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CHAPTER V

LIMITS OF FUNCTIONS OF A CONTINUOUS VARIABLE.
CONTINUOUS AND DISCONTINUOUS FUNCTIONS

89. Limits as « tends to . We shall now return to
functions of a continuous real variable. We shall confine our-
selves entirely to one-valued functions*, and we shall denote such
a function by ¢ (¢). We suppose z to assume successively all
values corresponding to points on our fundamental straight line
A, starting from some definite point on the line and progressing
always to the right. In these circumstances we say that z
tends to infinity, or to o, and write £ -~ c0. The only difference
between the ‘ tending of n to oo’ discussed in the last chapter, and
this ‘tending of # to oo’, is that « assumes all values as it tends
to 0, t.e. that the point P which corresponds to # coincides in
turn with every point of A to the right of its initial position,
whereas n tended to w by a series of jumps. We can express this
distinction by saying that z tends continuously to .

As we explained at the beginning of the last chapter, there is
a very close correspondence between functions of # and functions
of m. Every function of n may be regarded as a selection from
the values of a function of #. In the last chapter we discussed
the peculiarities which may characterise the behaviour of a
function ¢ (n) as n tends to 0. Now we are concerned with the
same problem for a function ¢ (#); and the definitions and
theorems to which we are led are practically repetitions of those
of the last chapter. Thus corresponding to Def. 1 of § 58 we
have :

* Thus 4/ stands in this chapter for the one-valued function' +./x and not (as
in § 26) for the two-valued function whose values are +,/z and - \/z.
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DeriNirion 1. The function ¢ (2) is said to tend to the limit |
as @ tends to oo tf, when any positive number 8, however small, is
assigned, a number @, (3) can be chosen such that, for all values of
@ equal to or greater than x, (8), ¢ () differs from U by less than §,

ie. if
|p(@)—1|<8

when x Z z,(8),

When this is the case we may write
lim ¢ (2) =1,
or, when there is no risk of ambiguity, simply lim ¢ (z) =1, or
¢ (#)—=1. Similarly we have:

DerinNiTION 2. The function ¢ (z) s said to tend to oo with
@ if, when any number A, however large, is assigned, we can choose
« number z, (A) such that
¢(x)>A
when x Z zy (A).
We then write
¢ (#) > co.

Similarly we define ¢ (2) =—c*. Finally we have:

DErINITION 8. If the conditions of neither of the two preceding
definitions are satisfied, then ¢ (z) is said to oscillate as z tends
tooo. If | ¢ (w)] is less than some constant K when x Z x,F, then
¢ () 1s said to oscillate finitely, and otherwise infinitely.

The reader will remember that in the last chapter we con-
sidered very carefully various less formal ways of expressing the
facts represented by the formulae ¢ (n) 1, ¢ (n)—>oco. Similar
modes of expression may of course be used in the present case.
Thus we may say that ¢ (=) is small or nearly equal to ! or large
when « is large, using the words ‘small’, ‘nearly’, ‘large’ in
o sense similar to that in which they were used in Ch. IV.

* We shall sometimes find it convenient to write +w, 2>+, ¢ () >+
instead of 0, >0, ¢ (r)>om.

+ In the corresponding definition of § 62, we postulated that | ¢ (n) | <X for all
vulues of n, and not merely when n = n,. But then the two hypotheses would have
boen equivalent; for if |¢ (n)| < K when n Z n,, then |¢ (n)| < K’ for all values
of n, where K’ is the greatest of ¢ (1), #(2), ..., ¢ (ny—1) and K. Here the
mutter is not quite so simple, as there are infinitely many values of z less than zq.

11—2
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Examples XXXIV. 1. Consider the behaviour of the following functions
as x> llx: 1 +(1/x)7 _,;2’ x") [.Z‘], x-—[x], [”]’I'\/{"“_ [7']}

The first four functions correspond exactly to functions of » fully dis-
cussed in Ch. IV. The graphs of the last three were constructed in Ch. II
(Exs. XvL 1, 2, 4), and the reader will see at once that [#]-> 0, #—[2] oscillates

finitely, and [#]+4/{z—[2]} > o.

One simple remark may be inserted here. The function ¢ (#)=xz—[x]
oscillates between 0 and 1, as is obvious from the form of its graph. Itis
equal to zero whenever x is an integer, so that the function ¢(n) derived
from it is always zero and so tends to the limit zero. The same is true if

¢ (x)=sinaw, ¢ (n)=sinnr=0.

It is evident that ¢ (#)=1 or ¢ (2)=w or ¢ (z)-> — involves the corre-
sponding property for ¢ (n), but that the converse is by no means always

true.
2. Consider in the same way the functions:
(sinzr)/z, xsinzm, (zsinzm)?, tanzm, acostzr+bsin’zw,
illustrating your remarks by means of the graphs of the functions.

3. Give a geometrical explanation of Def. 1, analogous to the geometrical
explanation of Ch. IV, § 59.

4. If ¢ (¥)=1,and I is not zero, then ¢ (x) cos #m and ¢ () sin x7 oscillate
finitely. If ¢ (#)= 0 or ¢ (#)=—c0, then they oscillate infinitely. The
graph of either function is a wavy curve oscillating between the curves

y=9 (@) and y= — ¢ (2).
5. Discuss the behaviour, as -, of the function
y=f (x)cos?zm + F (x)sin? zm,

where f(z) and F (z) are some pair of simple functions (e.g. # and 2?). [The
graph of y is a curve oscillating between the curves y= f(x), y=F(x).]

90. Limits as # tends to —o. The reader will have no
difficulty in framing for himself definitions of the meaning of the
assertions ‘& tends to — o0 ’, or ‘@ —— 0’ and

lim ¢ (z)=1, ¢ (@)= o0, ¢(z)—=>—o.

In fact, if a=—y and ¢ (@)=¢ (—y)=+(y), then y tends
to o as « tends to —oo, and the question of the behaviour of
¢ (z) as = tends to — co is the same as that of the behaviour of

Y (y) as y tends to .
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'91. Theorems corresponding to those of Ch. IV, §§ 63—67.
The theorems concerning the sums, products, and quotients of functions
proved in Ch. IV are all true (with obvious verbal alterations which the
reader will have no difficulty in supplying) for functions of the continuous
variable 2. Not only the enunciations but the proofs remain substantially
the same.

92. Steadily increasing or decreasing functions. The definition
which corresponds to that of § 69 is as follows: the function b (z) will
be said to increase steadily with x if ¢ (29)ZP (v,) whenever 2y>2y. In
many cases, of course, this condition is only satisfied from a definite value
of z onwards, z.e. when x, >z, Z#,. The theorem which follows in that section
requires no alteration but that of z into #: and the proof is the same, except
for obvious verbal changes.

If ¢ (2)>(21), the possibility of equality being excluded, whenever
2,>2y, then ¢ () will be said to be steadily increasing in the stricter sense.
We shall find that the distinction is often important (cf. §§ 108—109),

The reader should consider whether or no the following functions
increase steadily with # (or at any rate increase steadily from a certain
value of x onwards): 2% -z, #+sinw, z+2sinz, 42+ 2sin, [#], [#]+ sinz,
[x]+/{x—[x]}. All these functions tend to w as - w.

93. Limits as « tends to 0. Let ¢ (z) be such a function
of & that lim ¢ (#)=1/, and let y = 1/z. Then

@)= Afy)=v (),

say. As @ tends to o, y tends to the limit 0, and y (y) tends to
the limit Z ;

Let us now dismiss # and consider +-(y) simply as a function
of y. We are for the moment concerned only with those values
of y which correspond to large positive values of =, that is to say
with small positive values of . And 4 (y) has the property that
by making y sufficiently small we can make 4 (y) differ by as
little as we please from 7. To put the matter more precisely,
the statement expressed by lim ¢ (#)=1 means that, when any
positive number &, however small, is assigned, we can choose
w, 80 that |¢ (z) —1[< & for all values of @ greater than or equal
to @,. But this is the same thing as saying that we can choose
Yo =1/, so that [y (y) — 1| < & for all positive values of y less than
or equal to 7.

We are thus led to the following definitions:
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A, If, when any positive number 8, however small, is assigned,
we can choose ¥, (8) so that

lp(y)—1|<8

when 0< y = 1y, (8), then we say that ¢ (y) tends to the limit 1 as y
tends to 0 by positive values, and we write

lim ¢ (y)=1
y—>+0

B. If, when any number A, however large, is assigned, we can
choose y, (A) so that
$@y>A

when 0 <y =y, (A), then we say that ¢ (y) tends to o as y tends
to 0 by positive values, and we write

¢ (y) >0,

We define in a similar way the meaning of ‘¢ (y) tends to
the limit I as y tends to O by negative values’, or ‘lim ¢ (y) =1
when y~—0". We have in fact only to alter 0 <y =<1,(8) to
— %,(8) = y < 0 in definition A. There is of course a corresponding
analogue of definition B, and similar definitions in which

¢ (y) ==
asy—>+0 or y>—0.

<

If lim ¢(y)=10 and lim ¢(y)=I, we write simply
'1/~>+0_3 y->-0
lim ¢ (y) =1
y—=>0

This case is so important that it is worth while to give a formal
definition.

If, when any positive number 8, however small, is assigned, we
can choose y, () so that, for all values of vy different from zero but
numerically less than or equal to y,(8), ¢ (y) differs from 1 by less
than 8, then we say that ¢ (y) tends to the limit I as y tends to 0,

and write
lim ¢ (y) =1
y=>0

So also, if ¢(y) > as y—=>+0 and also as y - —0, we say
that ¢ (y) = as y >0. We define in a similar manner the
statement that ¢ (y) =—— o0 as y -0,
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Finally, if ¢(y) does not tend to a limit, or to o, or to
— o, as y-=+0, we say that ¢ (y) oscillates as y =+ 0, finitely
or infinitely as the case may be; and we define oscillation as
y——0 in a similar manner.

The preceding definitions have been stated in terms of a
variable denoted by z: what letter is used is of course immaterial,
and we may suppose « written instead of y throughout them.

94 Limits as » tends to a. Suppose that ¢(y) =1 as
y =0, and write

y=z—a, ¢@) =¢@—a)=1(2)
If y >0 then z—a and v (z) -/, and we are naturally led to
write

lim 4 (2) =1,

or simply lim v (z) =1 or ¥ (&) -1, and to say that ¥ (z) tends to
the limit | as « tends to a. The meaning of this equation may
be formally and directly defined as follows: <f, given 8, we can
always determine e(8) so that

l$@—1]<3
when 0< |z —a| = €(8), then
lim ¢ (@) =1.

By restricting ourselves to values of # greater than a, 4.e. by
replacing 0< |2z —a|=e(8) by a<z = a + ¢ (8), we define ‘¢ ()
tends to / when z approaches a from the right’, which we may

write as
lim ¢ (z)=1
x->=a+0
In the same way we can define the meaning of
lim ¢ (z)=1
x>a-0

Thus lim ¢ (z) =1 is equivalent to the two assertions

z=>a
lim ¢(z)=1 lim ¢(z)=L
x->a+0 x—>a-0
We can give similar definitions referring to the cases in which
p(x)—>c0 or ¢(x)>~—o as z—a through values greater or less
than a; but it is probably unnecessary to dwell further on these
definitions, since they are exactly similar to those stated above in
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the special case when a=0, and we can always discuss the
behaviour of ¢ (2) as #—+a by putting #—a=y and supposing
that y—-0.

95. Steadily increasing or decreasing functions. If there is a number
e such that ¢ (2')=¢ (#”) whenever a—e<a’'<2’<a+e¢, then ¢ () will be
said to increase steadily in the neighbourhood of z=a.

Suppose first that #<a, and put y=1/(a—%). Then y->wo as r->a—0,
and ¢ (2)=v (y) is a steadily increasing function of y, never greater than ¢ (a).
It follows from § 92 that ¢p(z) tends to a limit not greater than ¢ (a). We

shall write
lim ¢ (z)=¢ (a+0)*
z>a+0

We can define ¢ (@ —0) in a similar manner; and it is clear that

¢ (a—0)=¢ (a)=¢ (a+0).

It is obvious that similar considerations may be applied to decreasing
functions.

If ¢ (@')<¢p(a”), the possibility of equality being excluded, whenever
a—e<a/<a"<ate then ¢ (x) will be said to be steadily increasing in the
stricter sense. '

96. Limits of indetermination and the principle of convergence.
All of the argument of §§ 80—84 may be applied to functions of a con-
tinuous variable # which tends to a limit @. In particular, if ¢ () is
bounded in an interval including a (i.e. if we can find ¢, #, and & so that
H<¢(2)<Kwhena—esx=a+e)t, then we can define A and A, the lower and
upper limits of indetermination of ¢ (#) as -+ a, and prove that the necessary
and sufficient condition that ¢ (z)-»I as z-»a is that \=A=0. We can also
establish the analogue of the principle of convergence, 7.c. prove that the
necessary and syfficient condition that ¢ (x) should tend to a Limit as x—a is
that, when & s given, we can choose € (d) so that | () —¢ (#1)| <& when
0<|m—a|<|z;—a|=e(d).

Examples XXXV. 1. If ¢ (2)=1{, { (2)=>1, as x->a, then
¢ @) +¥ @)=+, @)V (@)=L, ¢ @)/ @)=/,

unless in the last case I/=0. “
[We saw in § 91 that the theorems of Ch. IV, §§63 ef seq. hold also for
functions of # when -+ or £ - . By putling z=1/y we may extend

them to functions of y, when g0, and by putting y=2—a to functions of z,
when z—=a.

* It will of course be understood that ¢ (a+0) has no meaning other than that
of a conventional abbreviation for the limit on the left hand side.
T See § 102.
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The reader should however try to prove them directly from the formal
definition given above. Thus, in order to obtain a strict direct proof of the
first result he need only take the proof of Theorem I of § 63 and write
throughout z for , @ for © and 0< |z - a|=¢ for nZn,.]

2. If m is a positive integer then 4™->0 as x—0.

3. Ifm is a negative integer then a™->+ o as #->+0, while 2™-> - o or
am >+ as xr-=—0, according as m is odd or even. If m=0 then am=1
and am--1.

4. lim (a+bz+cx?+ ... +ka™)=a.

x>0

5. lim {(a+be+ ... +ka™)/(a+Bo+ ... +x2*)} =a/a, unless a=0. Tf a=0

z >0
and a=%0, 8+0, then the function tends to +w or — «©, as #-=+40, according
as @ and B have like or unlike signs; the case is reversed if #>—0. The
case in which both @ and a vanish is considered in Ex. xxxvL 5. Discuss the

cases which arise when @0 and more than one of the first coefficients in the
denominator vanish. :

6. lim am=am, if m is any positive or negative integer, except when a=0
T—>=a

and m is negative. [If m>0, put z=y+a and apply Ex. 4. When m <0,

the result follows from Ex: 1 above. It follows at once that lim P (x)= P (a),

if £’ (z) is any polynomial.]
7. lim R(x)=LR(a), if B denotes any rational function and @ is not one
xr>a

of the roots of its denominator.

8. Show that lim #m=am for all rational values of m, except when a=0
T>a

and m is negative. [This follows at once, when @ is positive, from the in-
cqualities (9) or (10) of § 74. For |a™— a™| < H|x— a|, where H is the greater
of the absolute values of ma™~1 and mam~! (cf. Ex. xxviII 4). If aisnegative
we write =~y and a= -b. Then

lim g =1lim (= 1jmym=( - 1ymbm=am.]

97. The reader will probably fail to see at first that any proof
of such results as those of Exs. 4, 5, 6, 7, 8 above is necessary.
Ile may ask ‘why not simply put #=0, or #=a? Of course
we then get a,afa, a™, P (a), R(a)’. It is very important that he
should see exactly where he is wrong. We shall therefore consider
this point carefully before passing on to any further examples.

The statement lim ¢ (z)=1
x>0

is a statement about the values of ¢ (#) when # has any value
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distinct from but differing by little from zero*. Tt isnot a statement
about the value of ¢ (z) when =0. When we make the state-
ment we assert that, when # is nearly equal to zero, ¢ () is nearly
equal to I. We assert nothing whatever about what happens
when @ is actually equal to 0. So far as we know, ¢ (#) may
not be defined at all for z=0; or it may have some value
other than /. For example, consider the function defined for all
values of # by the equation ¢ (#)=0. It is obvious that

Hm ¢ (@) =0 wevverrieernran . (1).

Now consider the function +(2) which differs from ¢ (z) only in
that ¥ (#)=1 when =0, Then

Hm (@) =0 .ooveeeeeeeeennn . (2),

for, when # is nearly equal to zero, y» (z) is not only nearly but
exactly equal to zero. But 4 (0)=1. The graph of this function
consists of the axis of #, with the point =0 left out, and one
isolated point, viz. the point (0, 1). The equation (2) expresses
the fact that if we move along the graph towards the axis of Y,
from either side, then the ordinate of the curve, being always equal
to zero, tends to the limit zero. This fact is in no way affected
by the position of the isolated point (0, 1).

The reader may object to this example on the score of

artificiality : but it is easy to write down simple formulae repre-
senting functions which behave precisely like this near z=0.

One is

¥ (2)=[1-27],
where [1 —2%] denotes as usual the greatest integer not greater
than 1—42 For if =0 then v (z)=[1]=1; while if 0 <z < 1,
or —1<#<0, then 0<1—2*<1 and so () = [1 — %] =0.

Or again, let us consider the function
h y=ualz
already discussed in Ch. II, § 24, (2). This function is equal

to 1 for all values of # save #=0. It is not equal to 1 when
2#=0: it is in fact not defined at all for z=0. For when we say
* Thus in Def. A of § 93 we make a statement about values of y such that

O<y =7y, the first of these inequalities being inserted expressly in order’to
exclude the value y=0.
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that ¢ («) is defined for =0 we mean (as we explained in Ch. II,
l.c.) that we can calculate its value for #=0 by putting =0
in the actual expression of ¢ (). In this case we cannot. When
we put #=0 in ¢(2) we obtain 0/0, which is a meaningless
expression. The reader may object ‘divide numerator and de-
nominator by #’. But he must admit that when #=0 this is
impossible. Thus y =/« is a function which differs from y=1
solely in that it is not defined for £=0. None the less

lim (z/z) =1,
for z/x is equal to 1 so long as « differs from zero, however small
the difference may be.

Similarly ¢ (#)={(z+1)*—1}/z=2+2 so long as « is not
equal to zero, but is undefined when z=0. None the less
lim ¢ (z) = 2.

On the other hand there is of course nothing to prevent the
limit of ¢ (z) as « tends to zero from being equal to ¢ (0), the value
of ¢ (x) forz=0. Thusif ¢ (¢) =2 then ¢ (0)=0and lim ¢ () = 0.
This is in fact, from a practical point of view, .. from the point
of view of what most frequently occurs in applications, the
ordinary case.

Examples XXXVI. 1. lim (2?-a?)/(»—a)=2a.
T—>a
2. lim (a™—a™)/(x —a)=ma™ "}, if m is any integer (zero included).
x->a

3. Show that the result of Ex. 2 remains true for all rational values
of m, provided @ is positive. [This follows at once from the inequalities

(9) and (10) of § 74.]
4. lim (27 —225+41)/(2®—322+2)=1. [Observe that x—1is a factor of
z>1
both numerator and denominator.]

6. Discuss the behaviour of
¢ (%) =(aqpa™+ a1 2™+ 1+ ... + ™t E) (bt +byanr 4L bt
as x tends to O by positive or negative values.

[If m>mn, lim ¢ (£)=0. If m=n, lim ¢ (z)=ay/b,. If m<nand n—mis
cven, ¢ (&) =+ or ¢(2) = — oo according as ay/by >0 or ag/by <0. If m<nand
n—misodd, ¢ (#) >+ as 2->+0 and ¢ (#)»— o as 2> -0, or p(2)>—
as z>+0 and ¢ (z) >+ as z-»—0, according as a,/by>0 or ay/b,<0.]
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6. Orders of smallness. When # is small 2 is very much smaller,
23 much smaller still, and so on: in other words

lim (a%2)=0, lim (+%/a%)=0,
x>0 x>0

Another way of stating the matter is to say that, when 2 tends to 0,
2% a3, ... all also tend to O, but 22 tends to O more rapidly than 2, 23 than
2% and so on. It is convenient to have some scale by which to measure
the rapidity with which a function, whose limit, as # tends to O, is 0,
diminishes with z, and it is natural to take the simple functions z, 22, a3, ...
as the measures of our scale.

We say, therefore, that ¢ (z) s of the first order of smallness if ¢ (v)/x
tends to a limit other than O as 2 tends to 0. Thus 2x+43224-27 is of the
first order of smallness, since lim (224 322+ 27)/z =2.

Similarly we define the second, third, fourth, ... orders of smallness. It
must not be imagined that this scale of orders of smallness is in any way
complete. If it were complete, then every function ¢ (x) which tends to zero
with # would be of either the first or second or some higher order of smallness.
This is obviously not the case. TFor example ¢ (#)=4"5 tends to zero more
rapidly than # and less rapidly than a2

The reader may not unnaturally think that our scale might be made
complete by including in it fractional orders of smallness. Thus we might
say that 27 was of the Zth order of smallness. We shall however see later
on that such a scale of orders would still be altogether incomplete. And
as a matter of fact the integral orders of smallness defined above are so
much more important in applications than any others that it is hardly
necessary to attempt to make our definitions more precise.

Ordeys of greatness. Similar definitions are at once suggested to
meet the case in which ¢ (#) is large (positively or negatively) when z is
small. We shall say that ¢ () is of the Zth order of greatness when # is small
if ¢ (#)/x~*=a* ¢ () tends to a limit different from 0 as & tends to 0.

These definitions have reference to the case in which 0. There are of
course corresponding definitionsrelating to the cases in which 2w or # - a.
Thus if #*¢ () tends to a limit other than zero, as x>, then we say that
¢ (%) is of the £th order of smallness when & is large: while if (z—a)* ¢ ()
tends to a limit other than Zero, as Z--a, then we say that ¢ (2) is of the 4th
order of greatness when # is nearly equal to a.

*7. limJ/(1+2)=limJ/(1-2)=1. [Put 1+2=y or 1-z=y, and use
Ex. xxxv. 8.]

8. lim{{/(14+2)-/(1-a)}/z=1. [Multiply numerator and denominator
by J(1+2)+/(1-2)]

* In the examples which follow it is to be assumed that limits as -0 are
required, unless (as in Exs. 19, 22) the contrary is explicitly stated.
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9. Consider the behaviour of {{/(14am)—J(1—a™)}/a" as >0, m and n
being positive integers.

10. lim{J(1+2+a?) - 1}jz=}.

J+e) =1+
P Ja=)-JA-2)

12. Drawa gra,ph of the function

{rll z— % 1 +xi—}/{x11 1—“+ 1+ }

Has it a limit as #-0% [Here y=1 except for z=1, 4,3, 4, when y is

11. lim

not defined, and y-1 as #->-0.]

18, him BEa1,
xz

[1t may be deduced from the definitions of the trigonometrical ratios* that
if x is positive and less than §m then

sinz<z<tanz
or cos x<sirlf <1
z
or 0<1-2—:—‘—”<1—-cosx=231n3;1x.
sin sinz_ 1
But 2 sin? jr<2(42)?<}2? Hence 11:30(1 - T) =0, and xl;n; E
As S0 T o an even function, the result follows.]
z
14, 11m Cos—x_’g 15, lim 2% 9% _ 4 Ts this true if a=01
: x? x

16. Lm¥EIRT_g, [Put z=siny.]
z

. arctanar
17. limtana =aq, lim——=
cosecx —cot & . 1+c_o_s Tz
18. hm—x———=é. 19. llm Tntas — ¥

ofs of the inequalities which are used here depend on certain pro-
ctor of a circle which are usually taken as geometrically
that the area of the sector is greater than that of the
The justitication of these assumptions must be

* The pro
perties of the ‘area’of a se
intuitive ; for example,
triangle inscribed in the sector.
postponed to Ch. VIL
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20. How do the functions sin(1/z), (1/z)sin(1/#), wsin(1jx) behave
as 07 [The first [oscillates finitely, the second infinitely, the third
tends to the limit 0. None. is defined when #=0. See Exs. xv. 6, 7, 8]

(2 (5

tfend to a limit as 2 tends to 07 [Vo. The functionis equal to 1 except when
sin (1/2)=0; i.e. whenx=1/m, 1 /2m,...,— 1/m, —1/2m,.... For these values the
formula for y assumes the meaningless form 0/0, and y is therefore not defined
for an infinity of values of # near £=0.]

21. Does the function

22, Prove that if m is any integer then [#]-=m and x—[#]>0 as
2-=>m+0, and [#]>m -1, 2 -[2]>1 as 2—=m -0,

98. Continuous functions of a real variable. The
reader has no doubt some idea as to what is meant by a continuous
curve. Thus he would call the curve € in Fig. 29 continuous,

the curve C” generally continuous but discontinuous for & = £ and
z=§"

_c .
!
\_/7’<
! ’
C

!
:
]
|
13 0

[ 457 SRS

Fig. 29.

Either of these curves may be regarded as the graph of a
function ¢ (). It is natural to call a function continuous if ‘its
graph is a continuous curve, and otherwise discontinuous. Let us
take‘ this as a provisional definition and try to distinguish more
precisely some of the properties which are involved in it.

II'l the first place it is evident that the property of the
function y = ¢ () of which C is the graph may be analysed into
some property possessed by the curve at each of its points.
To be able to define continuity for all values of x we must first
define continuity for any particular value of @ Let us there-
fore fix on some particular value of =, say the value z=§
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corresponding to the point P of the graph. What are the
characteristic properties of ¢ () associated with this value of z?

In the first place ¢ (z) ts defined for @ =E&. This is obviously
essential. If ¢ (§) were not defined there would be a point

missing from the curve.

Secondly ¢ («) 15 defined for all values of « mear x = £; e we
can find an interval, including #= £ in its interior, for all points

of which ¢ () is defined.

Thirdly if @ approaches the value & from either side then ¢ (z)
approaches the limat ¢ (£).

The properties thus defined are far from exhausting those
which. are possessed by the curve as pictured by the eye of
common sense. 'This picture of a curve is a generalisation from
particular curves such as straight lines and circles. But they are
the simplest and most fundamental properties: and the graph of
any function which has these properties would, so far as drawing
it is practically possible, satisfy our geometrical feeling of what a
continuous curve should be. We therefore select these properties
as embodying the mathematical notion of continuity. We are thus
led to the following

DeriNitioN.  The function ¢ (z) is said to be contimuous for
w=§ if it tends to a limit as » tends to € from either side, and
each of these limits is equal to ¢ (£).

We can now define continuity throughout an interval. The
function ¢ («) is said to be continuous throughout a certain
interval of values of z if it is continuous for all values of # in that
interval. It is said to be continuous everywhere if it is continuous
for every value of #. Thus [#] is continuous in the interval
(¢, 1 — ¢), where e is any positive number less than §; and 1 and «
are continuous everywhere. [x]

If we recur to the definitions of a limit we see that our
definition is equivalent to ‘¢ (x) 1s continuous for &= § 1f, given S,
we can choose ¢ (3) so that | ¢ (z) — p(E) | < 8 if 0=|z—E|=€(d)"

We have often to consider functions defined only in an interval
(a,b). In this case it is convenient to make a slight and obvious
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change in our definition of continuity in so far as it concerns tho
particular points @ and . We shall then say that ¢ (2) is con-
tinuous for z =a if ¢ (a+0) exists and is equal to ¢ (a), and for
@ =0bif ¢ (b— 0) exists and is equal to ¢ (b).

99.  The definition of continuity given in the last section may
be illustrated geometrically as follows. Draw the two horizontal

lines y=g (£) -8 and y=¢ (&) + 8. Then | ¢ (@)— b (£) | < 5 ex-
presses the fact that the point on the curve corresponding to & lies

Y
-— EE RS m e ———— e e ] 74‘}/:!1)(5)4'5
P
S AR ——--7 ————————————————— y_¢($)_5
0 E—€ E+e X
Fig. 30.

between these two lines. Similarly | — £| < ¢ expresses the fact
that « lies in the interval (§—e, £+ €). Thus our definition asserts
that if we draw two such horizontal lines, no matter how close
together, we can always cut off a vertical strip of the plane by
two verticak lines in such a way that all that part of the curve
which is contained in the strip lies between the two horizontal
lines. This is evidently true of the curve ¢/ (Fig. 29), whatever
value £ may have.

We shall now discuss the continuity of some special types of
functions. Some of the results which follow were (as we pointed
out at the time) tacitly assumed in Ch. IL

Exalpples XXXVIL 1. Thesum or product of-two functions continuous
at a point is continuous at that point. The quotient is also continuous

unless the denominator vanishes at the point. [This follows at once from
Ex. xxxv. 1.]

2.. A'ny polynomial is continuous for all values of . Any rational
fra,c.tlon is continuous except for values of z for which the denominator
vanishes. [This follows from Exs. xxxv. 6, 7.]
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3. Az is continuous for all positive values of # (Ex. xxxv. 8). It is not
defined when x < 0, but is continuous for #=0 in virtue of the remark made at
the end of § 98. The same is true of 2™, where m and = are any positive
integers of which # is even.

4. The function 2™m, where » is odd, is continuous for all values of .

5. 1/x is not continuous for #=0. It has no value for =0, nor does it
tend to a limit as 0. In fact 1/#— 4w or 1/o -+ — w according as x—0
by positive or negative values.

6. Discuss the continuity of #~™, where m and n are positive integers,
for z=0.

7. The standard rational function R (2)=P (2)/@ () is discontinuous for
x=a, where @ is any root of @ (#)=0. Thus (#%+1)/(22—32+2) is discon-
tinuous for x=1. It will be noticed that in the case of rational functions a
discontinuity is always associated with (a) a failure of the definition for a
particular value of x and (b) a tending of the function to 4+ or —w as x
approaches this value from either side. Such a particular kind of point of
discontinuity is usually described as an infinity of the function. An ‘infinity’
is the kind of discontinuity of most common occurrence in ordinary work.

8. Discuss the continuity of
Vi@ =a)(b—z)}, ¥{(z-a) (b-2)}, J{(z-a)(b-2)}, ¥{(x—a)l(b-2)}
9. sin x and cos z are continuous for all values of z.
[We have sin (x+4) —sin 2=2sin $A cos (z+}4),
which is numerically less than the numerical value of A.]
10. For what values of & are tan z, cot 2, sec #, and cosecx continuous

or discontinuous ?

11. If £ (y) is continuous for y =7, and ¢ (#) is a continuous function of
2 which is equal to  when #=¢§, then f{¢ («)} is continuous for z=¢.

12. If ¢ (#) is continuous for any particular value of », then any poly-
nomial in ¢ (), such as a {¢ (#)}™+..., is so too.

13. Discuss the continuity of
1/(a cos? z+bsin?z), /(2+cosz), J(1+sinz), 1/J/(1+sinz).

14. sin(1/#), sin(1/z), and 22 sin (1 /) are continuous except for 2=0.

15. The function which is equal to #sin (1/2) except when =0, and to
zero when =0, is continuous for all values of .

16. [z] and #—[z] are discontinuous for all integral values of .

17. For what (if any) values of x are the following functions discon-
tinuous : [2%], [(W&], N(@—[2]), [£]+N(z—[2]), [22], [#]+[-2]?
1, 12
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18. Classification of discontinuities. Some of the preceding examples
suggest a classification of different types of discontinuity.

(1) Suppose that ¢ (#) tends to a limit as 2-a either by values less
than or by values greater than @. Denote these limits, as in § 95, by ¢ (@ —0)
and ¢ (a+0) respectively. Then, for continuity, it is necessary and sufficient

that ¢ (#) should be defined for #=a, and that ¢ (¢ - 0)=¢ (@) =¢ (@ +0). Dis-~

continuity may arise in a variety of ways.

(a) ¢ (@—0) may be equal to ¢ (a+0), but () may not be defined, or
may differ from ¢ (a—0) and ¢ (a+0). Thus if ¢ (#)=2sin (1/x) and a=0,
¢ (0-0)=¢ (0+0)=0, but ¢ () is not defined for =0. Or if ¢ (x)=[1-2?]
and a=0, ¢ (0—0)=¢ (0+0) =0, but ¢ (0)=1.

(B) ¢ (a—0)and ¢ (a+0) may be unequal. In this case ¢ (a) may be
equal to one or to neither, or be undefined. The first case is illustrated
by ¢ (z)=[z], for Which. ¢ (0-0)=-1, ¢ (0+0)=¢ (0)=0; the second by
¢ (#)=[x] - [ -], for which ¢ (0—0)= -1, ¢ (0+0)=1, ¢ (0)=0; and the third

by ¢ (#)=[«]+sin (1/2), for which ¢ (0-0)=~1, ¢ (0+0)=0, and ¢ (0) is’

undefined.

In any of these cases we say that ¢ (») has a simple discontinuity at

z=a. And to these cases we may add those in which ¢ (z) is defined only .

on one side of #=a, and ¢ (a—0) or ¢ (a+0), as the case may be, exists, but
¢ () is either not defined when #=a or has when #=a a value different from

¢ (@—0) or ¢ (a+0).
It is plain from § 95 that a function which increases or decreases steadily Yy
in the neighbourhood of x=a can have at most a simple discontinuity for z=a.

(2) It may be the case that only one (or neither) of ¢ (@~ 0) and ¢ (a +0)
exists, but’that, supposing for example ¢ (a4-0) not to exist, ¢ (#)—> +o or
¢ (#)=>— as r=>a+0, so that ¢ () tends to a limit or to +w or to — w as
@ approaches a from either side. Such is the case, for instance, if ¢ (#)=1 /.z; or
¢ (#)=1/2% and a=0. Insuch cases wesay (cf. Ex. 7) that x=aisan infinity
of ¢ (#). And again we may add to these cases those in which ¢ (z)= +o
or ¢ (#)>—cwaszr-+a from one side, but ¢ (#) is not defined at all on the
other side of z=a.

(3) Any point of discontinuity which is not a point of simple discon-
tinuity nor an infinity is called"a point of oscillatory discontinuity. Such
is the point #=0 for the functions sin (1/#), (1/x) sin (1/z).

19. What is the nature of the discontinuities at =0 of the functions
(sin )/, [#]+[ -], cosec , J/(1/x), &(1/x), cosec (1/x), sin (1/x)/sin (1)) ?

20. The function which is equal to 1 when z is rational and to 0 when
 is irrational (Ch. 11, Ex. xv1. 10) is discontinuous for all values of z. - So too
is any function which is defined only for rational or for irrational values of .

99, 100] CONTINUOUS AND DISCONTINUOUS FUNCTIONS 179

21. The function which is equal to # when x is irrational and to
J{A+pH/(1+¢%} when « is a rational fraction p/g (Ch. 1I, Ex. xvrL. 11) is
discontinuous for all negative and for positive rational values of x, but
continuous for positive irrational values.

22. TFor what points are the functions considered in Ch. IV, Exs. XXXI
discontinuous, and what is the nature of their discontinuities? [Consider,
c.., the function y=lim #® (Ex. 5). Here y is only defined when —1<z=1:
it is equal to 0 when —1<x<1 and to 1 when £=1. The points #=1 and
a= — 1 are points of simple discontinuity.]

100. The fundamental property of a continuous function.
It may perhaps be thought that the analysis of the idea of a con-
tinuous curve given in § 98 is not the simplest or most natural
possible. Another method of analysing our idea of continuity is the
following. Let A and B be two points on the graph of ¢ (z) whose
coordinates are ,, ¢ (z,) and @, ¢ (z;) respectively. Draw any
straight line N which passes between 4 and B. Then common
gsense certainly declares that if the graph of ¢ () is continuous it
must cut A.

If we consider this property as an intrinsic geometrical
property of continuous curves it is clear that there is no real
loss of generality in supposing A to be parallel to the axis of .
In this case the ordinates of 4 and B cannot be equal: let us
suppose, for definiteness, that ¢ (z,) > ¢ (z,). And let A be the
line y=mn, where ¢ (%) <7 <¢ (z,). Then to say that the graph
of ¢ (z) must cut A is the same thing as to say that there is a
value of z between =, and «; for which ¢ (z) = 7.

We conclude then that a continuous function ¢ (x) must
possess the following property: ¢f
¢ @)=Y, ¢@)=1y,

and 1, < m < Yy, then there is a value of x between x, and @, for which
¢ («)=m. In other words as @ varies from x, to x,, y must assume

_at least once every value between y, and y;.

We shall now prove that if ¢ (z) is a continuous function of # in

(ho sense defined in § 98 then it does in fact possess this property.

"I'here is a certain range of values of z, to the right of ,, for which

) () <n. For ¢(a)<n,and so ¢(z) is certainly less than % if
122
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¢ («) — ¢ (zo) is numerically less than n — ¢ (z,). But since ¢ («)
1s continuous for # =, this condition is certainly satisfied if « is
near enough to @, Similarly there is a certain range of values,
to the left of @, for which ¢ () > 7.

Let us divide the values of « between #, and 2, into two classes

L, R as follows:

(1) 1in the class L we put all values £ of # such that ¢ (z) < 5
when = £ and for all values of & between z, and £;

(2) in the class R we put all the other values of #, 7.e. all
numbers & such that either ¢ (&) Z 5 or there is a value of « between
@, and & for which ¢ (z) Z .

Then it is evident that these two classes satisfy all the
conditions imposed upon the classes L, R of § 17, and so constitute
a section of the real numbers. Let £ be the number corresponding
to the section.

First suppose ¢ (&) >#, so that & belongs to the upper class:
and let ¢ (&) =n+4, say. Then ¢ (£') < 5 and so

(&) - (E)>E,

for all values of £’ less than &, which contradicts the condition of
continuity for z = £,.

Next suppose ¢ (&)=n—k<n. Then, if & is any number
greater than £, either ¢ (£)Z» or we can find a number ¢
between &, and & such that ¢ (') Z#5. In either case we can
find a number as near to &, as we please and such that the corre-
sponding values of ¢ () differ by more than % And this again
contradicts the hypothesis that ¢ (z) is continuous for z = &,

Hence ¢ (&) =7, and the theorem is established. It should
be observed that we have proved more than is asserted explicitly
in the theorem; we have proved in fact that £, is the least value
of @ for which ¢ (#)=%. It is not obvious, or indeed generally
true, that there is a least among the values of # for which a
function assumes a given value, though this is true for continuous
functions.

It is easy to see that the converse of the theorem just proved is not
true. Thus such a function as the function ¢ () whose graph is represented
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by Fig. 31 obviously assumes at least once every value between ¢ (2p) and
¢ (m): yet ¢ («) is discontinuous. Indeed it is not even true that ¢ () must
be continuous when it assumes each value once and once only. Thus let ¢ (2)
be defined as follows from #=0 to #=1. If x=01let ¢ (¢)=0; if 0 <& <1
let ¢ (#)=1—x; and if £=1 let ¢(z)=1. The graph of the function is
shown in Fig. 32; it includes the points O, ¢' but not the points 4, B. It
is clear that, as # varies from 0 to 1, ¢ («) assumes once and once only every
value between ¢ (0)=0 and ¢ (1)=1; but ¢ () is discontinuous for #=0 and
r=1

A c

Ty o

5) B
Fig. 31. Fig. 32.

As a matter of fact, however, the curves which usually occur in elementary
mathematics are composed of a finite number of pieces along which Yy always
varies in the same direction. It is easy to show that if y=¢ (2) always varies
in the same direction, ¢.e. steadily increases or decreases, as x varies from
@ to my, then the two notions of continuity are really cquivalent, 7.e. that if
¢ (2) takes every value between ¢ (2,) and ¢ (2;) then it must be a continuous
function in the sense of § 98. For let £ be any value of x between 2y and
@ As z—¢ through values less than £, ¢ () tends to the limit P (E-0)
(§ 95). Similarly as #—¢ through values greater than & ¢ (x) tends to the
limit ¢ (§+40). The function will be continuous for &= £ if and only if

P (E-0)=¢ ()= (£+0)
But if either of these equations is untrue, say the first, then it is evident that
¢ (#) never assumes any value which lies between ¢ (£—0) and ¢ (§), which
is contrary to our assumption. Thus ¢ (#) must be continuous. The net
result of this and the last section is consequently to show that our common-
sense notion of what we mean by continuity is substantially accurate, and
capable of precise statement in mathematical terms,

101. In this and the following paragraphs we shall state and
prove some general theorems concerning continuous functions.
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THEOREM 1. Suppose that ¢ (z) is continuous for z=E§, and
that ¢ (£) 1s positive. Then we can determine a positive number e
such that ¢ (€) is positive throughout the interval (£ — e, &+ e).

For, taking & = 4¢ (£) in the fundamental inequality of p. 175,
we can choose e so that

|¢ @ —¢ (D)< i)
throughout (£ — ¢, £+ ¢), and then

b@)2¢(E)—|¢@)—d(E)[>34(5>0,

so that ¢ (z) is positive. There is plainly a corresponding theorem
referring to negative values of ¢ ().

THEOREM 2. If ¢ () is continuous for = §, and ¢ (x) vanishes
Jor values of x as near to & as we please, or assumes, for values of
z as near to & as we please, both positive and megative values, then

$(&)=0.

This is an obvious corollary of Theorem 1. If ¢ (£) is not zero,
it must be positive or negative ; andif it were, for example, positive,
it would be positive for all values of # sufficiently near to £ which
contradicts the hypotheses of the theorem.

102. The range of values of a continuous function. Let
us consider a function ¢ («) about which we shall only assume at
present that it is defined for every value of # in an interval (a, b).

The values assumed by ¢ (z) for values of # in (a, b) form an
aggregate S to which we can apply the arguments of § 80, as we
applied them in § 81 to the aggregate of values of a function of n.
If there is a number K such that ¢ (2) < K, for all values of # in
question, we say that ¢ («) is”bounded above. In this case ¢ (z)
possesses an upper bound M : no value of ¢ («) exceeds M, but any
number less than M is exceeded by at least one value of ¢ ().
Similarly we define ‘bounded below’, ‘lower bound’, ‘bounded’, as
applied to functions of a continuous variable .

THEOREM 1. If ¢ (@) us continuous throughout (a, b), then it is
bounded wn (a, b).
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We can certainly determine an interval (a, £), extending to
the right from @, in which ¢ (#) is bounded. For since ¢ (2) is
continuous for « = a, we can, given any positive number & however
small, determine an interval (a, £) throughout which ¢ (z) lies
between ¢ (a) — 8 and ¢ (a) + 8; and obviously ¢ («) is bounded in
this interval,

Now divide the points & of the interval (@, b) into two classes
L, R, putting & in L if ¢ (£) is bounded in (@, §), and in R if this
is not the case. It follows from what precedes that L certainly
exists: what we propose to prove is that R does mot. Suppose
that R does exist, and let B be the number corresponding to the
section whose lower and upper classes are L and R. Since ¢ (2)
is continuous for # =3, we can, however small § may be, determine
an interval (8— 7, B8 + n)* throughout which

P (B)—8< ¢ (2) <P (B)+34.
Thus ¢ () is bounded in (8—=, B+7). Now B8 —n belongs to L.
Therefore ¢ (z) is bounded in (@, 8—n): and therefore it is
bounded in the whole interval (a, 8+17). But 8+ 7 belongs to R
and so ¢ (2) is nmot bounded in (@, 8+7). This contradiction
shows that R does not exist. And so ¢ (z) is bounded in the
whole interval (a, b).

TuroreM 2. If ¢ (2) is continuous throughout (a, b), and M
and m are its upper and lower bounds, then ¢ (x) assumes the values
M and m at least once each in the interval.

For, given any positive number 8, we can find a value of z for
which M —¢ ()< 8 or 1/{M — ¢ ()} >1/8. Hence 1/{M — ¢ ()}
is not bounded, and therefore, by Theorem 1, is not continuous.
But M — ¢ (2) is a continuous function, and so 1/{M —¢ (2)} is
continuous at any point at which its denominator does not vanish
(Ex. xxxviL. 1). There must therefore be one point at which °
the denominator vanishes: at this point ¢ (#) = M. Similarly it
may be shown that there is a point at which ¢ (2) = m.

The proof just given is somewhat subtle and indirect, and it
may be well, in view of the great importance of the theorem,
to indicate alternative lines of proof. It will however be con-
venient to postpone these for a momentt.

* If B=b we must replace this interval by (8-, B), and 8+9 by 8, throughout
the argument which follows.
1 See § 104.
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Examples XXXVIII. 1. If ¢(x)=1/x except when #=0, and ¢(z)=0
when #=0, then ¢ (#) has neither an upper nor a lower bound in any
interval which includes =0 in its interior, as e.g. the interval (=1, +1).

2. If ¢ (#)=1/22 except when #=0, and ¢ (x)=0 when 2=0, then ¢ (x)
has the lower bound 0, but no upper bound, in the interval (=1, +1).

3. Let ¢(«)=sin (1/z) except when £#=0, and ¢ (#)=0 when £=0. Then
¢ (#) is discontinuous for £=0. In any interval (-9, +0) the lower bound is

—1 and the upper bound +1, and each of these values is assumed by ¢ (x) an
infinity of times.

4. Let ¢ ()=2-[2] This function is discontinuous for all integral
values of #. In the interval (0, 1) its lower bound is 0 and its upper bound 1.
It is equal to O when #=0 or #=1, but it is never equal to 1. Thus ¢ (z)
never assumes a value equal to its upper bound.

5. Let ¢ (#)=0 when z is irrational, and ¢ (#)=¢ when z is a rational
fraction p/g. Then ¢ (#) has the lower bound 0, but no upper bound, in any
interval (@, b). But if ¢ ()=(—1)P ¢ when 2=p/q, then ¢ () has neither an
upper nor a lower bound in any interval.

103. The oscillation of a function in an interval. Let
¢ (7) be any function bounded throughout (a, ), and M and m
its upper and lower bounds. We shall now use the notation
M (a, b), m (a, b) for M, m, in order to exhibit explicitly the de-
pendence of M and m on @ and b, and we shall write

0 (a, b) =M (a, b) — m (a, b).

This number O (a, b), the difference between the upper and
lower bounds of ¢ () in (a, b), we shall call the oscillation of ¢ ()
in (@, b). The simplest of the properties of the functions M (a, D),
m (a, b), O(a, b)are as follows.

(1) Ifa=c=bthen M (a, b)is equal to the greater of M (a, c)
and M (c, b), and m (a, b) to the lesser of m (a, ¢) and m (c, b).

(2) M (a,b) is an increasing, m (a,b) a decreasing, and O (a, b)
an wncreasing function of b.  *

(3) 0(a,b)=0(a, c) + 0 (c,b).

The first two theorems are almost immediate consequences of
our definitions. Let u be the greater of M (@, ¢) and M (¢, b), and
let & be any positive number. Then ¢ (#) = p throughout (a, c)
and (c, b), and therefore throughout (@, b); and ¢ (2)>u—8
somewhere in (a, ¢) or in (¢, b), and therefore somewhere in (a, D).
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Hence M (a, b) =p. The proposition concerning m may be proved
similarly. Thus (1) is proved, and (2) is an obvious corollary.

Suppose now that A is the greater and M, the less of M («, c)
and M (c, b), and that m, is the less and m, the greater of m.(a, c)
and m (¢, b). Then, since ¢ belongs to both intervals, ¢ (c) is not
greater than M, nor less than m,. Hence M, = m,, whether these
numbers correspond to the same one of the intervals (@, ¢) and
(¢, b) or not, and

0 (a, by=M,—m, = My, + M, —m, — m,.
But O (a,c)+ 0 (c,b) =M, + My—m, —my;
and (3) follows.

104. Alternative proofs of Theorem 2 of § 102. The most straight-
forward proof of Theorem 2 of § 102 is as follows. Let £ be any number of
the interval (a, ). The function M (a, £) increases steadily with & and never
exceeds M. We can therefore construct a section of the numbers & by
putting £ in L or in R according as M (a, &) <M or M(a, §)=M. Let B be
the number corresponding to the section. If a<B < b, we have

M(a, B—n) <M, M(a,B+n)=U
for all positive values of , and so
M(B-n, B+n)=M,
by (1) of § 103. Hence ¢ (#) assumes, for values of x as near as we please to
3, values as near as we please to A/, and so, since ¢ () is continuous, ¢ (83)
must be equal to M.

If B=a then ¥ (a, a+n)=M. And if B=b then M (a, b—n) <M, and
80 M (b—n, b)=2M. In either case the argument may be completed as
before.

The theorem may also be proved by the method of repeated bisection
used in § 71. If M is the upper bound of ¢ () in an interval PQ,'a,nd {’Q
is divided into two equal parts, then it is possible to find a half P; @, in which
the upper bound of ¢ (%) is also M. Proceeding as in § 71, we construct a
sequence of intervals PQ, Py @y, Py@,, ... in each of which t.h‘e upper bon.d
of ¢ (x)is M. These intervals, as in § 71, converge to a point 7} and it is
casily proved that the value of ¢ (#) at this point is /.

105. Sets of intervals on a line. The Heine-Borel
Theorem. We shall now proceed to prove some theorems con-
cerning the oscillation of a function which are of a somewhat
abstract character but of very great importance, particularly, as
we shall see later, in the theory of integration. These theorems
depend upon a general theorem concerning intervals on a line.
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Suppose that we are given a set of intervals in a straight
line, that is to say an aggregate each of whose members is an
interval (@, B). We make mno restriction as to the nature of
these intervals; they may be finite or infinite in number ; they
may or may not overlap*; and any number of them may be
included in others. &

It is worth while in passing to give a few examples of scts of intervals to
which we shall have occasion to return later.

(i) If the interval (0, 1) is divided into » equal parts then the n intervals

thus formed define a finite set of non-overlapping intervals which just cover
up the line.

(i) We take every point ¢ of the interval (0, 1), and associate with & the
interval (£—e, £+¢), where ¢ is a positive number less than 1, except that
with O we associate (0, €) and with 1 we associate (1—¢ 1), and in general we
reject any part of any interval which projects outside the interval (0,1). We
thus define an infinite set of intervals, and it is obvious that many of them
overlap with one another.

(iii) We take the rational points p/g of the interval (0, 1), and associate
with p/g the interval
p_€ p, ¢
17¢ 0t g)

where ¢ is positive. and less than 1. We regard 0 as Of1 and 1 as 1/1: in
these two cases we reject the part of the interval which lies outside 0,1). We
obtain thus an infinite set of intervals, which plainly overlap with one another,
since there are an infinity of rational points, other than p/g, in the interval
associated with p/q.

The Hejne-Borel Theorem. Suppose that we are given an
wterval (a, b), and a set of intervals I each of whose members 1s
included in (a, b). Suppose further that I possesses the following
properties : :

(1) every point of (a, b), other than a and b, lies wnsidet at
least one interval of I;

(1) a is the left-hand end point, and b the right-hand end
point, of at least one interval.of I.

Then 1t is possible to choose a finite number of intervals from
the set I which form a set of intervals possessing the properties (i)
and (ii).

* The word overlap is used in its obvious sense: two intervals overlap if they
have points in common which are not end points of either. Thus (0, 3) and (4, 1)
overlap. A pair of intervals such as (0, }) and (4, 1) may be said to abut.

T That is to say ‘in and not at an end of®,
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We know that @ is the left-hand end point of at least one
interval of I, say (a, a;). We know also that a, lies inside at least
one interval of I, say (a,, a,). Similarly a, lies inside an interval
(ay, as) of I. It is plain that this argument may be repeate.d in-
definitely, unless after a finite number of steps a, coincides with b.

If a, does coincide with b after a finite number of steps then
there is nothing further to prove, for we have obtained a finite set
of intervals, selected from the intervals of I, and possessing the‘
properties required. If a, never coincides with b, then the points
@y, Ay, 3, ... must (since each lies to the right of its predecessor)
tend to a limiting position, but this limiting position may, so far
as we can tell, lie anywhere in (@, b).

Let us suppose now that the process just indicated, starting
from" @, is performed in all possible ways, so that we obtain all
possible sequences of the type a,, a, @, .... Then we can prove
that there must be at least one such sequence which arrives at b
after a finite number of steps.

e

a a’

e dy a; E ag I N b b

Fig. 33.

There are two possibilities with regard to any point £ between
a and b. Either (i) £ lies to the left of some point a, of some
sequence or (ii) it does not. We divide the points & into two
classes L and R according as to whether (i) or (ii) is true. The
class L certainly exists, since all points of the interval (a, a,)
belong to L. We shall now prove that I does not exist, so that
every point £ belongs to L. :

If R exists then L lies entirely to the left of I, and the classes
L, R form a section of the real numbers between @ and b, to
which corresponds a number &. The point &, lies inside an interval
of I,say (£, £”), and § belongs to L, and so lies to the left of
some term a, of some sequence. But then we can take (£, fg’”)
as the interval (@', @a4) associated with a, in our construction
of the sequence a,, @s, s, ...; and all points to the left of £”
liec to the left of an,. There are therefore points of L to the
right of %, and this contradicts the definition of R. It is
therefore impossible that R should exist.
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Thus every point & belongs to L. Now b is the right-hand
end point of an interval of I, say (b;, b), and b, belongs to L.
Hence there is a member a, of a sequence a,, a,, as, ... such that
an >0b,. But then we may take the interval (a,’, @) coOrre-
sponding to a, to be (b;, b), and so we obtain a sequence in which
the term after the nth coincides with b, and therefore a finite seb
of intervals having the properties required. Thus the theorem is
proved.

It is instructive to consider the examples of p. 186 in the light of this
theorem.

(i) Here the conditions of the theorem are not satisfied; the points
1/n, 2/n, 3[n, ... do not lie inside any interval of 7.

(ii) Here the conditions of the theorem are satisfied. The set of
intervals
(0, 2¢), (e, 3¢), (2¢, 4e), ..., (1 —-2¢, 1),
associated with the points e 2¢, 3¢, ..., 1 —¢, possesses the properties re-
quired.

(iii) In this case we can prove, by using the theorem, that there are,
if ¢ is small enough, points of (0, 1) which do not lie in any interval of 7.

If every point of (0, 1) lay inside an interval of I (with the obvious
reservation as to the end points), then we could find a finite number of intervals
of I possessing the same property and having therefore a total length greater
than 1. Now there are two intervals,of total length 2e, for which g=1, and
g—1 intervals, of total length 2¢(g—1)/¢% associated with any other value
of . The sum of any finite number of intervals of 7 can therefore not be
greater than 2¢ times that of the series

1 2 3
1+@+3—3+4—3+ ey

which will be shown to be convergent in Ch. VIII. Hence it follows that, if
e is small enough, the supposition that every point of (0, 1) lies inside an
interval of 7 leads to a contradiction.

The reader may be tempted to think that this proof is needlessly
elaborate, and that the existence of points of the interval, not in any interval
of I, follows at once from the fact that the sum of all these intervals is less
than 1. But the theorem to which he would be appealing is (when the set of
intervals is infinite) far from obvious, and can only be proved rigorously by
some such use of the Heine-Borel Theorem as is made in the text.

106. We shall now apply the Heine-Borel Theorem to the
proof of two important theorems concerning the oscillation of a
continuous function,
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THEOREM L. If ¢ (x) is continuous throughout the interval
(a, b), then we can divide (a, b) into a finite number of sub-intervals
(@, @), (@1, @), ... (@n, D), tn each of which the oscillation of ¢ () is
less than an assigned positive number 8.

Let & be any number between a and b. Since ¢ (z) is con-
tinuous for = £, we can determine an interval (€ —e, £ + €) such
that the oscillation of ¢ (z) in this interval is less than 6. Itis
indeed obvious that there are an infinity of such intervals corre-
sponding to every & and every §, for if the condition is satisfied for
any particular value of ¢, then it is satisfied a fortior: for any smaller
value. What values of e are admissible will naturally depend upon
£; we have at present no reason for supposing that a value of
admissible for one value of & will be admissible for another. We
shall call the intervals thus associated with & the S-intervals of €.

If £ =a then we can determine an interval (a, @ + ¢), and so an
infinity of such intervals, having the same property. These we
call the 8-intervals of a, and we can define in a similar manner the
d-intervals of b.

Consider now the set I of intervals formed by taking all the
3-intervals of all points of (a, b). It is plain that this set satisfies
the conditions of the Heine-Borel Theorem ; every point interior
to the interval is interior to at least one interval of 7, and @ and b
are end points of at least one such interval. We can therefore
determine a set I’ which is formed by a finite number of intervals
of I, and which possesses the same property as I itself.

The intervals which compose the set I’ will in general overlap,
psin Fig. 34, But their end
points obviously divide up
(@, b) into a finite set of in- * . b
tervals I” each of which is ¥ie: 84
included in an interval of I/, and in each of which the oscillation
of ¢ () is less than 8. Thus Theorem I is proved.

TuroreM II. Given any positive number 8, we can find a
number n such that, if the interval (a, b) is divided in any manner
into sub-intervals of length less than n, then the oscillation of ¢ ()
i each of them will be less than 8.
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Take &, < 48, and construct, as in Theorem I, a finite set of sub-
intervals 7 in each of which the oscillation of ¢ (z) is less than §,.
Let 7 be the length of the least of these sub-intervals j. If
now we divide (, b) into parts each of length less than 7, then any
such part must lie entirely within at most two successive sub-
intervals j. Hence, in virtue of (3) of § 103, the oscillation of ¢ (2),
in one of the parts of length less than ,cannot exceed twice the
greatest oscillation of ¢ (#) in a sub-interval j, and is therefore
less than 28,, and therefore than 8.

This theorem is of fundamental importance in the theory of
definite integrals (Ch. VII). It is impossible, without the use of
this or some similar theorem, to prove that a function continuous
throughout an interval necessarily possesses an integral over that
interval.

107. Continuous functions of several variables. The
notions of continuity and discontinuity may be extended to
functions of several independent variables (Ch. II, §§ 31 et seq.).
Their application to such functions, however, raises questions
much more complicated and difficult than those which we have
considered in this chapter. It would be impossible for us to
discuss these questions in any detail here; but we shall, in the
sequel, require to know what is meant by a continuous function of
two variables, and we accordingly give the following definition.
It is a straightforward generalisation of the last form of the de-
finition of § 98,

The function ¢ (@, y) of the two wvariables = and v is said to be
continuous for x=§, y =y if, given any positive number 8, how-
ever small, we can choose € (8) so that

|¢($,y)—¢(f, ’7)!<8
when 0= |z —E|=e(8) and 0= |y—n|=e(8); that is to say if we
can draw a square, whose sides are parallel to the ames. of coordinates
and of length 2¢ (8), whose centre is the pownt (£, p);, and which is such
that the value of ¢ (z, y) at any point inside it or on its boundary
differs from ¢ (€ m) by less than 8.*

This definition of course presupposes that ¢ (%, ) is defined at
all points of the square in question, and in particular at the point

* The reader should draw a figure to illustrate the definition,
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(&,m)- Another method of stating the definition is this: ¢ (z, y) 7s

continuous for xz=§, y=n if ¢(z,y)>P(En) when «=§ y—q
i any manner. This statement is apparently simpler; but it

- contains phrases the precise meaning of which has not yet been

cxplained and can only be explained by the help of inequalities
like those which occur in our original statement.

It is easy to prove that the sums, the products, and in general
the quotients of continuous functions of two variables are them-
selves continuous. A polynomial in two variables is continuous for
all values of the variables; and the ordinary functions of « and y
which occur in every-day analysis are generally continuous, t.e.
are continuous except for pairs of values of z and y connected by
special relations.

The reader should observe carefully that to- assert the continuity of
¢ (2, y) with respect to the two variables z and y is to assert much more
than its continuity with respect to each variable considered separately. It is
plain that if ¢ (x, y) is continuous with respect to # and y then it is certainly
continuous with respect to x (or ) when any fixed value is assigned to y
(or ). But the converse is by no means true. Suppose, for example, that

27,
@ 9=y
when neither # nor y is zero, and ¢ (z, y)=0 when either # or y is zero. Then
if ¥ has any fixed value, zero or not, ¢ (#,) is a continuous function of ,
and in particular continuous for z=0; for its value when =0 is zero, and it
tends to the limit zero as #-+-0. In the same way it may be shown that
¢ (@, ) is a continuous function of y. But ¢ (z, y) is not a continuous function
of x and y for =0, y=0. Its value when #=0, y=0 is zero; but if » and
4 tend to zero along the straight line y =ax, then

2 : 2a
¢ (z, _’!,/)=1—q_‘%2 , lim ¢ (#,29)= ira
i
which may have any value between —1 and 1.

108. Implicit functions. We have already, in Ch. II, met with
the idea of an ¢mplicit function. Thus, if # and y are connected by the

‘clation
l Y=Y —Y—2=0.cciniircrerrorrencasisivsinnies (1),

then y is an “‘implicit function’ of .

Jut it is far from obvious that such an equation as this does really define

. a function y of z, or several such functions. In Ch. IT we were content to

talke this for granted. We are now in a position to consider whether the
assunption we made then was justified.
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‘We shall find the following terminology useful. Suppose that it is possible
to surround a point (@, b), as in § 107, with a square throughout which
a certain condition is satisfied. 'We shall call such a square a neighbourhood
of (@, b), and say that the condition in question is satisfied n the neighbour-
hood of (a, b), or near (a, b), meaning by this simply that it is possible to find
some square throughout which the condition is satisfied. It is obvious that
similar language may be used when we are dealing with a single variable, the
square being replaced by an interval on a line.

TreorEM. If (i) f(x,y) is a continuous function of x and y in the
neighbourhood of (a, b),

i) f(a, b)=0,

(iii) f (=, y) is, for all values of x in the neighbourkood of a, a steadily
increasing function of y, in the stricter sense of § 95,

then (1) there is a unique function y=« (x) which, when substituted in the
equation f(z, y)=0, satisfies it identically for all values of x in the neighbour-
hood of a,

(2) ¢ (%) is continuous for all values of x in the neighbourhood of a.

In the figure the square represents a ‘neighbourhood’ of (a, b) through-
out which the conditions (i) and (iii) are
satisfied, and P the point (@, ). If we

take @ and 2 as in the figure, it follows from Q Q'
(iii) that f (=, y) is positive at ¢ and negative

at R. This being so, and f(x, y) being con- /\P'
tinuous at ¢ and at R, we can draw lines Q@' (a.b){P

and B parallel to OX, so that R'¢) is parallel
to 0Y and f(x, y) is positive at all points of
@€ and negative at all points of RR'. In par- R R'
ticular f(z, y)is positive at € and negative at
R, and therefore, in virtue of (iii) and § 100,
vanishes once and only once at a point 2’ on
R'¢. The same construction gives us a unique point at which f(z, #)=0
on each ordinate between 2¢ and R'¢). It is obvious, moreover, that the
same construction can be carried out to the left of RQ. The aggregate of
points such as P’ gives us the graph of the required function y=¢ ().

It remains to prove that ¢ () is continuous. This is most simply effected
by using the idea of the ‘limits of indefermination * of ¢ (2) as x—=a (§ 96).
Suppose that #->a, and let X and A be the limits of indetermination of ¢ («)
as #--a. It is evident that the points (e, X) and (a, A) lie on @R. Moreover,
we can find a sequence of values of # such that ¢ ()X when #—a through
the values of the sequence; and since f {z, ¢ ()}=0, and f(z,¥) is a con-
tinuous function of # and y, we have .

(@, N)=0.
Hence A=b; and similarly A=b. Thus ¢ (#) tends to the limit b as z->a,
and so ¢ () is continuous for #=a. It is evident that we can show in

Fig. 35.
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exactly the same way that ¢ (z) is continuous for any value of z in the
neighbourhood of a.

It is clear that the truth of the theorem would not be affected if we were
to change ‘increasing’ to ‘decreasing’ in condition (iii).

As an example, let us consider the equation (1), taking a=0, b=0. Itis
evident that the conditions (i) and (ii) are satisfied. Moreover

F@9-F(®9)=0-9) P +5°Y +5Y +yy°+y -2 -1)
has, when z, y, and y are sufficiently small, the sign opposite to that of
y—%. Hence condition (iii) (with ¢decreasing’ for ‘increasing’) is satisfied.
It follows that there is one and only one continuous function y which
satisfies the equation (1) identically and vanishes with .

The same conclusion would follow if the equation were
Y —zy—y—-2=0.
The function in question is in this case
y=${1+2-J(1+62+27)},

where the square root is positive. The second root, in which the sign of the
square root is changed, does not satisfy the condition of vanishing with .

There is one point in the proof which the reader should be careful to ob-
serve. We supposed that the hypotheses of the theorem were satisfied ¢in
the neighbourhood of (a, d)’, that is to say throughout a certain square
f—e=x=f+en—e=y=n+e The conclusion holds ‘in the neighbourhood
of z=a’, that is to say throughout a certain interval {—e; =2 < £+¢. There
is nothing to show that the ¢ of the conclusion is the ¢ of the hypotheses, and
indeed this is generally untrue.

109. Inverse Functions. Suppose in'particular that f(z, y) is of the
form F(y)—=. We then obtain the following theorem.

If F(y) is a function of ¥, continwous and steadily increasing (or decreasing),
in the stricter sense of § 95, in the neighbourhood of y=b, and F (b)=a, then
there is a unique continuous function y=q¢ (x) whick is equal to b when x=a
and satisfies the equation F (y)=x identically in the neighbourhood of x=a.

The function thus defined is called the tnverse function of F'(y).

Suppose for example that y®=w®, a=0, b=0. Then. all the conditions of
the theorem are satisfied. The inverse function is z=3y.

If we had supposed that 4=z then the conditions of the theorem would
not have been satisfied, for g2 is not a steadily increasing function of y in any
interval which includes y=0: it decreases when y is negative and increases
when y is positive. And in this case the conclusion of the theorem does not
hold, for y?=ax defines two functions of =, viz. y=4/x and y= —.\/x, both of

" which vanish when #=0, and each of which is defined only for positive values

of x, so that the equation has sometimes two solutions and sometimes none.
The reader should consider the more general equations

A +1
:1/2"-—.1;, y2n 1—3/‘,
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in the same way. Another interesting example is given by the equation
: P-y-2=0,
already considered in Ex. x1v. 7.

Similarly the equation siny=a
has just one solution which vanishes with @, viz. the value of arcsin # which
vanishes with 2. There are of course an infinity of solutions, given by the
other values of arcsin # (cf. Ex. xv. 10), which do not satisfy this condition.

So far we have considered only what happens in the neighbourhood of a
particular value of #. Let us suppose now that F'(y) is positive and steadily
increasing (or decreasing) throughout an interval (a, b). Given any point &
of (a, b), we can determine an interval ¢ including £, and a unique and con-
tinuous inverse function. ¢; () defined throughout 4.

From the set 7 of intervals ¢ we can, in virtue of the Heine-Borel Theorem,
pick out a finite sub-set covering up the whole interval (g, b) ; and it is plain
that the finite set of functions ¢; (#), corresponding to the sub-set of intervals
thus selected, define together a unique inverse function ¢ (z) continuous
throughout (a, b).

We thus obtain the theorem : if &=F(y), where F(y) is continuous and
increases steadily and strictly from A to B as x increases from a to b, then there
is a unique tnverse function y= () which is continuous and increases steadily
and strictly from a to b as x increases from A to B.

It is worth while to show how this theorem can be obtained directly with-
out the help of the more difficult theorem of § 108. Suppose that 4 <£< B,
and consider the class of values of y such that (i) e <y < b and (ii) F'(y) = ¢&.
This class has an upper bound 5, and plainly F(y) <& If F(y) were less
than £ we could find a value of y such that y >7 and #'(y) <£, and 5 would
not be the upper bound of the class considered. Hence F(y)=§ The
equation F'(y)=¢ has therefore a unique solution y=n=d¢(£), say; and
plainly  increases steadily and continuously with &, which proves the theorem.

MISCELLANEOUS EXAMPLES ON CHAPTER V.

1. Show that, if neither @ nor b is zero, then
ax®+ bz~ 14... +k=az™ (1 +e€y),

where ¢, is of the first order of smallness when x is large.

9. If P(x)=az"4ba™"1+...+k and a is not zero, then as z increases
P (z) has ultimately the sign of a; and so has P (z+\)— P (x), where X is
any constant.

3. Show that in general

(aa 4+ ban= 14 ...+ &) /(A + Bar~ ...+ K)=a+(B/2) (1 +ez),

where a=a/4, 3=(b4 —aB)/4? and ¢, is of the first order of smallness when
¢ is large. Indicate any exceptional cases.
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4. Express (ax?4bx+c)/(A22+ Bz + C)
in the form a+(B/x)+ (yla?) (1+¢),

where ¢, is of the first order of smallness when « is large.
5. Show that lim Vz {J/(z+a)— /z}=4%a.
xT—>=w

[Use the formula /(z+a)— Jr=a/{J/(z+a)+z}.]

6. Show that \/(z+ )=z +} (a/i/z) (1 +¢,), where ¢, is of the first order
of smallness when z is large.

7. Find values of a and 3 such that v/(az? +2bx+c) — axr — 8 has the limit
zero as #-»-oo ; and prove that lim # {/(az?+ 2bx +¢) — ax — 8} = (ac — b2)/2a.

8. Evaluate lim & {/[2?+ J(2*+1)] -2 s/2}.
X >

9. Prove that (seca—tanz)—=0 as £-=3r.

10. I.’rove that ¢ (#)=1—cos (1 —cos z) is of the fourth order of smallness
when # is small ; and find the limit of ¢ (z)/2* as 2->0.

11. 1-’r0ve that ¢ (#) =xsin (sin x) — sin?  is of the sixth order of smallness
when 2 is small ; and find the limit of ¢ (x)/28 as x-»0.

12. From a point P on a radius 04 of a circle, produced beyond the circle,
a tangent PT is drawn to the circle, touching it in 7, and 7'V is drawn per-
pendicular to O4. Show that N4/4P -1 as P moves up to 4.

13. Tangents are drawn to a circular arc at its middle point and its
extremities; A is the area of the triangle formed by the chord of the arc and
the two tangents at the extremities, and A’ the area of that formed by the
three tangents. Show that A/A’—>4 as the length of the arc tends to zero.

14. For what values of a does {a+sin (1/2)}/x tend to (1) w0, (2) —w,
as z>0? [To o if a>1, to —w if a<—1: the function oscillates if
-1=a=1]

15.. If ¢'(x)=l/g when z=p/g, and ¢ ()=0 when 2 is irrational, then
¢ (x) is continuous for all irrational and discontinuous for all rational values
of . '

16. Show that the function whose graph is drawn in Fig. 32 may be repre-
sented by either of the formulae
1-z+[#]-[1-2), 1-2- lim (cos?*!xz).
n >
17. Show that the function ¢ (#) which is equal to 0 when #=0, to -z
when 0 <z <%, to 4 when #=3%, to 8—2 when $ <2<, and to 1 when
x=1, assumes every value between 0 and 1 once and once only as  increases

“from 0 to 1, but is discontinuous for #=0, #=4, and x=1. Show also that

the function may be represented by the formula

t—w+45[22]-%[1-22]
13—2
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18. Let ¢ (#)== when z is rational and ¢ (#}=1—2 when z is irrational.
Show that ¢ (#) assumes every value between 0 and 1 once and once only as
increases from 0 to 1, but is discontinuous for every value of a except x=4.

19. As x increases from —4x to 4, y=sin x is continuous and steadily
increases, in the stricter sense, from -1 to 1. Deduce the existence of a
function w=arc sin ¥ which is a continuous and steadily increasing function
of y from y=—1to y=1.

20. Show that the numerically least value of arc tan y is continuous for
all values of y and increases steadily from —3}a to 4= as y varies through all
real values.

21. Discuss, on the lines of §§ 108—109, the solution of the equations
P—y—=0, yr—y?—a?=0, yr—g2422=0

in the neighbourhood of #=0, y=0.

22. If aw?42bay+cy?+2da+2y=0 and A=2bde—ac®—cd? then one
value of y is given by y=ax+B22+(y+e,) 23, where

‘a=—dfe, B=A/2¢% y=(cd—be)A[2e,

and e, is of the first order of smallness when # is small.

[If y — ax =7 then

—2en=ax?+2bz (n+ax)+ ¢ (n +ax)?=A22+2Bxn + Oyl

say. It is evident that 5 is of the second order of smallness, xn of the third,
and n? of the fourth ; and — 2ep=A42?— (4 B/e) 43, the error being of the fourth
order.]

23. If r=ay+ by?+cy® then one value of y is given by
' Yy=as+pa’+(y+e) 2%

where a=1/a, B= —b/a3, y=(20%— ac)/a’, and ¢, is of the first order of small-
ness when & is small.

24. If x=ay+0by", where n is an integer greater than unity, then one
value of y is given by y=ax+Ba"+(y+e¢,) #**~1, where a=1/a, B= —bjar+*1
y=nb%a®*1, and e, is of the (n— 1)th order of smallness when x is small.

25. Show that the least positiye root of the equation zy=sin # is a con-
tinuous function of y throughout ‘the interval (0, 1), and decreases steadily
from « to 0 as y increases from O to 1. [The function is the inverse of

(sin #)/z: apply § 109.]

26. The least positive root of zy=tanax is a continuous function of y
throughout the interval (1, «), and increases steadily from 0 to 4= as y
increases from 1 towards .

CHAPTER VI
DERIVATIVES AND INTEGRALS

110. Derivatives or Differential Coefficients. Let usreturn
to the consideration of the properties which we naturally associate
with the notion of a curve. The first and most obvious property
is, as we saw in the last chapter, that which gives a curve its
appearance of connectedness, and which we embodied in our defini-
tion of a continuous function.

The ordinary curves which occur in elementary geometry, such
as straight lines, circles and conic sections, have of course many
other properties of a general character. The simplest and most
notewor thy of theseis perhaps that they have a definite dir ectwn
the curve v(zke can draw a tangent to it. The reader will probably
remember that in elementary geometry the tangent to a curve at
moves up “towards coincidence with P” Let us consider what is
implied in the assumption of the existence of such a limiting
position.

In the figure (Fig. 36) P is al ﬁxed point on the curve, and @
a variable point; PM, QN are parallel to 0Y and PR% 0x
We denote the coordinates of P by «, y and those of Q by

z4h,y+k: b will be i)oeltlve or negative according as IV lies to
the right- or left of M.

We have assumed) that there is a tg_g_nt to the curve at P,
or that there ;§7§.7@§_ﬁ7n1te limiting position’ of the chord PQ.
Suppose that PT, the tdngent at P, makes an angle y» with 0X.
Then to say that PT is the hmltmg position of PQ is equivalent

to saying that the 11m1t of the angle QPR is \]f when @ approaches

,,wm:‘



