. 3 .P3 R.

[Hypothesis] P 4 Q 1
[19.87] 1) . 3 : P.=.PQ (2)
[19.52] Q s R.3 : PQ.3 .R 3)
(2@ .=:Q3R.4.P3R
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This completes the proof, otherwise established in Appendix
I1, that all five of the systems S1—S5 are distinet, and that each
later system in the series requires some postulate which is in-
dependent of its predecessor system in the series.

In a paper published in 1946, Dr. Ruth C. Barcan Marcus
has shown that the system S2 can be extended to first-order
propositional functions.! Though it happens that I hold certain
logical convictions in the light of which I should prefer to ap-
proach the logic of propositional functions in a different way,
I appreciate this demonstration that there is a caleulus of fune-
tions which bears to the calculus of Strict Implication a relation
similar to that which holds between the calculus of functions in
Principia Mathematica (*9—*11) and the caleulus of propositions
(*1—*5) in that work.

For anyone who should be interested in Strict Implication as
logic, and not merely in the mathematical and metamathematical
structure of it as a system, there are two further topies which
I think it is of some importance to consider. First, it may be
of historical interest, and it certainly will be of logical interest,
to compare both Strict Implication and Material Implication
with the Boolean Algebra in the classic form given it by Schréder.
Second, it should be the prime desideratum of deductive logic to
identify correctly and develop the properties of that logical
nexus which holds between a premise p and a consequence ¢ when
and only when ¢ is validly deducible from p. And in that con-
nection, attention to the ‘paradoxes’, both of Strict Implication
and of Material Implication, will be called for. The first of these
two topics can be notably illuminating for any consideration of
the second.

Schroder developed the two systems referred to in the early
chapters of this book: first, the general Boolean Algebra inter-
preted by him as the logic of classes; second, the Two-Valued
Algebra which he interprets as the logic of propositions. How-
ever, it will be more convenient for our purposes to suppose that
we have both these systems before us in the form of uninterpreted
mathematical systems, defined after the manner made familiar
by Huntington; 1. e., as ““a class K of elements a, b, ¢, . . ., and an
operation o such that;—the postulates being appended. Also,
for simplicity, let ussuse the notations of the propositional
calculus throughout— ~p, p.q, p v ¢, ete.—whether it is the inter-
pretation for classes or that for propositions which is under
consideration at the moment. For brevity, we may refer to the
general caleulus interpreted for classes as K1, the Two-Valued
Algebra as K2.

K2 is derived from the same postulates as K1, with the
addition of a postulate expressed by Schroder as “p = (p = 1),”

! Ruth C. Barcan, “A Punctional Calculus of the first order, based on Strict
Implication;” Journal for Symbolic Logic, Vol. II, No. 1, pp. 1-16.
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which is equivalent in force to the assumption, “For any ele.meng
p, either p = 0 or p = 1.” The basic mathematical properties o
K1 and K2 both, are determined by the fact that the zero element
of the system is the modulus of the operation of (logical) multipli-
cation; the ‘and’-relation of elements. For any element p,

p~p = 0. Hence p ~p = ¢ ~q = r ~r, etc.

And the element 1, which is the inverse of 0, is the modulus of
the operation of (logical) addition; the ‘or’-relation of elements.
For any element p,

pv.,p:l‘ Hencepv~p=qv~q=rv~r,etc-

Let us here write that relation which is read, for propositions,
as ‘p implies ¢’, and for classes as “The class p is contained in the
class ¢’, as p—>¢. Both in K1 and in K2, this relation is so defined
that it holds when and only when p~g =0 and ~p v ¢ = 1.
Thus, even in_the uninterpreted system, p—-¢ 18 a statem;nt,
equivalent to the equations just mentioned, which holds when
and only when, for any element r,

p~¢q=0=7r~r and ~pvg=1=1V-r

Let us remember also that, both in K1 and in K2, 0->p and p—-1
for any element p; e. g., the null class is contained in every c-_lass;
and every class is contained in the universal class, everything.
For the propositional interpretation, 'Schm(’ier interpreted
p = l—equivalent to p = r v ~r—as ‘p Is true’; and p = 0—
equivalent to p = r ~r—as ‘p is false.” On this 111_tt_arpr§3t§.itt1§g;
he added postulate of K2 is called for: every proposition 1s e
g'lgeaor fall;e. But all the postulates of K1 are also consistent
with the contradictory of this added postulate: “For some element
p,p # 0and p # 1. (Itis false that all classes are either empty
niversal). .
o uThe pro)perties of the relation p > ¢ in the truth-val'u;a
caleulus of Material Implication are correlative throughout with
those of p—¢ in K2, since p 2 ¢ is, by reason of its definition,
equivalent to ~(p ~¢)—in K2, p~¢ =0. In Boolean f‘gklg.;tebr?l
generally (K1 and K2 both) » = 01s equivalent to ~r = 11, alﬁ
1.1=1,1.0=0,0+1=0,and 0-0=0. And al e
paradoxes of the truth-value interpretation of p—>¢, oblige
by the added postulate of K2, are implicit in the fact that when
the values of p and ¢ are restricted to 0 and 1, there are only four

alternatives:
=1:p2¢,~p D ¢~p > ~¢~P>DP,~1>¢
0:pD¢q,pP>~q~p>~¢DP>~pP,q°>~¢
1:p>g~p>q¢P>~¢P>~p~>(

0:p D ~q,~p>D q,~pD~¢;~P>¢Q7>~q

_WR
o
-0

QR
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Also, for any one of these alternatives, either p > gor ¢ > p,
either ~p > ¢ or ¢ ® ~p, and so on. A relation so nearly ubi-
quitous could not coincide with that which holds when and only
when ¢ is deducible from p.

However, there is another interpretation of Boolean Algebra
which can be imposed on K1 (not K2) for which it becomes a
calculus of propositions. All that is necessary in order to assure
the possibility of this second interpretation of K1 is to observe
that, retaining the same meaning of ~p as the contradictory of p,
of p.q as ‘p and ¢, and of p v ¢ as ‘either p or ¢, a different mean-
ing can be imposed on the element 0 (= r ~r, for any element r)
and the element 1 (= r v ~r, for any element r). For any
proposition r, ‘r and ~r’ is not only a false proposition but also a
formal contradiction, necessarily false, self-inconsistent, analyti-
cally certifiable as false. And ‘7 or ~’ 1s not only a #rue statement
but a formal tautology, necessarily true, analytic. And taking
p = 1 tosignify ‘p is analytic’, p = 0 to signify ‘p is self-inconsist-
ent, contradictory’, it is evident at once that we have another
possible reading for all the postulates and theorems of K1. For
this second interpretation, p = 1 becomes the function ~o~p of
Strict Implication; p = 0 becomes ~0p; p # 0 becomes ¢p; and
p # 1 becomes 0~p. And p—>q, equivalent to p ~¢ = 0, becomes
the relation of strict implication, p 4 ¢. And for this interpreta-
tion of K1, the added postulate of K2, “For every element p,
either p = 0 or p = 1,” will be false, and its contradictory, “For
some element p, p £ 0 and p # 1,” will be true. There are
contingent propositions, neither analytic and logically necessary
nor contradictory and logically impossible. It is interesting to
conjecture what might have happened, in the further development
of exact logic, if Schréder or Charles S. Peirce had taken thought
upon this second possible interpretation of Boolean Algebra as a
propositional caleulus.

As this will suggest, every postulate and theorem of K2 can,
with a suitable dictionary, be translated into a postulate or
theorem of Material Implication; and, with a slightly different
dictionary, every postulate and theorem of K1 can be translated
into a postulate or theorem of Strict Implication. However,
this relation of ‘mathematical equivalence’ is clouded, in both
cases, by the fact that our dictionary would have to provide
symbolic equivalents for some of the English (or German) in K1
or K2. The presumed logic and logical relations of any uninter-
preted mathematical system are usually not written in symbols
but in the vernacular. Incidentally it is this kind of fact which
accounts, in part, for the possible distinctness of the systems
S81—S5, turning upon such questions as the inclusion or non-
inclusion of ¢0p = ¢p. (See Appendix II). In a Boolean
Algebra, (p # 0) 0 would have no meaning;and if it were given
one by declaring it equivalent to p # 0, the significance of that
assumption would be obscure.
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As we have said, this comparison with K1 and K2 can throw
light upon the paradoxes, both of Material Implication and of
Strict Implication. Strict Implication escapes the paradoxes of
the truth-value logic of propositions because, by the different
interpretation of 0 (= p~p) and 1 (= p v ~p) and by repudiat-
ing restriction of propositions to these two values, it also escapes
restriction to the four alternatives tabulated above for the relation
of material implication. It leaves the ‘middle ground’ of contin-
gent propositions between the analytic and the self-contradictory.

As a consequence of these facts, the paradoxes of Strict
Implication are confined to the implications which are assertable
when one or both of the propositions related is contradictory
(equivalent, for some 7, to r ~r) or when one or both is analytic
(equivalent, for some r, to r v ~r). They do not extend to im-
plications assertable as holding between premises and conclusions
both of which are contingent propositions, neither analytic and
logically necessary nor contradictory and logically impossible.
Thus they do not affect what implies what amongst empirically
substantiated and factually informational premises and their
empirically significant consequences. In contrast to this, the
paradoxes of Material Implication affect the implications assert-
able between any chosen pair of propositions without restriction,
because all propositions are either fruth-value equivalent to r ~r
or truth-value equivalent to r v ~r.

However—and here is a main point of the comparison with
the Boolean systems K1 and K2—every theorem of K1 (common
to K1 and K2) which is paradoxical on the interpretation of
p = 1as ‘pistrue’ and p = 0 as ‘p is false’, remains paradoxical
when p = 1 is interpreted as ‘p is analytic’ and p = 0 as ‘p is
contradictory’. -

In Material Implication, the key paradoxes, implicating all
the others, are: A false proposition implies any proposition;
A true proposition is implied by any; Any two false propositions
are equivalent; Any two true propositions are equivalent. Cor-
respondingly, the key paradoxes of Strict Implication are:
A contradictory (self-inconsistent) proposition implies any oropo-
sition; An analytic proposition is implied by any; Any two
contradictory propositions are equivalent; Any two analytic
propositions are equivalent. Other paradoxical theorems of
Striet Implication include 16495, 19+.85 and 19.86 above.

Strict Implication, defining p 3 ¢ as a statement which holds
when and only when the conjoint statement p ~q, which asserts
the premise and denies the conclusion, is self-inconsistent, is put
forward with the intent to satisfy the requirement that p 4 ¢ hold
when and only when ¢ is a consequence validly deducible from the
premise p. On acount of the paradoxes, there are many who
doubt that it does so satisfy this requirement. And some amongst
them have put forward alternative developments of a calculus
of propositions designed to eliminate the paradoxes. It is es-
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pecially regrettable to omit consideration of such proposals.
But these have been too numerous and various to allow adequate
report and, discussion of them here. I shall, however, venture the
conviction—recognizing my hazard in so doing—that without
sacrifice or plain omission of some intuitively acceptable, analy-
tically certifiable, and time-honored principle of inference, or the
introduction of some assumption which fails of accord with such
perduring logical principles, the paradoxes of Strict Implication
are inescapable. They are unavoidable consequences of in-
dispensable rules of inference.

The manner in which the paradoxes are involved in our logical
commonplaces is, of course, a complex matter. But it will do no
harm to remind ourselves of a trivial example or two. If the
moon is a planet, and is not made of green cheese, then the moon
is a planet. But if two premises together imply a conclusion and
that conclusion is false while one of the premises is true, then the
other premise must be false. So if the moon is a planet and also
is not a planet, then the moon is made of green cheese. We need
not dally with a suppositious amendment: “Whatever in the
premises is non-essential to the conclusion is no part of what
implies that conclusion.” That dictum would condemn the
syllogism, since in every syllogism the premises contain informa-
tion not contained in the conclusion. So to alter the meaning of
‘implies’ that all implications would be reducible to the form ‘p
implies p’, would destroy the usefulness of logic.

. That analytic conclusions are implied by any premise, is
inescapable once we recognize as valid the procedure by which,
our premise being taken, alternatives to be conjoined can be
exhaustively specified. In a simple case, use of the principle in
question may appear jejune; but in more complex instances we
hardly could proceed without it. If today is Monday, then either
today is Monday and it is hot or today is Monday and it is not
hot. And that implies that either it is hot or it is not hot. This
has the appearance of clumsy sleight of hand; and we may say,
“In what sense of ‘If . . . then’ and ‘implies’?”’ It can be answered;
“In the sense of ‘presupposed’.” A presupposition of X is a
necessary condition of X. When p implies ¢ and ¢ implies r, the
truth of p is a sufficient condition of the truth of ¢, but it is r the
truth of which is a necessary condition of the truth of q. The
analytic principle called the Law of the Excluded Middle is pre-
supposed when we begin to logicize.. When any premise is taken,
all statements of the form p v ~p are already presumed, whether
we think of them or not. Otherwise we could not move forward
by an inference: p is true, hence either p and ¢ or p and not-q.
But p and not-g is not possible; p implies ¢q. So ¢.!

! It would be sufficient here if we substitute “‘But p and not-q is not the case.”
But we need to infer ¢ only when we do not know, without reference to some

premise, whether g is true or not. We infer that it is the case by knowing the
incompatibilily of its falsity with the truth of the premise.
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It remains to suggest why these paradoxes of Strict Implication
are paradoxical. Let us observe that they concern two questions:
What is to be taken as consequence of an assumption which, being
self-contradictory, could not possibly be the case; and what is to
be taken as sufficient premise for that which, being analytic and
self-certifying, could not possibly fail to be the case? That to
infer in such cases is affected with a sense of paradox, reflects the
futility of drawing any inference when the premise is not only
known false but is not even rational to suppose; and the gratuitous
character of inferring what could be known true without reference
to any premise. ‘Deducible’ and ‘inferable’ have a normative
connotation: they do not concern what we are ‘able’ to infer
in our foolish moments, but what, having taken commitment to
our premises, it is rationally warranted to conclude and rationally
forbidden to deny. And it becomes paradoxical to say; “From a
premise of the form ‘p and not-p’ any and every conclusion is to
be inferred.” Such a statement invites the rejoinder; ‘“‘From such
a premise, no conclusion at all should be drawn, because no such
premise should ever be asserted ; the supposition of it is irrational.”
Somewhat similarly it has the air of paradox to say; ‘“The Law of
the Excluded Middle, and any conclusion reducible to the form
‘either p or not-p,’ is to be inferred from any and every premise.”
This might invite the rejoinder; “Any such conclusion is not to be
inferred at all, being self-certifying to any clear and rational
mind.” But in this case, the rejoinder would have less force.
Some rational minds—including those of human logicians and
mathematicians—sometimes have a need to deduce something
which they recognize will, if deducible, be analytic. They do not
yet know whether what they have in mind is analytic or not, or
even whether it is true. To deduce it will be to prove it. What
manner of procedure is open to them in such cases? They might
proceed by seeing whether they can reduce this statement which
they wish to establish as a theorem to the form ‘p or not-p’ for
some complex expression p. Ordinarily, they do not attempt that
manner of proof. Instead, they seek to deduce what they have
in mind from the postulates, definitions, and other theorems
already assumed or proved. But, without knowing whether the
hoped-for theorem is analytic or not, what steps of inference are
open to them? Plainly, they must confine themselves to deduc-
tive steps which are universally justifiable modes of inference,
valid whether the conclusion sought is analytic or is contingent on
given premises. Perhaps this is so obvious as to be banal. It
comes to the same thing to say: “That what is analytic is de-
ducible from any and every premise, warrants the presumption
that a particular statement, p, is deducible from any and every
premise, only on the additional premise that p is analytic.” The
sense in which what is known to be reducible to the form ‘r or
not-r’ is thereby known to be deducible from any and every
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premise, has already been illustrated. The point is that such
a paradigm as p. 4 .¢ v ~g, though it is a true and analytic
statement about what is deducible from what, is incapable of
any use as a rule for deducing any conclusion which is not already
known with certainty. That is the paradox.

~_Thus none of the paradoxical paradigms, either those which
indicate what is deducible from the logically impossible, or
those which formulate sufficient conditions of the logically
necessary, are capable of any use for the characteristic purpose
of inferring—for establishing the truth or increasing the credi-
bility of something by reference to premises which imply it. This
holds, for paradigms of the former sort, for the double reason
that the contradictory premise is not assertable, and that being
deducible from such a premise adds no scintilla of eredibility to
the consequence of it. And it holds for paradigms of the latter
type because the paradigms cannot be applied unless the con-
clusion is known with analytic certainty in advance.

In the light of these considerations affecting the paradoxes,
we may observe the possibility of drawing a somewhat fine
distinction between ‘deducibility’ and ‘inferability’. (I do not
propose this distinetion.) We might say that no inference is to be
drawn from anything the assertion of which is rationally contra-
indicated. And for that the acceptance of which is rationally
dictated—the analytic—no premise is to be taken as a condition
of assertion: the sense in which it is to be ‘inferred’ is extra-
logical. If we should be minded so to limit the sense of ‘infer’,
we could then say that the paradoxes of Strict Implication are
unexceptionable paradigms of deduction, but are not relevant to
logically valid inference.

C. I. Lewis
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