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CHAPTER V

LIMITS OT' FUNCTIONS OT' A CONTINUOUS VAR,IABLD.

CONTINUOUS AND DISCONTINUOUS T'UNCTIONS

89. Limits as o tends to oo. We shall now return to

functions of a conbinuous real variable. We shall confine our-

selves entirely to one-uulu,ed, funclions*, and we shall denote such

a function by f (r). We suppose c to assume successively all

values corresponding to points on our fundamental straight line

A, starting frorn some definite point on the line and progressing
always to the right. In these circumstances we say that c

tends to inf,nity, or fo co, and write o +@, The only difference

betlveen the 'tending of zr, to oo ' discussed in the last chapter, and

this ' tendin g of n to @', is that ,t assumes all values as it tends

to co, i.e. that the point P which corresponds to r coiricides in

tuln with every point of A to the right of its initial position,

rvhereas ra tended to co by a series of jumps. We can express this

distinction by saying that o tends cottt'ittuotLsly t'o o.

As rve explained at the beginning of the lasb ehapter, there is

a very close correspondence between functions of ar and functions

of n, Every function of rz may be regtlrded as a selection from

the values of a funcbion of n. In the last chapter we discussed

the peculia,rities which may' eharacterise the behaviour of a

function $ (rz) as rc terrds to oo. Now we are concerned with the

sarne problem for a function Q @); and the definitions and

thcorems to rvhich we are led are praclically repetitions of those

of the last chapter. Thus corresponding bo Def. 1 of $ 58 rve

havc:
* Thus */r stanils in this chn,pter for the one-valuecl function'+Jo ancl not (as

in $ 26) forthe tri'o-valued firnction whose values are +/c antl -./r.
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D.urrNruoN 1. The function g(u) is said, to tend, to the tinrit I,
us o tenils to a if, when any positiue nuntber E, howeuer small,, is
assignecl,, a number ao(6) can be ahosen such that, for atl, aalues of
n equal to or gt'eater tham ao (E), f (r) d,ifers front I by l,ess -than b,
i.e. if

l f (o)- l l<8
ulLen n 

- 
ro(E).

When this is the case we mav rvrite

]y Q @):r,,
or, when there is no risk of ambiguity, simply lim f (a) : l, or
.A (r) * l. Similarly we have:

I)rnrNrrroN 2. Tlrc fwnction S @) is sutd, to tend, to a with.
n if, when any number A,, ltoweuer large, is assigned,, ute can choose
rr, number ao(A,) suclt, that

d(r)>a
whena=co(A).

We then write

S@)'." ,
liirnilarly we define # (r) * - oo *. X'inally rve have:

f )nrrrxrrroN 3. If ttrc cond,itions of neither of tlrc two preced,ing
rltNi,ttitions are satisf,ed,, then S @) is said, to oscill,ate as u tend,s
Itt a. f"f lf@)lis less than same constant K wlrcn a-unf, then
y', (er) is so,id, to oscil,Iate f,nitely, and, otherwise infinitely.

'fhe reader will remember that in the last chapter we con-
rri,lcrcd very carefully various less formal ways of expressing the
lirt: l ,s rcpresented by the formulae d(n) *1, O(n)-*. Similrrr
rrr,,rlos of expression may of course be used in the present case.
'f 'lrtrs we may say that { (r) is small or nearly equal to I or large
rr ' l rcrr  r r  is  large, using the.words'smal l ' , 'near ly ' ,  . large' in

:r sr)rrso similar to that in which they were used in Ch. IV.

'  \ \ I r :  s l ra l l  eomet imes f iud i t  convenient to wr i te +@, o++@,e@)*+o
rrr i l t r r t l  of  @, 0+@, 4@)+a,

'l lrr tlro corresponding clefioition of g 62, we postulatecl that lp (n) | <K for all
vrlrr,$ of z, and not merely.whon n Zno. But then tho two hypotheses woulcl hsvo
l , r ' r ' r r  or l r r ivalent;  ior  i f  lp(n) l<.K when nl f ls ,  then lC(n) l=.K, for  a l l  values
, ' f  r r ,  rv l rcro l { '  is  tho greatest  of  @(1),  A(4,  . , . ,  e(no- 1) ani l  i { ,  Here the
r'rt,t,'r is not quite so simple, as there are infinitely many values 

"r,l";1;o" 
ro.
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Examples xxxlv. 1. consider tho bchaYiour of the following functions

as r+o : L|a, L I(lIr), 12, *,fxl, o-fa), [r]+J{o- [:rr1l

Tho first four functions correspond exactly to functions of z fully dis-

oussed in Ch. IY. The graphs of the last three were constructed in Ch' II

(Exs. xvr. 1, 2, 4), and the readcr will seo at once that [r]* co , o - fr] oscillates

finiteln and [r]+ J{a-[r]] * o.

One simplo remark may be inseltcd hero. The function $(r):a-lxl
oscillates between 0 and 1, as is obvious from the ftrrm of its graph. It is

equal to zero whenever r is an integer, so that the function f (z) derived

from it is always zero and so tends to the limit zero The same is true if

0(r) :  s inoo, f  (a) :s inzr:0.

Ibis evident that @(r)+Z or S(.r)+o or {(r)*-co involves the corre-

sponding property for $(n), but that the converse is by no means always

true.

2. Considcr in the same way the functions:

(ainrr)ln, rsinar, (rsinar)z, banrn, acoszsr +bsinzrr,

illustrating your remarks by means of the graphs of the functions.

3. Give a geometrical explanation of Def. 1, analogous to the geometrical

explanation of Ch. IV, $ 59.

4. If @ (o)+1, and I is not zero, then f (a) cos or and { (.r) sin ozr oscillate
finitely. If f (r)*o or {(r)*-o, then they oscillate infinitely' The
graph of either function is a wavy curve oscillating between the curves

s:e@) and y- _e@).

6. Discuss the behaviour, as r+co, of the function

g : f (r) cosz tr * F (r) sinz ar ,

whero /(r) and I (x) are some pair of simple functions (e.9. a and x2). [The
graph of y is a curve oscilhting between tho curves !:f (u)' g:F(s).1

90. Limits as a tends to - oo. The reader will have no

difficulty in framing for himself definitions of the meaning of the

asserbions'o tends to -  oo' ,  or '&* -  oo'and

[a0(r) :1, ,  Q@)**,  6@)*-co.

In fact ,  i f  u:-y and Q@):QGil :*(y) ,  then y tends
to oo as a tends to - oo, and the question of the behaviour of

$(a) as c tends to -co is the same as that of the behaviourof

I (y) ut y tends to co.
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91. Theorems corresponding to those of Ch. IV, .sS 69_6?.
The theorems concerning the surns, products, and q*otients oi functions
p'oved in ch. rv are all true (with obvious verbal alterations which the
reader will have no difficulty in supplying) for functions of the contin.ous
variable c Not only the enunciations but the proofs rernain substantially
the samo.

92. Steadily increasing or decreasing functions. The definition
wlrich corresponds to that of $ 69 is as follows: the fu,nction $ (a) wilt,
be said to inuease stead,il,y witlt o if 6@)ZQ(n1) wheneuer oz>r;. In
many cases, of eourse, this condition is only satisfied frorrr a definite value
of r onwards, z'.e. when rr>x1iro. The theorem which follows in that section
rcquires no alteration but that of n into a: and the proof is the same, except
for obvious verbal changes.

lf S@2)>g(o1), the possibility of equality being excluded, whenever
tc2)r1, then {(r) will be said to be steadity increasing in the stricter sense.
lVe shall find that the distinction is often important (cf. $$ 108_109).

The 
'eader 

should consider whcther or no the following functions
inc.easo steadily with r (or at any rate i'crease steadily from a certain
valrre of r onwards) i  a2-u, o1sinc., a{2sinn, dyLsina, [r ] ,  [a]+sina.,
[.u]+J{r-lr]}. All these functions tend to co as.r+co.

93. Limits as a tends to 0. I.et f (o) be such a function
trf  i r  that*l im {("):  l ,  and leb y:I ln. Then

#(*):4 Qlil: *(y),
soy. As o tends to a , y tends to the limit 0, and r/r (y) tends to
tlre limit l.

Let us now dismiss r and consider 
"lr@) simply as a function

of y. 'We are for the moment concerned only rvibh those values
of y which correspond to large positive values of o, that is to say
rvil,h small positive values of y. And rfr(y) has the property that
by mahing y sufficiently small we can make r/" (y) differ by as
lil,tle as we please from l. To put the matter more precisely,
flre statement expressed by lim 6@):l means that, when anv
lr,rsitive number E, holvever srnall, is assigned, we can choose
,r 'o so that l f  ( r)- l l<E foral l  values of o greater thanorequal
t,o f,o. But this is the same thing as saying that we can choose
,r1u:\f un so that l* (y) - , I < E for all positive values of y less than
,rl cqual to y6.

Wc are thus led to the follorving definitions:
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A. ff, when, any ltositiue nuntber 6, howeuer sm,al,l,, is assigned,,
we c&n choose yo (6) so that

ld(y)- ,1<E
uhen 0 < A 3 go(6), then ue say that $ (y) tend,s to tlrc trintit L as y
tend,s to 0 by potitiue ualues, and, we write

,g/ 
(Y): t'.

B. If, when a,ny number A,, howeaer large, is assigned,, u)e ca,n
cltoose yo (L) so tlmt

Q(v)> A

when 0<UsUo(L), thmwe say that $(y) tend,s to q as y tends
to 0 by positiue ualues, utd, we write

Q@) * * '
'We define in a similar rvay the rneaning 

"f ' Q (il tends to
tlre limit I as y tends to 0 by negative values', or 'l inr 4(il:1,
wlren y*-0' .  We have in fact only to al ter 0<y<yr(6) to
- y, (6) = y < 0 in definition A. There is of course a eorresponding
analogue of delinition B, and similar definitions in rvhich

Q ( i l - -  a
as!+{0 or y+-Q.

If lim Q@):1, and, lim f (y):1, we rvrite simply
.a-*0" , t  +-0

"'Y'+ 

<o>: ''
This case is so important that it is 'worth while to give a formal
definition.

ff, when any positiue number 8, howeuer small, is assigned,, we
can choose yr(E) so that, for all, aatrues of y d,iferent ftom zero but
num.ericall,y l,ess than ot' equal, to yo(6), $(y) d,ffirs fr.om tr by less
than 6, tltm we say tlrut $ (y) tends to th.e Limit I as y tends to 0,
and, wite

l'Y'+<'>:''
So also,  i f  4r(y)+oo as y*+0 and also as /  +-0,  we say

that { (y) * * as / + Q. We define in a sirrrilar mariner the
statement that f (y) * - oo as 3r +Q.
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FinallS if 6@) does not tend to a limit, or to co, or to
- @, as y'*+ 0, we say that {(y) oscillates as y**0, finitely
or infinitely as the case may be; and we define oscillation as
!/.--0 in a similar manner.

The preceding definitions have been stated in terrns of a
variable denoted by y: what letter is used is of course immaterial,
and we rnay suppose o written instead of y throughout them.

94. Limits as o tends to o. Suppose that f (y) * I u*
y * 0, and write

y : 0 - q,, Q(il : Q @ - a): rl (r).
I f  y*O then a+o and ̂ h@)-1, andwe are natural ly led to
write

lim"* 
(a):1,,

c,r simnly lim r/r (r) : I or g (*) 
-1, ancl to say that lr (n) tend,s to

the l,imit L as u tends to q,, The meaning of this equation may
be formally and directly defined as follows z if, giaen 6, we can
uLways d,etermine e (6) so that

l+( , ' ) - l l<8
wlr,en O < | a - al s e (6), then

!1Y 6 {"): t'
By restrieting ourselves to values of a greater bhtn a, i.e.by

rcplacing 0<lr-el=e (6) l5y a,<o=@+€(E),we def ine, f  ( r )
tcnds to I when o approaches o from the right', which we may
wlite as

" IT*o 
#@):t .

ln the same '!vay'we can define the meaning of

,IT_r0 @):t'.
'l'frrrs lim f (a): L is equivalent to the two assertions

,In,d @):t, 
"If_/ 

@)--L
We can give similar definitions referring to the cases in lvhich

4,(*)** or {(ar)*-e aE n+a through values greater or less
l,hrrn a; but it is probably unnecessary to dwell further on these
tlcliuitions, since they are exactly similar to those stated above in
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the special case when o:0, and we can always discuss the
behaviour of $(a) ffi &+a by putting a- (tr:y and. supposing
that y*Q.

95. Steatlily increasing or decreasing functions. If there is a number
e such tlrat 6@)S+ (ry' ') whenever a-e<C<C'<a1e, tben S(r) wil l be
said, to increase steadilg in the neighbourhood oJ a:o,

Supposofirst that a<a,alnd,p\ty-71@-#). Then y+@ as o+a,-0,
and $ (u) - lt tg) is a steadily increasing function of y, never greater than S (a).
It follows frorn $ 92 thaf g@) tends to a limit nob greater than g (a). 'Ws

shall write

"j;'*00('):0 
("+o).x

Wo can define S(o-0) in a similar manner; and it is clear that

$(a-o)rQ@)s$ (a*o).

It is obvious that similar considerations may bo applied Lo deteasing
functions.

It g(C)<Q@"), the possibility of equality being excluded, whenever
a-e <C<c"<a{e, then {(r) will be said to bo steadilyincreasing in the
stricter sense.

96. Lirnits of intletermination antl the principle of convergence.
All of the argurnent of $$ 80-84 may be applied to functions of a cou-
tinuous variable r which tends to a limit a. fn particular, if $(r) is
bound,ed in an iuterval including a (i.e. if we can find, e, E, and, Ii so that
H<$ (a)<K when a-e 5!oga-p e)1, then we can defino tr and it, the lower and
upper limits of indetermination of @ (r) as a-a,,and prove that the necessary
and sufficiendcondition Lhat $(r)-l as s+a is that ),:A:1. We can also
establish the analogue of the principle of corivergence, i.e. prove tirat th.e
necessary and, sujicimt condition that $(a) should, tend to a limit as o+a is
that, when B is giuen, we ca.n choose c(6) so thot lf@il-e@il<6 uhen
o <lns- al< lc,  -  a l  ge (6).

Eramples XXXV. 1. If g (e.)-1, lr (r)*l', as r+4, fhgn

6 @) +* (c)*t|(, Q @) t @)+tt", Q @)lt (x)- tlt ',
unlcss in the last case l':0.

lWe sarv in $ 91 that the theorems of Ch. IV, $$ 68 el seq. hold also for
functions of r rvhen .?+6 e1 o+ - @. By puttiug a:lly we may extend
them to functions of y, when g*0, and by putting y: z - a to f unctions of a,
rvhen e*a.

' It will of course be understood tha,t { (a+ 0) bas no meaning other than that
of a conventional abbreviation for tire limit on the left hanil eide..

t See $ 102.
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The reader should however try to prove them directly from the formal
dcfinition given above. Thus, in order to obtaiu a strict direct proof of the
first result he need only take the proof of Theorem I of $ 63 and write
tlrronghout o for n, a for o and 0 < |o - oI se for n 2no.]

2, If. mis a positivo integer then om*0 as r+0.

3. If m is a negative integer then am+*co as a+$0, while an+- o or
r.,a+{oo asr+-Q according as ln, is odd or even. If m-O then.rr'n:l
arrd r t ' *1.

4. 7im (a*br * crt * .., * kdn):a^
ft>0

5. l im- {(a+6o+ .. ,  tkdn)l(a+8x*.. .  +xor)}:a/4, unless c-0. I f  c:0
r+0'

nrrd ag0, €+0, then the function tends to +co or - co, as s++O, according
ts a and B have like or unliko signs; tho c&so is reYer'sed if r+-0. Tho

c:r,se in which both o and c vanish is considered in Ex. xxxvr. 6. Discuss the

cases which ariso when a*0 and moro than one of the first coefficients in the

dcnominalor vanish.

u' 
)ry :^ 

: *, if rir is any positive or negative integer, except whon o:0

nrrd rn is negative. [If m> O, pttt t: g * a and apply Ex, 4. Wheu ra < 0,
tlr<r resrrlt follorvs from Ex: 1 above. It foliorvs at once that lim P (x):P (q),

it 1'(a) is any polynomial.]

,. 
)ryroor:R(a), 

if .R denotes any rational function and a is not one

o['bhe roots of its denominaton

8. Show thatiim dn:aP for all rational values of rn, excep!, when a:0

trrd ,r is negative, fThis follows at once, when a is positive, from the in-
rrrlrralities (9) or (I0) of $ 74. tr'or ltn - anl< Hlr- al' where lf is the greater
ol'the absolute values of nlrm-t anf, **-t 7cf. Ex' xxvrrr. 4). If a is negativo
rvo rvrito o: -! and. a: -b. Then

lim rm:l im (- l)*{"-(- l)nbm-am.f

97. The reader will probably fail to see at first that any proof
<rf such results as those of Exs. 4, 5, 6,7, 8 above is necessary.
l le may ask'why not simply put o:0, or o:a? Of course
wo then get, a,af a, aP, P (a), R(a)'. It is very important that he
should see exactly where he is wrong. 'We shall therefore consider
t,lris point carefully before passing on to a,ny further examples.

The statement l imQ@):t ,
a>0

is a statement about the values of $ (a) when o has any value
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distinct fro.nt, bu,t di.fering by littl,e from zero*, It is not a statemenr
about the aal,ue of $(a) when o:0. When we make the state_
ment we assert that, when c is nead,y equal to zero, $(c) is nearly
equal to L We assert nothing whatever about what happens
when o is actwally equal to 0. So far as we know, S @f may
not be defined at all for a:0; or it may have some'uolul
other than l. For example, consider the function defined for all
values of ir by the equation Q @): 0. It is obvious that

l im{(r) :0 . . . . . . . . (1) .
Now consider the function {" (c) which differs from { (r) only in
that r/r (a): t when r = 0. Then

. l im *(") :0 . . . . . . . . . . . . . . . . . . . . . . . . (2) ,
for, wlen o is nearly equal to zero, $(r) is uot only nearly but
exactly equal to zero. But r/r (0): I. The graph of ihis function
consists of the axis of a, with the point a: 0 left oub, and one
isolated point, viz. the point (0, 1). The equation (2) expresses
the fact that if we move along the graph towards the axii of y,
from either side, then the ordinate of the curve, being al*uys eqoi,l
to zero, tends to the limit zero. This fact is in no nu"y *ff""t"d
by the position of the isolated point (0, 1).

The reader may object to this example on the score of
artificiality: but it is easy to write down simple formulae repre-
senting functions which behave precisely like this ,r"u" ,o*:0.
One is

V@:U - *1,
where [1 -af] denotes as usual the greatest integer not greater
than 1-c2. For i f  a:0 thenr/r(") : [ f ] :1;  whi le i f  0 io< t ,
or  - l  <o<0, then 0< 7 -d< 1 and so r / r (o)  :  [ t  -  uI :O.

Or again, let us consider,the function

9: ala

already discussed in Ch. II, S 24, (Z). This function is equal
to 1 for all values of r save o: 0. It is not equal to I wlen
a:0: it is in fact not defined at all for o:0. For when we say

* Thus in Def' A of $ 98 rve make a statement abo.t varues of y such that
0.ySyo, the first of these inequalities being inserted erpressly in order to
orolucle the value Er=Q.
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that {(r) is defined forr:0 we mean (as we explained in Ch. II,
l.c.) that we can caleulate its value for u:0 by putting n:0
in the actual expression of $ (a). In this case we cannot. 'When

we put r: 0 in f (,2) we obtain 0/0, which is a meaningles.s
expression. The reader may object 'divide numerator and de-
nominator by *', But he must admit that when o:0 this is
impossible. Thus y : ala is a function which differs from y: I
solely in that it is not defined for ru: 0. None the less

lim (ola):r,

for uf n is equal to 1 so long as a differs from zero, however small
the difference may be.

Similarly Q @\: {(c + 1)'- l}ln: a + 2 so long as o is not
equal to zero, but is undefined when c: 0. None the less
l im $ (n):2.

On the other hand there is of course nothing to prevent the
limit of S (r) as o tends to zero from being equal to { (0), the value
of $(r)  fovu:0.  Thusi f  { (o) :cthen +(0):0and l im 0 ( t ) :0.
'l'lris is in fact, from a practical point of view, i.e. from the point
of view of what most frequently occurs in applications, the
ordinary case.

Examples XXXVI. l. lim (a2-a2)l@-a):za.

2. lrmo(d"-o'^)l@-a):ma'm-t,lf m is any integer (zero included).

3. Show that the result of Er. 2 remaing truo for all rational valrres
of zr, providcd c is positiva [This follows at once from the inequalities

($) and (10) of $ 7a.l

n 
I t j i  

@r-ze6+l) l(d-Ba2+2):L [Observe thaU r-1is a factor of

lroth numerator and denominator.]

6. Discuse the behaviour of

$ (r):(antn+arfo+r + .. .  +akr-+>)l(bo* +br**r + , . .  *btr"*t)

ts o tends to 0 by posifive or negativo values.

l l f  nt>n,l im f (a):0'  I f  m:n,l im S@1:aolbo. I f  nt '<n and n -m is

oven,S (o)+ 4 o or {(r) * - co according as aslbo> O or d'olbs < 0. If n?. < rr and

l - rlr, is odd, @ (r)*{ o as r++0 and @(r)*- co a8 r+ - 0, or f (a)*- o

rrs n**0 and f (r)+{o 8s o+-0, according as ae/b6>0 or aolbn<O.l
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nruch smaller,6. Ortlers of smallness. 'W'hen r is small as is very

aB much smallor still, and so on: in other words

lim (a2la):O' lim (a3laz):Q,
,>0 a+0

Anoiher way of stating the matter is to say that, when r tends to 0,
8, d, .., all also tend to 0, but rr2 tends to 0 more rapidly than q 13 than
12, and so on, It is convenient to havo somo scalo by which to measure
the rapidity with which a function, whose limit, as .z tends to Q is 0,
diminishes with r, and it is natural to tako the simple functions r,8r 6, ...
as the measures of our scalo.

'We say, therefore, that {(r) is of the first order of tmallness if $(x)lx
tends to a limit othor than 0 as c tends to 0. Thus 2s*3fr*c7 is of the
first order of smallness, since lim (2n+3n2+o7)lo:2.

Similarly wo deffne tho second, third, fourth, ... orders of smailness. It
must not be imagined that this scale of orders of smallness is in any way
oomplete. If it were complete, then overy function @ (r) which tends to zero
with r would be of either tho first or second or some higher order of smallness.
Tlris is obviously not tho caso. For example $@):dp tends to zero more
rapidly than o and lcss rapidly than d.

The reader may not unnaturally think that our scale might be made
completo by including in ib fractional orders of smallness. Thus we might
say tlrat sil6 was of the f,th order of smallness. W'e shall however see later
on that such a scale of orders would still be altogether incomplete. And
as a matter of fact the i,ntegral orders of smallness defined abovo are so
much moro important in applications than any others that it is hardly
necessary to attempt to mako our definitions more preciso.

Ordqps of greatness. Similar defiuitions ars at once suggested to
moet the caso in which { (r) is large (positively or negatively) when o is
small. We shall say that S (r) is of the &th ordor of greatness when c is small
if $ (n)la-*:a* S (r) tends to a limit different fi.om 0 as r tends to 0.

These definitions bavo reference to the caso in which r*0. Thero are of
course corresponding definitions relating to the caseg in which .z* co ot fi + a,,
Thug if *Q@) tends to a limit other than zero, as r+co, then wo say thab
f (r) is of the Zth ordcr of smallness when.n is large: while if (n-a)kg(r)
tends to a limit o0her than ze;o, N a+a, then we say that { (r) is of the ith
order ofgreatness when o is riearly equal to a.

*7. l im"r( l{c): l im/( l  -r)-f .  [Put l+n:y or t-x:! t  and use
Ex. xxxv. 8.]

8' lim{/(l+r)- a|J-o)}lo:L [Multiply numerator and denominator
by nr(l +r) +J(r - r).1

r In the eramples whieh follow it ig io be assumed that limitg as o.+0 are
requirecl, unleso (os iu Exs. 19, 22) tho contrary is explicitly staiecl"
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9. Consider tho bchaviour of tJ(l +d") - .l$- a*)\la" &s r+0r m all.d n

being positive integers.

10. l im{./(1*o*r2) -t} /r :} .

rr. 1i* {f t{? --{!lt-p-1.
JQ-nz)- ,1\L -u)

12. Draw a graPh of tho function

.. f r , I , I , J_\ /l | + I 
- 

r 
- 

I I
Y:\"- +;=E+;:E*;II  /  \r-r-r;-fz' .  o:tr-r r-I f  '

Ifas it a limit as a*0? [Here 9:l except for r:1r ], .4, *' wheny is

not defined, and y*l as.o+0.]

13. f i ,nstr{ :1 '

Ft rnay be deduced ltom ihe definitions of the trigonomobrical rabios* that

if r is positive and lcss than !r then

sin r< r< tan #

sin r
coso<": l- :  <l

or 9a1-I l3a1 -cosr-:2sin2!"n'

But2sinrlr( 2(\r)2<la2 Hence l im (r -f f) :o,and l im ff :r ''2* *---; ;r  
o\ 0 /  a+lo 0

Ot 
Y 

is an even function, the result follows']

. .  l -cosr -  
' ' . - -s incr

t4. 11- 5-:l-1 : 6. ro. lrrl - : a. Is this true if a : 0 ?

16. l i* t""9tt ' :1. [Putr:sinY.]

-.  l ,anaa , '  arctanat
17. htn-:a,

,. cosec Jt - cot t r
rU. Lrm ----:2. re. n*.r*f,#:t

*. I l reproofsol theinequal i t iesrvhichareuee. lherei lependonoertainpro-

1,"rtiu, ottL.'"rea'of a geotor of a circle which are ueuolly taken as geometrically

i,'iuitiu"; for exanple, that the area of the seotor is greater than that of the

triuuglo inscribed in the sector. The iustiticatiou of these assumptions must be

uostponed to Ch' VIL
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20. How do the functions sin(l/r), (l/r)sin (71:r), tsin(lln) behavo
as .r+0 ? [The first foscillates finitely, the second infinitcly, the thirtl
tends to the l imit 0. Nons.is defined when ,x:O. Seo Exs. xv.6,7,8;]

2L, Does the function

s:("tn*)/( 
"" 

r-)
\  &/t  \  tu/

tend to a limit as a tends to 0 ? [rVo. The function is equal to 1 except .rvhen

sin (1/r) : 0 ; f.e, when r: 1 l r, I f %r, ..,, - 1 1 o, - 1 12r r.... tr'or these valucs tho
formula for 3r assumes the meaningless form 0/Q and y is therefore not defincd
for an infinity of values of o near n - 0.]

22. Prove that if m, is any integer lhen lr"f*rn and r-lr]*0 as
o +m lO, and, lof*tn - l, a -lr)ul as a+nl - O.

98. Continuous functions of a real variable. The
reader hds no doubt some idea as to what is meant by a continuotrt
swrl)e, Thus he would call the curve C in X'ig. 29 continuous,
the curve C'generally continuous but discontinuous for s: {' and
a-t" .

Either of these curves may be regarded as the graph of a
function { (r). It is natural to call a function continuous if if,s
graph is a continuous curve, and otherwise discontinuous. Let us
take this as a provisional definition and try to distinguish more
precisely some of the properties which are involved in it.

fn the first place it is evident that the property of the
function y : Q @) of rvhich C is the graph may be analysed into
some property possessed by the curve at each of its points.
To be able to define continuity for al,l, ual,ues of o we musb first
defirre contindty for any particul,ar ual,ue of c. Let us there-
fore fix on some particular value of dr, say the value r: f

Fig. 29.
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corresponding to the point P of the graph' What- are 
^the

charac-teristiJproperties of f (c) associated with this value of n?

In tlre first place { (r) is d'ef,n'ed' for a: g' This is obviously

essential. If d (f) were not defined there would be a point

missing from the curve.

Secondly { (o) is d'ef,ned, for alt' aalttes of o near n: €; i'e' we

can find a., i.rteruul, including a:{ in its interior, for all points

of which S (c) is defined.

Thirdly if a approaclrcs the ualue ( ft'om either sicle then $ (n)

approaches the limit $ (O.

Thepropert iesthusdef inedarefal f romexhaust ingt .hose
rvhich, u* ior."*..d by the curve as pictured by the eye of

common sen;e. This picture of a curve is a generalisation from

particular curves such as straight lines and circles' But they are

ihe simplest and most fundamental properties: and the graph of

u.ry forritioo which has these properties would, so far as drawing

it is practically possible, satisfy our geometrical feeling of what a

contiiruous curvl should be. We therefore Eelect these properties

as embodying the mathematical notion of continuity. we are thus

led to the following

DprrNrrrou. The function # (*) it sa'id, to be continuou's for
*: E if it tend,s to q' limit as P tend,s to { from either sid'e, and'

each of these linits is egual to Q (fl.

We can norv define continuity throtryhout an interaal" The

function { (o) is said to be continuous throughout a certain

interval of values of n if it is continuous for all values of c in that

interval. It is said to be continuous eaerywhere if it is continuous

for every value of a;. Thus fro] is continuous in the interval

(., I - .i *here e is any positive number less than $; and I and r

are continuous everywhere. 1"1 "i '

If we recur to the definitions of a limit we see that our

definition is equivalent to '{ (n) 'is continwous for *: E i)f, gium-6,

we aan ahoose r lET so that l 0 (r) - O (f) l < E f 0 s l " 
- t l s e (6)"

we have often to consider functions defined only in an interval

(o, b). In this case it is convenient to make a slight and obvious



change in our definition of continuity in so far as it concerns thc
particular points a and b. We shall then say that f (c) is con_
tinu-or11 fot_a:a if S(o+0) exists and is equal to $'(a),' and for
a:b if f (b- 0) exists and is equal to S (t).

99. The definition of continuity given in the rast section may
be illustrated geometrically as follows. Draw the two horizontal
l ines y:+(f)-Dand y:6(g+8. Then |  6@)._f  ( f ) l< I  ex-
presses the fact that the point on the curve corresponding to o lies
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- - - -Y=d ( 'e)+6

t+u
Fig. 30.

between these two lines. Similarly la- E ls. expresses the fact
that a lies in the interval (f-e, f+e). Thus our definition asserts
that if we draw two such horizontal lines, no matter how close
together, we can always cut off a vertical strip of the plane by
two verticaln lines in such a way that alr that part of tie curul
which is contained in the strip lies between the two horizontal
lines. This is evidently true of the curve C (X'ig. 29), whatever
value f may have.

We shall norv discuss the continuity of some special types of
functions. Some of the results which follow *uru lu, *u poi.rtua
out at the time) tacitly assumed in Ch. IL

Examples xxxvrr. r. The sum or product of.trvo functions contin'ous
at a point is continuous at that point. Tho quotient is also continuous
unless tho denominator vanishes at the point. [This follows at orr." fro,r,
Ex. xxxv. 1.]

- 
2. Any polynomial is continuous for all values of o. Any rational

fraction is continuous except for values of r for wriich the denominator
vanishes. [This follorvs from Ers. xxrv. 6, ?.]
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3. /r is continuous for all positive values of r (Ex. xxxv. 8). It is not
defined wben r < 0, but is continuous for r:0 in virtue of the remark made at
the end of $ 98. Tho same is truo of s^1", whero m and n a,re any positivo
integers of which a is even.

4. The function .rr'{ where n is ocld, is continuous for all values of o,

5. l/o is not continuous for r:0. It bas no value for r:0, nor does it
tend to a limit as a+0. In fact 7la+ *o or Lla* - o according &s r+0
by positive or negative values.

6. Discuss tho continuity of s-ml"t where an and z are positivo integcrs,
for r:0.

7. Ths standard rational function n@):P (o)lQ@) is discontinuous for
o:e, where o is any root of Q(r):0. Thus (ozal)/(a2-Ba*2) is discon-
tinnous for s:L. It will be uoticed that in the case of rational functions a
discontinuity is always associated with (o) a failure of the defrnition for a
particular value of r and (b) a tending of the function to *co or -@ &s o
approaches this value from either side. Such a particular kind of point of
discontinuity is usually described as an infnity of the function. An'infi nity'
is the kind of discontinuity of most common occurrence in ordina,ry work

& Discuss the continuity of

at l@ - a) (b - t)|, *l {(o - a) (b - o)1, j {(a - a) | (b - a)}, il {(o - a) I (b - o)l

9. sin r and cos r are continuous for all values of .r.

[We lrave sin (r+Z)-sin t:2sin$hcos(o+lh),

,vhioh is numerically less than the numerical value of i.]

10, For what values of a xo tano, cot c, sec o, and cosecr continuous
or rliscontinuous ?

Il. If f (g) is continuous for u-ry and f (a) is a continuous function of
.r rvlrich is equal to 7 when s: {, tt.en f {$ (r)} is continuous for r-6.

12. It $ (a) is continuous for any particular value of o, then any poly-
rrorrritl in { (r), such as a {f (r)}-*..., is so too,

13. Discuss the continuity of

Ll(a cosz xtb sinz r), 
"t(2qcosr), 

y'(l +sin r), f//[ *sino).

14. sin (f /r), a sin (1 ln), and 12 sin (1 /o) aro continuous except for .r:0.

15, The function which is eqtal to rsin (f /a) except when r:0, and to
zcro when .n:0, is continuous for all values of ,.

16. fr] and n-ln]arc discontinuous for all integral values of o.

f7. For what (if any) values of r aro the following functions discon-
ti r r rrous : la2f, W 4, "l @ - 1"7), lsl + J @ - L4), lzoJ, lsJ + l - l..l'

n.  12
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18. Classification of tliscontinuities. Some of the preceding examples
suggest a classification of different types of discontinuity.

(1) Supposo that $ (a) tends to a limit 
^s 

o+a either by valucs less
than or by values grcater than a. Denote these limits, as in $ gb, by @ (o - O)
and f (a+0) respectively. Then, for continuity, it is necessary and sufficient
that f (a) should be defined for s : a, and that f (o - 0) :S (a) : f (a +O). Dis-
continuity may arise in a variety of ways.

(o) f (a-0) may be equal to f (a+0), but @ (o) may not be defined, or
maydifferfromrp(a-0) and f (o+0). Thus i f  0(r):asin(r/a)and a:0,
+ (0 - 0): + (0 + 0):q but @ (r) is not defined for r:0. Or if @ (o): [l - cl
and a:Q 0 (0-0):0 (0+0) :0, but { (0):1.

(B) 0 (a - O) and { (a + 0) may be uncqual. In this case S (a) may bo
equal to ono or to neither, or bo undefined. The first, case is illustrated
by @ (o):[r], for whieh + (0 - 0): - 1, 0 (0+0) :+ (0) : 0 ; the second by
d (r): [r ]  -  [-r ] ,  for which O (0-0): -  1, O (0 +0): I ,  O (0):o; and rherhird
by f  ( r ) : [ r ]+asin ( l / r ) ,  for  which 0(0-0):-r ,  0(0+0):e and g(0) is
undefined.

In any of these cases we say that f (r) has a simple discontinuity at
s:a. And to these cases we may add those iu which S (r) is defined only
on one side of s:a, and @ (a-0) or S (o*0), as fhe case may be, exists, but
S (r) is either not defined when .n:a or has when u-a a ralue difi'erent from
0 (c-0) or Q (aao).

rt is plain from g 95 lhat o' function which increases or decreases steadilu
in the neighbourhood of o:a can haae at tnoEt a simple discontinuity fo, ,:i.

(2) It may be the case thab only one (or neither) of { (a * 0) and @ (a 4 0)
exists, but'that, supposingforexample $(a+O) not to exisl, 0(r)*+- o"
$(a)+-o aE:t+a,+O, so that @ (r) tends to a limit or to *o or to - oo as
r approaches a from either side. Such is the case, for instance, tI S @):ll s s1
Q @):LlC, and a:0. In such cases we say (cf. Ex" 7) that a:aisan infnity
of @ (r). And again we may add to these cases those in which g (r)+ lo
or {(a)*-coasn+ct from one sirie, but 0(r) is not defined at all ou the
other side of r:a.

(3) Any point of discontinuity which is not a point of simple discon.
tinuity nor an infinity is called'ir, point of oscillatory discontiauity. Such
is the point r:0 for the functions sin (r/r), (\ia) sin (t/a).

19. 'What is the nature of the discontinuities at s-O of the functions
(sinr)lt, fcl+l-rl, cosec r, JQlo), l/(Llr), cosec(1/r), sin (I/o)/sin(lir) ?

20. The function which is equal to I when r is rational and to 0 when
a is irlational (Ch. II, Ex. xvr. l0) is discontimrous for all vaiues of o. . So too
is any function which is defined only for rational or for irrational values of.rl.
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21. Thc function which is equal to o when o is irrational and to

JiG+p,)l(L+92)) when cr is a rational fraction plq (Cb. II, Xx. xvr. 11) is
rliscontinuous for all negative and for positive rational values of r, but
rx r r r l,inuous for positive irrationrrl values.

22. For what points arc the functions considerecl in Ch. IV, Exs. xxxt
rlisoontinuous, and what is the nature of their discontinuities? [Consider,
t,.r1.,t lna function g:l imc^ (8x.5). Herey is onlytlefined when -14r;!1 :
il; is cqual to 0 when -L<x<l and to I when r:1. The points r:1 and
.r,..= - I are points of simple discontinuity.l

100. The fundamental property of a continuous tirnction.

I t, rnl,y perhaps be thought that the analysis of the idea of a con-

l,irrrrous curve given in $ 98 is not the simplest or most natural

p,,ssible. Another mcbhod of analysing our idea of continuity is the

lirllowing. Let -z{ and -B be two points on the graph of { (r) whose
(:{)ordinates ate oo, f (co) and ar,Q\rr) respectively. Dra'lv any

rl,r'rright line ). rvhich passes between A and. B. Then common

H(lnsc certainly declares that if the graph of Q@) is continuous it

rrrust cut 1,.

If we consider this property as an intrinsic geometrical

l)rl)l)crLy of continuous curves it is clear that there is no real

l,,ss of genemlity in supposing )' to be parallel to the axis of ar.

ln this case the ordinates of ..d' and B cannot be equal: let us

rlrl)[)ose, for definiteness, that Q@r)> #(r'). And let I be the

lint: y:4, where 4 (t ) < n < Q @). Then to say that the graph

,,1' ,h@) must cut L is the same thing as to say that there is a

vrlrrr: of ar between /o and n, for which 6 @) : ,1.

We conclude then that a continuous function S (r) must

lx)ssoss the following property: c/

6 (no): yo, 6 (*,): Y',

tr ttrl ryo 1 ,rt 1 gr,thenthere is u ualu,e of a between ao (|nd' o, for u:hich'

It (rr:): rl. In other words cts fi aq,ries from o0 to frl, y must &ssurne

. rrl, Icust lnae eaery aalue between yo and' yL.

We shall now prove that if f (r) is a continuous function of c in

t,lrc scnsc defined in $ 9S then it does in fact possess this propcrty.

' l ' lrrr|e is a certain range of values of n,to the right of ao, forwhich

/,(.,) < q. tr'or { (*o)<n, and so f (o) is certainly less,than ? if
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Q@)- f (er) is numerically less than n-Q@). But since f (c)
is continuous for o -no, this condition is certainly satisfied if o is
near enough to aro. Similarly there is a certain range of values,
to the left of ar, for which f (*) > q.

Let us divide the values of o between ro and r, into t.wo classes
L, R as follows:

(1) in the class Z we put all values f of c such that { (4 < ,t
when n: f and for all values of o between no and {;

(2) in the class -E we put all the other values of u, i.e. all
numbers f such that either + (€) = 7 or there is a value of o betrveen
oo and f for which # (*) Z ,t.

Then it is evident that these two classes satisfy all the
conditions imposed upon the classes Z, fi of$ 17, and so constitute
a section of the real numbers. Let fo be the number corresponding
to the section.

X'irst suppose + (6r) ) ?, so that f,. belongs to the upper class:
and let +(f,): q tk, say. Then { (E)< qand so

0(f ' ) -  6(€ ' )>k,
for all values of f'less than fo, which contradicts the condition of
continuity for u: €o.

Next suppose + (fr) - q - h 1q. Then, if f is any number
greater bhan fo, either $ (€)=q or we can find a number F,,
between fo and f' such that f (t")Zn. In either 

"ur" 
*" 

"lofind a number as near to f,o as we please and such that the corre-
sponding values of $ (n) differ by more than &. And this again
contradicts the hypothesis that @ (o) is sontinuous for a: €0.

Hence 0(fJ:4, and the theorem is established. It should
be observed that we have proved more than is asserted explicitly
in the theorem; we have poved in fact that fo is the leosi valul
of n for which f (t): q. It is not obvious, or indeed generally
true, that there is a least among the yalues of o for which a
function assumes a given value, though this is true for continuous
functions.

It is easy to seo that the converse of the theorem just proved iq not
true. Thus such a functio' as the function { (a) whose graph is represented
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by ltig. 31 obviously assumes at least once every value between S (cs) and
f(ry): yet S (r) is discontinuous. Indeed it is not even true that { (r) must
be continuous when it assumes each value once a,nd once only. Thus let @ (r)
bo dofined as follows from .r:0 to o:1. If r:0 let $ (r):0; if 0 <.c < I
let {(r):1- c; and, if r:1 let @(r):1. The graph of the function is
shown in Fig. 32; it inchrdes the points O, C btt not Lhe points ,4, B. It
is clear that, as r varies from 0 to l, Q@) assumes once and once only every
value botween 0 (0):0 and 0 (1) : f ; but f (r) is discoltinuous for a:0 and

A6

Fig. 31. Fig. 82.

As a matter of fact, however, the curves which 
'sually 

occur in elcmerrtary
nrathematics are composed of a f,nite number of pieces along which g always
aartes in the same directton. It is eapy to show that if y:$ (r) always varils
in tho samo direction, f.a. steadily increases or d.ecreases, as r varies from
rs l,o 11, then the two notions of cpntinuity a.e really cquivalent, i.e. that if
<p (,') takes every value between { (rs) and { (.r 1) then ib rnust bo a continuous
function in the sense of $ g8. For let f be any value of r between a6 ancl
oy As.c*f through values less than f,S(a) tends to the limit O(6_0)
($ 95). Similariy as t:+f through values greater than f, 4,.1r; tends to the
limit d (6+0). The function will be contlnuous for r:6 if and only if

0 (4-o):d (1):f (t+o)
Rut' if either of theseequations is untrue, say the first, then it is evident that
rp(r) never assumes any value which lies betleen O (f _0) and f (f), which
is contrary to our assumption. Thus { (r) must bo continuous. 

' 
fhe net

rcsult of this and the last section is consequently to show that our common-
so'se notion of what we mean by continuity is substantially accurate, and
capable of precise statemelt in mathematical terms.

101. In this and the follorving paragraphs we shall state and

l)r'ove some general theorems concerning continuous functions.

o
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'funonpm 1. Suppose thut S(r) is continuous for s-(, anil
that $ ({) is gtositiue. Then we can d,etermine a positiue number e
such that + (0 is ltositiue throughowt tlt e inter"ual (( - e, ( + e).

For, taking E: ++ (f) in the fundamental inequality of p. 175,
we can choose e so thrlt

l#(*)-4(f) l< ' ,+( f )
bhrorrghout (€-u, f+e), and then

0 @) = o @ - | 4 @) -0 (o | > +0 (r) > 0,
so that { (o) is positive. There is plainly a corresponding theorem
referring to negative values of $(o).

Tnnonprt 2. I"f + (a) is continuous for s: (, and, S (a) uanishes
for aal,wes of a as near to ( as we please, or essllrles, for ualues of
n qs near to f as we pl,ease, both positiue and, negatiue aal,ues, thm
0(t) :0.

This is an obvious corollary of Theorem 1. If 0 (f) is not zero,
it must be positive or negative; and if it were, for exarnple, positive,
it rvould be positive for all values of n sufficiently near to f, which
contradicbs the hypotheses of the theorem.

L02. Tle range of values of a continuous fhnction. Let
us consider a function { (c) about which we shall only assume at
present that it is defined for every value of o in an interval (o, b).

The valrres assumed by 4 (r) for values of a in (o, b) form an
aggregate B to which we can apply the arguments of $ 80, as we
applied them in $ 81 to the aggregate of values of a function of n.
If there is a number ff such that f (*) < K, for all values of ar in
question, we say that f (n) is':bound,ed, aboue. In this case {(a)
possesses an ry)per bouncJ M : no value of $ (a) exceeds M, b$, any
number less than 14 is exceeded by at least one value of Q@).
Sirnilarly rve define 'bownd,ed, below', 'lowet" bownd,', 'bounded,', as
applied to functions of a continuous variable o.

TsnonnM 1. If # (*) is continuous tltroughout (a, b), then it h
boundnd, in (a, b).
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'We can certainly determine an interval (o, E), extending to
the right from o, in rvhich f (.2) is bounded. For since f (o) is
continuous for a: @, we can, given any positive number 6 however
small, determine an interval (o, f) throughout which { (n) lies
betrveen d (") - E and S (o) + E; and obviously 4 @) is bounded in
this interval.

Now divide the points f of the interval (o, b) into two classes
Z, -8, puttin g ( in L if + (f) is bounded in (a, {), and in .B if this
is not the ease. ft follows from what precedes that L certainly
exists: what we propose to prove is that E does not. Suppose
that I does exist, and let B be the number corresponding to the
scction whose lower and upper classes ate L and ll. Since f (r)
is continuous for c: B, we can, however small E may be, determine
an interval (9 - n, P + rt)* throughout which

0(B)-6<4(,)<4(€)+8.
Thrrs f (er) is bounded in (B -n,13 *rn). I{owB-2 belongs to -t.
'I'herefore $ (o) is bounded in (cu, B - rD, and therefore it is

bounded in the whole interval (a, B + q). But B * 7 belongs to -R
and so { (a) is nof bounded in (o, ts + q). This contradiction

shows that R does not exist. And so { (o) is bounded in the

whole interval (a, b).

Tnoonou 2. If 6@) is continuotr,s throu,ghou't (a,b\, and' M

rtnd, m are its upper and, l,ower bound,s, then $ (u) asswmes the ual'zces

M und, m, at least once each in the'interual'.

For, given any positive numb-er E, we can find a value of n for

which M-Q@)<8 or 7l{M-f  (ar)}>1/8.  Hence t l lM-$(n)}

is not bounded, and therefore, by Theorem 1, is not continuous.

Rut M- f (a) is a continuous function, and so Il{M- {(o)} is

continuous at any point at which its denominator does not vanish

t lix. xxxvlr. 1). There must therefore be one point at which

fhe denominator vanishes: at this point @ (n): M. Sirnilarly it

rnay be shown that there is a point at which # (r) : r

'I'he proof just given is somervhat subtle and indirect, and it

rna,y be 'well, in view of the great importance of the theorem,

to indicate alternative lines of proof. It will however be con-

vcnient to postpone these for a momentf.
I If B=b we must replaoe this interval by (P-tl, p)' andp+? by p' throughout

l,lro orgument which follows.

t See S 104r
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Examples XXXV$L l. If f (r):l/c ercept when r:0, and g(a):O

when r:0, then f (r) has neither a,n upper nor a lower bound in any
interval which inchrdes ,':0 in its interiofls e.g. iloe interval ( - l, +r).

_ 2. 
" Q @):71o2 except when e:Q and 6 ("):O when r:0, then f (r)

has the lower bound e but no upper bound, in the interval (- l, +r).

3. Let O(o)-sin (l/c) ercept when r:e and { (r):0 when o:0. Then
S (a) is discontinuous for .t :0. In any intelval ( - D, + ay the lorver bound is
-1 andthe upperbound *1, and each of theso values is assumed by f (r) an
infinity of times.

4. Le+' Q@):o-lo\ This function is discontinuous for all intesral
values ofr. rn the interval (0, 1) its lower bound is 0 and its upper boooi r.
It is equal to 0 when n:0 or r:lr but it is never cqual to 1. Thus { (r)
nevor assumes a value equal to its upper bound.

6. Let{(r):9when o is irrational, and@(o):q when o is a rational
fuaclion plq. Then p (r) has the lower bound 0, but rio upper bound, in any
interval (q b). But if @ (a) : (- r)o q wher- s:plg, then { (r) has neither an
upper nor a lower bound in any interval,

103. The oscillation of a fhnction in an interval. Let

{(o) be any ftrnction bounded throughout (a, b), and, M and. m
its upper and lower bounds. We shall now use the notation
M (a, b), m (a, b) for M, rar, in order to exhibit explicitly the de-
pendence of lll and nx on q, and b, and we shall wriie

O (a, b): M (o,,b) - nz (a, b).
This number O(a, b), the difference between the upper and

towgr 
lgun{s ot S @) in (a,b), we shall call the osciltation-q/ 4 (a)

in (a, b.). _The simplest of the properties of the functi orr, M 7o,'by,
m (a, b), O (a, b) arcas follows.

(1) If a s c s b then M (a, b) is equal, to the greater of XI (a, c)
and, M (c,b), and, m (a,b) to the l,esser of m (a, c) and, m 1i, U1. 

'

(2) M (a,b) is an 'increus,i,ng, m (a,b) a d,ecreasing, and, O (a,b)
an increasing function of b. *

(3) 0(a,b) = O(a, c) +O (c,b).
The first two theorems are almost immediate consequences of

our definitions. Let ir be the greater of M (a, c) and M-(c,b), and
let_8 be any positive number. Then f (*) = p th.o"ghooi (o, c)
and (q b), and therefore throughout (o,, b); n"d [ (r)>'t/_S
sorne.rvhere in (o, c) or in (c, b), and therefore somewhere in (a, b).
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Hence M (a, b) : y,. The proposition concerning m may be proved
similarly. Thus (1) is proved, and (2) is an obvious corollary.

Suppose now that /d is the greater and IlI, the less of M (a, c)
and M (c, b), and lhab n4 is the less arrd m2 the greater of m (a, c)
and m (c,b). Then, since o belongs to both intervals, f (c) is not
greater than M, nor less than m". Henee Mr= m", whether these
numbers correspond to the same one of the intervals (a, c) and
(c, b) or not, and

But

O (a, b1 : Mr- ffi, 3 Mr* M" - m, - nt'r.

O (a, c) * O (c, b) : M' t M,- rnt - ntz;

and (3) follows.

104. Alternative proofs of Theorem 2 of $ 102. The most straight-
forrvard proof of Theorem 2 of $ 102 is as follows. Let f be any number of
the interval (a, 6). The function M (a, $ increases steadily with { and never
exceeds ,ly', 'W'o can thereforo construct a section of tho numbers f by
putt ing $inLor in Eaccording as M(a, $<M or i l (a,{):M- Let B be
the number corresponding to the section. If, a<B 46, we havo

M(a, B-f i<M, M(a,84f i : tu;
for all positive values of 7, and so

M(9-n,9+f i :Y,
by (f) of $ 103. Ilence { (r) assumes, for values of a as ncar as we please to

{3, valucs as near as wo please to .11, and so, oince @ (r) is continuous, { (B)
must be equal to Z.

If  B:a, then M(a, a*q):M. {nd i f  9:b then .Lt(a, b-d 1M, and
ao 7t (b-n, b):M. In either case the argument may be completed as
bcfore.

The theorem may also be proved by the method of repeated bisection
rrscd in $ 71. If M is the upper bound of @ (r) in an interval PQ, and' PQ
is divided into two equal parts, thcn it is possible to find a half. P1Q1in which

tho upper bound of S (r) is also M. Proceeding,as in $ 71, wo construct a
scquence of intervals PQ, PrQt, PzQz, ... in each of which the upper bound
of g (x) is M. These intervals, as in $ 71, converge to a point 7, antl it is

c;rsily proved that the value of S (r) at this point is If.

105. Sets of intervals on a line. The Heine-Borel

Theorem. We shall now proceed to prove some theorems con-

ccrning the oscillation of a function which are of a somewhat

rr,bstract character but of very great importance, particularly, as

we shall see later, in the theory of integration- These theorems

dcpend upon a general theorem concerning intervals on a line.
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Suppose that rve are given a set Ef intetual,s in a straight
line, that is to say an aggregate each of whose mernbers isL
interval (a, B). We make no restriction as to the nature of
these intervals; they may be finite or infinite in number; they
may or may not overlap*; and any number of them may be
included in others.

- 
rt is worth while in passing to givo a few examplcs of scts of intervars to

which we shall have occasion to return later.
(i) If the interval (0, r) is divided into n eqtal parts then the z intervals

thus formed define a finite set of non-overlapping intervals rvliich j*st cover
up tho line

. 
(ii) 

_ lYe take every point $ ofthe interval (0, l), and associato with f the
iltgvat (f -e, f+e), where e is a positive number less than l, except that
with O we associate (Q e) and with I wo associatc (l-e, l), and in genieral we
reject 

-any 
par"t of any interval which projects outside the 

'interval 
fr, f ). 

.We

thus define an infinite set of intervals, and it is obvious that many-oi them
overlap with one another.

(iii) We take the rational poi'ts p/g of the interval (0, 1), and associate
with plq the interval

lp € p,€\
\t - t,' A- c")'

where e is positive. and less tiran l. W'e regartl 0 as 0/l and I as f/l : in
these two cases we reject the part of tho interval which ries outside (e ri. we
obtain thus an infinite sel of intervals, which plainly overlap with one anothgr,
since there are an infinity of rational points, other than plq, in the interva^
associated with plq.

- 
fh9 Hejne-Borel Theorem, Supptose that ue are giuen an

interaal, (a, b), and, a set of interaals f each of whose meiobers is
incl,ud,ed, in (a, b). Supptose fu,ttrer thq,t I Troirrrre, the foltowing
properties:

(i) eaery point of (a, b), other than a anil b, Lies insid,et at
least one interual of I;

(ii) q, is the leftJtand, end g:oint, qnd, b the right_hand encl
ltoint, of at l,east one interual,,pif f ,

Then it is gtossible to choose a finite number of interuatrs from
the set r wldch, forrn a set of interuals possessin.g the properti,es (i)
and, (ii).

r rhe word ooerla\t is usetr ia ite obvious sense: two intervals overrap if they
have points in oommon which aro not end points of eithor. Thus (0, gy o"a 1;, fyoverlap. A pair of intervals such as (0, {) and (f, J.) may be saial to aDut.

t Thai is to say (iu ancl not at an encl of,.
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We know lhab a is the left-hand end point of at least one
interval of 1, say (a, ar). We know also that n, lies inside at least
one interval of .I, say (a,r', a"). Similarly a, lies inside an interval
(ui, ar) of I. It is plain that this argument may be repeated in-
definitely, unless after a finite number of steps a, coincides wiih 6.

If o, does coincide with D after a ffnite number of steps then
there is nothing further to prove, for rve have obtained a finite set
of intervals, selected from the intervals of I and possessing the
properties required. If o, never coincides rvith 2,, then the points
a12 e22 clg2... must (since each lies to the right of its predecessor)
tend to a limiting position, but this limiting position rnan so far
as we can tell, lie anywhere in (a, b).

Let us suppose now that the process just indicated, starting
from"o, is performed in all possible ways, so that we obtain all
possible sequences of the type or, a2, as1 .... Then we can prove
that' there must be at least one such sequence wlr,iclt q,rriues at b
after a f.nite number" of steps.

o a, t  &L e, ,ez E as E'  go t"  br  b

Fig. 33.

There are two possibilities with regard to any point f bet'ween
a and b. Either (i) f lies to'the left of sonre point an of some

sequence or (ii) it does not. We divide the points f into two

clirsses L and R according as to whether (i) or (ii) is true. The

class Z certainly exists, since all points of the interval \a, a')

belong to Z. We shall now prove that -R does not exist, so that

every point f, belongs to Z.

If "Il exists then Z lies entirely to the left of 8, and the classes

L, R form a section of the real numbers between a and b, to

which corresponds a number fo. The point fo lies inside an interval

of-/,say (€',€"),and f 'belongs to Z, and so l ies to the left of

some term oo of some sequence. But then we can take ((', {")
as the interval (al, an+r) associated with a" in our construction

of the sequence e1,a2,ae...; and all points to the left of f"
lie to the left of a,ar. There are therefore points of .t to the

right of fo, and this contradicts the definition of Jl. It is

therefore impossible that -B should exist"
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Thus every point f belongs to Z. Now 6 is the right-hand

end point of an interval of f, say (b,, b), and 6. belongs to Z.
Hence there is a member a, of a sequence et, az, c;.r,... such that
anlbr, But then rve may tahe the interval (an,, c;,rrr) corre-
sponding lo anto be (br, l'), and so rve obtain a sequence in which
the term after the nth coincides rvith b, and tlierefore a finite set
of intervals having the properties required. Thus the theorern is
proved.

ri is instructivo to consider the examples of p. 186 in the ligbt of this
theorem.

(i) Here tho conditions of the theorem aro not satisfied; tho points
lln,2f n,7ln, ... do not lie inside any interval of .L

(ii) Ilere the conditions of the theorem are satisfied. 'Ihe set of
intervals

(O,2e), (e, tse), (2e,4e), . . . ,  (1 -2e, 7),

associated with the points er 2erBer,.,r l-€, possesses the properties rc-
quired.

(iii) In this case wo can prove, by using the theorem, that thcre are,
if e is small enough, points of (0, 1) which do not lie in any intcrval of.L

If every point of (0, f) hy inside an interval of 1 (with the obvious
reservation as to the end points), then we could find a finite number of intervals
of -f possessing the same property and having therefore a total length greater
than l. Now thero are trvo intervals,of total length 2e, for which (:1, anc.
q-1 intervals, of total length 2e(q-1)/g3, associated rvith any other value
of q. The sum of any finite number of iutelvals of f aan thereforo not bc
greater than 2e tirnes that of the serics

_l2BL+*+ y+ F+ . . . '

which will be shown to be convergent in Ch. VIII. Ilence it follows that, if
e is srnall enough, the supposition that every point of (e 1) lies inside an
interval of 1 leads to a contradiction.

The reacler may be tempted to think that this proof is needlessly
elaborate, and that the existence oj points of the intclval, not in any interval
of d follows at once from tho fact that the sum of all these intervals is less
than 1. But the theorem to which he would be appealing is (rvhen the set of
intervals is infinite) far from obvious, and can only be proved rigorously by
somc such use of the lleine-Borel Tireorcm as is made in the text.

106. We shall now apply the Heine-Borel Theorem to the
proof of two important theorems concerning the oscillation of a
contiluous function"
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Tnnonnu f. If 6 @) is continuous throu,ghout the interaa,l
(a' b), tlrcn we ccln diuide (u, b) into a f,nite n1lnl,ber o1f sub-interaals
(a,, *r), (*r, ,r), .., (*n, b), in eu,ch of whiclt, the osciLl,ution of $ 1uS is
less than an assigned, positiue nunlber 3.

Let f be any nurnber betrveen a ancl b. Since { (o) is con-
tinuous for c: f, we can determine an inten'al (E - ,, f + e ) such
that the oscillation of $(u) in this interval is less than E. Itis
indeed obvious that there are an infinity of such intervals corre-
sponding to every f and every E, for if the condibion is satisfied for
any parbicular value of e, then it is satisfi ed a fortiori for any smaller
value. What values of e are admissible will naturaily depend upon

f,; we have at present no reason for supposing that a value of €

admissible for one value of f will be admissible for another. We

shall call the intervals thus associated with { th'e \-interuals of (.

If E: a then we can determine an interval (a, a * e), and so an

infinity of such intervals, having the same property. These we
call the 8-intervals of o, and '!ve can define in a similar manner the

E-intervals of b.

Consider now the set f of intervals formed by taking all the
8-intervals of all points of (a, b). It is plain thart this set satisfies

the conditions of the lleine-Borel Theorem; every point interior
to the interval is interior to at least one interval of 1, and a and b
are end points of at least one such interval. We can therefore

determine a set /'which is formed by a finite number of intervals

of 1, and which possesses the same property as I itself.

The intervals which compose the set 1' will in general overlap,

ps in Fig. 34. But their end
points obviously divide up
(a, b) into a finite set of in-

tervals I" each of which is
Fig.  34.

included in an intervalof I', and in each of which the oscillation

of $ (n) is less than E. Thus Theorern I is proved.

Tnnonnn II. Giuen crny positiue nuntber 3, we can f'nd, a

num,ber 11 such thut, if the interua,l (u, b) is d'iuided' in any man?uer

into sub-interuals of len'gth l,ess than r7, then' tlrc oscill'ation' of Q@)
'in eacJt of thenr will be less than 6.
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Take 8, < fE, and construct, as in Theorem f, a finite set of sub_

intervals i in each of which the oscillation of { (o) is less than 0,.
Let q be the length of the least of these sub-intervals j. If
now we divide (o,6) into parts each of length less than q,then any
such part must lie entirely within at most trvo successive sub-
intervals j. Hence, in virtue of (3) of $ 108, the oscillation of g (n),
in one of the parts of length less than rT,cannot exceed twice the
greatest oscillation of Q@) in a sub-interval j, and is therefore
less than 2Dr, and therefole than 6.

This theorem is of fundamental importanee in the theory of
definite integrals (Ch. YII). It is impossible, without the use of
this or some similar theorem, to prove that a function continuous
throughout an inter.val neeessarily possesses an integral over that
interval.

107. Continuous functions of several variables. The
notions of continuity and discontinuity may be extended. to
functions of several independent variables 1Cir. tf, $$ 81 ef seq.).
Their application to such functions, however, raises questions
much more complicated and difficult than those whieh we have
considered in this chapter. It would be impossible for us to
discuss these questions in any detail here; but we shall, in the
sequel, require to hnow what is meant by a continuous function of
trvo variables, and we accordingly give the follorving definition.
It is a straightforrvard generalisation of the..last form of the de-
finit ion of$ 98.

TlLe ifunction #(*, y) of the two aat.idbles a and, y is said, to be
continuous for a:8, y:.rt i,f, giuen any positiue ntuntber b, how-
eaer sntul,l,, we cq,n oltoose e (6) so that

lQ@),y)-+(€,q) l<8
uhen O =l*  - f  ls  e(6) und, 0 =ly.-qlse(D);  that  is  to say i f  we
can d,raw a Equare, wh,ose sides are' parallel to the anes.oif 

"oorld,irrot*and, of lm,gth 2e (E), whose centre is the potnt ({, r.)), and, which ,is such
tlmt the ualue o1f # @, y) at any point inside it or on its boumd,ary
cli,fers front, Q G, q) by less than 3.*

This definition of course presupposes that @ (u, y) is defined at
all points of the square in question, and in particular at the point

r The rcatler shoukl drow a figure to illustrate the clefinition.
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(f, a). Another method of stating the definition is this : g (n, y) is
continuous for u:{, y:T if Q.@,y)*+(€,q) when u-€, g*T
in any ma,nner. This sbatement is apparently simpler; but it
contains phrases the precise meaning of which has not yet been
cxplained and can only be explained by the help of inequalities
like those which occur in our original statemenL

It is easy to prove that the sums, the products, and in general
the quotients of continuous functions of two variables are them-
selves continuous. A polynomial in two variables is continuous for
all values of the variables; and the ordinary functions of a and y
rvhich occur in every-day analysis arc gmerall,rT continuous, i.e.
are continuous except for pairs of values of r and y connected by
special relations.

Tho reader should observe carefully that to.assert the continuity of
Q @, y) with respect to the two valiables r und, g is to assert much more
than its continuity with respect to each variablo considered separately. It is
plain that it $ (r, y) is continuous with respect to o and y then it is certainly
continuous with respect to r (or y) when any flxed value is assigned to gr
(or o). But the converso is by no means true. Suppose, for example, that

. Znu
Q\s, !):FiF

rvben neither r r'or y is zero, and 4 @, y):O whon either a or y is zero. Then
if y has any fixed valuc, zero or not, f (rrg) is a continuous function of r,
urd in particular continuous for r:0; for its value when o:0 is zero, and it
tcnds to the limit zero as ,+0. In the samo way it may be shown that
4, @, g) is a continuous function of y. But 6 @, lt) is not a continuous function
of o and g for s:O, y:0, Its value when r:0r.7:0 is zero; but if r and
.7 tend to zero along the straight line g : aa, thsn

,r +t' 's):J+-\' l irn{ <"'Yl:t|%'

rvlrich rnay have any value between -1 and l.

108. Implicit functions. We have already, in Ch. II, met with
tlrc itlea of an implicit function. 'I'hus, if o and y are counectcd by the
lr lrltion

f  -  r ! /  -  y -  *  :  0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( l ) ,

l l rr :rr 7 is an ' implici t  function' of n

llnt it is far from obvious that such an equation as this does really define
rr {nrrction y of xr or several such ftrnctions. In Ch. II we were content to
t.rrli,r tlris for granted. W'e are norv in a position to consider whether the
rursrrruption wo made then was justified.
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lYe shall find the following terminology useful. Suppose that i[ is possil-rle

to surround a point (a, b), as in $ 107, with a square throughout which
a certain condition is satisfied. W-e shall call such a square a rwighbourhood
of (a, b), and say that the condition in quesbion is satisfied in the neighbotu'-
hoocl of (o, D), or ned,r (a,6), meaning by this simply that it is possible to find
some sqrrata tliroughout'which the condition is satisfied, It is obvious that
similar language may be used when we are derilirrg with a single variable, the
square being replaced by an intcrval on a line.

Tsronut. If (i) f (r, y) is a contittuous function of u attd y in the
neighbourhood o/ (a, b),

(1i) f (a, b):o,

(iii) f(fi,y)is,for all' aalues of a in tlre neighbourhood of ara steaclily
increasing functiort of y, in the stricter sense of $ 95,

then (l) there is a unique function g-Q @) which, when substituted in the
eqwation, J(c,g):O, satisf,es it iclenttcallg for all' aalues of n in the neigh'bour'
hood' of a,

(Z) Q @) is conttnuou,s for all aaluu of x in the neighbourhood, of a.

In the figure the square represents a'neighbourhood'of (a, b) through-
out which tho conditions (i) and (iii) are
satisfied, and P the point (a, 6). If we
take Q and .& as in the figure, it follows from
(iii) that f (r, y) is positive at Q and negative
at R This being so, and f(o, y) being con-
tinuous at @ antl at -R, wo can draw lines @@'
and nn'parallel to Of,, so lhat Il'Q is parallel
to OI-ald l@,y) is positive at all points of
QQ' and negative at all points of RR'. In par-
tic,oJar f (r,3r) is positive at Q' and. negative at
fi, and therefore, in virtue of (iii) and $ 100,
vanishes once and only once at a point P'on
R'q. The same construction gives us a unique point at which f (r,g):O
on each ordinate between llQ and, R'Q'. It is obvious, moreover, that the
same construction can be carried out to the left of RQ. Tho aggregate of
points such as P'gives us the graph ofthe required function y:e@),

It remains to provo that @ (r) is continuous, This is most simply effected
by using the idea of the (limits of indefermination'of S (r) as r*a ($ 96).
Suppose t}:at r+a, and let ), and n be the limits of indetermination of { (r)
as o+a. It is evident that the points (a, ),) and (a,,n) lie on @l?. Moreover,
lve can firrd a sequence of values of r such that f (r)*I when r*a through
the valucs of the sequence; and sincelf {x,S@)\:O, andf (x,g) is a con-
tinuous function of n and zt. we have

/(a, I ) :0.
Hence tr:D; and similarly,t:b. Thus S (.n) tends to the limit b as n*a,
and so @(r) is continuow for r:a. It is evident that we can show in

(" ,b)

R

Fig. 35.
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exactly the same way that f (r) is continuous for any value of r in the
neighbourhood of o.

If is cleal that the tluth of the theolem would not bo affectetl if we wero
to change (increasing' to 'decreasing' in conditiou (iii).

As an example, let us consider the equation (1), taking a:O, b:0. It is
evident that the conditions (i) and (ii) are satisfied. Moreover

l@, y)-.f (r, /):0 -n@1+y3{ +yvz+y!3+y'4-o -r)
has, when a, g, and g/ are sufficiently small, the sign opposite to that of
g-y'. Hence condition (iii) (with odecreasing'for (increasing') is satisfied.
It follows that there is one and only one continuous function y which
satisfies the equatiorr (1) identically and vanishes with o.

The same conclusion would follow if the equatior wcre

n'-*-r-r : i .
The function in question is in this case

+ { l  +r- J( l  + 6r*r2)},

rvhere the square root is positive. The second root, in rvhich the sign of the
square root is changed, does not satisfy the condition of vanishing with r.

There is one point in the proof which the reader should bo careful to ob-
aerve. Wo supposed that the hypotheses of the theorem were satisfied'in
the neighbourhood of (a, 6)', that is to say throughout a certain square

e-€ < t St+c, q-c 3g 5;q*e. The conclusion holds'in the neighbourhood
of r : a', that is to say throughout a certain interval f - e1 5 r .< f {e1. There
is nothing to show that the e1 of the conclusion is the s of the hypotheses, and
indeed this is generally untrue.

109. Inverse Functions. Suppose in i2articular that /(ory) is of the
form F (g) - x. We then obtain the following theorem.

If F til is afunction of g, continuous and steadilg increasing (or decreasing),
in tht strictq serce of S 95, ??t the neighbourhood of y:b, and F (b):a', 1l7sn
there is a uniqu,e cotttinuous Junction y:S@) which is equal to b uthen a:a
a,nd satisf,es tlta equation F (il-, identically in the neighbourhood o/ u:a.

The function thus defined is called l}:le itwerse function of F (g).

Supposo for examplo tbat yg:s, a:0, b:Q. Then. all the conditions of
tlro theorem are satisfied. The inverse function is o-Jg.

If we had supposed lbabg2:5 then the conditions of the theorem would
not have been satisfied, for y2 is not a steadily increasing function of. y in any
interval which includes g:0: it decreases when y is negative and increases

when y is positive. And in this case the conclusion of the theorem does not
hold, for g2:o defines ftoo functions of orviz. y:Jo and y:-Jo, both of

' which vanish when r:0, and each of which is delined only for positive values
of a, so that the equation has sometimes two solutions and sometimes none.
The rearier should consider the more general equations

y2o:n, g2o*r:0,

H. l3
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in the same way. Another interesting eramplo is given by the equation

go-g-a:0,  '

already considored in Ex. xrv. 7.

Simitarly the equation sin 31 : s

hasjust one solution which vanishes with r, viz. the value of arc sin o which

uroi.h"" with o. There aro of course an infinity of solutiorts, given by the

other values of arc sin r (cf. Ex. xv. 1O), which do not satisfy this condition.

so far we have considered only what happens in the ueighbourhood of a

particular value of l', Let us supposo now that I(g) is positive ancl steaclily

increasing (or docreasing) throughout an interval (4,6). Given any point f
of (a, D), we can determine an interval d including f, and a unique and con-

tinuous inverse function @1(o) defined throughoub r'.

tr'rom the set ,1 of intervals i we can, in virtue of the lleine-Borel Theorenr,

pick out a finite sub-set covering up the whole interval (4, 6); and it is plai[

ihrt thu frnite set of functions @a (r), corresponding to tho sub-set of intervals i

thus selected, defino together a uniquo inverso function f(o) continuous

throughout (q b).

lYe thus obtain the theorem t if o-F(y),uhere F(y)b contimnusan'd'

increases stead,,ily and strictly Jrom a to B as o increases from a to brthzn there

is a wniqu,e irwe'rse functioT, y : O @) which is continuous and hrcreases steadily

and, strictly from a to b as s increases from A to B,

It is worth while to show how this theorem can be obtained diroctly with-

out the help of the more difficult theorem of $ f 08. Suppose lhat' A 1 { 18,

and consider tho class of values of y such that (i) a <g < b and (ii) F (g) = t'
This class has an upper bound'7, and plainly F(d =t' H I(fl wero legs

than f, we could find a valuo of g such thatr y>l and F@)<{, and r7 would

not be the upfer bound of the class considercd. Hence .F(1):f. The

equation E(y):t has thereforo a unique solution y--n:+G), say; and

plainly 7 increases steadily and continuously with f, which proves the theofem-

MISCELLANNOUS DXAMPLES ON C}IAPTER, Y.

1. Show that, if neither'a nor 6 is zero, then

ear + bf -r + ... I k : af (l * e r),

where e, is of the first order of small4ess when .r is largo'

2. If. P(t):as"16rn-t1,..!h, and a is not zero, then as r increases

P(.ru) has ultimatelythe sign of o; and so has P(rfI)-P(r)' where )\ ig

any constant.

3. Show that in general

(a* + b{- L + ... + k) | (a f + Bn"- I + ... + K) : o * (B I r) (r + c 
"),

wbere a:alA, B:QA-aBi'y,az, and ., is of tbe flrst order of emallness when

c is large. Indicate any exceptional csges.
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4. Exprcss
in the form

(adabaac)l(A#+Bx+c)

a+(Pl0)+(yls\ (r +e"),
where e, is of the first order of smallness when ,x is larga

6. Show that lim y'r{n/(r+ a)- Jn):}a.
&+A

[Use the formula J@+a)- Jo:el{J@+a)+,lo}.]

6. Show that n/(a + o) : q/ r + | (al J o) (7f e"), where <, is of the first order
of smallness when r is large.

7. Find values of c and Bsuch that J@ng12ba+c)-cr-Bhas the limir
zcro as r+ co ; and prove that lim .r {/(a az + zbn + c) - aa - B} : @c - b2) | 2a.

8. Evaluate lim c{"r[rr+/(#+L)]-rJZ].
g+@

9. Prove that (secn-tanr)*0 as a**o.

10. Prove that { (o): I - cos (I - cos r) is of the fourtb order of smallness
whcn r is emall; and find the limit of $(t)ld ai r*0.

111 Prove that $ (a) :.c gin (sin r) - sin2.rl is of tho sixth order of emallness
when r is small ; and find the limit of $ (t)ld as ,r+0.

12. From a point P on a radius OA of a circle, produced beyond the circle,
rr tangent PZis drawn to the circlg touching it in T, and ZuVis drawn per-
pendicular to O-d. Show that I{AIAP+L as P moves up to .d..

13. Tangents are drawn to a circular arc af its middle point and itg
oxtremities; A ig the area of the triangle formed by the chord of the arc and
the two tangents at the extremities, arid d the area of that, formed by the
throo tangents. Show that AIA'+4 as the length ofthe arc tends to zero.

14. For what values of c does {afsin(llo)}la tend to (l) o, (2) -o,
as r+0? [To o i f  a)1, l ,o -o i f  a1-l :  the function osci l lates i f
- lSasI. l

15. rc S@):tlg wben o:plq, and {(n):0 when a is iriational, then
@(r) is continuous for all irrational and discontinuous for all rational values
of r.

16. Show that the function whose graph is drawn in Fig, BZ may bo repre-
scnted by either of the formulae

1*a+lxl-f l - l . ' t ,  I  -r-" l im (coszn+r rr).

17. Show that ihe function Q(r) which is equal to O when c:O,to L-o
when 0(a(h, to t  when r:*,  to $-r when | 1s1I, and to I  when
r:lr asgumes evory value between 0 and I once and once only ag.n increases
from 0 to l, but is diecontinuous for o:O, rl:$, and r:1. Show also that
tho function may be represented by the formula

* -'+ 4 l2nl- +[L -zr].
t3-2
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18. LeI $ (o):o when r is rational and S (o)=1 -r when r is irrational.

Sbow tbat f(a) assumes everyvalue between 0 and 1 once and once onlyaso
incroaees from 0 to l, but is discontinuous for every value of .n exce,pt o:|.

19. As r increases from -{r to lr, y:sinr is continuous and steadily
increases, in the stricter sense, from - 1 to I, Deduce the existence of a
function fi-arc siny wbich is a continuous and steadily increasing function
of y from g: - l  bo g:1.

20, Show that ths numerically least value of atctang is eontinuous for
all values of y and increases steadily from -|r to $r as g varies through all
real values.

21. Discuss, on tho lines of $$ 108-109, the solution of the equations

g2 _ y _ o:O, f _ltz _ s2 :O, gr_92 +s, :0

in the neighbourhood of a:Ot y:O.

22. I f  oaz+zbsl/+cg2+2d,n+2ey-0 and A:2btJe-aez-cd2, then one
value of y is given by y:"o+F8*(Z*e,)rf, where

' 
o: - dle, F:al%et, y:(cd,_be) Al2e6,

and a" is of the first order of smallness when r is small.

llf g-at:1 +.hen

-Zeq:a,$2 q2bo (rt *,a.o) +c (rt *an)z: Aaz +2Bnt ! C42,

say. It is evident that 1 is of the second order of smallness, o4 of tho third,
and?s of tho fourth; and. -2eq:/sz-(ABle)d,the error being of the fourth
order.]

23, If a -ag +by2 + cys then one value of y is given by

y:ao*Foz+(y*e,)d,

where a:l/a, 9: -blasr y:(2b2-ac)1a6, and e" is of the first order of small-
ness when.r is small.

24. If o-ag+byn, where n is an integer greater than unity, then one
value of gt is given by g:alBan*(y*e,) az"-r, where a:Lla, B: -bf er+r,
y:nbzlqz^+r, and e, is of tho (ro- l)th order of smallnesg when a is small.

26. Show that the least posiiige root of the equation dy:sin a is a con-
tinuous function of gr throughout the interval (Q l), and decreases steadily
from r to 0 as y increases from 0 to 1. [The function is the inverse of
(sinr)/r: apply $ 109.1

26, The Ieast positive root of s!:tanr js a continuous iunction of y
throughont tho interval (1, co ), and increases steadily from 0 to lr aa y
increases frorn I towards co.

CHAPTER VI

DERIVATIVES AND INTEGRALS

110. Derivatives or Diferential Coefficients. Let uB return
to the consideration of the properties which we naturally associate
with "the +-o"!ion of a curve. The first and most obvious property
is, as we sary in the last chapter, that which gives a curve its
appearance of co.gggglglgglg, and which we embodied in ourdefini-
tig.p. 9f a co_q!i1119"119_fgp.c!ion.

The ordinary curves which occur in elementary geometry, such
as straight lines, circles and conic sections, have of course many
other prop-erties of ? Ag.lg:?l,.character. The simplest a,nd most
noteworthy of theselis perhapS that they have a defrrtite-lrhqpfi_on
at e;ry.ry pgrn!, or what is the same thing, that at every point of
the.9q1y9 v/e can"draw a tangmt to*it. The reader will probably
remember that in elementary geometry the tangent to a curve at
P is defined to be" the limitin$ position of the c[od PS when Q
*ouus-1fr-towards coincidence-with P'1 Let us consider what is
implied in the assumplion of the existence of such a limiti.g
position.

fn the figure (Fig. 36) P-is ai@,,pgtnt on the curve, -and Q* i,,**t
a ry4-!q!le_ poig; fif, Qxf "te 

porThl-to 0\, and. PRW 0{:'"*^'
We denote the coorllinates g{'| by a, L and those of_Q_ by
o+h, y+kt 4 will't" p{itiuJ* 

""gutiou 
i-ccorcling as trI lies to

the riglrbor lefb of M.

We have g..ghg4,that there is a tangen-t to the ggrvq,g! f,
or that there is a @efinibe 'limiting position' of__lhe_phprd PQ.
$--qpp-o5e i["t 

-Plihe 
tangent at _P- makes an angle rfr with OX.

Then to say that !T. is the limiting position of P0 is equival_ent
to saying that the limit of the ar3gGQ4flls.J", when Q appro_aches

-:-


