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l,lX'l'RACT FROM THE PREFACE TO THE
FIRST EDITION

l l  l tttn lrrxrk has been designed primarily for the use of f irst year

_l xl,rrrkrnts at the Universities whose abilities reach or approach
Iltrrol,hing like what is usually described as 'scholarship standr-r.rd'.
I h,,1,' l,hrr,t, it may be useful to other classes of readers, but it is

thir lhlss whose wanbs I have considered first. It is in any case a
book li,r' rrulthematicians: I have nowhere made any atternpt to

Fsetr llrrr needs of students of engineering or indeed any class of
llurlt'trt,n whose interests are not primarily mathematical.

I logrr,r'rl the book as being really elementary. There are
pletrt,y ol 'hard examples (mainly at thd ends of the chapters): to
them I lrnve added, wherever space permitted, an outline of the
l8lttf,iotr. But I have done my best to avoid the inclusion of
$/tlrirrg bhat involves really difficult ideas. For instance, f make

Ho ttrl of the 'principle of convergence': uniform convergence,
dtruhltr xrrries, infinite products, are never alluded to: and I prove

ig grrtrrrlrrl theorems whatever concerning the inversion of limit-

6pernl,irrrrn--I never even define 'ffi 
""a ffi. 

t" the last two.

€hnlrl,ern I have occasion once or'twice to integrate a power-series,
btlb I lrnvc confined myself to the very simplest cases and given
I rlrnrrinl rliscussion in each instance. Anyone who has read this
brrrrk will bc in a position to read with profit Dr Bromwich's

l\llnilo Nories, where a full and adequate discussion of all these

f l r l t rh rv i l l  be found.
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l, Rrll,lonnl numbers. A fraction ,:plq, where ?0 and g
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F*ff xfr1r1r.l. (i) thot.,D and q have;;*S9!Slrl6i'Al_t_g{, as if they
hnv,, , i r irrtrurlrlr l irctJr we *" aioidJ *"n of tfr"* Uy it, ani
(l l l  t, lrr, l 11 iH posit, ivc, since
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yl? il:? p)ls, GDI? q):plq.
t lrr l l i , '  r 'rr l, i ,rrrrr, l rrrrrnbcrs thus defined we rnay add

Hl l f  t t l r ' t  ( l ' , r , l r l , ; r inr , r l  l ry taking p:0.

Wrt lnrirrrrr,r l,lrnt thc reader is familiar with the ordinary
$'l l , l ttr, '1,i, 'rr, l rrrlr,s l irr the manipulation of rational numbers. The
€lntrrlr l 'r wlrir lr l ir l low demand no knowledge beyond this.

lruttlrlor I. 1. If r and s arerational numbers, then rfs, r-s, r.e, and
lfl llr r',r.l.t,,rr*l rrrrrrrlxrrs, unlcss in.t.helqqlcqqes:0 (when r/s is of course
HRil t l t rgh'a41,

I lf ,t, ,x, ,r.n,l z aro positivo rarlional numbers, and. nt)2, then , , ,
l (g.  i la1, ' . ' , t t t t r t t ,  r r , r r r l  ] , (ar2az2) are posi t ive rat ional  numbers.  Hence show . . i  Y, t '

frrw l,llr,l,,rrrrirro rr,rry nurnber of right-angled trianglestho lengths of aU of tIl t...

l l t r rat  n l r lua t t t r r  r r t l ionl t , l .  
'  , r^

I Arrr, llr,rrrirrrltod dccimal represents a rational number whoso denomi-

hnlr'r n'ill iriilrt rro liurlnrs other than 2 or 5. Conversely, any such rational

Hlrll".t ,';111 l1r rrlplossrxl, trrd in one way only, as a terminated decimal.

I  l ' l l ,  s , , ,1q, '1,q1 l l r r r , r 'y  of  t lcc i rnals wi l l  be considered in Ch. IY. ]

{  ' l  l ' , '  1r , , i r r l , i l r r  l t l iorr l l  rnmbels maybe arranged in thcformof asimple

l is l  IFH t ' t  l , , l l , 'u ' r r  :
J. , . t rs2t43.2L
I  r  I  r  . , , i  r  l ,  2,  :Jt  l ,  2,  3,  1,  . . . .

f l l r , ,n l l rrr l  1,/r7 ix Lho [t(p+g-L)(p+q-Z)+q]fh term of the series.

llrr tlrt,r i,, r,r o\'(1r'.y rrr,tional number is repeated indefinitely. Thus I
r,, ,r ., ,r;i | , + , il , .... Wo c$,tr of course avoid this by omitting overy numbcr
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rvhich has already occurred in a simpler form, bnt then the problem of deter-
mining the precise position of plq becomes more complicated.]

2. The representation of rat_iogal numbers by points
on a line. It is convenient, in manv branches of mathematical
analysis, to make a good deal of use of geometrical illustrations.

-:.- ' I The use of geometrical illustrations in this way does not; of

,' i' corrrse, imply tiiat ;l*i$,g has any sort of d$i"nd"rreu' opoo
,.,!: I ggg1r.r-e-!ry: they ors lll',rir_trations and nothing .more, and are em-

ployed merely for the sake of clearness of exposition. This being
so, it is ng!3_egeS.sary that we should at!rup!-.?qy logic,al analysis
of the ordnary notions of e!qq9q!ar11 ge_o_metry; we maybe content
to suppose, however far it may be from the truth, that we know
qhat they mean.

Assuming, then, that rve know what is meant, by a straight

,!4g, u segrySentt"of a line, and the len"gtlt of a segment, let rrs talie
a straight line -1L, produced inclefinitely in both dircctions, and a
segment AoA, of any length. We call .40 the origin, or tlrc point

,-0, and Arthe point L, and we regard these points as represerrting
the lumbers 0 and 1.

fn order to obtain a point which shall represent a positive
rational number r:plq, we choose the point,{., such that

AsA,!AoA,:r ,

AoA,Being a Sg!g!_o{ thq..lin_e,ex-tcnding in the same direction
alo4g the li49 as 4or!1, a direction .which we shall suppose to be
from left to right when, as in Fig. 1, the line is drawn horizontally
across the paper. In order to obtain e p-?14_t to represent a

. l

.. Fig. 1.

negative rational number r: - s, it is.natural to regard Jggll n.
a magnitude capable g{ lig-1,posrllve if the length isgreafried in
one direction (that of AoAr), and negative if measured in the
other, so lhat AB:-BA I and to take as the point representing
r the point -r4.-, such that

t

' i ' i Ar

.i-l1' ;  i
I  

. , ' . j  i  a i l . t t . t t . / . , .a" : .  )  ,

I rl I REAL vABTABLES B

11", l lrrrx olrl,rrrr n point A, on the l ine corresponding to every
*€tl lrrrrl r rrlrrl ol 'r ' , positive or negative, and such that

AsAr:7.AoAri* '  i i ' ' l ' ' ' ' [ i " ' l l  ; '  =

Alfrl ft, nn rr rrrr, l,rrrrrl, we take AoAras our unit o{.lgngth, and write
+lg '1,  

:  l ,  l , l r , ' t r  rvg f i r r ,ve

aoA,:  7.

iVp nlurf l ,,rrl l  t, lr. 1,,i i ir is A, thetratignal, nymrlA bhe line.

F llnrl,krnirl numbers. If the reader will mark offon the
llttr, ' l l  l , l ' '  Prirrt,s c.r 'responding to the rational numbers whose.-.-
dFrfrrrrri lrrl,,r 'rr rr ' '  l , 2,3,,.. in succession, he wil l readily convince // i: 'r

hlnu,,lf l,lrrr,t, lr. cirn cover the line with rational po,ints as closery u:,

E€ hr, frl,,,rr. We cir,n state this rnor" p.*i*ty ur iottolu* tf ie ti

talalnu ttrrltttrtt,t IJO o* I\, we can f,nd, as nl,aty ratilnal Ttoints as
*la l ltntat rttt. l i(1.

, Hrl;,1,,,",,, l irr. .x*rnple, that BQ falls rvithin the segment -d..4r. 
,,

f3 h lr 'r, l ,,rrl, l , lrrr,L if lve choose a positive gr.eger fr solhat

k. BC >t . . . . . . . . (1) ,*

Bltrl r l ivrl" rl , r l ,, irr[o /c etlual parts, then at ieast one of the points
tpf rl lviar,rr (t*ty 1') r 'ust fall inside 86', without coinciding with
Fll,lr'r /l .r. (/. l'or if this were 4q-t- so, BC woulcl be entirely
lt ir, lrr '1,,, I rr r,ro ,1'the /c parts into which ArArhas bqen clivided,
;111r,11 r ' , ' r r l ' r r , l i r ' l ,s  Lhc supposi t ion (1).  But_ P_ obviously corre-
€lrrttrl,r l, 'r rr, r '*l, irrrrrl numbcr whose denominator is &. , l,hus at
feni l ,  , , t r , '  t r r l iotr ; r , l  

' . i l t  

P l ies beLlveen B and, C. But then we
sel l lrr, l r lrr ' l , lr. l 'srrch point Q between B and p, another beb.ween
€ rrr, l {,1, rrrr, l H,,rr irulefinitely; i.e,, as we asserted above, we,can
lllr,l .,r 

'rlr.y 
l,l rvo lllcase. We niay expiess this by saying that

€t' r r r,. I r r, l,,r r i t t.1i. t t i ttl,y nt any rational points.
r l  l r '  r f  l . r l l l , l l l l  r r f  srrr l r  l l rascs as , inf in i teQl many, or (an inf in i ty of , ,  i t t

Ei i i  l r  ' r ,  r l ' i r r ' , ' ' r  rur  ' / j ( , '  iDcl t rdcs i r r f in i te ly many rat ional  pointsr  or  , there are
Brr f  i r l r r r ly  l l '  l r l , i r ) l i r l  poirr ts on l )C'  ot  sthere arO an inf in i ty of  posi t ive
ii,l ' r,' r ,, ', rr'rl l l rr rrrrrxir Lrrcd uro'o closely in ch. rv, The assertion , there are
ei ,  i r ' r l , l )  , ,1 ; r , , rL i l , iv .  i r r l , r rgcrs ' rneans'given any posi t ive integer z,  however
lqrg, ,  * , ,  r ' , r r r  l i r r r l  r r r r 'o t l ' l r l  ,  posi t ive integers ' .  This is plainly t rue

!  |  r , '  
' , , ' , r . r l , l , r r r r  t l r , , t  th ig is possible is oquivalent to tho assumption of  what

iE l r , ,  , r r  , r r  l " l r , '  , {1191;1 of  Arr : l r iutcdgs.

|  . i  : l  
L_2

(  " t

i../

I
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whaler.cr z may be, e.g. fot n:70o,000 or 100,000,000. The assertion means
e"acily the sar-ne as 'we can find as mang positiae integery a.s ue please'.

The reader will easily convince himself of the truth of the following
assertion, which is substantially equivalent to what rvas proved in the second
paragraph of this section: given eny rg,lio1al num.ber r, and 6,ny positive
integeg z, we can find another rational number lying on either siile of r and
airi#i! fto- r'by less tLan 1/2. It is nrclcly to 

""p."-ry 
[ffiiiF"r'9nt]y to

say that vC cSll*tl4_qry!-Slgl trumber,l;ing o,n either si-de of r an-{iliffir{ng

{.r9!q_1 bg 1q. li-I!l!. ae u,9. jlegs;e, Again, givcn any t\vo ratioual numbers
r ard s, we can interpolate between them a chain of rational numbers in
which any two consecutive terms differ by as little as we please, that is to
say by less than.lfn, where z is any positivo intcger assigned beforehand.

From these consideratiors the reader might be tempted to
infer that an adequate view of the nature of the line could be
obtained by imagining it to be formed simply by the rational
points which lie on it. And it is cerbainly the case that if we
imagine the line to be made up solely of the rational points,
and aII other points (if there are any such) to be eliminated,
the figure which remained 'would possess most of the propcrties
which common sense attributes to the straight line, and would,
to put the matter roughly, Iook and behave very much tike
a line.

A liitle further consideration, horvever, shows that this view
would involve us in serious difficulties.

Let us look at the matter for a moment rvith the eye of
common sense, and consider some of the propertics which we may
reasonably expect a slrqrg_h! llne to possess if it is to satisfy the
idea which we have formed of it in elementary ggometry.

The straight line must be composed of points, and any sligpgnt
of it by'all the pqints which lie between its ,end points. With

AtrF any such segment must be asso-ciated a certain entity called its
--'., ,.., t, -v length, rvhich must bE a qy,gntity cq,p+J-e-of nunterical, measure-
r-E'"'r ment in terms of any standard or unit length, and these lengths

rnust be capable of combination with one another, according to
' the ordinary rules of algebr,a, by means of addition or multipli-

cation. Again, it mu-st be po!.lible to cor-rstruct a line whose
length is the srrm or product of any two given lengths. If the
length PQ, along a given line, is q and the length Qr?, along
tiie sarne strrr,ight line, is b, the lenglh-i|A ggtt b" el-b.

tll REAL vARTABLEs 5

ll lt,,,,r ' ,,r=, i l ' l , lro lcngths OP, 0Q, along one straight l ine, are
I nrrrl rr, rrrrrl thc length OrR along another straight l ine is 6,
Ftrrl l l '  rv, rL,l,r,r 'rrrinc the length O,S by Euclid's construction (Euc.
tl f 

"1) 
l i ,r r lbur.bh proportional to the l ines OP, OQ,0R, this

frrl l l l lr rrrrrl l , l lc clD, the algebraical fourth proportional to l, a, b.
ltr l r l, in l l lr 'r l ly nccessary to remark that the sums ancl products
[ l t t t l  r l , ' l i r rcr l  r r r r rst  obey the ordinary ' laws of  a lgebra' ;  v iz.

u, a b :6 tr r. a + (b + c) :(a+ b) + c,
e,b :bq, ,  a(bc) :  (ab)a,  a(b + c) :  ab + ac.

'f l tr, l ,,rrp1l,hs of our l ines must also obey a number of obvious
Inwr r,, 'rr(:(,r ' lr i l tg inequalit ies as well as equalit ies: thus if
A, l l , t lrr,r 'o l lrrce points lying along A from left to right, we must
hrrvrr rf ll .: A0, and so on. Moreover ib must bc possible, on our
lltttrfrrtrr, ' tr l,r l l ine A, to find a poinb P such that AoPis equal to
ltr| xlgrrrcrrti lvhatever taken along A or along any other straight
lltt", All l,lrcse prgpglligs of a line, and more, are involved in the

f rr rr r s 1,t,,,., ;,,', r n s of our elemen-tary gegmejy.

Norv it; is vcry easy ro see that theiidca:gf a q!p,1ght liqe as
€otrr1r,,rr,,rl of a scries gf p,qqtsj-llch corr_esponding to a ratig_Lfa_l
lilltt r l rlr, rrrrr r not possibly satisfy(alD t_h_gge requ!1qments. There are
lttt lr rttrr r,lcrrrcntary geometrical constructions, for example, rvhich
gtttrlrrrr 'f l ,o r:orrstruct a length n such thai n2:2. For instance, we

l.'.
r l  \ :

t \
AIB

frf.l, r,r;il*l,r'ucb an isoseeles right-anglcd triangle ABC such that
, l l l  -  , l ( t  . l .  Then i f  BC:c,  nz:2.  Or we may detgl lq inc
lll, 1,,;'r '1,;r r liy means of Euclid's construction (Euc. v-a) for
+t tilr,irrr 1,r',r1r0r'[ional to 1 and 2, as indica+,ed in the figure. Our
t r'' l r r'' t n,, n l,s thcrefore involve the existencu qf -u- lglgq mgqsqqed
|| l rrurrl)r,r'-o; and a p-gilt-t P on A r*ttt[ot

AoP: c,  a2:2.

Fig. 2.
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But it is easy to see that there ,is no rational, nunrber such, tlmt
its square is 2, fn fact we may go further and say that there
is n.g-rational number whose square is mfn, wherc mln is a4y
positive fiaction in ils _l-qly_eS_t lermg, unless rn and, n are both
pcrfect squares.

For suppose, ifpossible, that

F'lg': nin'

p having no factor in eommon with q, and, rn no factor in common
with n. Then n1f : mg". Every factor of q2 must divide n1f , and
as p and g have no common factor, every factor of gt must divide
n. Hence n:\gr, where ), is an integer. But this involves
m:)tp?; and as m and n hcve no common factor, l, must be unity.
Tlrus rc :1)2, rL: q2, a,s was to be proved. In particular it follows,
by taking n:1, that an integer cannot be the square of a rational
number, unless that rational number is itself integral.

ft appears then that our requirements involve the existence of
a number o and a point P, not one of the rational points already
constructed, such that AxP-&, #:2; and (as the reader will
remember from elernentary algebra) we write o: 42.

The following alternative proof that no' rational mrmber can have its
square equal to 2 is interesting,

Suppose,,if possible, that plq is a positive fraction, in its lowcst terms,
such that (plilr:z or f:2q2. It is easy to see that this involves
(2q-p)2:2(p-q)2; and so (zq-p)l@-g) is another fraction having the
same property. But clearly g1F12I, and so p-q<q. Hence there is
another fraction equal to plq and having a smaller denominator, which
contradicts the assumption that plq is in its lowest terms.

Examples Il."".Y: Show that no rational number can have its cube equal
In 2.

. 9j Prove generally that a rational fraction plq in itslowest terhs cannot
be tho cubo of a ratiorrnl nrrmbor unless p and qr are both perfect cubes.

-8. A rnoro gorrornl prolxrsition, wbich is duo to (lauss and includes those
wl$rrlr lrrrxrrrrlo nn lrrlrbirrrrllr <:txnn, in tho f,llowirrg : an algebra,ical equation

'  st*1t1!r t - r  * l41t"- ,+. , .+1rn--6,

ui.th intallntl aoe.fli.cienld, cunnot ha,ae u rational but non-integrul rool.

[Ifcrr strppooo that tho equation has a root alb, wherc a qnd b are integels

l l; ' l I REAL VARIABLES

,l;''il'i,:' i:"ilHjil"t and D is positive. wrfting afb ror o,and mulriply-

- 
f 

: nr*-' * Irzao-zb + ... + pobn - r,

r filr'l,i,ur irr its lowest ter11 equ4 to an integer, which is absurd. Thus b:1,rrrrrf t,h,r rrxrb is a. It is evideni that a musiiu u ooi*o" ,r, ;;i' 
--* 

,-{. Slrow that if p^:l and neither of
t*pr*Itz*Its*..., | _pr*pz_pg+.* .

h *rr1o, 1,1111tr ilro equation cannot have a rational root.
E. l,'irrd the rational roots (ifany) of

d-4d-Bd+ t3r+ l ( ) :0.

. f'l'lr0 roots gn onlybo integral, and so !1, +2, !.b, tlo are the onl,;rnxilrilil'irs: rvhether tbese are roots can be determined by trial. rt iu 
"r"i{trr^r' wo o,'in t,.is way determine the rationar roots of any su"u 

"q"rti""j'
4. frrational numbers (continwed,). The resulb of ourg.,rrr.t,r'icill representation of the rational numbers is therefore torttgplrrsl the desirability of enrarging our conception of ,number,

by l,lro irr[roduction of iurther 
""ir#o 

of a ,rew Hnd.
'l'l* s*me concrusion might have been reached without the use

'f .;.J.,rrrrr,.ical 
language. one of the central problems 

"f 
J;;;"h l,lrrrL ol' the solution of equations, such as

a2 :1, ,  d:2.

'l'lrl first cquation has the two rational roots I and _I. But,ll' 
"rr. 

r:.rrception of number is to be limited to the rational
r'rtrrl.r.r'1r, we can onry say that the second equation has no roots:tfrrl f, lr,r s*me is the.case_with such 

"qo"tiorr.-u* 
;:;;:; '

'l'lrrui,' liy;6s are plainly sufficient to mrie Fome generalisation offltr, ir|l,n of'number desirable, if it should prove to be possible.
f ,,,1, rrs consider more closely the equation #:2.

. lY., 
lrrve already seen that there is no rational number a whicht.l.rrrli.s [his equation. Th9 square of any rational numbei isFttlr,r' l.ss than or greater than 2. we can therefore divide-the

lx*1rrrv. r:Lt,ir lnal'umbers (to which for the present we confine ourrul l ' r r l , i , r r )  i r r to two classes, one containing t te numbers *horu
irf llrll.rr rr,rrr lcss than 2, and the cither those lvhose squar"r:;;;
gr'rrf,,r. l , lrrrrr 2. We shall call these two classes tt, 

"io* 
L,-o,

tht l,,rt'r,t. olrrss, or the left-trund, class, and the class n, o, ttr, 
-upp*
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alass, or the riglftJmnd, class. It is obvious that every member of
,ll is greater than all the members of Z. Moreover it is easy to
convince ourselves that we can find a member of the class.t whose
square, though less than 2, differs from 2 by as little as rve please,
and a member of -R whose square, though greater than 2, also
differs from 2 by as little as we please. In fact, if we carry out
the ordinary arithmetical process for the extraction of the square
root of 2, we obtain a series of rational number.s, viz.

L,  L.4,  L 'AI .  L.474, 1.4142,. . .
whose squares

1, 1.96, 1.9891, 1.gg9396, 1 '99996164,. . .

are all less than 2, but approach nearer and nearer to it; and by
taking a sufficient number of the figures given by the process we
can obtain as close an approximation as we wrlnt. And if we
increase the last figure, in each of the approximations given above,
by unity, we obtain a series of rational nunrbers

2, 1 '5,  7 '42,  1.415, 1.4143, . . -

whose squares

4, 2.25, 2.0164, 2.002225, 2.00024449,...

are all greater than 2but approximate to 2 as closely as'rveplease.

The reasoning which precedes, although it will probably convince the
reader, is hardly of the precise character required by modern mathcmatics.
We can s-"upply a formal proof as follows. In ihe first placq we can find
a rhember of Z and a member of .ll, differing by as little as we pleaso. For
'we sa\M in $ 3 that, given any two rational numbers a and b, we can construct
a chain of rational numbers, of which a and, b arc the first and last, and in
which any two consecutive numbers differ by as little as we please. Let us
tlren take a member s of L and amember y of R, and interpolate between
them a chain of rational numbers of which a is tho first and g the last, and
in which any two consecutivo numbers difler by less than 6, 6 being any
positive rational number as small as wo please, such as '01 or '0001 or '000001.
In this chain there must be a ldt which belongs to Z and a first which belongs
to .Il, aud these two numbers differ by less than |.

'We can now prove thal an s can be found tn L and a y in R such that
2-s2 and y2 -2 are as small as we please, say less than 0. Substituting { B
foy 0 in the argument which .precedcs, wc see that we can choose r and .r7 so
that y-x<18; and we may plainly suppose that both x and y are less
than 2. Thus

y +s <4, !2-  s2-(y -o) (y+n) <n g-o) <d ;

l ,  I l REAL YAN,IABLES

irrrrf rrirrcc x2<2 and g2>2 iL follows o fortiori lhat 2-xz and y2-2 aro each
lrqrr  l , l r ;ur  D.

Il, follows also that thnre cun be no I'argest mentber of L or

attrrtll,al;t member of R. For if n is any member of Z, then fi2 <2'
Hrrlr;xrse lhat d:2 - 8. Then we can find a member q of. L

rrrrr ' lr lJrat or'differs frorn 2 by less than E, and so fir ') fr 'or ot> n.

'f'lrrrs thcre are larger members of Z than o; and as u is any

rrr,,rrrlrcr of L,ib follows that no member of L can be larger than

nll l,lrr: r:cst. tlence -t has no largest,member, and similarly -E has

ttrr  r t r r t l lcsb.

I [. Irrational numbers (continued), We have thus divided

l,lr,, lr,rsitive rational numbers into two classes, L and -8, such that
(r), ' \ ' ,r 'y rnember of R is greater than every member of Z, (i i) we

r,rrrr lirrrl & member of Z and a member of -R whose difference is as

nrrrrrll ns wc please, (iii), has no grezr,test and -E no least member.
I lll c,rrnrrlon-sense notion of the attributes of a straight line, the

rr,rlrrirrrrrrtrnts of our elementary geometry and our elementary

irlri,'l,r'n, rr,lil<e demand the enistence of a nunLber & greater than al'l'

lho rtttttttltct's of L and, less than al,l the rnenxbers of R, and of

tt t,tt,','t'sponding point P on Iv such that P d'iuides the points which,

t,ttt't t':tl)t)il(l to members of L from tlLose which correspondto members

r' l I i ..

Fig. 3.

lu,l, rrs Hul)l)ose for a moment that there is such a numbero,
rrl ' l  t lrr l, i l , rrrrr,y be opcrated upon in accordance with the laws of
,rl!:,, lrrrr, rr,r l, lull;, Ibr cxnmple, os has a definite meaning, Then af
r.rr!r,,1, lr,, r, i l , lror loss than or greater than 2. For suppose, for
,,r,tr '1,1,., l, lurl, r:1 is lcss than 2. Then it follows from what pre-
* , lr ,, t lrrrl, \\,(, (: iur l irrd u, lxrsit ive rational number f such that f '? l ies
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between c2 and 2, That is to say, we can find a member of Z
greater than u; and this contradicts the supposition that c divides
the members of Z from those of -R. Thus af cannot be Iess tharr
2, and similarly it cannot be greater thrrn 2. We are therefore
driven to the conclusion that cl: 2, and that a is the number
which in algebra rve denote by n/2. And of course this number
y'2 is not rational, for no rational number has its square equal to
2. It is the simplest example of what is called an irrational
number.

But the preceding argument may be applied to equations
other than o2:2, almost word for word; for example to s2:N,
where 'rr is anr inteserll'i::T: 

":::;;',square' or to

or, as we shall see later on, to C:3r+8. We are thus lcd to
believe in the existence of irrational nurnbers a ancl poirrts P on
A such that n satisfies equations such as these, even when these
lengths cannot (as ̂ ,/2 can) be constructed by means of elementary
geometrical methods.

. The reader will no doubt remember that in treatises on elementary algebra
the root of such an equation as #:n is denoted by f/n or nrto, and that a
meaning is attached to such symbols as

by means of the equations 

nPla' n-PI!

o nptq:(nt la)p,  npLln-plq: | ,

And he will remember how, in virtue of these definitions, tho ,laws of indices,
such ag

n"xnq:tt+\ (nt)t:nga

are extended so as to cover the case in which r and s are any rational numbers
whateven

The reader may now follow one or other of two alternative
courses. He maR if he pleases, be content to assurne that
' irrational numbers'such as ,J2, f/3,....exist and are amenable to
the algebraical la.rvs with which he is familiar*. ff he does this
he will be able to avoid the more abstract discussions of the next
few sgctions, and may pass on at once to $$ 13 ed seg.

If, on the other hand, he is not disposed to adopt so naiae an

' This is the point of view whioh was adoptecl in the first eclition of this book.
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rr l , l , i l , rrr lc, he wil l  be well  advised to pay careful attention to the
rr,'r'l,iorrs which follow, in which these questions receive fuller
t ' , ,r  rsir lcrat ion *.

llxarnples III. .i: Find the diffcrence between 2 and the squares of thc
rl, , rrrruls given in $ 4 as approximations to /2.

t. Iriud the diffcrences betwecn 2 and thc squarcs of

l, *, E, M, ttr, +&'
3. Slrow that if rnln is a good approximation to n/2, then (rn.12tt)l(m+n)

ir l. lxrllcr one, and that the errors in the two cases are in opposite directions,
41,1'ly this result to continue the series of approximatiols in the last
r ' r r r t [ | lo.

4, Il o and y are approxirnations to J2, by defect and by €xcess t.espec-
f, i1 r.1"1, : i rrd 2 - n2 <6, 92 - 2 <8, then 3l - r<6.

fi. 'l'he equation x2:4 is satisffed by r:2. Ixamine horv far the argu-
nl,,nl, ol' the prer.:eding sections applies to this equation (writing 4 for 2
f f rr',,rr1ilrout). [If we define the classes L, B as before, thcy do not include all
l'rrl,r.rrrl numbers. The rational number 2 is an exception. since 22 is neither
hvur l,lrrirr or gleater than 4,]

0. Irrational numbers (continuecl). In $ 4 we discussed
r! rr1,,',rirrl mode of division of the positive rational numberc o into
l,rv,r clirsses, such that a2 <2 for the members of one class and
rr' . 2 lirr those of the others. Such a mode of division is called a
rpcl,lon of the numbers in question. It is plain that we could
,',1rrrrl l .y wcll construct a section in which the numbers of the two
r,i,rrr,,s rvcle characterised by the inequalities af < 2 and ef >2, or
rrr. ' / rnd nn>7. Let us now attempt to state the principles
r' l '  l , lr,r construction of such 'sections' of the pqii,t ive rational
lrrrlr 'r 's in quite general terms.

lirrppose that P a,nd I stand for two properties.which are
inrrtrrrrl ly cxclusive and one of which must be possessed by every

lr,,,,r l,rv{r l lr,t, ional number. Further, suppose that every such
trrrrrr l r . r 'wlr ich possesses P is less than any such number which
g,,  , ' , , , , r , rLr .s Q. Thus P might be the property 'az<2'and Q the

1rr,,1,,.r l,.y ' n;2 >2.' Then we call the numbers which possess P the
lrrr\r,r 'r ' lcl l,-hand class.t and those which possess Q the upper or

' lrr t,lrrrro gcctions I bave borrorvetl freely from Appendix I ol Bromwich's
l ' , t i , ' r t t  i ! t r i t t .

11
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right-hand class -8. fn general both classes will exist; but it may

happen rn special cases that one is non-existent and that every

number belongs to the other. This would obviously happen, for

example, if P (or Q) were the properby of being rational, or of

being positive. For the present, however, we shall confine

ourselves to cases in which both classes do cxisb; and then it

follows, as in $ 4, that lve can find a membcr of Z and a member

of -R whose difference is as small as rve please.

In the pnrticular case which 'we consiclered in $ 4, Z had no

greatest member and -Il no least. 'I'his question of the existence

of greatest or leasb members of the classes is of the utrnost im-

portance. We observe first that it is impossible in any case that

1, should have a greatest member and, R a least. For if I rvere

the greatest member of .0, and r the least of Ii, so thab I < r, then

$(1,+r) would. be a positive rational nnmber lying between I and

r, and so could belong neithcr to tr nor to J?; and this contradicts

our assumption that every such number bclongs to one class or to

the other. This being so, there are but three possibilitics, which

are mutually exclusive. Either (i) Z has a greatest member l, or

(ii) ,R has a least member r, or (iii) Z has no greatest mernber and

-B no least.

The section of $ 4 gives an example of the last possibility' An example
of the first is obtained by taking P to be 's2 31'and @ to be'uz>l';
here l:tr. If P is 's2 <I' and Q is 'r2 =1,'we have an example of the

second plssibility, with r:1. It should be observed that we do not obtain

a section at all by taking P to be ' az <I' ancl Q to be ' x2>I '; for the special

number I escapes classification (cf. Ex' ur. 5).

V 7. Irrational numbers (continued,), In the first two cases

we say that the section correspond,s lo a positive rational number

a, which is I in the one case and r in the other. Conversely, it is

clear that to any such ,number a corresponds a section which

we shall denote by **. 
'For 

we might take P and Q to be the

properbies exprcssed bY
03a, e>a

respectively, or by r 1 a and n Z a' In t'he first case o rvould be

tlie greatest member of -t, and in the second case the least member

. It rvill be convenient to ilenote a section, correspontling to a rational number

denoteil by an English letter, by the corresponiling Greek letter'
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,,l li. 'llhcle are in fact just t'wo sections corresponding to auy

l"'riil,iv(' r'rrtional nutnber. fn order to avoid ambiguity we select
,,nc ol t,lrcm ; let us select that in which the number itself belongs
l,,r l,ltc trpper class. In ot,her words, let us agree that we will consider
,,rrl.y sr:clions in rvhich the lower class Z has no gr:eatest number.

'l'lrcrc being this correspondence betrveen the positivc rational
rrrrrrrlrcrs and the sections defined by means of them, it would be

;rr,r'lirr:lJy legitimate, for mathematical purposes, to replace the
rrrrrrrlrt'r's by the sections, and to regard the symbols which occur
irr ,,rrr' {blmulae as standing for the secLions instead of for the
rrunrlrcls. Thus, for example, a>a' would mean the same es
.t, .' e,', if a and a' are the sections which correspond to u and a,'.

lirrL lvhen we have in this way substituted sections of rational
lrrrrrlrcls for the rational numbers themselves, we are almost forced
l, rr, gcncralisation of our number system. For there are sections
(r'rrr,lr ts that of $ 4) which do not correspond to any rational
Irrrrrrlrrrr. The aggregate of sections is a lerrger aggregate than that
r,l' l,lrc lrositive rational numbers; it includes sections corresponding
t,r rrll l,lrcse numbers, and more besides. It is this fact which we
rrrrrl,. l,he basis of our generalisation of the idea of number. We
rrr,,',,rrlingly frame the following definitions, which will however be
rrr,'rlilit:tl in the next section, and must therefore be regarded as
l,r'rr r I rolruy and provisional.

A scctiott of the positiue ratilnal, nurnbers, in which, both alasses
t,tit;|, rr,ttrl the lozuer clcLss ltus tr,o greatest mentber, is cal,led, a

ltrull,ive real number.

tl 'lxtsit'iue real, nu,mber which does not correspond, to a positiue
trrli"ttu,L nunber is culled, a posit'iue irrational num,ber.

tl Real numbers. We have confined ourselves so far to
r, rl 'rrrr sccl,ions of the positive rational numbers, which we have
rr1, 1,, '11 ;rrrrvisionally to call 'positive real numbers.' Before we
lr,rrrrrr rur f inal definit ions, we must alter our point of view a
lrtt l,. Wc shall consider sections, or divisions into two classes,
l,,t rr, 'r1' ly of the positive rational numbers, but of all rational
lrrlr lrr.r 's, iucluding zero. We may then repeat all that we have
,,.11,1 ,111,1111, sections of the positive rational numbers in $$ 6,7,
lrr r, l), r,rrri l l ing the word positive occasionally.
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DnrlNt:uoNs, A section of the rational nwmbers, in uhich botJt,

clq,sses euist qnd, the Lower class has no greatest mentber, is cal,Led,

a real number, or simpl,y o number.

A req,l, mu,m,ber which d,oes not correspond, to ct rational, nwmber

is co,lled, orz irrational nu,mber.

lf the real number does correspond to a rational nnmber, rve

shall use the term 'rational' as applying to the real number also.

Tho term (rational number'will, as a rcsult of our dcfinitions, be
ambiguous; it may mean the rational numbcr of $ l, or the corresponding
real number. If we say that | > $, we may be asserting cither of two different,
propositions, one a proposition of elementary arithruetic, the othel a proposition
concerning sections of the rational numbers. Ambiguities of this kind are
common in mathematics, and aro perfectly harmless, since the relations
between different propositions are exactly the same whichever interpretation
is attached to the propositions thernselves. From $>$ and $>f we can
infer $ > f ; the inference is in no way afl'ected by any doubt as to whether

$, $, and I aro arithmetical flactions or real numbct's. Somctimes, of course,
tlre context in wb'ich (e.g.)'b'occurs is sufficicnt to lix its intelplebatiol.
When wo say (seo $ 9) that +<n/(i), wen?,ust mcau by '$'the real number j.

The reader should observe, moreover', that no particular logical importancc
is to be attached to the precise form of definition of a 'real number ' that rve
ha,ve adopted. We defined a 'real number' as being a section, r'.e. a pair of
classes. W'e nright equally well have defined it as being tho lower, or the
upper, class; indeed it would be easy to dcfine an infirity of classes of
entities each of which would possess the propclties of the class of real
numbels. _ What is esscntial in mathematics is that its syrnbols should be
capable of some intcrpretation; generally they aro capable of matzy, and
then, so far as mathcmatics is concerned, it does not rnatter which 'we adopt.
Mr Rertrand llussell has said that 'mathematics is the science in which
we do not know what 'we are talking about, and do not care lvhethel rvLat
we Bay about it is truet, a remark which is expressed in the folm of a
paradox but which in reality embodies a number of important truths. It
would take too long to analyse the meaning of Mr Russell's epigram in detail,
but one at any rate of its implications is this, that the symbols of mathe-
matics are capable of varying*interpretations, and that we are in geleral at
liberty to adopt whichever we prefen

There are now three cases to distinguish. It may happen that

all negative ri,tional numbers belong to the lorver class and zero

and all positive rabional numbers to the upper. We describe

this section as the real number zeto. Or again it may happen

bhat the lower class includes some positiYe numbers. Such a section
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rr,' rl,,ru:r'illc as a positive real number. Finally it may happen

Llrrrl, sorrrt.r negative numbers belong to the upper class. Such

n rir,r ' l , i ,rr rve describe as a negative real number*.

'l'lrrr rlillir|cnce betwccn our present definition of a positive real number c
nrr,l l.lrrr,l, ol'$ ? amounts to the addition to the lower class of zero and all the
Irr,l,rrl,ivo rttirnlal numbers. An example of a negative real number is given
lry Lirlt irrl; t l ic property P of $ 6 to bo r*1<0 and Q to be r+r >0.
'l lrir rr.(il,ion llainly corres|onds to the negative rational number -1. If we
l,r,l, /'l,o ln .,-:]{ -2 and Q to be d7 -2t we should obtain a negativc real
l lrnl,.r rvlrioh is not rational.

0. Relations of magnitude between real numbers. It

lu ;rlrrirr that, now that we have extended our conception of

rrlrrrlror, wo ate bound to make coffesponding extensions of our

1'1111r'r.pl ions of equality, inequality, addition, multiplication, and so

rrr Wcr lrrlvc to show that these ideas can be applied to the new

Ilrrrrlrr,r 's, r,nd that, when this extension of them is rnade, all the

rrr,lrrrrrly lrws of algebra retain their validity, so that we can

rl,"rir l,(! lvi l,h rcal numbers in general in exactly the same way

riu u,rt.lr l,lrrr lir,{,ional numbers of S 1. To do all this systematically

*'rrlrl ocr:rrlry a considerable space, and we shall be content to

Itrrlicnl,. srrrnrnl,r'ily horv a more systematic discussion would

1,t  r , , ' , . , ' r l .

\!rr rfrrrrrrtc a rcal number by a Greek letter such 8,s d', B,y, ". '
l lr '  r ir l, i ,rnrr,l rrrtrnbcls of its lower and upper classes by the corre-

nlr l f l l l l ln l f  l , lngl ish le l , i ;ers u,  A;  b,  B;  c,  C; . . . .  The classes them-

Frt l r , , , , i  w.  r l . r ro l ;c by (o),  ( . r4) ,  . . " ,

l l  rr rr.rrrl / ' / rr,rc two real numbers, there are three possibil i t ies:

(r) r.\ 'r,r ' .y (, is a b and every/ aB; in this case (o)is identical

st t l r  { / r ) , r r r r l  (z l )  wi l ,h ( , ts) ;

' I i,, r,' rrrrr rrlso Bcctions in which every number belongs to tho lorver or to

ll," 11 1', r r'lrrrrrr. 'l l lrc rcnder may be temptecl to ask why we clo not regartl these

EF, rr , , r , ! r  , r l r r r r  r r r r  r lc l i r r i r rg numbers,  which we might cal l  tho real  nu,nt 'bers posi t iae

' th, l  
h. , t  t l t t ' f  r t t l i t r i l4.

I  1, , , r , ,  i , r  r r r r  l , ,1, i t : t t l  r . rb jcct ion to such a procedure,  but i t  proves to bo inoon'

iF, , i r , , t  1, ,  1rr i r r , t , r r r r r .  ' l ' l ru tuost  natural  def in i t ions of  addi t ion ant l  mult ip l icat ion {o

I , , t  e, , r l r  t r r  n rrrr l i r f r to l ' r t ry wtty.  Moreovt j r ,  for  a beginner,  the chiel  d i f f icul ty in the

Ele'rerr t  I  , , I  r r  r r t r  t . f r r i r ]  in t l r r r t  of  learning to at taoh precise senses to phrases containing

tLe*, , r ' l  ' r r ' l l r r l , r ' ;  r t r r l  r rx l tor ienceseemstoshowthatheis l ikelytobeconfusedby

{ i . i  H, l , l i t t . ' r  1, , ,  l l r l i r  t t t t t t t l t t t r .
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(ii) every aisab, but not all .r{'s are B's; in this case (cu) is

a proper part of (b)x, and (B) a proper part of (.4);

(iii) every A is a B, but not all o's are b's.

These three cases may be indicated graphically as in X'ig. 4.

In case (i) we *ri1s a: B, in
(iii) a > B. It is clear that, when
a and B are both rational, theso
definitions agree with the ideas of
equality and inequality between
rational numbers which we began
by taking for granted; and that
any positive number is greater

case (ii) a < B, and in case

+(t)
* f 1ii;

B
- 

rr t (iii)

Fig. 4.
than any negative number.

It will be convenient to define at this stage the negative - a
of a positive number a. 'We 

suppose first that a is irrational. If
(a), (A) are the classes which constit,ute a, we can define another
section of the rational numbers by putting all nurnbers -,4" in the
lower class and all numbers -a in the upper. The real number
thus defined, which is clearly negative, we denote by - o. Similarly
we can define -a when a is negative; if a is negative, -a is
positive. It is plain also that - (- o): o. Of the two numbers
a and - a one is always positive. The one which is positive we
denote by lo I and call t'he mod,wlws of a.

There is a complication if a is rational. In this case d belongs
to (A), and the classes (- A), (- o) do not define a real number in
the sense of $ 8, since - a belongs to the lower class instead of
to the upper. We must therefore modify our definition of - a by
agreeing that, when a is rational, the rational - a is to be included
in the upper class.

ExamBles IV, ): Prove that 0: -0.

/ '  Prou"that B:a, B<olo, B>a according as a:B, alB, or a1p.

,{ n o:B and B:y, bhen a:y.

/  Provethat -B1-oi f  a1B.

y'  I f  
"=8,91y, lhen acy.

F Prove that c)0 if q is positive, and c<0 ifc is negativc.

,7t ' '  Prove that aslol. p ProvethatL<JI<JB<2.

[AiI these results are immediate consequences of our definitions.]
* I.e. is inclurlerl in but not iclentical with (b).

I '  t t t l

.$i  es trtrul l l

fut1nrl,lr,urir.
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lr,r Lrss than s - r. But

Wr! ( ' l t . t l

C_c:(A_a)+(B_b);

clroose e, b, A, B so that both ./. _a and, B_b
us we like; and this plainly contradicts our

t7
l(, Algebraicar operations with real numbers. we now

ftut'r 'r 'r l  I 'rr 
rlt ' l irrc bhe meaningof the elementaryalgebraical operu-

Srlrr o,,,'1, rw .,rftlitiun, as applied to real oombers ii g"rrurul. ' 
-

(ll ;l,l,l,ilior. In order to define the sum of two numbers
I atll 11, wo gonsjdsr. the following two classes: (i) the 

"fur,1rjk'ttr,,,f lr.y rll sums 
":o!b, 

(ii) t[e chss (C) fo.*ua ;y;ii;;;
1=A t  t t ,  l ' la in lyc<Cinal lcases.

, 
Ag,,rrr, l, lrt 'rc s4nn66 be more than one rational number rvhich

SFt trul, lrr,l,rrrg either.to (c) or to (C). l For suppose there were
lf,a, r,,y r. 

^rtl 
s, and let s be the greater. fnen mtn r a'cl s

ltlrb lr,' grr,rl;cr than every c and les-s than every C; and so C _c

. If', 'v,' ' 'n'*t;ional numberlelongs to (c) or to (c), the classes (c),
(9) f,u 

',, 
rr, ntrclion of tJrg 

-ratfonut 
iu*b"rr, that is io .uy, 

" "";;;;n lf ' Llror,,r is one which does not, we add it to (CS."iW" i;;;
ittw E r,r'l,ir^ or real number n whieh must elearly be rationar,
$ltrre,.it, r:rr,rrrsponds to the leasti member of (6). 

" 
tn ony i*,

Ul ull y llut suttt of a a.nd, B, oncJ write

' l :a+p'
ll l,ltlr r urtl B aro rational, ihey are tho least members of the upper

ftr:nr (,1)trrrl (/i). rn this caso it is clear that alp is the least member
*1f '1,,.', l,lr*1, rrrr daf ition agrees with our previous ideas of addition

ltrl fiulilt'u,ction, We define o_ B by the equation

d-B:a+(-p).
l$ta irl,'rr 

'l'srrbrraction .rccordingly presents no fresh difficulties.

Itr trrplor V. , . f  .  Prove i lut c*(- a):g.
]  I ' r ,uvo l , l r t t  c{0:Q}a:a.

I f ,f ,fr,ri t,lrrt a4-B:8]-o. [?his follows at once from tho fact that the
dncecc.( 'r  1/r) nrrt l  (b+o), or (A+B) and, (BlA), aro the *u^g 

" io"",rg.,I I f,:1, | ,r wlr(,lr a arrd 6 are rational.]

I '  I ' t , ,v l  l . l r i r t , .+(p+7):(c+lJ)*y.
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E Prove that c-a:0.

&' '  Prcvelhat a-B: -@-").

.7( Tro the definition of subtraction, and lxs' 4' 1, and 2 above, it

follows that
(a -F) +F: {n+ ( - 0)} +F:"+( - p)+B} :a * 0: a'

W'e might therefore define the difference o-F:y by the equation 7*B:a'

K Prorathat c- (F-i l :"-9+t.

.{ Give a d,efinition of subtraction which does not depend upon a previous

dehnition of addition. [To tlefine 7:a-Ft form the elasses (c), (C) for which

c:cr,-BtC:A-b, It is easy to show that this definition is equivalent to

that which we aclopted in the text.]

Id Prove that'  l l " l - lp l ls lcrgls l" l+ lFl .

11. Algebraical operations with real trumbers (con'

ttinuerl). (iii) Mwl,tiplicati,on. When we come to multiplication,

it is most convenient to confine ourcelveg to Ttositiue numbers

(among which we may include 0) in t'he first instancc, and to go

back for a moment to the sections of positive rational numbers

only which we considered in $$  -7. We may then follow pract-i-

cutty the same road as in the case of addition, taking (c) to be (ob)

u"a 1q to be (,d.B). The argument is the same, except when we

are proving that all rational numbers with at most one exception

*ori b"long to (c) or (C). This depends, as in the case of addi-

tion. on showine that we can choose Q, A,b, and 3 so that C - c is

*r.*dU u, *" fl.urr. Ilere we use the identity

O - a: AB - ab : {A - a) B + a(B -b).

Finally we include negative numbers within the scope of our

ilefinition by agreeing that, ifa and € are positive, then

(-o)F --a9, d(-  P)--a9, (-  o)  ( -  8) :ats.

(i") Diaision. fn order to define division, rve begin by- de-

fining the reciprocal 116 of a number a (other than zero)' Con-

fining ourselves in the first instanoe to positive numbers and

sectiJns of positive rational numbers, we deline the recipr.ocal of a

positive no*bu" a by meahs of the lower class (1/'d) and the upper

ctaqs (1/o). We then define the reciprocal of a negative number

- a by the equation f /(- o): - (1/a). Finally we define olts by

the equation
olB: a' x (UP).

l l l  l l l l  nEAL vaRrABLDs l9

W,' nlrr l,hcn in a position to apply to all real numbery rational
€l ' l ttrr l ' i ,rrrl, the whole of the ideas and methods of erementary
Flgr'lrrrr. 

- 
NnLrrrally we do not propose to carry out this task in

€c&nll, It, rvill be more profitable and more interesting to turn
€llt' nl,l,r'rrl,ion to some special, but parbicurarly importait, crasses
€f lt ' t 'nt, i,,rrt l numbers.

trntrrplos vr. Provo the theorems oxpresscd by the following
hl t t , rh, , t :

l ,  11 r0.0xa:0.

I' nll-flt

t' (t I tlt:oy+By.

2, cx 1:1xc:c.  B.  cx(f /c) : f .

o. a(B):(nB)y. 6. a(B*y):"F+ay.

8.  laBl : la l lBl .

lf, The numb et ,jf2. Let us now return for a moment to
$r pru.l,icrrlu,r irrational number which we discussed in $ A_i.
ta l,lr,'ru t:.rrstructed a section by means of the ineq'iaHties
, < g, uf > 2. This was a section of the posibive rational oo*be"s
fftly.i brrl.rv. replaee it (as was explainid in $ g) uy u,u"tioo-or
lll l,lro l^l,i,rrnl numbers. we denote the section or number thus
&6lu,l ly thc symbol y'2.

- -tf ' lru.lrrs'r.t 's 
by rneans of which the product of 1/2by itself is

iFf,tr,ul rr'rr (i) (otu'), where a and a'are positive rationainumbers
|furrro rrlrrrlr,os ore less than Z, (ii) (Ai,), where A and, A, are
fHlllv. r'^l,i,ral numbers whose,squares are greater than 2. These
drm,'r .xlrrurst all positive rational numbers save one, which can
Fify lt, ' t i l,sclf. Thus

Agrr,in
G/2)':  ̂ /2 \/2:2'

( - 42)' : e 4D e 4D: \/2 \/2.: (r/2)': z.
?frrn t/r,' t'r1ttu,l,ion a2:2 has the two roots ,r/2 and, -y'2. Similarlv
76 r ' r r r lh l  r l isorrss the equat ions &r:8,  f i " : I , . . .  and. the colre-
Fflrrr, lrrrg i lrn[ional numbers \/9, - n/9, i/2, ...,

f n, Qundratlc surds. A number of the form * 4la,whete
i la * 1r,'rril,iv, r.,tional number which is not the square of another
t*l,f"f l l l  rrrrrrrlrcr, is called a, pure quad,ratic swrd,. A number of
thri l,,rtr tt. | 1/b, where a is rational, and, q/b is a pure quadratic
€litr l, rn n,rrrr,, l, irrrcs called a mixed quadratic surd.

2_2
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The two numbenr alJb arc tho roots of tho quadratic equation

d-2ar*a2-b:O.

ConverselS the cquation 812pa1q:O, rvhclo p and q aro ratioual, and

f -q>O, has as its roots the trvo quadratic surds -plJ(p2-g).

The only kind of irrational numbcls rvhose oxistence was

suggested by the geometrical considerations of $ 3 are these
quadratic surds, pure and mixcd, and the more cornplicated
irrationals rvhich rnay be expressed in a folm involvirig the
repeated extmction of square roots, such as

,,/2 + ((2 + \/2) + ̂ / 12 + \/(2 +,J2)\.

It is easy to construct geometrically a line rvhose length is
equal to any number of this form, as thc reader wili easily see for
himself. That irrational numbers of thesc kinds only can be con-
structed by Euclidean mebhods (i.e. by geomctrical constructions
with ruler and compasses) rs a point the proof of rvhich must
be defened for the present*. 'I'his propcrty of quadratic surds
makes them especially intcresting.

Examples VIL 1. Give gcomctrical constructions for

e Jz Je+Jz), J{z+Je+Jz)}.

2. 'Iho quadratic equation auz+2bx+c:O has two real roots t if
b2-ac>0. Suppose a,, b c raLionaL Nothing is lost by taking all three
to bo integers, firr wo can multiply the cquation by the lc*st c'ourmon
multiplo of their denominators.

The reader will remember that the roots aro {-bXJ(br-ac)}la. It is
easy to corrstruct theso lengths geometrically, first constructing 

^/(bz-ac).
A much lrore elegant, though lcss straightforrvar4 coustluction is the
following.

' See Ch. II, Misc. Exs. 22.

t f.r. tlrero are trvo values of c lor wlrich an2+2ba+c:0. If D2-ac<0 there
are no such values of c. The reaaler will remember that ip books on elementary
algebra the equation is said to have ttvo.complert roots. The meaning to be
attached to this statement will be explainecl in Ch. 1II.

When 1,2-ac the equation has only ons root. For the eake of uniformity
it is generally saiai in this case to have .two eguo,l' roots, but this is a urore
convenIron.

- .,.r,,t,:,,r 
,.inlc of unit ratlius, a diameter pQ, and the ta,ngents at the ends;f lie Jt'rtttult:r.t.

t ,  l l  m ln;xrxit ; ivo I,p,and. Qe,wil l  bo drawn in the same direct ion.{f  I 'hrrt ,  /"(,1'wi l l  
'ot 

meet the-circle f  Urior,*nleif  b2:acitwi l l  be

frti:;ll; ,Vrr.irJ 
tlw, Lttitt if b2:ac rhe;ir.c;; thu u".ond 

"_,ri*"it""

Vrl'a ltlt'--2rt.lb and QQ'--clzb, haaingregard, to tign*. Joinp,Q,,|lllttr2t tla rir,,^ itt M ancl N. Drau pM ori pi, cutting ee, in X and y-
llrr 0 ,t rr nrl e l' are tln roots of the equation ulti m";, Trroper signsf.

1'lrr rrrru'f in sirnrrlo and wo leavo it as an exercise to the reader.fffrt*ltur', ;rr,r'lrrr,'s ovcri simprer, ,orr.t"o.tiorrf" lh" roro*iog. Take a rinelF { unit tntrth. Draw.-Bl: _zbb ;;;r;i;tar to AB, and CD:cla
?f,pnll"ur't h lr(t unrl itt' the same' diieri*-"t" na. on AD as diameier}prrfir r ilrrlr rtrttittq IIC in X and y. ft,r" A,f ond By are the roots.
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I  I ' t rrvl  l , l rnb
,10'q) : r/p x Js,,/(pr,l) : p Jc.

l* ftrmo theoreme concerning quadratic surds.

2l

Two
:f i::,il,li,' 

*'1,,t*,1:u. said ro be siiitar if thcy can be ex_
f l ; rrrlr,rrrl rrrull, iples of the same surd, and otherwise to be

i t l l ' , t l ' l r r rn

{8:2 t/2, t/zf-: E 42,
l t  y' l f, \/I,I rrr.r, sirrri lrrr surds. On the other hand, if M and N
ll l l ,rtH',tn rvlrir, lt lrrr,v. no common factor, and neither of whieh

I f*rlr ' , '1, nrlrrrlt, a/l l l  uti 1/N are dissirnilar surds. For*pp*q
p*eihhr,

^t i t  P / t  t^r  r
q v i '  v ,v: ;

lhcte l f  l  l l r r r  l r , l , l r , ;1q r l r , r r6 l ,g i ' teqcrs.
I  lhc l ldr l , ,  t r  r l r r rvr ,  to nrr l t  t l ro cnne in which Zr ond c have the same ond of t t l rpesl le et11rr  ' l '1r , ,  r r r r r lor  r l torr f t l  r l rnrv f igures for  other cnses.
* |  lern * thr , .  l , l r ru nrtrr , r r (  

rvr  v l r rcr  u.seE'

K*rffe,,.,.r.,,,.,r,,".,....r. .]l']lll ':l"t 
r(loin'a rtgont sur certaines questions dt

Fig. 5.

t tcurt t t r t tF (1, ' r l rur l r  t rnrrr lnt , ion by J.  Gr iess,  pur i r ,  iggbl .
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Then y'lllJl is evidently rational, and thereft-rre (Ex. rr. 3)
integral. Tlrus .ll[fi:P', where P is an integer. Let a, b, c, ...
be the prime factors of P, so that

n[N: d'b$c2r ..,,

rvhere a, 8,,f,... are positive integers. 'Ihen MN is divisible by
o,2", and therefore either (1) .1'11 is divisible by o2", or (2) -lI is

divisible by a'",or (3) M and 1[ are both divisible by o. The lasb

case may be ruled out, since M and .Ar have no cornmon factor.
This argument maybe applied to each of the factors a,2",b2F, c'r, ...,
so that M must be divisible by some of these factors and -lI by
the remainder. Thus

M : l'ro, N: Po',

where Pr'denotes the producb of some of the facbors e'",bzF,czr, ...
and Pro the product of the rest. Hence M and.AI are both perfect
squares, which is contrary to our hypothesis.

THooRnM. If A, B, C, D are rational and,

A+lB:C+\/D,

tlrcn etther (i) 1: C, B:D or (il) B and, D at"eboth. squares of
rational, numbers.

For B - D is rational, and so is

,r /B-, , / .D:C-4.

If B is not cqual to -D (in which case it is obvious that -d is also
equal to C), it follorvs that

\/B + ̂ /D: (B - D)l(\/B - ^/D>
is also rational. Hence ,lB and a/D arc rational.

Conor,r,eny. If A+ \/B:C + t/D, then A- n/R:C - +/D
(unless 1/B and' a/D are'both rational).

Examples VIII l. lrove a0 initio t;hrt /2 and JB are not simi]ar
surds.

2. Provo that n/a and ,,/(l/a), where c is rational, are similar surds
(unless both are rational).

3. If a and D are rational, then /a + ^n/6 cannot be rational unless n/a and

lb are rational. The same is true of /a - n/b, unless a = b.

l l , r : , ;

I  I I '
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,lA*^lB:tlC+ JD,
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l f  rr ,rr i ,r f  l , , , t '  (r ,)  A- C and B:D, or (b) A:D and B:C, or (c) JA, ,r /8, JC,
1//r .r. ^l[ 

r.tio'al or all similar surds. [square the givcn equation and
al ' l ' l ,y I l r , ,  l , l rcolcm above.]

D. N rril,hcr (a,+ ylb)3 nor (@ - J6)3 can bo rational unless /D is lational.
ff I'rrrvo that if r:p*y'g, whero p and t1 are rational, thenc,n, where

tsf f,r rtf.y irrl,cgcr, can be explessed in the form p+eJq, whcre p and Q
Btrr trrl,rlrrrt,l. l,'or example,

( ? 1- J d'z : pz + c + 2p,/ g, @ + J gz : pB + spg + (sp, * 11),h.
llirf rrrrr l,l'r,L,ny polynomial in o with rational coefficients (t.e. any expression
t, l  I  l ro l ' , rr tr t

oof +ap^-r+,..*dnt

Fh,tl,1,,, ... @n aro rational numbors) can be expressed in the form p+ey'g.

'1. ll **"tb, whero 6 is not a perfect squa'e, is the root of an algebraical
F.lrff lirf r rvith rational coefficieuts, lhen a-4/b is another root of tho same
€l l l i t r l , l r , l l .

fl. f,lxl)r.oss tl(p+Jil in the form presmibed in Ex. 6. [Multiply
Htftt t tr f ' t t Irr t  rr ,nd dcnominafot by p - ^/q.f

!r, | )rrlrroo from Exs. 6 and 8 that any explession of the form G (o)l H (x),
*lrrrrrr (/(.r) and 1/(r) are polynomials in a with rational coefficie'ts, can be
€rlrtrururl  i rr  t l roform P+QJq, wherePand Qarorational.

f tr. f l' p, g, and p2-q are positive, we can express J@+"/g) in tho form
y'r | ,/.7, rvlrr:r'o

s : * {p +,,/(p, _ q)}, g : I lp _ 
^/(p, 

_ q)}.
I | . l).t,orminc the conditions that it may be possible to express J(? *Jg),

?f ff,f1r /) rrrd g aro lational, in tho fot'm 
^/x+^/g, 

whero r andg are rrr,tional.

I i?, ll' az -b is positive, the necessary and sufficient conditions that
J(a+ "lb)+ \t(a- Jb)

alr,'rrl,f f rrr I':rl,ional aro that a2-b andtr{a+J@r-b)} should both be sqrares
nf t  ' r l  r"nrr l  t t t t tubcrs.

tll, The contlnuum. The aggregate of all redl numbers,
ti+lr,,rrnl nrrrl irrational, is called the arithmetical continuum.

I l, is convenient to suppose that the straight line A of $ 2
iq,,,,rrrlxrscd of points corresponding to all the numbers of the
rtrrtlrrrr,rl,ir:lr,l continuum, and of no others*. The points of the

i ' l ' lri:r rrrpposition is merely a hypothesie adoptecl (i) because it guffioes for the
t* r t',r,,rr .f .ur gcometry ancl (ii) because it provicles us with convenient geometrical
illr'rlr*l'r,rrr of onolytical processes, As we use geornetrioal language only for
i'iril,"d,,il of illustration, it is not port of our business to study the foundations
Ff l t r , ' r l l l r ' l , lJ .
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line, the aggregate of which may be said to constitute the linear
continuum, then supply us rvith a convenient image of the

arithmetical continuum.

We have considered in some detail the chief properties of a
few classes of real numbers, such, for example, as rational numbers
or quadratic surds. 

'We 
add a few further examples to show horv

very special these particular classes of numbers are, and how, to
put it roughly, they comprise only a minute fraction of the infinite
variety of numbers which constitute the continuum.

(i) Let us consider a more complicated surd expression such as
z:{(a+/15)+ 4/e-JIl).

Our argument for supposing that the expression for a has a meaning might be
as follows. We firstshow, as in $ 12, that there is a number y:"/15 such that

?/2:15, and wo can then, as in $ 10, defino the numbers 4+Jl5r 4-J15.
Now consider the equation in zr,

zrt:4+ J15.
The right-hand sido of this equation is not rational : but exactly fhe same
reasoning which leads us to suppose that there is a, real number r such that
ot:2 (ot any other rational number) also leads us to the conclusion that there
is a number 21 Buch that ztr:44n715. We thus define at:n/(4+Vl5), and
similarly rve can define z2: l/(4- J15) ; and then, as in $ 10, wo define z: zt* zz.

Now it is easy to verify that
z3:32*8.

And we might have given a direct proof of the existence of a uniquo number
z such that z3:32*8. It is easy to seo that there cannot be two such
nnmbers. lot if zr3:321+8 and zz3:3az*8, we find on subtracting and
dividing by zr-tz that 212{.zp21zr2:3. 3ut if zt and z2 are positive 213>8,
223>8 and therefore zr)2, z2)2r 212*2122*222712, atrd so the equation
just found is impossible, And it is easy to see that neither zr not 22 can
be ncgative. For if z1 is negative and equal to -( f is positive and
(3-3(*8:O or 3-(2:B/(.  I lence 3-(2>0, and so (<2. But then
8l(>4, and so Bi( cannot be equal to 3- (2, which is less than 3.

Henco there is at most oqg z such bt;at z3:3248. And it cannot be
r;r,tional. For any rational root of this equation must be integral and a
factor of 8 (Ex. rr. 3), and it is easyto verify thabno one of 1, 2, 4, 8 is a root.

Thus z3-32*8 has at most one root and that root, if it exists, is positive

anil not rational. 'We can now divide the positive rational numbers .c into
two classes Z, -8 according as oB <3fr +8 or u3 > 3a * 8, It is easy to see that
if 13>3x18 and gr is any nnmber greater than r, then also y3>3y*8, For
suppose if possible 93=By+8, Then since s3>3s*8 we obtain on,sub-
tract ing g\-ar<3(y-r),  or yz+xy+a2 <3, which ie impossiblo; for y is
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1rr:ril,ivc a,nd x>2 (since C28). Similarly we can show that if 13<Br*8
nnrl q 1 s then also 93 <3g * 8.

lrirrally, it is cvident that the classes z ancl r? both exist: and thev form
n 

'.ction 
of tho positive rational numbers or positive real numbcr z which

xrrlisfics the eq.ation F:Bz+8. The reader who knows how to solve cubic
tr1rr,,t,io.s by cardan's method will be able to obtain thc explicit expression of
r rlin:ctly from the cquation.

(ii) The direct argument applied above to the equation
,r'rr llo * 8 could be applied (though the application would be
n lil,t,lc more difficult) to the equation

d: a t I6.

^rrrl 
rv.rrld lead us to the conclusion that a unique positive real

trrrrlr.r exists which satisfies this equation. rn this case, hol-
Fvr,r', il is not possible to obtain a simple explicit expression
fir. rr rxrr'posed of any combination of surds. 

- 
rt can in fact

fro 1rr',rvrrl (though the proof is difficult) that it is gene,ally
irirlrr'rsiblo to find such an expression for the root of an equation
ol'lripllr,rr dcgree than 4. Thus, besides irrational numbers rvhich
6all 

-lro 
r:xpressed. us p-o1"T" mixed quadratic or other surds,. or

tt 'rrrlr irrnl, ions of such surds, there are others rvhicL are roots'of
llgt,lr11l1,,o1-"quations but cannot be so expressed. ft is only in
?ur'y nlrrrcirrl cases that such expressions can be found.

(iii) Jlut even rvhen we have added to our list of irrational
t l l l t r r l r r , r ' r  roots of  equat ions (such'as C:a* 16) which cannot be
:*;rli.il,l.y .xpressed as surdg we have not exhausted the different
Lirrrln ol' irra,tional numbers contained in the continuum. Let us
rflrrrv rr, cirr:lc whose diameter is equal to AoAr, i.e. to :unity. It is
lt ir l,rrrrr, l 1,, srrppose* that the circumference of such a circle has a
lr;t ir i l , lr , 'rr, lrrblc of numerical measurement. This length is usually
slr,rr,, l,r,r l lry rr. And it has been shownf (though the proof is un-
iirrl, i irrrrl,, l ,y long and diff icult) that this number n'is not the
frrlt, ol'rrrry a,lgcbraical equation with integral coefficients, such,
f i r l  t r r r i l i l l ) lo,  l r8

7r2 : fL,  j rg : f l ,  l t5: t*n,

r  f j , ,  f  f  r , f ' r r r r r 's  Plnne Tr igot tometry lSt I t  ecl i i ion),  pp,7 etseq.
f  ! i , , .  l l r r l r , r r r r r ,  loc. t : i t , rpp.S05etscq,,orthegamervr i ter 's Squar ingtheCirc le

1t ;a l r l , r  r ,111, ' ,  I  l l  l i l ) .
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rvhcre n is an integer. In this way it is possible to define a
number which is not rational nor yet belongs to any of the classes
of irrational numbers which we have so far considered. And this
number zr is no isolated or exceptional case. Any number of obher
examples can be constructed. In fact it is only special classes of
irrational nurnbers rvhich are roots of equations of this kind, just

as it is only a still srnaller class ,which can be expressed by means
of surds.

''. 16. The con*tinuo-us ,Led _v*qgg.tle. The 'real numbers'
may be regarded from two points of view. We may think of
them as an aggregate, the 'aribhmetical continuum' defined in
the preceding section, or ind,iuid'ual'l'y, And when 'we think of
them individually, we may think either of a particular specif,ed'
number (such as L, - t, nf 2, or z,r) or we may think of any number,
an' unspecif,ed number, tlLe nuntber n. This last is our point of
view when we make such assertions as 'r is a number', 'at is the
measure of a length','& may be rational or irrational', The ar
which occurs in propositions such as these is called tlte contittuous
real aq.,riable: and the individual numbers are called the aal,ues of.
the variable.

A 'valiable', however, need not necessarily be continuous.
fnstead of considering the aggregate of ql,l, real numbers, rve
might consider some partial aggregate contained in the former
aggregate, such as the aggregate of rational numbers, or the
aggregate of positive integers. Let us take the last case. Then
in statements about nrzy positive integer, or an unspecifnd, positive
integer, such as'm is either odd or eveo',n is called the variable,
a gtositiae integral, oat'iabl,e, and the individual positive integers
are its values.

Naturally 'o' and 'm' axe only examples of variables, the
variable whose 'field of variation' is formed by all the rcal
numbers, and that whose field is formed by the positive integers.

'Ihese are the most important examples, but we have often to
consider other cases, In the theory of decimals, for instance, lve
may denote by ,z any figure in the expression of any number as a
decimal. Then su is a variable, but a variable which has only ten
differenb values, viz.0, l, 2,3,4,5, 6, 7,8, 9. The reader should
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llrirrl< of other examples of variabres with different f ields of varia.
l,i,rr. I{c will find interesting examples in ordinary life: policeman
,,, l lrc driver of cab ac, the year u,the nth day of the week. Thc
vrr,lrrcs of thesc variables are naturally not numbers.

t7. Sections of the real numbers. In $$ a_Z we con_
rri'1,'rr<l 'secbions' of the rational nunrbers, i.e. tooJls of division of
l,lrrr 

'.l,ional 
numbers (or of the positive rational numbers onlv)

irrf', two classes L and 1? possessing the following characterist"ic
1 rlo1 N rr' l icg:

(i) that every number ofthe type considered belongs to one
rrrr,l o11ly one of the two classes I

(i i) that both classes exist;
(iii) that any member of Z is less tharr any membcr of -8.

11, 
ir plainly possible to apply the same idea to the aggregate

.l'rrll .cal numbers, and the process is, as the reader ouiti n"J i"
Inl,',r' cllilpl,ers, of very great imporlance.

lir,l, 11s then suppose* that P and Q are trvo properties which
nr,, rrrrrtrrally cxclusive, and one of which is possessed by every
r,irl rrrrrrbcr. Further let us suppose that any nurnbcr whicl
lr,rrlr,sscs P is less than any which possesses Q. We call the
rrurrrlrr:r's rvhich possess P the lower or treftJand, class L, and
f,lr,rrrr rvlrich possess Q the upper or riglfi-hand, cluss R,

' l ' l r r rs / ) rn ightbe x3^/2 and @ Irc o>J2. I t is  important to observe
llr,,l ru |ilir of prupertias wbich suffice to define a section of the rational
rrrrr'1,,,r'ir rrr*y not suffice to defno one of the real numbers. This is so, for
r,rrrrrr lr fc, with the pair .a ( J2, and , n > JZ, or ( i f  we confine ourselves
l,r f ',,rril,ivo numbers) with r sz4 2, and . tz > 2,. Ivery rational number
1,,,,r,r\iil(\n.nc or other of the properties, but not overy real number, eince in
il|lr' l r.lilr) ./2 escapes classification.

'l'lr,r'. irre now trvo possibilitiesf. Either z has a greatest
frr,,rrrlrr:r' I, or R has a least member r, Both of these events

" 'l ' lr. rlisc.ssion whicb follows is in many woys similar to that of g 6. we
l'r L r' s11,1, nl,l,.rrrptetl to ovoicl a certajn amount of repetiiion, The iclea of a ,section.,
flr"l f rr'rrglrt i 'to |rornincnce in Dedekind'g famous pamphlet stctigkei,t unil
a) t,trttrt,tlt zthlcn, ig one .vhich cnn, arrd indeed must, be grasped by every reacler
; '1 l l l i r r  l r , ,h,  cvel  i f  he bo one of  those who prefer to omit  the discussion of the
ir  , r r ,n of  r r , r r  i r rn"t iorral  number containecl  in $$ 6_12.

|  ' l ' l r r , r r r  rvcrc t l t rco in $ 6,
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cannot occur. For if Z had a greatest membcr l, ancl -l? a lenst
member r, the number |(l+r) wouid be greater than all membcrs
of Z and less than all members of -R, and so could not belong to

either class. On the othcr hand one event must occur*.

X'or let -t, and J?, denote the classes formed from Z and -B by
taking only the rational members of .t and J?. Then the classes

-t, and -R, form a section of the rational numbers. 'Ihere are norv
two cases to distinguish.

It may happen that L, has a greatesb mcmber a. In this case
a must be also the greatest member of Z. tr'or if nob, rve eould find
a greater, say p. There are rational numbers lying between a and

B, and these, being less than B, belong to tr, and therefore to .t,;
and this is plainly a contradiction. Hencc a is the greatest

member of Z.

On the other hand it may hnppcn bhat -t' hns no glcrtcsb
member. In this casc the section of the rational numbers formetl
by Z, and -8, is a real number a. This numbcr a must belong
to Z or to "R. If it belongs to tr lve can shew, precisely as before,
that it is the greatest membcr of Z, and similarly, if ib belongs

to R, it is the least member of /i.

Thus in any case either Z has a greatest member or It a

least. Any section of the real numberS therefore 'corresponds' to

a real number in the sense in which a section of the rational

numbers'sometimes, but nob alrvays, corresponds to a rational

number. This conclusion is of very great importance; for it shols

that the consideration of sections of all the real numbers does not

lead to any further generalisation of our idea of nttmber. Starting

from the rational numbers, we found that the idea of a section of

the rational numbers led us to a new conception of a number, that

of a real number, more general than that of a rational number;

and it might have been expected that the idea of a section of the

real numbers would have led us to a conception more general still.

The discussion which precedes shows that this is not the case, and

that the aggregate of real numbers, or the continuum, has a kind

of completeness which the aggtegate of the rational numbers

lacked, a complebcness which is expressed in technical language

by saying thab the continuurn is closed.
This was not the case in g 6.
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'l'hc result.which we have just proved maybe statedasfollows:

Dedekind's Theorem. If the real num.bers ure d,iuid,ed, into
Irrnt akrsses L md, R in suah a way tlrut

(i) euery number belongs to one or other of tke two classes,
(ii) eaclt class contains at leq,st one number,
(iii) anty nrcntber of L is less than any mentber of R,

lltt,tt, !ltere is a number a,wldch has the property th,at ullthe mumbers
lrw |,ltu,n it belong to L and, all, the numbers greater thqn it to R.
tl'ltt urtrtLber a itself may belong to either class.

lrr rrlrplications we have often to consider sections not of all numbers but
rrf rr,ll l,lrrrso contained in an interual (8, y), thab is to say of all numbers
, nrrr.f r l,lrli; B S o S y. A'section' of such numbers is of course a division of
l,lr''r irrl,. trvo classes possessing the properties (i), (ii), and (iii). Such
I Blr.l,irrn rnay bc converted into a section of all numbcrs by adding to L all
Irrrrrrlrrrr,s loss than B and to 1lall numbers greater than 7, It isclearthat
ll1. rrrrrr'lrrsi.n stated in Dcdckind's Theorem still holds if rve substitute (the

lmrl rrrrrrrlxrru of t l ic intcrval (B, y)'for,tho rcal numbers,, and that the
ilurfrf 'ru' ,r irr this case satisfies the inequalities B Ea€y.

lB. Points of accumulation. A system ofueq!-p_qmbers, or
lf llr,, lr,rirrl,s on a straight line conrsponding to them, defined in

llp tvrr,y rvlriltever, is cailed an aggregate or set of numbers or

lrrrirrl,ri. 'l'lro sct might consist, for example, of all the positive
1111r1,,'rrr, or of all l,he rational poinbs.

l l, ir lrr,rst, coni'cnient here to use the language of geometry*.
Hll l ' ;u,,,,, l , lrrrrr that we are given a set of points, rvhich we wil l
tlrrflrrl,,' l,.y ,S. 'l'rrke any point f, rvhich may or may not belong to B.
tl'lr"rr l,l,,,rt nnr i;wo possibilities. Iliiher (i) it is possible to choose
fl f rn.rrl,rvo rurrrrbor 6 so that the interval (f - 8, f + E) does not con-
$*irr .rr.y ;r,ri. l ,.1'S, otl ier than f itselff, or(i i) thisis not possible.

Fhrlr;,,^rr, lirr ox',rrr|lc, that I consists of the points correspo'ding to all
lhe 1,,,,rtl r'rr irrl.1lrr.g, If f is itself a positivo intcger, we can take 0 to bo any
tr1lrl,r ' l  l ' lr l . lrur l, arrd (i) wil l be truel or, if f is halfway between two
f  
r r ra l i l t  r  t r r l r t l l , . r ' r t ,  1 ' t r  crr . r r  t l l<c B to be any number leSS tban ! .  On the other

hqr'1, tf ,\ r.,rrr.ist,s rrf' :Lll tho rational points, then, whatever the value of f,
l i i r t+|rrrr ' ;  I ' ' r^rry i r r lo lvulwl iatevcrcontainsaninf in i tyofrat ionaipoints.

I llr" trrrrrllt ' rvill lrrr,rrll.y l'cquire to be reminfletl that thie course is a6optecl
f , le l i  f , , l  l l r r r r l l t r l  r ) l  l i r r { r r iet iO ConVenienoe.

| 'l lrlr r,lnrrrl in ol' rrorrr.tso unDccess&ry if f does not itself belong to B.

29
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Let us suppose that (ii) is true. Then any interval (f - 6, f + E),

however small its lengbh, contains at least one point ft which

belongs to S and does not coincide with f ; and this whether f
itself be a member of B or not. In this case we shall say that f is

a point of accumulation of B. It is easy to see that the interval

(f - E, 6+E) must contain, not merely one, but infinitely rnany

points of B. n'or, when we have determined 6r, we can take an

interval (f - Er, f+ 3') surrounding f but not reaching as far as f'.
But this interval also must contain a point, sa! Er, which is a

member of B and does not coincide with f. Obviously we may

repeat this argument, with f, in the place of ft I and so on

indefinitcly. In this lvay we can determine as many points

€r, En, €", " '

as we please, all belonging to I and all lying inside the interval

( f -E,  f+ E).
A point of accumulation of B may or may nob be itself a point

of S. The examples which follow illusbrate the various possibilities.

Examples TX.. .l: If ,S consists of the points corresponding to the

positive integers, or all the iltegers, thero are no points of accumulation.

2:'' If S consists of all the rational points, every point of tho line is a

point of accumulation.

3, If lS consists of the points l' i, l, ..., there is one point of accumula'

tion, viz. jhe origin.

/' If I consists of all tho positive rational points, the points of accumula-

tion are the origin and all positive points of the line.

"'' 19. Weierstrass'g Theorem. The general lheory of sets

of points is of the ut-most interest and importance in the higher

branches of analysis ; but it is for the most part too difficuli to be

included in a book such as this. There is however one funda-

mental theorem which is dasily deduced from Dedekind's Theorem

and which we.shall require later.

Tunonnu. If a set S contains inf'nitely many points, and, is

ent'irel,y situated, in an interaal (q, F), then ut l,east one point of the

interual, is a poittt of accwmulation of S.

We divide the points of the line A into bwo slasses in the

following marlner. The point P belongs t'o L if there are an
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Irrflirrl,.y of points of Bto the right of P, and to -R in the contrary
plrEu. 'l'hon it is evide't that conditions (i) and (iii) of Dedekind's
'f'f1,',,i'r'rrr rr,re satisfied; and since a belongs to Z and B to R,
Buttrl i l , ion (i i) is satisfied also.

llr,rrcc there is a point f such that, however small be 8, f,-D
ftthrrrgr lo Z and f+6 to -8, so that the interval (f-S, f +S)
Hrtrl,nirrn nn infinity of points of B. Elence f is a point of accumu-
l*t i lrt of rS.

'l'lrla lxrirrt may of course coincido with a or B, as for instance when a:0,
F:1,, 'r,,1 .f consists of the points l, l , t,.... In this case 0 is the sole
$rlirl ol' lor:umulation.

Mlr.{()I,ILLANEOUS EXAMPLES ON CIIAPTER I.

l, Wlrrr,b nro the conditions thab an+by+cz:O, (l) for all values of
* !, ti (:f) frrr all values_ of o, y, z subject to ao*l3g*yz:O; (B) for all
tattlea rrf',1;, r7, z subject to both au*By*yz:O and. Ar*By'*Cz:O',I'

I' Arrl' |ositivo rational number can be expressed in one and o'ly one
lqy l t t  l , l ro l i r l rn

",+ f3,* #-. r+ ... + t.{3 ... a,
; f1p1rr 111 u,\, , . ,rctL are integers, and

O Ear O5!a212, 0sa3<8, . , .O<asqh,

H, Arry lxrsiLivo rational-number can be exptessed in ono and ono way
Ghly rro rr rrirrrplo continued fraction , 

'

.1 I  Ier+;;;;q;q;;,

*ltetrr ,r,, .r,r, ... n,ro positive integers, of which the first only may be zero.

. tA'rr,rrrrl,rr rf i,hc theory of s*ch continued fractions will be founci in text-
l*rr=Lr ',1' ̂ l11.rrlr^. 

r,'or further information as to modes of represcntation of
f6lfrrrr'rl *rr,l ir'.tio'al numbers, see Irobson, TA.eory of Funciion, of a Beal
THtttl,ia, !lnrl orliliorr, vol. r, pp. 4b-45.J

4. l,'rrr,l l,llr rrr,t,ional roots (if any) of grs_612+lbx_lO:0.

h A lirrrr,,l/l is divided al C in aurea sectione (Euc. rr. ll)_i.e,so that
Alt lt' ,1i11't. Show that the ratio ACIAB is irrational.

f '1 rli'rrrf, grr.rrrot'ical proof will be found in Bromwich,s rnf,nite series,
I  |  1:1,  l ' .  ; ! r l i l .  I

It ,f ir ir,r,nl,i'rrrr,l. In what circumstances 
"u, 

oA*b

4rB t 'r l l ' r l r , l l r  lx) r ' rrr, iu.Dl ," 

*t 'u ur.culns[aDces can 
;ala'  whete a' b'  c '  d


