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CHAPTER II

UNCTTIONS OX' REAL VAII,IABI,ES

20. The idea of a function. Suppose that ar and y are

1.nyo continuous real variablcs, which we may suppose to be repre-

iseted geometrically by distances ArP: u, lloQ: / measured

ilorn fixed points Ao, Bo along two straight lines A, M. And

let us suppose that the positions of the points P and Q are not

pdependent, but connected by a relation which we can imagine

tre be expressed as a relation between n and y: so that, rvhen
y and r are knoryn, Q and y are also known. We might,

fpr  example,  suppose lhat  y: f r ,  or  A:2u,or $c,ot  u2*I ,  In

611 of these cases the value of o determines that of y. Or

,gain, we might suppose that the relation between rr and y is

given, not by means of an explicit formula for g in terms of o,

f,rrt by means of a geometrical construction which enables us to

6ctermine Q when P is known.

In these circumstances y is said to be a ftmotiott, of u. This

llotion of functional dependence of one variable upon another is

lrerhaps thg most important in the whole range of higher mathe-

i,1xtics. In order to enable the reader to be certain that he

,llderstands it clearlR we shall, in this chapter, illushrate it by

rrreans of a large number of examples.

But before we proceed to do this, we must point out that

lhe simple examples of functions mentioned above possess three

rrharacteristics which are by no me&ns involved in the general

rrlca of a function, viz.: 4
(l) y is determinedfor euery ual,ue of a;
(2) to each value of o for which y is given corresponds ona

rrncl only one ual,ue of y;
(3) the relation betrveen a and y is expressed by means of

1tt onal,ytical fornzulu, from which the value of y corresponding to

lgiven value of o can be calculated by direot substitution of i.he

lntter.
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ll, is irrrleed the case that these parbicular charaeteristics are

lrlrnr.rrlrr,rl by many of the most important functions. But the con-
rirh'1111,1,,rt of the following examples will make it clear that they
ttt',' l,.y no lneans essential to a function. All thab is essential is
f,lrrrf l,lrrrrc should be some relation between c and y such that to
lltf ttrr v11l11ss of u at any rate correSpOnd values of y.

Ilxrrrrrples X. 1. Let u:s or 2s or [t ot a2+I Nothing further need
lrn lll,l rut pt'cscnt about cases such a,s these.

fl, lnl,u:}whatover be the value of r. Theny is a function of o, for we
rl*rr gl vo r trry valug and the corresponding value of y (viz. 0) is known. In
llrk ,'.,r l,ho functional relation lqakes the same value of y correspond to all
vrrlrrcp ol' c. The same would be truo were3l equal to I or - l- or n/Z instead
trl tl. Srurlr o function of r is called a constant.

;f. I'ol, q2:s. Then if a is positive this equation defines ruo values of gr
ftruuxf llfn(lirrg to each vaLue of xrviz. !Jc, If. o:0, g:0. Hence to the
fllfl,lrrrrfrrl vnluo 0 of o corresponds one and only ono valuo of y. But if r is
fliigrrlivfr l,lrorn is no value of y which satisfles the equation. That is to say,
llro frrrr,'l,i,rr 17 is not defined for negative values of a. This function therefore
pmrbHAox tho characteristic (3), but neither (1) nor (2).

a, (lrrrsirlor a volume of gas maintained at a constant temperature and
$rrrl.llrrnrl in o cylinder closed by a sliding piston*.

l1r,l, .4 lro the area of tho cross section of the piston and I{z its weight.
['lrn gna, I rrrll in a state of compression by the piston, exerts a certain pressure

ft frrrr, rruit uf ulca on the piston, which balances the weight If, so that

Xr:,Apo.

.llpl, r,, lrr l,lro volume of the gas wlren the system is thus in equilibrium.
ll *,l,lrl r,'rrnl weight is placed upon the piston the laiter is forced downwards.
rl'ln v,rlrrrrrrr (u) of the gas diminishes; tbe pressuro (p) which it exerts
'lllrrtr rrrril, rrrrlr, of the piston increases. Boyle's experimenta.l law asserts that
lhe l,r,ulrr,rl, of p arrd o is very nearly constant, a cortespondence which, if
tllr,lr w,rrhl bo roplesented by an equation of thc type

I)a:o . . . . . . . . ,  . . . . . . . . . . . ( i ) ,

sl11;11i rr ln ru rrrrrnber which can be determined approximately by experiment.

llrllrr'rr Llw, holover, only gives a reasonable approximation to the facts
prl,rrrlorl l,lro grw is not compressed too much. 'When a is decreased andp
hl r'*a,rl lrryorul a certain point, the relation between them is no longer
tsrlrlil'r,rl rvrllr tolcrable exactnegs by the equation (i). It is knorvn that a

- I f,rr,rrv l,lris inutluotivo erample from Prof. I[. S. Carslaw'g Introiluctiontn
l f te l r r r / '  l l i l r .
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much better approximation to the tr.ue relation can then be found by means

of what is kuown as 'van der Waals' larv', expressed by the equation

/  c\ ,  ^ ,

\o*k)@-l :v 
. """""( i i ) '

where o, B, y aro numbers which can also be dctcrmined apploximately by

experiment,

Of cout'se the two equttions, even tnkcn together, do not give aDything

like a complete account of the relation between p and u. This relation is no

doubt in reality much more complicated, and its form changes, as o vafies,

from a form nearly equivalent to (i) to a form nearly equivalent to (ii)' But,

from a mathematical point of view, thels is nothing to plevcDt us from con-

tcmplating an ideal state of thiugs in which, for aII values of o not less than

a ce"taio-valoe 4 (i) would be exactly true, and (ii) exactly true for all

values of o less than I/. And then we might regard the two equations as

together defining p as a function of ,u. It is an eramplo of a function which

for somc values of o is clefiDed by one formula and for otltcr values of o is

defined by anotlier.

This function possesses the characteristic (2), to any valuc of o onlyone

value of p co".csponds: but it does not possess (1). For p is not defined as

a function of n for negativo valucs of o1 a tnegrltive volumo' means

nothing, and so negative values of o do not prcscnt thcurselvcs lbr considera'

tion at all.

6. suppose that a perfectly elastic ball is droppcd (vithout rotation)

from a height lgrz on to a fired holizontal planc, and rcboutrds corrtinually.

Tho ordinary formulao of elementary dynamics, rvith whir:h thc reader is

probably,familiar, shol that h : i g t2 if o 5t =r, ft : I g (2r - t)z if t 5 I s 3r, and

gencrally
ft:|g (znr - t)

if (2n-l)r€tS(2n*1)r, Zbeing the depth of the ball, at time l, belowits

original position.' obviously i, is a function of t which is only defined for

posiiive values of r.

O. Suppose that g is dcfined as being the largest prtme factor of x' This

is an instance of a defiilitiol which only applies to a parLicular class of values

of n, viz. integral, vahes. 'The largest, prime factor of \L or of n/2 or of r'

ilreans nothing, and so our defining relation fails to defino for such values of r

as these. Thus this function does not possess'tho characteristic (l). It does

possess (2), bil not (3), as there is no simplo forrnula which crprcsses y in

terms of r.

7. Let y be defined as the denominator of s whett a is et;prcssed in its

lowest terms. This is an exnmple of a function whioh is defirred if and only

if x is rationaL 'Ihus g:7 if x: - 11/7: but y is not defined fsv s:J2,'the

denominator of J2' being a meaningless form of words.
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rr. 1,r.1,.7 bo defined as the height in inches of polireman Ca, in the
Al,tr',1,,,1it,r.tr, I'olice, at 5.3Op.m. on I Aug.7907. Thcn y is defincd for a
, ,.r | ', rn r rrr r rrlrcr of integral values of r, -viz. l, 2, ... , N, where -V is the total
f rrrrrrlr,r 'rrl ' lroliccmcn in division C atthab particular moment of t ime.

21. The graphical representation of ftrnctions. Sup-

f ll'rfr l,lrtr[ 1,he variable y is a function of the variable r. It will

Hr,lr l,r lr l ly be open to us also to regard ,r as a function of y,in virtue

'l l , lrr, l irrrcLionnl relation between a andy. But for the present we
r,lrirll l,.l< of this relation from the first point of view. We shall
llr,'rr r:rr,ll n the ind,epend,ent uariable and y lhe d,epend,ent uat'iable;
rrrrrl, rvlrrrn the particular form of the functional relation is not
ap.r ' r l i , , r l ,  wc s l ia l i  express i t  by wr i t ing

Y:f (*)
( r r r '  / , ' ( , r ; ) ,  Q@), t@), . . . ,  as the case may be).

'l'lrc nrrbure of particular functions may, in very many cases, be
illrlrl,r'l,l,ctl and made easily intelligible as follows. Draw two lines
I I ,\' , ( ) l' :rb right angles to one another
rrrr, l pr',,r lrrt:cd indefinitely in both direc-
!,iilrlr. Wc can represent values of rr
irrr,l ;y by disbances measured from 0
nLrrrl l l , lrc l ines 0X, OY respectively,
ir,1,,rrrl lrcing paid, of course, to sign,
rrrrrl l , lrrr positive directions of rneasurc-
rrr, 'rrl, lr,, irrg those indicated by arrows
irr  l , ' r l i .  ( i .

1,,.1, ru bc any value of c for which
17 r,r rl, ' l irrctl and has (let us suppose)
f l r , ,  r r r r rg lc v i : r , lue b,  Take OA:q,
I I li l, l,nd complete the rectangle
tt I I ' l l .  frnrgine the point P marked on the diagram. This
n,ul\rr1' o1'the point P may be regarded as showing that the
r,r l r r ,  , , l  11 I \ t  n:  o is b.

ll l,,r l,he value @ of o correspond several values of y (say
tt l;, l i 'y, rvc have, instead of the single point P, a number of

l r , , r r r f : r  / r ,  f t ' ,  P",

\\ ' ,,rrlrrrl l  call P lhe point, (a,b); a and b the coord,inates of P
i , . t , t t , t l  ln the ases OX,OY; a, t 'he abscissa,,b lhe ord, inate of  P;
tr \ rrrrf ()Y the auis of dr and lhe anis of y, or together the

Fig. 6.
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unes of coorilinates, and 0 lhe origin of coord,inatas, or simply

the origtn.

Let us now suppose that for all values a of r for which y is

defined, the value b (or values b, b',b",...) of A, ar,.d the corre-

sponding point P (or points P, I ' ' ,  P",...), have been determined'

We call the aggregate of all thesc points the graph of the

function y.

'Io take a very simple example, suppose tliat y is defined as

a frrnction of aby the equation

Aa * By + C: 0.  . . . . . ' . (1) ,
rvlrere -d, B, C arc any fixed numbers *. Then y is a function of o

which possesses all the characteristics (1), (2), (3) of $ 20. It is

easy to slrow that the graph of y is a sk'aight line. The reader is

in all probability familiar with one or other of the various proofs

of this proposition which are given in text-books of Analytical

Geometry.

We shall sometimes use another mode of expression. We

shall say that when o and ! vat-! in such a way that equation (1)

is always trte, the locus of the point (u, y) is a sh'aight l,ine, and

we shall call (1) tlLe equation of the l,ocu,s,and say that the equation
represents the locus. This use of the terms 'locus', 'equation of

the locus' is quite general, and may be applied whenever the

relation between a and y is capable of being represented by an

analytical foimula.

The eqrration An + By * C: 0 is the general, equation of the f'rst
ilegree, for An * By -f C is the most general polynomial in r and y

which does not involve any terms of degree higher than the first

in n and g. Hence the general, eguation of the f'rst d,egree repre'

sents u straigh,t line. It is equally easy to prove the converse

proposition that the equatiott 9f any straight line is of the fu'st
degt'ee.

We may mention a few further exampl'es of interesting geo-
metrical loci defined by equations. An equation of the form

(, _ o), + (y _ p),: pn,
r If B=0, g cloes not occur in the equation, We must then regarrl q as u

function ol o clelinecl for ono valuo ouly of c, viz. r= - ClA, and, then huviug aZl

valueg.

, '1,  22f

I  r l '
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a'* f+2Gx*2IyfC:0,

rvlrolc G2 + Ft - C > 0, represents a circle. The equation

An' t 2Hny * By, * 2Gu -t 2tr'y + C : 0
(lltc gateral, equation of the seconil, d,egree) represents, assuming
l,lrrr,l, l,he coefficients satisfy certain inequalities, a conic section,
r,.rr. l,n cllipse, parabola, or hyperbola. Ilor further discussion of
l,lr,,sc loci we must refer to books on Aualytical Geometry.

22. Polar coordinates. In what precedes we have determined
llr, '  lrrrsibion of Pby the lengths of its coorclinabes 0M:n, IIIP : y.
l l  OI ' : r  and M0P:0,0 being an
rrrrrllo bctrvecn 0 and 22. (measured in
t,lrrr posii;ive direction), it is evident that

r : rcos0, Y:rsin0,
r  :  4(nz *  yz),  cos d :  s in 0: I : :  n:y:r ,

rr rrr I l ,hrt the position of P is equally well
rl,, lr,r 'rnincd by a knowledge of r and 0.
\\',r call r and 0 lbe polar coordinates
ol' 1). The folmer, it should be observed, is essentially positive*.

Jf ,P moves on a locus there will be sorne relation between r
rr,rrrl d, say r:"f (0) or 0:F(r). This we call the polar equation
,'l l,hc locus. The polar equation may be deduced from the (q y)
,',1rr:L{,ion (or uice uersa) by means of the fotniulae above.

Thus the polar equation of a straight line is of the forrn

r cos (d -  q) :  P,
rv lr rlc p and a are constants. 'I'he equation r : 2a cos d represents
n ,:ilcle passing through the origin; and the general equation of
rr r:ilcle is of the forrn

rz + cz - 2rc cos (0 - a) : i!2,
rvlrclc -4, c, and a are constants.

' l ' , , lnrcoo'dinatesoresometimesdeffneclsothatrmaybeposi t iveornegat ive.
f rr l,lris case two pairs of coordinotes-e.g, (1r0) ancl (-1, r)-corresponcl to the
r,rrrrrrr point. The disiinction betrveen the two systems may be illustrateal by means
,,1 l , f f ( l  cquat ion l l r= l -ecoa0, where l>0, e>1. According to our def in i t ions r
rrrrr,rl, lro positive and therefore coe0<Lle: the equation reprcsents one branoh only
, , f  r r  f  r1 ' l rcrbola,  the other having the equat ion - l l r=I-ecos0. With the system
,,1 rr,'rdinateg which admits negative values of r, the equation represents the whole
lr .y prrrbolc.

Fig. 7.
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23. Further examples of fhnctions and their graphical

representation. The examples which follow will give the
reader a better notion of the infinite variety of possible types of
functions.

A- Polynomials. A, polynomial in, n is a funetion of the
form

QoT'**arfn-t* . . .*a*,

where oo, a,11 ...1d,ma;re constants. The simplest polynornials are
thesimplepowers U : a, fr,,d,..., f im,.... The graph of the function
a^ is of two disbinct types, according as nr is even or odd.

First let tn:2. Then three points on the graph are (0,0),
(1, 1), (- 1, 1). Any number of additional points on the graph
rnay be founcl by assigning other special valucs to o: thus the
values

u:$,2,3,-* ,  -2,8

! / : I ,4,9,  +,  4,9.

If the reader will plot off a fair nnmber of points on the graph, he
will be led to conjecture that the
form of the graph is something
like that shown in Fig. 8. If
he drarvs & curve through the
special points dhi.h he has"proved
to lie on the graph and then tests
its accuracy by giving ar new
values, and calculating the cor-
responding values of y, he will
find that they lie as near to the curve as it is reasonable to expect,
when the inevitable inaccuracies of drarvinE are considered. The
curve is of corrlse a parabola.

There is, however, one fundamental questidn rvhich rve cannot
anslver adequately at present. The reader has no doubt some
notion as to what is meant by a continuou,y curve, a curve rvithout
breaks or jumps ; such a curve, in fact, as is r.oughly rcpresented
in Fig. 8. The question is whether the graph ot' bhe function
!:d is in fact such a curve. This cannot be prtnerl by merely

(0,0)

Fig. 8.
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r:onstructing any number of isolated points on the curve, although

l,hc more such points we construct the more probable it will

rr[)pear.

'fhis question cannot be discussed properly until Ch. Y' In

t,lrrb chapter we shall consider in detail what our common sense
irlcrr, of continuity really means, and ho'w we can prove that such

11r'rphs as the one nolv considered, and others rvhich we shall

r:t,rrsider later on in this chapter, are really continuous curves.

l,i,r' the present the reader may be content to draw his curvcs as

cotnmon sense dictates.

It is easy to see that the curve !:a2 is everywhere conver to the axis of o.
l,ct -/)6, P1 (Fig. 8) be the points (os, oo2), (ry x12). Then the coordin&tes of

rr, lxrint on the chord PsPlaro fi:\fr1+prb y:\not*paf, where tr and p are

;xxitive numbers whose sum is 1. And

y - a'z:(\ ,* p) (\xi  +pn12) - () ' rs$pr1)2-tr p(o1-us)z lo,

ro that the chord lies entirely above the curve,

'I'he curve g : aa is similar to y : fiz in general appearance, but

lfrLter near O, and steeper beyond the points A, A' (Fig. 9),

rr,rrrl y: r*, where nl is et'en and greater than 4, is still more so.

As ra gets larger and larger the flatness and steepness grovl

rrr,,r'c and more pronounced, until the curve is practically indis-

l,irrguishable from the thick line in the figura

Fig. 9. I'ig. 10.

'l'l're reader should next consitler the curves given by y:d",

u,lrt,n na is odd. 'Ihe fundamental difference between the two

,':r,scs is that rvhereas when raa is even (- a)^ : fim, 30 that the

t,ru vc is symmetrical about O{ rvhen za is odd (- u)": - C , so

Fig. 10.
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that y is rregabive when c is negative. Fig. I0 shorvs thc curves

U : e, g: o3, and the fornr to which g : u^ approximates for
larger odd values of za

It is now easy to see how (theoretically at any rate) the graph
of any polynomial may be constructed. In the first place, from
the graph of y : 4t" we can at once derive thal of CCn, where C is
a constant, by multiplying the ordinate of every point of the
curve by C. And if we hnow the grrrphs of f (u) and .F (c), we
can find that of /(ur) + F (u) by taking the ordinate of every point
to be the sum of the ordinates of the corresponding points on the

two original curves.

The drawing of graphs of polynomials is however so much

facilitated by the use of more advanced methods, which will be
explained later on, that rve shall not pursue the subject further

herc.

Examples XI. 1' Trace the cl.trvel !:7f, y:3u6, y:s10.

['I'he reader ghould draw the curves carofully, and a]l threo should bo
drawn in one figure*. FIe will then realise how rapidly the higher porvcrs
of o increase, as o gets larger and larger, and will see that, iu such a
polynomial as 

sto+Br;+1f

(or even ilr0+g0t)6+700na), it is thofrsN term rvhich is of really preponderanf
importance when c is fairly large. Thus even when r:4, aro>1,000,00Q
rvhile 3016q35,000 and 700xt< 18Q000; while if r:10 tho prepondcrance
of the first term is still more marked.]

2. Cornl,rare the relative magnitudcs of rr2, 1,000,0001, 1,000,000,000,000r
whcn r:lr 10, I00, etc.

[The reader shou]d make up a number of examplcs of this type for himself.
Tlris idea of tho relatiae rate of grouth of different functions of $ is ono rvith
rvhich we shall often be concerncd in the following chapters.]

3. Draw the gru,ph of aoz+ Z,brn*c'

ftlere g-l(ac-W1lal:a{r+(bla)\z. If we take new axcs parallel to the
old and passing through the point s : - b I a, y : (ac - bz)la, the new ccluation
is y':a62, 'Ihe curve is a parabola.]

L'I 'race the curves y :C - 3r * l, g : # (r - l), g : s (s - 11t,

* It rvill be fouud couvenient to take the scale of measutentent along tho axie

of y a gooil ileal smaller than that along the axis of o, in order to provent the

figure becoming of an arvlirvaltl gize'
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24. IJ. Rational I'unctione. The class of functions rvhich
r,rrrlis rrtrxb to that of polynomials in simplicity and importance
rrr llrrr,L ol' rational, functions. A rational function is the quotient
, ' l  , 'rrr ' lrolynomial by another: thus if P (r),Q@) are polynomials,
wr\ rnry dcnote the general rational function by

R(n\:19.
v\c)

I rr Lho particular case when Q (r) reduces to unity or any other
rrrrrrrrl,rr,rrl, (i.e. does not involve u), R(o) reduces to a polynomial:
l,hrrrr lhc class of rational functions includes that of porynomials
rrrr rr srrb-class. The following points concerning the definition
Hlr , ' r rk l  bc not iced,

( | ) \\'c usually supposc that P (.rl) and Q (r) have no common facLor a *a,
rff,.f,f' I ir.ur,-r+ba;p-z+...*k, all such factors being removed by division.

(:l) It should however be obser'ed that this removal of common fastors
lt,,,r ttr u rule change the function Conside* for example the function r/r,
wlrrrrf l is t rational function. on removing the cornmon fac!,or s we obtain
I I | -- | . lltrt the original function is not ahoays cqual to I : it is equal to 1
rrrrfy rrrr l,rrg as rg0. rf a:o it takes the form 0/0, which is meaningless.
'l'lrrr^ llr. Iir'ction r/r is equal to 1 if r+0 and is undefined. whcn r:0. It
f f rrrrrrfirlrr tlifl'ers from the function l, which is alwaus equnl to l.

(:l) Such a function as

/ r  r \ / / r .1\
\ t+ l  

*  , -  L) /  \c1'  ; -z)

lrry lrrr r.r.lduced, by the ordinary rules of algebra, to the form
oz (r-2)

(s-LyOcyf;'
wlrr, lr ir ;r, r'*tional function of the standard form. But here again it must be
t.r,f r.,'rl llrrt the reduction isno!, always lcgitimate. rn order to calculate t]ne l*
r,rlrr,\ ,'l l, Iirnction for a given value of a .lve must substitute the value for r
lrr I lrrr firrrr;[ion in the form, in, uhiclt it is gtnten. rri the case of this function
l lrrr s '111q11's c: -1, \ ,  Q,2 al l  lead to a meaningless expression, and so the
t,rr,li,J. is not defined for thcse values. The same is truo ofthe reduced
f ' ,rrrr,  rr,r  l l l r  as the val.es - I  and I are coucelned. But r:0 and r:2 give
llrrr r,rlrrr 0. 'Ihus once more the two functions are not thc same.

(.1) llrrb, as appears from the particular example considered under @),
I lr.r ' rv ill gcnerally be a certain number of values of r for which the function
r,, rrrrt rlrrlirrcd even when it has been reduced to a rational function of the
,,l,lr,l,r.r,rl lirrrn. These are the vaiues of r (if any) for,which the de-
rr, ,rrrr lr ,r l , ,r  vanishes. Thus (r2-7)/(a2-Bxa2) is 1ot de6'ed rvhe' o: l
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(5)General lyweagree' indeal ingwithexpressionssuchasthosecon-
siaui"a in (2) and (3), to disregard the exceptional values of r for.which such

processes of 
'si*pligcation 

as were used there are illegitimate, and to rcduce
'our 

function to the standard form of ratioual function. The reader will

easily verify that (on this understanding) the sum, product, or quotient of

two iatio'al functions may themselves be reduced to ratit'ral f*rrctions of

thestandardtype.Andgeneral lyarationulfunctionoJo,rat ionulfunctiot l '
is ikelf a ratiinat futctiott: i.e' if it u:P(l)lQ fur), where P and,Q are

foly"Jmials, we substitute y--Pt@)lQr(r)' wc obtain on simplification an

equation of the form z:Pz(o)lQz@)'

(6)I t is innowaypresupposcdint l rodef in i t ionofarat ional funct ion
ttai it" constants which occur as coefticicnts should bo rational numbers.

t 
Th" *nrd rational has reference solely to the way in which tl-rc va.iable o

appears in the function. Thus
szyt*JB

"W;
is a rational function

The use of the rvord rational ariscs as follorvs. The rntional function

P (r)lQ@) may be generated fi'om r by a finite number of operations upon

", 
i""r"ai"g oiy 

-"ttipti"ation 
of r by itself or a constant, addition of terms

thus obtaiied, and division of one function, obtaincd by such multiplications

and additions, by anothen rn so far as the variable r is concerned, this pro-

cedureisverymuchlikethatbywhichal lrat ionalnumberscanboobtained
from unity, a procedure exemplified in the ccltration

6 l+1+t+t+1
5:- t { t+f- '

Lgain, any ftnction 'which can be deduced from o by the elcmentary

op"#ioo, mJgtioned above, using at each stage of tho plocess functions

which have ah6ady been obtained from a in the same w&y' can be reduced to

thestandardtypeofrat ional funct ion.Tlremostgeneralk indoffunct ion
which can be otiained in tbis way is sufficieutly illustrated by the example

/_t  
2r+7 \  / / rz*2\ .

t#+r+ff i |  / \ " -* ' ) '
\  s"+ gn+L /  /

which can obviously be reduced to the standard t'ypo of rational function'

25. The drawing of graphs of rat'ional functions' even more

than that of polynoiials,ls lmmensely facilitated by the use of

methods d"pe"ai"g upon the differential 
-calculus' We shall

therefore content ourselves at present with a very few examples'

Examples XII. l. Drarv the graphs of y:1 lr' g:llrt' y:l ld' ""

[The figures show the graphs of the first two curves' It should be

obsirved that, since IlO, Il}r... are meattittgless exprcssious' t'ltcse functions

are not defined for r:0.1
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. '^t.  
' l l r laco y:nq(t lo),.  u_(t ln), a2+(t lr2), sz_ (t l f i )  and, at+(blr)l,rl,irrrl vrulious values, positive and negative, ior a a,nd b.

3. 'fr.acs
t* t  / . r+l \ ,  |  , "+le:,-1' \ , t /  '  @:1z, aa-l.

4. ' l \ ' rr ,co y:t l(n-a)(c_b), t l (a_a) (o_b) (t_c), where a<6<c.

. 
6. Skctclr the general form. assumed by the curyes y:\filn as|""1'rrr)s lrr'rgcr and larger, considering separately the cases in which rz

, , 1, 1 o1' t ly011

{Ql e_ tG_:)
/FTA +7G - e)' '''/n + t/(n + t/a)'

/r '* a * ^,/3\?
\nflr-r )

,rr,' r,r lrlir:il, rr,lgcbraical functions, and so i" *^ln (i.e. ffn*), tvherc m
,rrl r rl.c :Lrry integers.

l l, rrlr,,rrlt l  be noticed that there is an ambiguity of notation
rrrr',,1r',,rf irr such an equation as y:afo, We have, up to the
f 'r',,,',tll,, .r',,grlrrled (e.g.) \/2 as denoting the positiue square root
,,1 l, rrrrrl i l  wr_ruld be natulal to denote by lr,where rr is any

NL

is

Fig. tl. fig.12.

2$. 0. Explicit Algebraical Functions. The next im-
frrr1f 111sf, r:lirss of functions is that of enpr,icit argebraical ftnrctions.'l'l1r,1rrr 11s'1r functions which can be generated from r bv a finite
.'rrrrrl,,'r' ,f operations such as those used in generatin! rational
Ir. ' ' l 'r"rs, together with a finite number of operations of root
r , r  l . r  r r r . l , io l r .  t I 'hus

fig. 12.
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positive nttmber, the positive fAlare .root 
of c' in rvhich case

i: r," would be a o-"e-ualoud function of o' It is however

often rnore convenient to regard /rr as standing {or the two-valued

function whose two values are the positive and negrr'bive scprare

roots of r.

The reader will observe that, when this course is adopt'ed' the

fonJio., y'o differs fundamentally frorn rat'ional funcf ions in two

,".o""t.. In the first place n' tationul funcl'ion is always defi:red

i"r"n"lrfr"r of r with a certain number of isolnted exeept'ions'

;;;;t is rrndefinecl fot u whole range of valucs of u (i'e' all,

""*ti* 
values). Secondly the function' when o has a value

ii?-r.r"rr it is defined, has generally two values of opposite signs'

The function fln, ottthe other hand' is one-valued and defined

for all values of r.

Examples XIII. 1' J{(s - ") 
(b - r)}'- where a<b' is dcfined only for

",=TJU. 
If. a<r<bit hast"!vo values: 7f s:a or b only one' viz' o'

2. Considcr similarlY

J \(' - ") 
(a - b) (x' c)| (a<b <c)'

,!{x (r2 - a2)\, }/\(*-a)2 (b - x)} (a<b),

Y[i+*#[i-r;' "/{or''/r}'
3, Trace the curves g2Jx, 93:4 Yz:f'

4, bruw the graphs of the functions g:J(oz- o2)' y--h 
'l{l-(rzlaz)\'

Implicit Algebraical Functions'

1I

l(r + n) - I/(r- n)
l l :  JG+q+VG:t) ,

71 * t \6 (1 *o)3.

\t - i l  
:6:,y'

U: t/a a a/(a + xln),

y ' - (4a'+4y+11u:0.

Each of these equations may be expressed in t'he form

g* *  Rr! ,n- ,  +. . .  + R^:0 ' . . . . . . . . . . . . . . . " (1) '

where Rr, &, ',,, R* are rational funct'iorrs of a;: ancl the reader

*itt *riiy ve"ify that, if y is any one of the rhnctions considered

in the lasb seb of etu*pi"t, y satisfies all e'lttrtion of this form'

It is easy to27. D.
verify that

then

or if

then
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lt is naturally. suggested thab the same is true of any expiicib
rlgobraic function. And this is in fact true, and indeed nor
rlifficult to prove, though rve shall not delay to write out a formal
P.oof here. An example should make clear to the reacler the lines
orr rvhich such a proof would proceed. Let

o:n t rln * n/{.n +,,/n1+ Vglo' n - 4/a +,,/ ln+ t/"1_ V(r + c).
'|.'hcn we have the equations

f i+u,+a+u
v-a-w+a-w'

u,2 : 0, 1)2: f i *,11, ws :7 I n,
rr,nd we have only to eliminate LL,,u,,u) between these equations in
onler to obtain an equation ofthe form desired.

we are therefore led to give the following definition : afunction,tt:"f (a) willbe saidtobe an algebraicat, finct;ion of a if"it is the
nxlt,1f an equation such ccs (l),i.e.the riot of an-eqrroiion of t:he
rtr.tt' degree in y, wh.ose cofficients are rational ftstctiois oy *. ,"Ihu:ou
is plainly no loss of generarity in sup'osingihe first ciefficient t<r
lrc rrnity.

'rhis class of f.ncbions includes all the explicit algebraical
l'rrrrctions considered in $ 26. But it also incrudei other firnctions
wlrich- cannot be expressed as explicit algebraical functions. lo*
il, is known that in general uu.h u., eqiration as (1) cannot be
r,,lvcd. explicitly fot y in term6 of a when * is greuter than 4,
Llrrrrrsh such a solution is ahvays possible if m:f,2, B,or 4 and
irr spccial cases for higher values of m.

'fhe definition of an argebraical function sho*ld be compared
rvith that of an algebraical number given in the rast chffi
1 l\ l isc. Exs. 32).

Examples XIV. "*i If m:l,y is a rational function.
2. If m:\ the equation is gz + B1y + B2:e so that

,l,r is rrrnction is den'ed ,J";i'#'"tyJ"j;i11!^!"^ nlz4rrz. rr has rworrr lrrrs i f  nt2>4nzand one i f  ntz:4n2.
ll' nt:' or 4, we can use. the methods explained in treatises on Algebra forl'lrr x'ltrtion of cubic and biquadratic equations. But as a rure the process is.,rr111lio&;s6 and the results inconvenient in form, and *" 

"u' 
g"rr""uify *i"ayI lr,' lrrrrpcrties of the function better by means of the original equation.

4_2
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..&' Consider the functions dcfined by the equations

gz -2y -az:o, y2 -29 +n-2:0, ya -2y2 + az:o,

in each case obtaining y as an explicit function of r, and stating for what
values of .n it is defined.

y'' W"aa)gebraical equatious, with coefficients rational in c, satisfied by
each of the functions

,./ t + 4 (r I a), ll a + il (r I s), V(caVa'), V{o +v (r+ Vr)}.

.{ Consider the equation ga:t:2.

l IJercgz-!o. I f  s isposit ive, ! :4a: i f  negative,.T-V(-t).  Thusthc
function has two values for all values of r save o=0.]

6. An algebraical function of an algebraical function of s is itself an
algebraical function of o.

[For we havo

lm I Rr Q) g*- 1 *.. .  * R* (z) :0,

z**& (r) zt-t -1-... -1-8n (r) :0.

Itrliminating z we find air equation of the form
gp *\(s)  gp_t+, . .+To1r1 :9.

Here all the oapital letters deDote rational functions.]

.Z/ l" example should perhaps be given of an algebraical function which
cannot be expressed in an explicit algebraical forn- Such al erample is the
function 3r defined by the equation

,  ga_g_c:O.
But tlre proof that we cannot find an erplicit algebraical expression for g in
terms of r is difficult, and cannot be attempted irere.

28. Traflscendental functions. All functions of a which
are not rational or even algebraical are called h'anscendenta,l
functions, This class of functions, being defined in so purely
negative a manner, naturally includes an infinite variety of whole
kinds of furrqtions of varying degrees of simplicity and importance.
Among these we can at present distinguish two kinds'which are
particularly interesting.

E. The direet and invei'se trigonometrical or circular
functions. These are the sine and cosine I'unctions of elementary
trigonometry, and their inverses, and the functions dclived from
them. We may assume provisionally that the reader is familiar
with their most important properties x.

i The definitiong of tho circular funotions given in eloruentary trigolotrretrypre-
suppose that any seotor of a cirole has associated with it o delinite ncatbcr called ite
area. IJow this assumption is justified wili appear in Ch. YII.
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Exnmples XV. .-f: Draw the graphs ofbosr, sinr, and acosr+6sinr.
f  s i r r rxr  acosr*bsinr:€cos(r_a),  where F:J@z+bz),and c is an anglc*lr,,rrr ri.sino and sine are alJ@z4br) and blJ@zabz), tie g.uphs of thisol,lrrrr frrrrctions are similar in charactcr,l
)f. J)rrr,ry the graphs of cos2r, sin2r, acosz:r*6sin2c.

3. Suppose the graphs of f (x) ald ,F(_-) drarvn, Then the graph of
f (r) cosz x I F (r) sinz r

f n rr rvrvy curvc which oscillates between the curves y { (r), y: F (r). Drawf.f rrr 1.1.,',t,;, when / (o):c, F (x):x;2.

4. Slrow that the graph of cospr+cosgr lies betrveen those of11 . ' | , . i ( / ,-q)e; and -2cosl-(p+g)o, touching each in t .rn. sketch the
;'trr.;'lr rvlron (p-il|@+Cl is small. (Moth. Trip. 1908.)

n. l)rnrv the graphs of r*sinrr (l/r)nsina asina, (sinr)la.
(1. I)r':r,v the graph of sin (1/a).

I I I' r7 : ;1i p (l I x), Ihen y : a when x : | | p1v. where m is any integer. Similarlyy 
. .1 

rv l ron r :11(€rna$n and g:  - l  when o: l l (zm_|) . . "Th"; ; ; l ' "
lrrlircly cornprised betrveen the linesg: _l andy:f (Fig. fa). It oscillates
rrlr ,rrrl rlr'', the rapidity of the oscillations bccoming greater and greater as.r'^1r1r',rrr:hcs 0. For r:0 the function is undefined. 

"When 
r i.i"Cgl;

rrrrr ll *. 'I'he negative harf of the curve is similar in character t" tu" fi"iiir"l rn l l l  I

7. Draw tho graph of a sin (f /r).

.  f  ' l ' l r iscurve is comprised between the l ines !:_x and, y:sjust as the
f /rlrf (rrrvo is comprised between the lines y: _i 

^od 
y:f 1fig. f aj 1

Fig. 13.

' Soc Chs. IV ancl Y for explanotions as to

Fig.  14.

tbe precise meaning of this phrase.
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8. Dlaw the graphs of a2sin (l/r), (1/r) sin (1/c), sin2 (1/o), {rsin (r/r)}2,
a cosz (l I a) + b sinz (l/r), sin o + sin (1/r), sin r sin (1/.2).

9. Draw the graphs of cosaz, Binr?, acoss2+bsinsz.

10. Draw the graphs of arc cos o and arc sin r.

llf g:svpsosr, fi:cosy. This enablcs us to draw t'he graph of r, con-
siderecl as a function of. y, and. the same curvc shorvs y as a lirrrction of r.
It is clear that y is only defined for -I5e51, and is infinitcly many-
valued for these values of .2. As the rcadcr no doubt remembers, there is,
when - L<x<|, a value of gr between 0 and zr, say a, and the other values
of. y are given by tho formula 2nr!a, whero a is any integcr, positive or
negative.]

ll. Draw the graphs of

tano, cot,o, Bece., cosecf, tan2n, coLzr, seczo, cosec2#.

12. Draw the glaphs of arclann, arccotn, arosec/, arccosecr. Give
formulae (as in Ex. I0) expressing all the values of each of theso functions
in terms of any particular value,

13. Draw the graphs of tan (t/r), cot (l/.r), sec (1 /r), cosec (I /r)

14. Show that coso and sinr are not rational functions of a.

, [A function is said to be periodic, with period a,if J @):f (r*o) for all
values of .z for which f(t) is defirred. Thus cosr and sin c havo thc period
2r. It is easy to seo that no periodic function can bs a rational function,
unless it is a constant 1'or suppose that

a J@):P(o) lQ@),

where P and @ are polynomials, and thatf (r):J @* a), each of these equations
lrolding for all values of r. Let f(0):2. Then the equation P (n)-kQ@):O
is satisfied by an infinite number of values of r, ,tiz, o:O, a, 2a, eLc., a11i1
therefore for all values of .r. Thus /(r): & for all values of a, i.e. J @) is a
constant.]

15. Show, more generally, that no function with a period can bo an
algcbraical function of r.

[Lct the equation which defines the algebraical function bo

ym + ngm - 1 +. . .  *E- :  0. . . . . . . . . . . . . . . . . . . . . . . . . . . ( t  )

where l?1, ... are rational functions of r. This may bo put in the form

Poy^*Pg^- l+. , ,*P^:0,

vhcrc ,P6, P1' ... aro polynomials in o. Arguing &s ahoys, wo scn,that

PoP"lPtk^-t  * . . .*P-:0

:ll'1, 29] FUNCTIONS OF NEAL YAR,IABLES 55

f irr rr,ll values of r. Hence y: h satisfies the equation (1) for all values of o,
nrrrl onc set of values of our algebraical l'unction reduces to a constant.

Now divide (l) by y - k and repeat the argumenl Our 6nal conclusion is
l,lr^t o.r algebraical function has, for any value of r, the same set of values
l', ll, ...; ?'.a. it is composed of a certain number of constants.l

16. The inverse sine and inverse cosine are not rational or algebraical
ljrrrr:ti..s. lThis foliows fronr the fact that, for any valuc of rbetween -l
rtr rr I l- l, arc sin .n and arc cos r have infinitely many values.]

29. F. Other classes of transcendental functions. Next
irr irnportance to the trigonometrieal functions come the expo-
rrr,ntial and logarithmic functions, which will be discussed in
( llrs. IX and X. But these functions are beyond our range at
lrlcscrrt. And most of the other classes of transcendental func-
l,ions whose properties have been studied, such as the ellipbic
lirrrcl;ions, Bessel's and Legendre's functions, Gamma-functions,
rrrrrl so forth, lie altogether beyond the scope of this book.
'l'lrcre are however some elementary types of functions which,
l,lrorrgh of much less importance theoretically than the rational,
rr,lgcblaical, or trigonometrical functions, are particularly instruc-
l,ivr: as illustrations of the possible varieties of the functional
l r , l ;LI ion.

Examples XVI. 1. Let g:Lnf, where [r] denotes the greatest integer
rrol grcater than .r. The graph is shown ,in Fig. 15 a. The left-hand end
g,oirrts of the thick lines, but not the right-haud ones, belong to the graph.

2, g:o-[af. (Fig. 15 6.)

Fig.  L5o. 9ig. 15D.
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y:Jlr-[x]]. (Fig. l5 c.)

y : (r -laf),, ful + @ - lr])2.
y:lJxl, lr'), Jt-lJrf,

REAL VARIABLES

t" s:lxl+J{"-lr)}.

,'-l*'f, [1-r'].

Irr
(Fig. l5 d )3.

o.

6.

Fig. 15c. Fig.  15d.

7. Lel, y be defined ag tln larqest prinre factor of a (cf. Exs. x. 6).
Then y is defiued only for irrtegral valucs of r, If

s: l r  21 3,  4,  \  6,7,  8,  9,  10,  11,12,13, . . . ,

thcn ! / :1r213r215r3,712,3,  r r ,  11,  3,  13, . . . .

The graph consists of a number of isolatcd points.

8. Let y ba the denominator of r (Exs. x. 7). In this caso y is dcfined
only for rational values of o. We can marl< off as mal)y points on the graplr
as we please, but the regult is not in any ordinary sense of the word a cun'e,
and there are no po,ints corresponding to any irrational values of r.

Draw the straight lino joining the points (N-1, N), (N, N), whero .tV is a
positive integer. Show that the number of points of the locus which lie on

thig line is equal to the number of positive integers less than and prime to .tV.

9. I'el y:g wlren .lr is a,n integer,.z/:r when r is trot an integcr. The
graph is derived from the straight line 3y:s by taking out tlie points

.. .  (  -  1, * l) ,  (0, o), (1, 1), (2, 2), , . .

and adding the points ( - 1, 0), (0, 0), (1, 0), ... on the axis of o.

The reader may possibly rcgard this as an unreasonable function. lYlry,

he ma,y ask, if y is equal to r for all values of r save integral values, should it

not be equal to r for integral values too ? The answer is sirnply, ulq should'

dl? The function y does in point of fact answer to tho defirrition of a

ftrnction: there is a relation bctween r and y such tlrat wltcn r is krrorvn y is

knorvn. We arc perlectly at liLerty to take this relrtion to be wh:rt wc plcase,

however arbitrary and apparently futile. This function y is, of cottrsc, I quite

different function from that one wliich is always equal to o, wltti.;vor vllue,

integral or otherwise, r rnay have.
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I 0. LeL 31 :1when r is rational, but /:0 when r is irrational. The graph
,,rrrsists of two series of points arranged upon the lines g:1 and 9:6. To
l,lrc cye it is not distinguishable frorn two continuous straight lincs, but in
rrrrr,lity an infinite nurnber of points are missing from each line.

ll. LeL y:s when o is irratioual and y:^"r{(Iapr)l(J+g2)} when r is a
rrLtirrnal fuaction pf g.

'l'lre irrationa,l values of r contribute to the graph a curve in reality dis-
r ,'nl,inrrous, but apparently not to bedistilrguished from thc straight line y:r.

Norv consic'lcr the rational values of a'.' First let r be positiva Then

./i(l-f-pe)/(l{qe)} cannot be equal to p/q unlcss p:9, i.e. a:7. Thus a}l
llr. lroints which correspond to rational values ofr lio offthe line, except,
l l r r r  orrc point  (1,  1) .  Again,  i f  p<C, J{Q+pr)10+q2)\>plg;  i f  OrO,

't i(.t 
I p2) I Q + s2)l < p I S' Thus the points lie above the line y - o if 0 < r < l,

l r , l r r rv i f  r>1. I fpandgarelarge," t { ( t fp,) / ( l  +q2)} isnear ly eq,t ta. l toplq.
N.rr,r ilrry value of .tr we can frnd any numbcr of rational fractions with large
rrrurcrirtors and denominators. I{ence the graph contains a large number of

;r,,irrts rvhich crowd rouncl the line g:r. Its general appearance (forpositive
vrr.lrrcs of ,r) is that of a line surrounded by a swarm of isolated points which

11rl,s tlcnser and denser as the points approach the line.

'.llhe part of the graph which corresponds to negative values of o consists
,,1'l,lrc rest of the discontinuous line together with the reflections of all these
r,,,lrr,l,ed points in the axis of y. Thus to the left of the axis of y the swarru
,,l lrrrirrts is not round y:.n but round 3r: -r, which is not itself part of the

;i l rr1rl .  See Fig. 16.

Fig. 16.
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30. Graphical solution of equations containing a single
unknown number. lVlany equations can be expressed in the
form

f (*) :  $ (*) . . . . . . . . .  . . , . . (1) ,
rvhere/(c) and {, (r) are functions rvhose graphs are easy to draw.
And if the curves

g:f(*) ,  y:4@)
intersect in a point P whose abscissa is f, then f is a roob of the

equation (1).

Examples XVII l. The quailratic equation axz*2br+c:0. This
may bo solved graphically in a variety of ways. For instance we may draw
the graphs of

l l :dn+2b, ! :  -clo,

whose intersections, if any, give the roofs, Or we may tako

!:0\  t : -Qbxac) lo.

But the most elementary method is probably to dran' the circlo

a(x2 +92)+2ba + c:0,

whose centro is (-bla, 0) and radius {1/(b'z-ac)}la. The abscissao of its

intersections with the axis of r are the roots of the equation.

2" Solve by any ofthese methods

.s2+ 2r -3:o,  t2 -7r |4=0, 3f i2+20-2:0.

3. The equation fh*ao+b:O. This may bo solvetl by constructing

the curves g; **, !: - ax - b- Verify the following table for the number of

roots of 
i l t*ar*b:o:

(a\ m' euen{D Positive' two or none'
\-t  "" """. '  lb negative, luo.

ft\ m odd {" 
positive' oze'

\"/ "" -"' la negative, thrce or one.

Construct numerical examples to illustrate all possible cases.

4. Sho'w that tho equation Iatna:an*b has always arr infinite numbcr
of roots.

6. Detcrnrilrc the nunrber of loots of

sinr:rr sinr:*o, einr:*.z, sin.z-Tlot.

6. Show that if a is small and positive (e.9. a:'ol), tho ocpation

6-o,: ln sinz o

has three roots. Consider a,lso the case in whioh a is sr,,,ril aud ucg;rLive.
Explain how the number of roots varies eg c varies.
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31. Functions of two variables and their graphical
representation. In $ 20 we considered trvo variables connected
l,y a relation. We may similarly consider three variables (a, y,
rlrul z) conneeted by a relation such that when the values of r and
'r7rrlc both given, the value or values of z are knorvn. In this case
rvc call z a function of the two a&riables o and g; c and y the
'irdependent variables, z lhe d,epenclent variable; and we express
t,f ris dependence of z upon ,r and y by rvriting

z :.f (a, Y).
'l'lrc remarks of S 20 may all be applied, nzutatis mwtandis, to this
rrrolc complicated case.

'Ihe method of representing such functions of two variables

11r'rphically is exactly the same in principle as in the case of
firrrctions of a single variable. We must take three axes, OX, OY,
OZ in space of three dimensions, each axis being perpendicular
l,rr t lre other trvo. The point (a,b, c) is the point whose distances
lirrrn the planes Y)Z, Z0X, X0{ measured parallel to OX, OY,
oZ, are a, b, and c. Regard rnust of course be paid to sign,
l,'ngths measured in the directions OX, OY, OZ being regarded
rr,s lrositive. The definitions of coorilinates, aues, ot'igin are thc
Hl,luc as before.

Now let z:f(*, y).

As a and y varlt the point (*,,y, ,) rvill move in space. The
:lsl{rcgate of all the positions it assumes is called the locus of the

lr,ritrt (o, A, z) ot the graph of the functioo 
":f 

(*,y). When the
lclrr,tion between u, y, and a which defines a can be expressed in an
rr,nrrlytical formula, this formula is called the equation of the locus.
I b is easy to show, for example, that the equation

Au+By*Cz+D:O
(l,lte general equation of the f,rst degree) represents a plane, and
l,lra,b the equation of any plane is of this form. The equation

(a -: a)'+ (y - B) + (z - ,y)': p',

d + g' * z2 *2Fn * 2W + 2Hz + C :0,

rvlrcre l'2 * G'+ Hn - C > 0, represenbs a spherel and so on. X'or
proofs of these proposibions we must again refer to text-books of
Analytical Geometry.
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32. Gunres in a plane. 'We have hitherto used the nntation

v:f  (*) . . . - .  . ' . . . . . . . . " . ' (1)
to express functional dependence of y upon r. ft is evident that
this notation is rnost appropriate in the case in which y is ex-
pressed explicitly in terms of o by mcir,ns of a formula, as whcn
for example 

: v
9 :  * , '  s inq' '  @ cost n *  bsin2 n.

'We 
have however very oftcn to deal with functional relations

which it is impossible or inconvenient to express in this form.
I f ,  for  example,  yo-y-c:O-or {*yo-cly:0,  i t  is  known
to be impossible to express y explicitly as an algebraical function
of o. If

s '*92*2Gn +2Xy * C:0,

y can indeed be so expressed, viz. by the formula

a : - F + n/(F" - n'z - 2Gn - C);

but the functional dependence of y upon o is better and more
sirnply expressed by the original cQuation.

It will be observed that in these two cascs the functional
r.elation is fully expressed by equating cL .fqTg!!g!. of thg tw_q,
aariablbs a and y to zero, i.e. by means of an equation

. f  (* ,  y)  :  0 . . . . . . . . . . . . . . . . . . . . . . . . . . . (2) .
\4re sha'll adopt this equation as the sta,nrlard method of

expressing_ th-e- f-unglignal relation. It includes the equation (1)
as a special case, since_g- ="f (*) is a speciai form of a function of o
and y. We can then speak of the locus of the point (o, y) sthjeel

lo.f (*, y)=_0, the graph of the function y defined Try f @,y):0,
the curve or locus.f (*,y):0, and the equation of this curve or
loeus.

There is another method oI representing curves which is oftcn
useful. Suppose thah a and y are both .functions of a third
variable f, rvhich is to be regarded as essentially auxiliary and

{evoid of any parbicular geometrical significnnce. Wc may write

n:f( t ) ,  y:F(t)  . . . . . . . . . . . (3) .

If a particular value is assigncd bo f, the corresporxr5rrg values of
a and of y are known. Each pair of such values defines a point
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(,,,, ,7. ff we construct all the points 'which correspond in this
rvrr,y to different values of f, we obtain tlrc grcvph, oif the locu,s
dafined, by tlrc equati,ons (3). Suppose for example

fi: cL cost, g - o sin d.

T,ct f vary from 0 to Ztr. Then it is easy to see that the point
(r, y) describes the circle whose centre is the origin and whose
lrr,rlius is o. If t varies beyond these limits, (*, y) describes the
cilcle over and over again. 

'We 
can in this case at once obtain

rr. direct relation between o and y by squaring and adding: we
lirrrl that s2*U2:a2,tbeing now eliminated.

Examples XVIII l. The points of intersection of the two curves whose
r',lrurtions are f (o, g):0, Q @, g):O, where / and f are polynomials, can be
rLrl,c;'111ir106 if these equations can be solved as a pair of simultaneous equations
irr o and y. The solubion generally consists of a finite number of pairs of
vrrfrrrrs of t and. y, The two equations therefore generally represent a finite
Irtttrrl rel ' of isolated points.

:l. Trace the curves (r {y)2 :1, xy :1, s2 - 92 :1.

:f. The curve /(r, y)+)r+(n, g):0 represents a curve passing through
l,lrrr Poirrts of intcrsection of/:0 a1d S:a,

4. What loci are represerrted by
(u) r:atlb, g:ct+d, (p) sla:ztl(1+t2), gla:(I-tz)l(lt4t

wlr.rr I varies through all real l'alues ?

33. Loci in space. In space of three dimensions there are
l,u',r firrrdamenially different kinds of loci, of which the simplest
, r,, lr, lr lcs are the plane and the straight l ine.

A lrl,rticle which moves along a straighb line has only one
,l,',1t'ttt: Ltf freedom. Its direction of motion is fixed; its position
,'rrrr lrc cornpletely fixed by one measurement of position, e.g.hy
rl,rr rlisl,rrnce from a fixed point on the line. If we take the line as
,,rrr' lirnrllmental line A of Chap. f, the position of any of its points
rrr rlrl,u'rnined by a single coordinate r. A particle r.vhich moves
rrr n 1rl:lne, on the other hand, has two degrces of freedoml its

lr.rr11,i,,,t ctn only be fixed by the determination of two coordinates.

A locus represented by a single equation

z:f (* 'Y)

; ' l ,r irrl.1'bclongs to the second of these two elasses of loci, and is
,,rl l ,,r l i l  smluce. It rrray or nlay not (in the obvious simple cases
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notion of what

I r r

a surfaceit will) satisfy our
should be.

The considerations of $ 31 may eviclently be generalised so
as to give definitions of a function .f (*,y, z) of t/ilee variables (or'
of functions of any number of variables). And as in $ 32 we
agreed to adopt f (*,y):0 as the standard form of the equation

of a plane curve, so now we shall agree to adopt

f (n,y,z) :o
as the standard form of equation of a surfaee.

The locus represented by two equations of the forrn 
":"f(n,y)

or f (n,y, z):0 belongs to the first class of loci, and is called

a, curae. Thus a straight l'ine nay be represented by trvo equations

of the t 'ype An+By+Cz*D:0. A" circle in space may be

regarded as the intersection of a sphere and a plane; it may

therefore be represented by two equations of the forrns

(* - q)n + (y - B)" + (z - ,y)': p', Aa * By + Cz + D : 0.

Examples XIX. l. Wrat is represented by three equations of the typo

f (o, y, z):o?

2. . Three linear equations in general roprcsent a single point 'What are
the exceptional cases ?

3. WhaJ are the equations of a plane clwe f (o, 3l):0 in Lhe plane XOY,
when regarded as a curve in space ? lf (x, g):O, z:9.1

4. Cylinders. What is the rneaning of a single equation f (o,g):0,
considered as a locus in space of thlee dimensions ?

[AlI points on the surface satisfy f (o,g):O, rvhatever be the value ofa The
cuwe f (r, g):o, z:o is the curve in which the locus cuts the plane XOY.
The locus is the surface formed by drawing lines parallcl to OZthrough all
points of this curve. Such a surface is called a cglinder.f

5 Graphical representation ofa surface on a plano. Contour Maps.
It might secrn to be impossible to represent.a surfaco adequately by a
drawing on a plano ; and so indeed it is: but a very fair rrotion of the
nature of the surfaco may oftcn be obtained as follows. Lct the equation of
the surface be z-f 1s, n1,

If we give z a particular valuo a, we have an equation .f (x, y):a, which
we may regard as determining a plane curve on tho pap:r. 'Wo trace this
curve and mark it (a). Actually tho curve (a) is tho projcction on the plane
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.ltt;' .,1' bhe section of the surface by the plane z:a. We do this for all
vrrlrrcs o[ o (practically, of coulse, for a selection of values of a). -We obtain
fr',rrrr) liuoh figure as is shown in Fig. 17. It will at once suggest a contoured
( )rrlrriLnco Survey map: and in fact this is the principle on which such nraps
rrrrr coustructed. 'Ihe contour line 1000 is the projection, on the plane of the
rrrr lovcl, of the section of the surface of the la,nd by the plane parallel to the
l ,lrr r ro of tho sea level and 1000 ft. abovo it *.

Fig. L?.

(;. Draw a series of contour lines to ilhrstrate the form of the surface
'.',: il,t:y.

7' Right circular cones. Take the origin of coordinates at the
t'.r'krx of the cone and the axis of z along the axis of the cone; and let a be
l'lro scmi-vertical angle of the cone. The equation of the cone (which must
lrr rrga,rded as extending both ways from its vertex) is c2g92-zzl,anz a:O.

8. Surfaces of revolution in general. The cone of Ex. 7 cals ZOX in
l,rvo lines whose equations may be combinecl in the equation sz:zztarPa.
'l'lrtt is to say, the equation of the surface generated by the revolution of
l,lrc curve 3r:Q s2:z2l,an2 a round the axis of z is derived from the second of
f,frcse equations by changing frz inlo fiz+g2. Show generally that the equation
o[' f]re surfacc generated by tho revolution of the. curve /:0, o:f (z), round
tlro axis of z, is

^l@2+s2):f 
(a).

9. Cones in general. A surfaco formed by straight lines passing
l,lrrough a fixed point is called a cone: l,he point is called Lhe aerter. A
ptrticular case is given by thc right circular cone of Ex. 7. Show that the
rrrlrration of a conewhosevertex is O is of lheformf (zfr,zly):0, and that any
txlrration of this form represents a cone. lIf (rry, a) lies on the cone, so must
(ltr, )ty, tra), for any value of tr.]

* Wo assume that the effects of the earth's curvature may be neglected.

'------=----ffi0-
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10. Buletl surfaces. cylinders and cones are special cases of surfaces

composed of straight lines. Such surfaces aro called rul'ed' surJacu.

The trvo equations
o:az*bt  g-cz+d' , , . . . . ,  . . . . . . . ( l )

represent ths intersection of two planes, i.e. a straight line. Now suppose

Liat a,b, c, d instead of being fixed are functions of an awtiliary ttariable t'

Iror any particular valuo of d the equations (1) give a line. As t valies'

thie line moves ancl generates a surface, whoso equation may be found by

eliminating f between the two equations (1). For instance, in Ex. 7 the

equations or tho rino 
;:i":", 

-"T lT, "" "H,
where ! is the anglo between tho plane xoz and a plane through the lino aDd

the axis of a.

Another simplo example of a ruled surface may be constructed as follows.

Take two sections of a right circular cylinder perpendicular to tho axis and

at a distance z apart (Fig. 18 a). 'wo can imagine tho surface of the cylinder

to be made op ol * number of thin parallel rigid tocls of length Z, such as PQ,

the ends of the rods being fastened to two circular rods of radius a'

Now let us take a third circular rod of ths same radius and placo it

round the surface of the cylinder a! a distanco I from one of the first two

rods (see Fig. l8o, where Pg:i). Unfasten the end Q of the rod P@ and

turn PQ about P until Q can be fastened to the third circular rod in the

position fl. The anglo 90Q':" in the figure is evidently givon by

12 -h2:qQ'2:(24 sin |a)r.

Let all thqother rods of which the oylinder was composed bo treated in the

samo way. we obtain a ruled surface whose form is indicated in Fig. 18 b.

It is entirely built up of straight lines; but the surface ie curved everyrvhere,

and is in general shape not unliko certain forms of table-napkin rings (Fig. 18 c).

Fig. 18 a. Fig.  l8D. Fig. 18c.
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MISCELLANEOUS EXAMPLES ON CHAPTEII, II

- f . Slrorv that tt y:f (o):(o"r+b)l@o-a) then o:f (U).

'.t. If f (u):f(-o) for all values of r,f (o) is called an eaen function.
lf 1' 1,t1-= -f (- r), it is called xr odd function. Show thab any function of r,
tlulirrrrl for all values of o, is the sum of an even and an odd function of o.

f rrso the identity/(r):+{f (o)+fFn)l+l{f @)-f (-o)}.)
il. l)mw the glaphs of the functions

(Math. Irip. 1896.)

4. l)raw the graphs of the functions

sino(acoszr lbsinzr) ,  
8rn31acos2r*6' '  /s inr \ t

J'  \ - - - -  - ' -srn ' f i ) ,  
\ ' / .

n. l)rarv the graphs of the functions oftlr), lrfln,

(1. l)raw the graphs of the functions

(i) arccos (2xz - l) - 2 arc cos r,

(ii) arcLan !!l-arctan a-arc tanr,

tvtrolrr l,lro symbols arccosa, arctana denote, for any value of c, the least

lxnll,ivo (or zero) angle, whose cosine or tangent is c.

7. Vu'ify the following method of constructing the graph of f lg (r)\ by
f ttrvrtn of tlre line g:n and. the graphs of f (t) and f (r): lake OA:n along
t,l,l', rllrr,w ,4,8 parallel to 0Y to meet y:6@) h B,3C parallel to 0X to
ttrril,'4 ^ s in C, CD parallel to O Y to, meet y :f (r) in -D, and /P p,a,rallel to
(l,l' l,rr rrroot AB in P; then P is a point on tho graph required.

tl. Show that theroots of d+pr+q:O are the abscissae ofthe points of
f rrhrlsrxrtion (other than the origin) of the parabola !:d and the circle

d+y2*(p-L) y +gr:o.

l). 'l'he roots of d+nfr*p8+qr+r:0 are the abscissao of the points of
f f f lrlf'n)trtiou of tho parabola ,z:y-lna and the circle

o2 +92 +(*n2 - $ pn+lXn+il a + (p - 1 - !n2) y +r:0.

lo. I)iscuss the graphical solution of the equation

d"*a8*bo*e:0

I'y nfrlr,trB of the ourves y:o%, g:-aa!-ba-c. Draw up a table of the
v,rlr,'rrr possible numbers of roots"

Il. Solve the equation secdlcosec 0:2J2; and show that the equation
ff f ,/f l((r)soc d:c has two roots between O and 2r if c2<8 and four if c2>8.

Ssinra4cosr,  u i"  ( frsinr ).


