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. The following reviews (of the original or of the translation)
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nmticalGazette, vol.3 (1906), pp.348*349; by C. Bourlet, in
Nouaelles Annales de Math,imatiques, ser. 4, vol. 7 (1907),

1tp. 174-L76; and by Hans Hahn , in MonatsheJte ftir Math. u.
l'hysilc, vol. 21 (1910), Literaturber.,p.26. The author is
indebted to Professor Veblen and to Professor Hahn for
calling his attention to errors in $ 62.

The principal modifications in the present edition are the
following: $ 38 and $ 64 have been enlarged; $ 62 has been
rewritten, and $ 62a has been added; the bibliographical
notes have been brought more nearly up to date; through-
out Chapter VII [formerly called the Appendix ($ 73*$ 91)]
the term "normal series" has been replaced by the term
" well-ordered-series " (for reasons explained in a footnote
to $ 74); and in $ 89a a brief account has been inserted of
Hartogs's recent proof of Zerrrelo's theorem that every class
can be well-ordered.
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THE COI{TINUUM
AND OTHER fl.PES OF SERIAL ORDER

INTRODUCTION
'l'rrn main object of this book is to give a systematic elementaryrlrr,unt of the modern- theory of the continuum as a type of seriar
111'11111 * a theory which underriur trr" J"n"ition of irrationar num-lx'rs and makes possibre , rigoro.r"i""utir"nt of the rear numberr.ynl,cm of algebra.

'l'he mathematicar theory of the continuous independent vari-nlrlc, in anything likea.rigqi."! forr", *uy ne said to date from theyrrrr,r 1872, when Dedekind's stetigrcitt una irrationale iah;;;-
;xr*rcd;* and it reached a certain compretion i; ffi;;#ff" #:,1rr'l; of Cantor,s Beitrtig.e zur Regriindung i* t rriili" ir*ir*It'hru was published in ihe Mathi*"t;rrn-J irnalen.f

while all earrier discussions or 
"ontiouity t ad been based more orkrss <xrnsciously on the notions oi aistance, number, or magnitude,t'lur l)cdekind-cantor theov is. baseJ .oiay o" the relation of order.'l'lrc fact that acomprete definition oi tt 

" 
".orrtiouum 

has thus beengiv.n in terms of order alone has fe"n sigrraiizea by Russell $ as one
. r 'r-hird (unaltered) ed.ition, 1g05; Engrish traneration by w. w. Beman.irr rr votume called Dedekina,i Zr*i" ." iiin il o! Numbus, tgol.t Ccorg Cantor, Math. Ann.,,vol.-46f rssil, o;. a"gr_Sl2; French translationIry I'-' Marotte, ia a vorume caried gzr i^iri,iil""i de ra, thcorie des enaernbrestntnsfinis, 1899; Enerish translation rv p. e. s.-J"" tdain, contributiar* to thel"umdins ol the Theory of rr" 7oti" i"iiir', b"p"o cor* pubtishine Co..lt)r5' For further references to dantor's *o.L,'u#$ 74. An interesting con-trilrrrtion to the theory r* u."o -J"i, olv"ir"n, Definitiotx in brm* ofonlu alo*e in the lineor contimnm 

""a t" iai*dra ,:*, 
,i;;;.;:;, 

;;;";;.Airr., vol.6 (1905), pp. 16F_121.
I Il. Russell, princinles o!_Mathematics, vol. 1 (1908), p. B0B. See also A.N. Whitehead and B. Rumeil, pi*ra" lh*i"ilio, especialy vol. 2 (1912)rrrrrl v.l. B (r,ts), where a,, elaborate r.;;;;;ffi theory of order ie givenirr tlur symbolic notarion or *oa"*--rli;;;*i ril".

I



2 TYPES OF SERIAL ORDER

of the notable achievements of modern pure mathematics;* and t'he

simplicity of the ordinal theory, which requires no technical knowl-
edge of mathematics whatever, renders it peculiarly accessible to
the increasing number of non-mathematical students of scientific

method who wish to keep in touch with recent developments in the

logic of mathematics.
The present work has therefore been prepared with the needs of

such students, as well as those of the more mathematical reader, in
view; the mathematical prerequisites have been reduced (except in
one or two illustrative examples) to a knowledge of the natural
numbers, 1,2,3, " . . , and the simplest facts of elementary geom-

etry; the demonstrations are given in full, the longer or more

difficult ones being set in closer typel and in connection with
every definition numerous examples are given, to illustrate, in a
concrete way, not only the systems which have, but also those

which have not, the property in question.
Chapter I is introductory, concerned chiefly with the notion of

one-to-one correspondence between two classes or collections.

Chapter II introduces simply ordered classes, or series,t and ex-

plains the notion of an ordinal correspondence between two series'

Chapters III and IV concern the special types of series known as

discrete and dense, and chapter Y, which is the main part of the

book, contains the definition of continuous series. Chapter YI is a

supplementary chapter, defining multiply ordered classes, and

continuous series in more than one dimension. Chapter YII gives

a brief introduction to the theory of the so-called " well-ordered "
series, and Cantor's transfinite numbers. An index of all the

technical terms is given at the end of the volume.

* The fundamental importance of the subject of order may be inferred

from the fact that all the concepts required in geometry can be expressed in
terms of the concept of order alonel see, for example, O' Veblen, A system

o! arioms lor geometry, Trons. Amer- Malh. Soc,, vol. 5 (1904), pp' 343-

384; or E. V. Huntingtot, A set o! postulates lor abstract geonlew, erpressed in
terms o! the simple relation of incltaion, Math. Ann., vol. 73 (1913), pp' 522-

559.

I The word series is here used not in the technical sense of a sum of numeri-

cal terms, but in a more general sense explaihed in 5 12.

INTRODUCTION 3

ll, will be noticed that while the usual treatment of the con-

i,,,,,,,,,tinmathematicaltext-booksbeginswithadiscussionofthe
;;;,i,;r, "i 

real numbers, the present tllegry is based solelv on a set

,,1 1,,,Hl,rrlates the statemenCof which is entirely independent of

,,,,u,,,.i.n1 concepts (see $ 12, $ 21, $ 41, and $ 54). The various

r,,,','f -,.-*V.tems of algebra serve merely as examples of systems

rvlri,,h saiisfy the postulates*important examples' indeed' but

,,,,i, fo ,"y 
"means 

the only possible ones, as may be seen Uv 
11-

ojr,,,ti.r, oi th" li.t* of examples given in each chapter ($$ 19, 28,

i,t, ri,l). For the benefit of ttre non-mathematical reader' I give a

,t,,i,,,it"a explanation of each of the number-systems as it occurs' in

lo l'rrr &s the relation of order is concerned (see $ 22 for the integers'

I n i , ,t'tr. ifre ratronals, and $ 63, 3 for the r,eals) ; the operations of

^,rairi"" 
and multiplication-are mentioned only incidentally (see

$5 ,;i;;t, ,"d 65), since they are not relevant to the purelv ordinal

l,lrcory.* r --4--^-^^' 
l,r.or"lo.ion, I should say that the bibliographical references

t,lrroughout the took are notintended to be in any sense exhaus-

t,ivc; for the most part they serve merely to indicate the sources of

In.y own information.

"lhereaderwhoisinterestedintheseextra-ordioalaspectsofalgebramay
,,,n'. to-*y paper on fi pn"A'n"*tal Laws oJ Addittion anil Mul'tiplim'tian

t* l,]lementarE Algebra,r.fiiot"a m* tbe Armnls o! Matherut'lirs' vol' 8 (1906)'

pi,. i-a+ ipirtliJation cimt" "t 
flarvard Universitv); or to mv Fundam'ental

l'roltositions o! Algebta, U"ioS *o"og'ry! I-V (pp' 149-207) in the volume
'rrrtil"^|t 

Uonog*phs-on Toptcs il ruoairn Mothem,atics rel,euont to the Elemerttnty

/,'rild, edited by J. W. -f,' Vol"s (Longmans' Q19en 
& Co'' 1911)' A more

r,lcrrrentarY treatment may be found in John Wesley Young's Lednn'es on'

l,r;-k;;r$"1 Connepts of ilgebra and' Geotn'etrg (Macmillan' 1911)'



CHAPTER I
Or Cr,essns rry Grrtnnar,

1. A closs (Menge, ensemble) is said to be.detemrined by any testor condition which every entiiy (in the umverse considered) musteither satisfy or not satisfy; *r 
""uty *6ich satisfies the condi-tion is said to belong to 4; "h.r, urji" called an eleme*tof theclass.* A nult or ernpty 

"tr.. "o*.p*J, *o u condition which issatisfied by no entityin the 
""i""r.J"oiJdered.I.or exa.mple, the class of prime numbers is a class of numbersdetermined by the condition thrt u;;;;_ber which belonss toit must have no factors orher than it.;if ;;ll " 

A;;;;il;"i.-.i ,men is a class of livingaeings determin"Jby certain conditions setforth in works on Oy:O] finaffy, tne-.tu*, oi fi;;il;;"numbers which end *J yul1*pty.furi.i"ceevery perfect squarenumber must end in 0, 1, 4, 5,'6,"ot g. - ---

2. If two elements a andb of a given class are regarded as inter_changeable throughout a given dislusrr*,T,n"r rre said to be equal;otherwise they are said to be axtiii.-lihe notatior" 
"o*mooryusedareo:6and a*b,respectiveiy. .l

8' A onc-to-one correspond,eice betieentwo crasses is said to beestablished when some rut" i. siu"" *L"""ty each element of oneclass is paired with one and onr| one ur"-u* of the other crass, andreciprocally each erement of the *rorJ.i* i, pui"J;ith;ii;only one element of the first 
"lass.For example, the crass of soldiers in an army can be put into one-to'one coruespondence with the 

"lass 
oirjhl,, ,"rri#;il;";**

* E, Weber, Algehta. vol. 11p. 4. For the sake of uniformity with peano,sFurnul.aire d,e Mathinm,tique-s, t'*r^A"ii ilili"oi ltamlglattiglceit, by class
:j':19 'f bv collection,.mlil:Yl 

"TI*ur", .irls."g.te - arr of which termsare rn r^e' For recent discu'sions 0f the concept'c'rass, see the articlee cited in

$4 CLASSES ]N GENERAL 5
nince (as we suppose) each soldier is the owner of one and only one
ri{lc, and each rifle is the property of one and only one soldie"r.

Again, the class of natural numbers can be pri irto one_to_one
rl.r'respondence with the class of even numbers, since each natural
number is half of some particular even number and each even
rrumber is double some particular natural numberl thus:

1, 2, 3,

2, 4, 6,

Ag.ain, the class of points on a line ,4.8 three inches long can be
Jrut into one-to-one correspondence with the crass of poiits oo *

line CD- one inch long; for example by means of projecting rays
rlrown from a point O as in the figure. 

-

4. An example of a relation beiween two crasses which is not a
,rrc-to-one correspondence, is furnished by the reration of owner-
ship between the class of sordiers and the crass of shoes which they
woar; we have here what may be called a two_to_one 

"or"".po.rj_cnce between these classes, since each shoe is worn by one and only
,ne soldier, while each soldier wears two and only two shoes. Th"e
<:onsideration of this and similar examples shows that all the con-
rlitions mentioned in the definition of one-to-one correspondence
trc essential.

- Tij ttre clase of square numlers can beput into one-to_one conespond_
'ncc with the claes of all natural numbers wae known to Garileo; see hisI)ialngs concerruing two new sciences, transration by crew and a" srr"i. iisraipp. 18-40.



6 TYPES OF'SERIAL ORDER 55

6. Obviously if two classes can be put into one-to-one corre-

spondence with any third class, they can be put into one-to-one

correspondence with each other.
6. A part (" proper part," echter Tei,l), of" a class .,,4- is any class

which contains some but not all of the elements of ,4', and no other

element.
A subcloss (Teit) of. A is any class every element of which belongs

to -4"; that is, a subclass is either a part or the whole.

?. We now come to the definition of flnite and infinite classes'

Aninfi,ruite cZass is a class which can be put into one-to-one corre-

spondence with a part of itself . Afi.nite class is then defined as any

class which is not infinite.
This fundamental property of infinite classes was clearly stated

in B. Bolzano's Parad,orien des Unendlichen (published post-

humously in 1850), and has since been adopted as the deffnition of

infinity in the modern theory of classes.*

8. An example of an infinite class is the class of the natural
numbers, since it, can be put into one-to-one correspondence with
the class of the even numbers, which is only a part of itself ($ 3)'

Again, the class of points on a line ,4.8 is inffnite, since it can be

put into one-to-one correspondence with the class of points on a

segment CD of. AB (by first putting both these classes into one-to-

* See G. Cantor, Crelle's Junn.ftir Math.,vol.84 (1877)' p.242; and espe-

cially R. Dedekind: Was sinil und was sollen die Zahlen, 1887 (English trans-

lation by W. W. Beman, under the title Zssoys on the thearg of Numbers, L9Ol);

$ Io CI,ASSES IN GENERAL 7

.n(! c()rrospondence with the class of points on an auxiliary line

l/ Ii, 'rr,s in the figure)'
'l'lrc tllass of the first m natural numbers' on the other hand' is

lirrit,c, since if we attempt to set up a correspondenceietY:"i 1l:
rvlr.Lr <rla,ss and any one.;iil parts' weshall always find that one

r)r rroro elements of tf'";h;Jt# will be left over after all the

r,1.rrr.,ts of the partiaiclass have been assigned (see $ 27)'

$. 'l'he most imporL"t' "i"*""tuw 
theorems in regard to infinite

cLr.sst's arc the following:
(l) If ang ,uU'to'r of o giuen class i's infi'nite then the class itself i's

"'"r,''','!lr',',ora be the given class,.A'Jl: t{tf Yl^*:lTl#:|"
r*rl,.lass of all the "I";;;;;iA 

which do not belong to A' (noting

lluut A" maY be a null class)

Ilv hypothesis, tn"''u"iJl'part'' A"'-of A'which can be put int'o

.rrr:-to-one .orr".porra""rrJ"iiit, it 
" 

*Lot" of A'1 therefore the. class

,,,,rrtposed of ,4', anJi) *iu il" ' p'rt of '4 which can be put into

rrnc-to-one correspondence with the whole of A'

(2) U ana on ,r'^nni- i' erclud'ed' lrom an i'nfi'rYite class 
' 
the remain-

in1; r:loss is olso infi'nite'
lror, let A be the gi;"t' "tutt,' 

the element to be excluded' and B

t,lr. .lass remaining. By hypothesis, there is a part' 4" 9f 4'yhith
crltt be put into o""-to-o"" torrespondence with the whole of '4' and

iH l,lrorefore it.eH iofii'ii"'" ff if i- part '4r 
does not contain the ele-

ru.ttt o, it will be u t*ttf"t i" B'ild'our theorem is proved' If it

, k rcs contain ,, tt "t"TiuI" 
ut i"u't o'" element gl which belongs to

/l rntl not to ar, u'iUv 
"pia,"f"s ' 

by q in Ar we shall have anot'her

1r:rr'[ of A, say ar, *ni"i *irint uI" indnite part of A and at the same

l,irrrc a subclass in B'
10. As a coroUary of this last theorem we see lhat' no infi'ruite

rlrtss can eaer be erhlusted' bg taking away its elements one by one'

Ifor, the .t"' *"-i1t"'"*'i^t after eath subtraction is always an

irrtirrite class, by $ 9, 2, and therefore can never be an empty class'

r,rrrl)rrrc B. Russell, Prin'ciples o! Mathematics'^vol' 1' p' 315' and Whitehead

rrrrrl llunsell, ,***o* i["ii*'io*''f,ot''z (tsiz)' pp' iez'tsz' See also $ 27

of tlrtl Present PaPer'



8 TYPES OF'SERIAL ORDER $11

or a class containing merely a single element (these classes being
obviously finite according to the definition of $ 7).

This result will be used in $ 27, below, where another, more
familiar, definition of finite and infinite classes will be given.

- The further study of the theory of classes as such, leadins to the
introduction of Cantor's transfinite cardinal numbers, n6ed not
concenn gs here; the definitions of the principal terms which are
used in this theory will be found in chapter YiI.

11. After the theory of classes, as such, which is logically the
simplest branch of mathematics, the next in order of complexity is
the theory of classes in which a relation or an operation among the
elements is defined. For example, in the class of numbers we have
the relation of " less than " and the operations of addition and
multiplication;* in the class of points, the relation of collinearity,
etc.; in the class of human beings, the relations ,,brother of,,,
tt debtor ofr" etc.

If we use the terrn system to denote a class together with any
relations or operations which may be defined among its elements
we may say that the simplest mathematical systems are:

(1) a class with a single relation, and
(2) a class with a single operation.
The most important example of the first kind is the theory of

simply ordered classes, which forms the subject of the present
pa,per; the most important example of the second kind is the theory
of abstract groups.t The ordinary algebra of real or complex
numbers is a combination of the two.[

* As M. B6cher has pointed out [Bull. Amer. Math.Soc., vol. 11 (1904),
p, 1261, any operation or rule oJ conrAhm.tiozr, by which two elements determine
a third may be interpreted as a triadic relationl for example, instead of saying
that two given numbers o and b determine a third number c called their sum
(a *b : c), we may say that the three elements o, b, and c satisfy a certain
relation R (a,b, c),

t For a bibliographical account of the definitions of a,n abstract group, Bee
Trans. Amer. Math. Soc., vol. 6 (1905), pp. 181-193.

f For a definition of ordinary algebra by a eet of indrependent postuletes, see
Trans. Amcr. Math, Soc., vol. 6 (1905), pp. 209-229, or my two monographs
cited in the introduction. For a similar definition of the Boolean algebra of

$ 1I CLASSES IN GENERA.L 9

'We proceed in the next chapter to explain the conditions or

" posttilates " which a class, K, anda relation, < (o'-i''R "),.must
.uti.fy in order that the system (K, < ) may b€ called a simply

ordered class.

logic, see Trans. Ampr. Molh. Soc., vol. 5 (1904), pp. 28&309- I:o-pT:^u
recent note by B. A. Bemstein , Bull. Amer. Malh.$oc.,vol' 22 (1916), 

Pp.:^495
4591; also papers by II. M. Sleffer, Trans. Amer. Malh' Soc', vol' 14 (1913)'

pp.'iAf-aa-S, u"d B. A. Bernstein, Uni,u. o! CaltiJornia Publication's i'n Ma'!h,''

,ot. f (fSfe), pp. 87-96, and, Irans. Am,er. Malh, Soc., vol' 17 (1916)' pp' 50-

52.



CHAPTER II
\

Grupner, Peopnnrrns or Srlrpr,v Onupnpp Cr,essns
on Snmps

tZ. If a class, K, and a relation, ( (called the relation of order),
satisfy the conditions expressed in postulates 0, 1-3, below, then
the system (K, < ) is called a si,mply ordered closs, or a series.*

The notation a I b or (b > o, which means the same thing), may
be read: " o precedes b " (or " b follows o "). The class K is said
tobe arcangeil, or set in order, by the relation ( , and the relation
( is called a serial relqtion within the class K.

Posrur,ern O. The class K is not an empty class, nor a class con-

taini,ng merely a single element.

This postulate is intended to exclude obviously trivial cases, and
will be assumed without further mention throughout the paper.

Postur,erp l. If a q,nd, b are d,istinct elements o! K, then either
alborb<a.t

Posrur,ar:p 2. If a I b, then u andb are distinct.l
Posrur,err 3. If a I b andb I c, then a 1 c.g

The consistency and independence of these postulates will be
established in $ 19 and $ 20.

13. As an immediate consequence of postulates 2 and 3, we
have

Theorem I. I! a I b is true, then b I a is talse.ll
* "Einlach georihwte Menge: " G. Cantor, Math. Ann., vol. 46 (1895),

p.496; " seriesi" B. Russell, Prirciples of Mathem.ati,cs, vol. 1 (f9ffi), p. 199.

t This postulate t has been called by Russell the postulate ol conneaityl
loc. cit., p.239.

I Aly relation ( which satisfies postulate 2 is said to ba irefl,eri,ae
throughout the cllns; this term is due to Peano; see Russell, loc. cit.,p.2l9.

$ Arry relation ( which satisfies postulate 3 is said to be trarwitiue through-
out the class. This term has been in common use since the time of DeMorgan.

| | Aoy relation ( which has this property ie said to be awmmetrbal tbrough-
out the class; see Russell, loc, cit., p,218,
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(For, if a 1b and, b ( a were both true, we should have, by 3,

a 1 a, whence, by 2, a * o, which is absurd).

If desired, this theorem I may be used in place of postulate 2 in

the definition of a serial relation.
14. The general properties of series may now be summarized as

follows:
If a and, b are arty elements of K, then either

a:b,ora1b,orb<a,
and these tltee cond,itions are mutually erclusiue; finther, if a < b

andblc,thenalc.
These are the properties which characterize a serial relation

within the class K.*
16. As the most familiar examples of series we mention the

following: (1) the class of all the natural numbers (or the first n' of

theni), arraog"d in the usual orderl and (2) the class of all the

pointson a line, the relation " a <b " signifying " o' on the left

Lf b." Many other examples will occur in the course of our

work.
16. If two series can be brought into one-to-one correspondence

in such a way that the order of any two elements in one is the same

as the orderof the corresponding elements in the other, then the

two series are said tobe ordiruallg simitar, or to belong to the same

type ol order (OrilnungstgPus).1"'For 
exampie, the 

"Ias. 
of all the natural numbers, arranged in

the usual order, is ordinally similar to the class of all the even

numbers, arranged in the usual order (compare $ 3)'

Again, the class of all the points on a line one inch long, arranged

t o* t"fi to right, is ordinally similar to the class of all the points

on a line three inches long, arranqed from left to right (compare

$8). /
* A serial relation may also be described as oo" whi"h is (1') connected;

(2') irreflexive; (3') transitive for distinct elementsl and (4') asymmetrical

ior distinct elementsl these four properties [(3') and (4') being weaker formp

of postulate 3 and theorem I respectivelyl are readily shown to be dzdepenilant.

Seo a forthcoming paper by E. V. Huntington cited in $ 20, below'

t Cantor, Math. Atut., vol. 46 (1895), p. 497.
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It will be noticed that in the first of these examples the corre-
spondence between the two series can be set up in only one way,
while in the second example, the correspondence can be set up in an
infinite number of ways. This distinction is an important one, for
which, unfortunately, no satisfactory terminology has yet been
proposed.*

17. Before grving further exa,mples of the various types of
simply ordered classes, it will be convenient to give here the defi-
nitions of a few useful technical terms.

Dnrn*rrrom 1. In any series, iL a I * and c ( b, then r is said
toliebetween a and b.f

DrrrNrrror 2. In any series, if a I r and no element exists
between aaudfr, then r is called the element nertlollawing o, or the
(immediate) successor of a. Similarly, if y 1o and uo element
exists between y and o, then gr is called the element nert preced,ing a,
or the (immediate) predecessor of a.f

For example, in the class of natural numbers in the usual order
every element has a successor, and every element except the first
has a predecessor; but in the class of points on a Line, in the usual
order, every two points have other points between them, so that
no point has either a successor or a predecessor.

DurrxrrroN 3. In any series, if one element r precedes all the
other elements, then this r is called the frsf element of the series.
Similarly, if one element y follows all the others, then this y is
called the Iosd element

18. With regard to the existence of first and last elements, all
series may be divided into four groups: (1) those that have neither
a first element nor a last element; (2) those that have a first ele-
ment, but no last\(3) those that have a last element, but no first;
and (4) those that have both a first and a last.

* Cf. Trans. Amer. Math. Boc., vol. 6 (1905), p. 4L; or O. Veblen, Bzll.
Amq. Math.,Soc., vol. 12 (1906), p. 303. One might spea.k of a determinate
correspondence and an indeterminate correspondence (Bricard).

t For an elaborate analysis of this concept, Bee a forthcoming paper called
tt Sets of independent postulates for betweennessr" by E. V. Iluntington and
J. R. Kline, Trans. Amer. Math.$oc,

{ See footnote t upder $ 31.

f1

$ 19 SIMPLY ORDERED CLASSES OR SERIES 13

For example, the class of all the points on a line between A arl,d B'

arranged from.d' to B, has no first point, D A 

- 

B

and no last point, since if any point'C of 2) a 
'

the class be chosen there will be points of s) e
B
B

the class between C and A and also be- 4) A '- c B

tween C and B. If, however, we consider a new class, comprising all

the points between.d" 9nd B, and, also the point A (ot B, or both)'

arra.ged from A to il,'ttren this new class will have a first element

ior u iu.t element, or Loth). The four cases are represented in the

accompanying diagra.rn.

Eramples of series

19. rn this section we give some miscellaneous examples of

simply ordered classes, to illustrate some of the more important

types of serial order. Most of these examples will be discussed at

length in later chaPters.
I-n each case a class K and a relation < ale so defined that the

system (K, < ) satisfies the conditions expressed in postulates 1-3

tl fZl. fhe existence of any one of these systems is sufficient to

sho\,r, that the postulates are coasistent, t'hat' is, that no two con-

tradictory propositions can be deduced from them' For, the

postulates and-all their logical consequences express properties of

ihese systems, and no really existent system can ha.',e contradictory

properties.*' fil f : the class of all the natural numbem (or the first n of

them), with ( defined as " less than."
tnis is an exa,mple of a " discrete series " (see chapter III)'
(2) K : the class of all the points on a line (with or without

eni-points), with ( defined as '/ on the left of'"
this is an example of a " continuous serieS " (see chapter Y)'

* On the consistency of a set of postulates, see a problem of D' Ililbert's,

trrrrrslated. irt Bull. Am,er. Morh. Soc', vol. 8 (1902), p' M7, and a paper by

A. I'udoa, L'Enseignem,ent Mathfuntiqua, vol' 5 (1903), pp' 85-91' AIso D'

I lilbcrt, verhanfit. des. 3. intentaL Math.-Kongressx in Heid,elberg, 19o4, pp.

tlL-l$t; French translation, Ens. Math., vol' ? (1905), pp' 89-103; English

trutrsLrtion, Muni,st, vol. 15 (1905), pp' 338-352'
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(3) /{ : the class of all the points on a square (with or without
the points on the boundary), with ( defined as follows: let r and
y represent the digtances of any point of the square from two adja-
cent sides; then of two points which have unequal r,s, the ole
having the smaller c shall precede, and of two points which have
the same r, the one having the smaller y shall precede. In this way
all the points of the square are arranged as a simply ordered crass.

(a) By a similar deyice, the points of all space .u" U" arranged as
a simply ordered class. Thus, let r, y, arrd a be the distances of
any point from three fixed planes; then in each of the eight octants
into which all space is divided by the three planes, arrange the' points in crder of magnitude of the s,s, or in case of equal 

-o,s, 
in

order of magnitude of the gr,s, or in case of equal c,s and equal y,s,
'in order of magnitude of the a,s; and finally anange the octa"nts
themselves in order from 1 up to 8, paylng proper atleution to the
points on the bounding planes.

(5) K : the class of all proper fractions, arranged in the usual
order.

This is an example of a series caled " denumerable and dense,,
(see chapter,IY).

By q?roner fraction (written m/n) we mean an ordered pair of
natdral frumbers, of which the first number, m, called. the numera_
torr-and the second number, n, called, the denominutor, are ,"i"_
trvQly .prime , ^and .nt is less than n; and by the ,, usual order ,, we
mean that a lractron m/nis to precede another fraction p/o when-
ever the prolugt m X g is^less fhan the product n X p.'tir* 

"iu.,as so ordered clearlv satisfies the conditions 1-8, u,. o.ru .e"s tt;
moment's calculatidn.

(6) lf : the class of all proper fractions arranged in a special
order, as follows: of two fractions which have unequal denomina_
tors,-the one having the smaller denominator shall precede, and of
two fractions which haqe the same denominator the one having the
smaller numerator shal\recede.

In contrast with example (E), this series is of the same type as the
series of the natural numbers arranged in the usuar o.d-er, as the
following correspondence will show (compare $ 42):*

* Cf. G. Cantor, loc. cil. (1g95), p. 496.

I IO IiIMI'I,Y ORDERED CLASSES OR SERIES 15

I 2 3 45 678 I 1011

I r ? L q 1?2+ + q ..
2 33 4+ Es55 6 6

'l'lrtxc two t,*u*pies, (5) and (6), illustrate the obvious fact that'

l,lrrr Hu,rtttt class may be capable of'being arranged in various difierent

orr h,t'H,

(7) Ag another example, let K be a class whose elements are

rrtl,rtrul numbers un""t"d *ith oth"' natural numbers as subscriptsl

frrr rrxatnple, !t, 5a, et'c'; and le-t the relation of order be defined as=

i.,ir,,*", "ri*o ,r*uu's which have unequal subscripts' the one

lruving the smaller subscript shall precede' and of two mrmbers

wlri<:h have the same .otrtt'ipt, the smaller.number shall precede'

'l'lro system may be ,.p"t""iui t'hus, the relation ( being read as

" ott thc left of: "
Ir,Zt,3i "'i 1r, %,3''"'i 1" 2t' 3"' 

"';"" - t.
il'hig is an example of what Cantor has called' in a technical

,,,rrr", u " well-ordered series " (see chapter VII)' ';" 
' 
.'""'iij'n" 

example of a somewhat different character is the follow;

1,,i11'f"t f t" tfr" 
"tu., 

of all possible infinite classes of the natural

,r,irrU".., ,o .rr*b",. being repeated in any one class; t and let

thcse classes be arranged, it tut in order' as follows: any class o

sha,Il precede urrotn", itut' b when the smallest number in a is less'

than the smallest ""*f"' 
in b, or' if the smallest ro numbers of

o and b are the.u*", *h"" the (n' * l)st number of o is less than

thc (n, f l)st number of b'

A moment's rene"tio'shows that this system satisfies the condi-

tions for an ordered "tu..; 
it will appear later t'hat it belongs to the

ivp" 
"f 

series called continuous (see $ 63' 5)'

A more familiar example of the same type is t}le following: 
'

6t t : the .tu.* of all non-te'minating decimal fractions be-

tween 0 and 1, arranged in the usual order. (Compare $ 40.)

* B. Russell, Prirciples of Mofihematics' vol' 1' p' 299'

t f"il.r*if", the class ol alt p"ime numbers' or the class of all even num'

lxrrs, or the clas, of u,U ""I" ""*UJrs 
greater than 1000' or the class of all perfect

t:ulrc numbers, o. tf," tfu"t' of 'fi 
oo'ib"'* thallc-esin with 9' or t'he class of all

,utrtbcrs that do 'ot 
coJaio the digit 5' would be an element of K'



16. TYPES OF SERIAL ORDER $20

By a non-tertnirmting decimal fractioa between 0 and 1, we mean
a rule or agreement by-which every natural number has assisned toit some one of the ten digits O, 1,2, . .. , 9, excludinE. hdwever
the rules which would assTgn a,'O to;;"rv;;i"b";;]i;i;;;;i;;;
number Glr".q.excluded niles giving rii6 to the terminatiig'deci-
mals)-.* . The digit assigned to any pirticurar number 

" 
is .ut["a in"

nth digit 9f the decimal, or the digit in the nth ptr.". gt- ihe
" usual order " within this class, we-mean that any deci-uLi i. i"
precede another decimal b when the first digit of o is less than the
fi-rst digit of b, or, if the first n digits of o anJ b are the .r*".'*t ""t!e.(n f l)st digit of o is less than the (n * I)st dieit of 

'b (Lhe
digits being taken in the order of magnitude from 0 d g).

All these examples of simply ordered classes have been chosen
from the domains of arithmetic and geometry; among the other
examples which readily suggest themselyes the following may be
mentioned:

(10) The class of all instants of time, arranged in order of
priority.

(11) The class of all one's distinct sensations, of any particular
kind, as of pleasure, pain, color, warmth, sound, etc., arranged in
order of intensity.

(12) The class of all events in any causal chain, arranged in order
of cause and e1ffict.

(13) The class of all moral or commercial values, arranged in
order of superiority.

(1a) The class of,all measurable magnitudes of any particular
kind, as lengths, weights, volumes, etc., arranged in order of size.

' 
Eaarrtples of systems (K, <) which are not series

20. In this section we give some examples of systems (K, ( )
which are not series bec-a.use they satisfy only two of the three con-
ditions expressed in postulates 1-B (g l2). The existence of these
.systems proves that the three postulates aie indeperdent - that
is, that ng one of them can be deduced from the other two. (For,

* rt should be noticed that what we are here required to grasp is not the
infinite totality of digits in the decimal fraction, but simply the rule by which
those digits are determined.
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if any one of the three properties were a logical consequence of the

other two, every system which had the first two properties would

have the third property also, which, as these examples show, is not

the case.) In other words, no one of the three postulates is a re-

dundant part of the definition of a serial relation.*

(l) Systems not satisfying postulate 1 (namely:, il a.* b, then

a<'bo.b<a). (
(a) Lct K be the class of all natural numbers, with ( so defined

that o precedes b when and only when 2a is less than b.

(b) Let K be the class of all human beings, throughout history,

wilJr ( defined as " ancestor of."
(r) Let K be the class of all points (r, g) in a given square, with

(r,, yr) I (rz, Az) when and only when o, is less lhan u and gtr less

thun gr2.

In all these systems, postulates 2 and 3 are clearly satisfied.t

(2) Systems not satisfging postul,o,te 2 (namely: if o ( b, then

a#b).
(r) Let K be the class of all natural mrmbers with o ( b signify-

ing " o less than or equal to b."
(0) Let K be any class, with o ( b signifyirrg " a is co-existent'

wit,h b."
Iloth these systems satisfy postulates 1 and 3.

(l)) Systenas not satisfying postulate 3 (namely: if a ( b and

lr(c,thenalc).
@) Let K be the class of all natural numbers, with { meaning

" rlifferent ftom." (

* This method of proving the independence of a set of postulates is the

rrurthod which has been made familiar in recent years by the work of Peano

(lttt39), Padoa, Pieri, and Hilbert (1899)' For a discussion of the " complete

inrkrpendence ,, of these postulates in the sense defined by E. H. Moore (1910),

H,n, r,, forthcoming paper by E. v. Huntington, complete edstential theorg o! the

gxtxl,ulntcs for serial' ard,er, Bull, Am,er. Math. Soc' (19L7)'

t Another very interesting exarnple of a system of this kind is the so-

orrllrNl " conical order " studied by A' A. Robb in his book: A Theora o! Timc

aul STnce (Cambridge, Eng', 1914).
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(b) Let Kbe a class of any odd number of points distributed at
equal distances around the circumference of a circle, with a ( b
meaning that the arc from a to b, in the counter-clockwise direction
of ,rotation, is less than a semi-circle.

(c) Let K be a family of brothers, with a ( b signifying ,, a is a
brother of b." This relation is not transitive, since from a ( b and
b 1 a it does not follow that a I a.

All three of these systems clearly satisfy postulates 1 and 2.
In the following chapters we consider in detail those types of

series which are especially imporbant in the study of algebra.

I
IIICHAPTER

Drscnprr Snmns: Esppcrer,r,Y rHE TYPE a, oF fHE
Neruner, Nulrsnns

21. A discrete series may be defined as any series (K, ( ) which
sutisfics not only the general conditions 1-3 of $ 12, but also the

npc<riol conditions expressed in postulates N1*N3, below:
I'rrs'rure.rp Nl. (Dedek'ind's postulate.*) I! Kranil, Kzare eW

luto non-empty parts of K, such that euery element of K belongs

triLher to Kt or to Kz and, euery element of Kr precedes euery element of

Iir, then there is at least one element X in K such that:
(l) any element that precedes X belorrys to K1, and
(2) any element that tollows X belongs to K1
'l'he significance of this postulate N1 will be best explained by

t,lur cxamples, given below, of series which have and those which do

rro[ have the property in question. For the present it is sufficient
l,o romark that whenever the postulate is satisfied, Kr will have a
lrr,st element, or K2 will have a first element, or bothl whichever
onc of these elements exists (or either of them if they'both exist)

will serve as the element X required, and may be said to "divide"
t,lrtr two parts K1 and Kz.

l'osrur,etn N2. Eaery element of K, unless it be the last, has an

iutme&iate successor ($ 17).
l'}osrur,ern tr[3. Eaery element o! K, unless it be the f,rst, has an

in.rn,ediate predecessor ($ l7).
'l'he consistency and independence of these postulates are shown

irr $$ 28-29.
+ ll . Dedekind , Stet;i,gkeit unil irtationale Zahlen, 18721 cf. $ 62, below. The

xr.lrrr:l,iou of postulates here given for discrete series is the same as that adopted

lry ( ), V11[1[cn, Trans. Amer. Math, Soc., vol. 6 (1905), pp. 165-171. As far as I
lrrrorv, l)ctlckind's postulate had not been used by earlier writers in this con'
rrrq't,iott.
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22' an exampre of a discrete series is the crass of a, inteeers(positive, negati'e, and zero), ,*;;;;l i" tn" 

"rrrr ,.j"", 
","*.

..., A, -2, -1, 0, +1, +2,+8r....

,"#"",:l"H::ff;l1nt svstem are or three ki"4l; (I) flre positive

H
- By making this series terminate in one or both directions wehave' an exampre of a discrete r".i*. *itilu first erement or a rastelement or borh. (For anothe" 

";;;i;;;ee g 28.).23. The most imnortant prope*yiiiiJ.r"tu series is expressedin the often cited i tiruor"* ,? *itnJ*tical induction,,, whichmay be stated in the following form:----*
Theorem of mathematic"t r"irrcUi. If o and b are any two ele_ments of a discrete .:rr..., and o ( b, th;; if we start from o andform the sequence of elements 

?,: ;;,";;," . , in which p1 is thesuccessor of a, p2the successo, it pr,;rd ;. on, some one of these n,swill be the element b,. or again, ii-we utu"t rro* D and form ihesequence e4 Qz. e6 . rr in which gr is the predec"..r. 
"i;;;;;;predecessor of qr, and ,o on, ,o*, ,;;i;;;, q,swillbe the elernent a.

J.n 
otlr words, the class of elerneo1."n"#"o uny two erements ofa discrete series can be exha,usted 6;;kil; away its elements oneby_one, and is therefore.a finite chJs fl, SiOl.Thd significance of this theorem *iii["'"r"urer after a study ofthe examples in $ 29 of series * *ir"nir." in"o""* does not hord.The formar proof from postulates 1-3 and -nrl-ir3 is as forl0ws:

Suppose, in the first case corrsi-dered in the _theorem, that the
ii3T,l.",#i {;;ti;Z?" . _(which we silari 

"au 
th".;;A,&; p;

arterair-irie;r#;#'#€!!gil".fi f H,f,n,,ffi *;*i"tT.[,"?rnto two non-empty pu.t*, 
""*"1;;r;#iauung every element
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wlriclr is cqualled or surpassed by aqy element of P; and K2, con-
I.rLirrirrg cvcry elerilent, which (like the element b) comes after all
l,lro olornents of P. Then by Dedekind's postulate there would be
rur rrkrrncnt X " dividing " K1 from Kz so that the predecessor of X
worrltl belong to P while the successor of X would not. But this is
irnlxrssible, since, by the way in which the sequence P is con-
xl,rrr<:l;cd, if the predecessor of X belonged to P, then X itself, and
lrcruul the successor of X, would also belong to P. Thus the sup-
prnil,io! with which we started has led to contradiction, and the
lirs[ half of the theorem is proved

'.l'he second half is proved in a similar way.
All discrete series may be divided into foqr gro.trps, distinguished

lr.y tlrc presence or absence of extreme elements; we consider,the
four cases separately, as follows: I

1. Progresvions: series of the type " <,s."

24. A, discrete series ($ 21) which has a first element, but no last,
is callcd a progression.*

All progressions are ordinally similar, that is, any two of them
<ran be brought into one-to-one corresponde{ce in a way that pre-
sorves the relations of order.

For, we can assign the first element of one of the progressions to
thc first element of the other, the successor of that element in one
1,o the successor of that element in the other, and so on; and by the
l,lreorem of mathematical induction no element bf either series will
be inaccessible to this process. .

W'e may therefore speak of the progresslons as constituting a
definite type of order, which Cantor t has called the type c,r. More-
over, the ordinal correspondence between tworprogressions can be
set up in only one way; this fact will be useful to us later (see $ 31).

T[re simplest example of a progression is the series of natural
numbers in the usual order:

1, 2, 3,

Other exarnples are: the even numbers, or the prime numbers, or
the perfect square numbers, in the usual orderl or the proper frac-
tions arranged in the special order described in $ 19, 6.

* B. Russell, Prirwipl* o! Maihemalirs, vol. 1, p. 239.
t G. Cantor, Math. Ann., vol.46 (1895), p.499.
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. 2. Regrercsions: series of the type " *(t."

26. A diserete series ($ 21) which has a last element but no ffrst
is called a regression.

The regressions, like the progressions, constitute a definite type
of order, which Cantor has called the type *or (read: star omega).
The simplest example of a regression is the series of negative
integers with or w:thout 

::',':; :;,'1;J:" 
usuar order' thus:

3. Ssries of the type " *, * ,."
'26. A discrete series ($ 21) which has neither a first nor a last

elemeut may be called an unlimited, discrete series, the simplest
example being the series of all integers in the usual order ($ 22).

In any unlimited discrete series, if any element is chosen as an

" origin," the elements preceding this element form a regression
and those following it a progression; hence all unlimited discrete
series are ordfualy similar, and constitute a third definite type of
order. Cantor denotes this type by *, * o, the plus sign being
used to indicate that a series of the type *ar is to be followed by a
series of the type or, and the whole regarded as a single series.

It should be noticed that the correspondence between two series
of the type *<,r * or can be set up in an infinite number of ways,
since any element may be taken as the origin; comp&re the follow-
ing scheme:

. . ., -4, -3,

. . ., -2, -1,
-2, -1, 0, +1, +2, +3, +4,

o, +1, +2, +3, +4, +5, +6, . . ..

4. Finite series

27. A discrete series ($ 21) which has a first element and a last
element will be simply a f,nite aeries, the word finite being used in
the sense defined in $ 7.

For, by the theorem of mathematical induction ($ 23), the class
of elements in such a series can be exhausted by taking the elements
away one by one; therefore, by $ 10, it cannot be an infinite class.
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And convers eYy! euery fi,nite class can be put into one-toqne corre-

sponiLence with a terruinated portion of a d,'isuete series'

These theorems may be used, if one prefers, as the definition of a

finite class (compare $ 7); an infinite class would then be defined

as one which is not finite.

Other euamPles of d,iscrete series

28. The examples of a discrete series so far mentioned have all

been drawn from the domain of arithmetic (as the series of all

integers, the series of all positive intggers, the seriqs of all negative

integers, and series containing onl{ a finite number of elements).

ThJexistence of any one of these systems is sufficient {5 establish.

ih-e'consistencat of the postulates of this chapter (compare $ tg)'
r"-it is s"riioiwe give a ron-rumerical example, due essentially to
Dedekind, and phrased in its preserit form by Royce: *

Suppose a complete map of London could be laid out on the

pavernent of one of the squares of the city; then the city of London

would be represented an infinite number of times in this map, and

the successive representations would form a progression. For the

map itself would form a part of the object which it represents, and

*o,rtd therefore include a miniature reppsentation of itself ; this

representation being again a complete map of the city would con-

tain a still smaller representation of itself ; and so on, odinfi,ruitum'f

Enam,ples of series which are not d'isuete

29. In this section we give some examples ofseries ($ 12) which

are not discrete ($ 21), each exa,urple being a series (K, () which

satisfies two of the postulates N1-N3 but no't the third. Thei 
^

existence of these systems proves (see $ 20) that the-postulatesr,''

N1-IrB are independent, that is, that no one of them is redundant

in the definition of a discrete series. ,' ,' ',

* R. Dedekind, Was sind. utd ttas sollen ilie Zohlm, 1887; J' Bayen, Tlw
'Worliland the Inil:iui,ilual, vol. 1, 1900, p, 503.

t Another example of eueh a seff'tepruentaliue system is a label on a-can of

baking-powder, containing a picture of the can. Another exa'mple is pro-

vided by the images observed in a pair of parallel mirrors'
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(l) A system not satisfying N1 (Dedekind's postulate)' Let K
consist of two sets of integers - call them red and blue - the

integers of each set being positive, negative, or zero; and let the

elernents be arranged along a line from left to right, as follows:

red blue

-2,-1, O,+L,+z, "' " "-2'-l' 0'+\'+2' " "
This system is a series in which every element has a successor,

and every element has a predecessor; but Dedekind's postulate,

although it holds in general, fails in case Kr contains all the red

elements and Kz all the blue.
By leaving out the negative integers in the red set, or the positive

integers in the blue set, or both, we can readily construct a series

of the same sort having either or both extreme elements; the series

as it stands has neither.
(2) A sEstem not sati'sfyi.ng N2 (on successors). Let K consist of

a set of uegative integers (in red), followed by a set of all integers

(in blue), arranged in the usual order, as indicated here:

blue

, -3, -2, -L, -2, -Lr 0, +1, +2, +3, .

In this series every element has a predecessor, and Dedekind's

postulate is satisf,ed in all cases; but the element -1 of the red set

has no immediate successor.

Systems of the same sort, with one or both extreme elements, can

be at once derived.
(3) A system not sati,sfging N3 (on predecessors). Similarly, let

K consist of a set of all integers (in red), followed by a set of positive

integers (in blue), arranged as follows:
blue

., -2, -1, o, +1, +2, . . *1, t2, +3, ..
The theorem of mathematical induction is false in all these sys-

tems, since we cannot pass from a red element to a blue element by

a finite number of stePs.

Examples of series which satisfy none of. the postulates N1-N3
will occur in the following chapter ($ 51).

red

red
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Numbering the elements of a d'iscrete ser'ies

30. By t' numbering " the elements of a' discrete sedes' we mean

simply aita"hirrg to ea-ch element some label or tag, by which it can

U" p".**o"ntly recognized, and-tlistinguished from any other

element.-- 
ff ifr" gi""n series has a first element or a last element (or both)'

t#;;b" accomplished as follows, by the use of ten characters

called d,igits, 1,2,3, 4, 5, 6,7, 8, 9;0'
In the case of , p.ogr"rrion, denote the first element by 1; the

successor of 1 by 2; th'e successor of 2 by 3; and so on' until the

successorof8isdenotedbyg',Thendenotethesuccessorof9byl0
i;;-;-or", zero"); the sucJssor of 10 by 11 (read " one' one'');

th" ,,r.""..or of 1l- by t2; and so on, until the successor of 18 is

J"""r"J Uv fg. Then denote the successor of 19 by 20; the suc-

cessor of 20 by 2L; and so on, the successor of 99 being denoted by

1oo, etc': 
L, z, z, . . . ,

Ry carrying the process far enough any giaen element of the progres-

,io., "r., 
b"e rea"h"d, in virtuelf the theorem of mathematical

induction.
In the case of a regression, we can number the elements in a

,i*ifu* way, if *p b"g; with the last element and run backward'

In this case it is custlmary to attach the sign - to each- Iabel, the

last elernent of the series ieing denoted by -1, the predecessor of

-lby -2, dhe predecessor of -2 by -3, and so on:

' ', -3, -2, -I'
In the case of a finite discrete series, the elements may be num-

bered in either way, forward or backuiard:

1, 2, 3,
-5, -4, -3,

4, 5,

-2, -l'
If, however, the given series is unlimited ($ 26)' there is.no ele-

ment which we can take as an absolute starting point' since no

;i;;"; it distifiguished from the rest bv anv ordi'nal property'

il;;;;r"la-o i" tt i, case is to choose arbitrarily some element
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as an origin, denoted by 0, and then number the elements following
O as 4, progression, and-the elements preceding 0 as a regression; in
this way each element has attached to it a rabel which indicates its
position in the series, not absolutely, but with reference to the
arbitrarily chosen origin:

. .,, -3, -2, -1, O, +1, +2,*3, . . ..
- It should be noticed in all these cases that the process of labelling
the elements does not involve the notion of ,icounting ,, in the
setrse_ of ascertaining " how many "l the combination of digits
attached to each element is simply a tag by which it can be .""log-
nized, like the numbers in a telephone book; when any two
elements thus labelled are given, we can determine at once which
precedes the other in the series without concerning ourselves at all
with the question " how many, elements may lie between them.*

Digression mL tuims and, products o! the elements o! o
discrete leries

31. The same principle of mathematical induction which made
it possible to " number,, each ely'ment of a discrete series ($ B0),
makes it possible to define the sum and the product of any two
elements of such a series in terms of the relation of order.t if the

* rnstead of the decimal system of numeration here described we can u'e
also tbe less fa,rniliar, but often more convenient, binary syotem, in whichonly
two digits are required. Thus, in the binary system the successive elements Jf
aprogression would be denoted by: l; 10, 11; 100, 101, ll0, 111; 100e 1001,
1010, 101 1, 1100, 1101, 111Q 1111 ; 10000, etc. (The digits are read separately :
101 : " one, zero, one,', etc,) The advantage of any such system of-numerl
tion over the primitive system of strokes (/, / /, / / /, / / / /, etc.) lies in the fact
that each digi! acquires a special value by virtte of the pwe which it occupies in
the sr.rnbol- /
- 1 tle fotowing sectione ($$ g2-SS) qpe due essentially to peano (1g89),

although Peano's post,lates for a progrcbsion are based not on the notion oi
order, but on the notion of ,, succesior of.,, The postulates adopted in the
present paper Beem to me preferable in several respects to those employed by
Peano, especially in the use of Dedekind's postulate in prace of the more otvious
postulate of mathematical induction (cf. footnote under $ 2l). A brief
account of Peano's postulates will be fo,nd in BuA. Amer. Malh. rSoc,, vol. g
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::l:: h,i* a first etpment or a last element (or both), the sums and
l:ir::T,r.: definpd absolutety; if the series is untimited, thu sr*uend products are defined with reference to an arbitru"ity .no.",origin.

32. We begin with the ger;l case of an unlimited dis*ete
:.-r91 and suppose that an origin has been chosen and the 

"t"_urrt*labelled as in the preceding ."itioo,
. . , -3, -2, 1l) O, +7, +2, *3, . .

The sum, o * b of two elements o and b, with respect to theorigin 0, is then defined as follows:
(1)a*0:oand}*a:a. I

(2) a* +1 : the,sucoessor of o; a++Z: the successor ofq, + +L; o + +3 : the s{rccessor of o {+2; andso onl in g;;;.r1,
a * (the successor of +n) : the successor of (a * +p).

(3) o * -1 : the predecessor of a; a + -Z : the predecessor
of o* -1; a* -B: the predecessorof o* l; aniso on; ingeneral,

o * (the predecessor-of -n) : the predecessor of (o * -n).
In this way the sum of any two erernents can be a"i"r*irr"a, nyvirtue of the theorem of mathematical induction ($ 28) . _ . ) 

-' *,.- 

.On the basis of this definition of the sum, the pioduct a X b
(or o . b, or ob) of a and.b,with respect to the origin rj, i. aunrr"a u,follows:

(1) 0x o!0aodoX0:0.
(2) *f X a : q.; *?..X o : (+ta) { a; +B Xo : (+2a) * a;and so or\; in general (the successoy'of +nj X a : (*rrai +'a.' 

')

(3) 'n X a : +n X a with its sign reversed.
By,these rules the product of any two elements can be deter-

mlncd.'
33' From these definitr.ons the fonowing fundamentar theorems *

can be readily established:

(1002), p.41, and an extended discussion in Russell, hc. cit., chap, 14. A re-visod liot, in which the number of postulates i, ..i"..a m'f"r", 
" Ct"* i;A. Padoa, Beu. de Math. vol. g (1002), p. 4g.* Sco my two qronographs cited in tie introductiou.

\



28 fypns or,sERrAL oRDER $a4
(1) (o + b) + c: o,*^(b * c). (Associativelawforaddition.)
(2) a * b : b {..o. (Commuiatil;;; for addition.)
la.). 

(aO)c : a(bc). (Associative faw for'muttiplication.)

l!!, :U,,:,U?: 
(Commutative law for muttiplication.)

(o) o(D * c) : ab ! ac. (Distributive law for multiplicationwith respect to addition.). (6) If o follows 0, then o * r follows a; and.if r precedes 0, thena*rprecedeso.

- 
(7) rt a precedes 0, tlrere is an erement r which comes after 0 suchthat a, * a : b, and axere-""t7*r.i"rr1omes before 0 such thata:b*a.
(8) If a and b both come after 0, then their product, ab, alsocomes after 0.
34. As examples of the use of mathematical induction, I givethe proofs of the first tro tn"or.*. iolEl
Proof of theorem L. First, i/ the theorem is true for c : n, thenit will be true for c : zr,r, whlre 

", a""oio, for the moment, thesuccessor of n.
For, if we denote +1 simply by 1, we have:

(a*b)*n' : [(o* b) *n|*l:lot(b*n)l *l:a*[(b*n)*1]
:a*[b*(n*1)]
:a*(b*n').

(by definition)
(by hypothesis)
(by definition)
(by definition)

Sepondly, the theorem is clearly true for c : l,by the definition#f, Tlglefore, by thp n..t pu.i-oitfr" prooi, since it is true forc - 1, it will be true for c : 2; 
- and.being irue for c : Z, it *iif n"true for c : B; and so on. 

_ 
rn this way th"e truth of the theorem forany given value of c can be estabrisied, since by the theorem ofmathematical induction {here is ,ro el"merrt c which cannot bereached in this manner.

Proof ol theoremZ. We establish first the lemma that 1 * a :o * 1 by the same method of ,, proof from , to n | 1,,, usingiheequations '

(1*a)*1

)

n'+7:i@*1)+1: :1+(n*1):l*n'.
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The proof of the main theorem, that u* b : b * a,then followsin a similar way from the equations

a * n' : a * (n + I) : (o * n) + I : (n *0) + L: n * (o* 1) : n * (1 * o) : (n * t) + ; : n, + o.
The proofs of the rerrtaining theorems invorve no new diffic,ltyand can be readily supplied by ttre reader; when these 

"igfrt 
tf*"_rems have once been- established, the furiher a"r"tof*"ii;iti"

theory follows rines that a.e famiriar from ,ry text-book of arith-metic and need not be repeated here.* The system ($ 1l) thus de-termined 
-is called, with reference to the ,iU.rt r.y fdst; il th"algebra of all integens, with regard to (, *, and X.36. Turning now to the progressiorrs,l th"r" ur" t*o principal

methods of introducing the notions of sum and pro<luci, f.i;ii"*?two different systernA ({, a, +, X). In both systems th";;"and products are defined absolutely,in terms of the relation;i;;.
(see $ 31).

In the first theory, the progression is denoted.by
1,2,3, . , .

the sums and products being defined as follows:
Sum: a -F 1 : the successo r of a; a + Z: the successor ofa * l; and so onl in general,

o * (the successor of. n) : the successor of (a * n).
Prodttt'.ct: \ *,:^--"t 2 X a 

^: .la * a; and so onl in generar,
(thesuccessor of n) X a: na * q,.

This system is called the algebra of the positiae integus, withregard;to (, *, and X.
In the second theory, the progression is denoted by

, 0, 1,2,3, . . .,
the sums and products for erements other than 0 being defined asabove, anda f 0 : 0 * a : a and.a X 0 : 0 X a : 0.

" Soo O. Stolz and G. A. Gmeiner, Th.eoretische Arithmetik (1901_ ).. t We- pass over the regressions wiihout *pririu A."ossion, since whateveris truo of a progression is true of a regression iiir" *"ra" ,, uutl"L;;*iffi;;;otc., are interchanged.

\
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-,f,T;flfi'i:tr,h" 9:"0* 
or the po*itiue intesers with zuo,

'In both theories, 
lheolep t_b of g BB hold without change,th\orems 6-Z haveto be stighuy#tfiJJ G" r;;b;j;';.;#, ;dtheorem 8 is superfluorrr; Ih" ffi#;;

need not aetain-us trere. i/elopment of the subject

36' rn view of $$ 30-35 it is interesting to note the rerationbet^wee.1 the system-of nap.1;;;;"* i*hich has been assumedas familiar, for purposes of illustration, it'.orgfrout the book), and

:l,H'i'J?:,,t*::" 
or p.oe'"..io,. is 6. rhis reration may be

If the class of natural numbers in the usual order _ from what-ever source it may be derived * i. ,..u*"d to be , .r.i# #ii.tsatisfies the conditions l_8, a"a .aff_ fi, ura nu. a first element butno last, then it *uy 
l:r"gulg"d ,. fu'riArA erample of a prosres_tion, and all the theorems which can U" 

"".i*Ufi.fr"d 
for any progres-sion will apply to the system of natural .rumb"rr. The questionwhether the system of natural ilil;; * .o,,*orrly conceived,does actua,y possess thepropJi;;;";nlea in these eight postu_lates is a question for the ;trl*,";#'"" ,0" epistemologist todecide; as far as the mathemuii.iu"iS 

"o*rrned, the theory of thenatural numbers, in its.abstract form, .r, u" a"ii""i *ir"it"ffithe set of posturates i'rst mentionua, it u 
"oo.rete, empiricar systemof natural numbers bei,,g used 

""I, ;;;ans of establishing theconsislency of these postulates.

/,
Derrumerable closses

37' Any infinite class the erements of which can be put into one-to-one correspondence with the 
"t"meris'Ji u p.ou."usion (g 24) issaid to be denumerabte (abad,hlbar,-ii"r"rUi"Ule, enumerable, numer_able, countabls).* .

rn other words, if we assume that the naturar numbers in theirusual order form a progression ($ g6), , JJrr*"ruut" crass is one

, irIrT;,;:t;H,:ffi'#;:o*"d 
bv cantor; see crette's rourn. rrir Mattt., vot.

noti.,',7!""it'ii:.i'i,ii1*: *i":hf t'rt;.n,, 
n. +' ro, uo "'*lu#ffii;:

l'

$38 PISCRE"E SERIES T 31

which can be.put into one-toone correspond.o""jrrn the class of
all natural numbers. t

Every class which appearc already ordered inrdhe form of a nro_
gression is fpso facto a denumerable classl, othel chsses *uy hrrr"
to be ingeniously arranged before they can be shown fu te de_
numerablel for example, the class of all proper fractions is shown
to be denumerable by the device given in $ 19, 6.*
. Sincg any infnite,discrete series can be arranged as a progres_

sion,t it is obvious that the term progression might t" ."pt*""i fy
regression or by unliqited discrete series, in the definition of a
denumerable class.

38. The following u.""th" principal theorems concerning de-
nurnerable classes:{ .

(1) If any finite class is added to a denumerable crass, the resurt-
ing class will still be denumerable.

For, a progression remains a progression when a finite number of
clements are added at the beginning.

(2) A class composed of any finite number of denumerable
classes, or even a class composed of a denumerable infinity of de_
rrurncrable classes, will itself be a denumerable class.

- 
Ir<rr, if a\ aat aat . i bt, br, bs, , . . , etc., are the component

clussos, we have merely to arrange the elements of the whole class
in a two-dimensional an&y, as in the diagram,

rrxl then read the table diagonally thus:

a\QbaU..
br, b2, bs, . .

C\AztCU,.

7 23 4 56
At Aa bl A3 bz C1

' (if. (;. \'aber, Math. Ann.,vol.60 (1908), p. 196.

. | 'lir *rr*qge an unlimited discrete series as a progression, take the elements

^ll,r'rrr*l.ly. \)f course the correspondence will not be one which preserves the
rolrrl,iolrx,rI older.

| (i. Otntor, Crelle's Joum. fiir Math., vol. g4 (1g77), p. 248.
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(3) Any collection of non-overlapping three-dimensional regions
of space is at most denumerably infinite.*

From this theorem we have the important corollary that euery
collection oJ material objects is at m,ost d,enumerably i,nfi.nite; hencg
if we wish to find an example of a non-denumerably infinite class,
we must seek it among the classes whose elements are ideal, not
material, entities.

The proof of the theorem is as follows;
Case l,.when the gi^ven c,ctllection C lies wholly inside a finite

sphere, with center at O and radius r. - Consider ihe denumerable
series of intervals between the numbers

v, v/2, v/4, -V/S/ V/L6,\ . .,
where 7 is the volume of the sphere. The number of elerirents of c
which lie between V fz"+r and V 12" in volume i. ut ."ori n"itl
(since otherwise the volume of the whole collection C would be
greater than l/); therefore, by theorem 2, the number of elements
in the whole collection C is at most denumerably infrnite.

Case ll,_when the given colleclion C lies #holy outside the
sphere. -This case can be reduced to Case I by an ,, inversion,i
of space with respect to the sphere. (An ,, inveision ,, transforms
every point P- outqi!-g the sphere into'another point p, inside the
sphere, such that P' lies on the line Op, and, OP, X Op : rr: this
transformation is clearly continuous, so that points wtrich f6rm a
connected region outside the sphere will be transformed into points
which form a connected region inside the sphere.)

Case I I I , when the given collection lies partlv within and nartlv
without the sphere. - Since each part of the cbilection is ud *o.t
denumerably infinite, by Cases I and II, the whole collection will
be at most denumerably infinite, by theorem 2.

Analogous theorems hold for areps in a plane, or for segments on
a linb.

99. A striking example of a denumerable class (though it in-
volves more knowledge of algebra than I wish to ur*r*u in this
book) is the clas$ of all ,, algebraic numbers,,, that is, the class of
all complex quantities which can be roo$s of any algebraic equation
with fiqtegral coefficients.t

ir

' * Cantor, Math. Ann., vol. 20 (1Sg2) , p. ll7.
t G. Cantor, Crelle's Jou"rn. Ilir Math., r'ol. 77 (1gZB), p. 2Eg.

J'
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tr'or, the class of values any coefficient can take on is denumer-
able, hence the class of different equations of the ath degree is de-
numerable; and since an equation of the zrth degree cannot have
more than rz roots, the class of all the roots of all equations of the
zth degree is denumetable; and finally the class of possible degrees
is denumerable, so that the whole class of all the roots of all alge-
braic equations is denumerable.

40. An example of a non-denumerable class is the class of all
non-terminating decimal fractioris (see $ 19, 9). For, if we suppose
that this class is denumerable, elrery non-terminating decimal
fraction would have a definite rank in a cer-tain progressionl but if
we represent t\is progression as follows: I

where each letter (with .unscript) a"oot", one of the digits 0, l, 2,
. . . , 9, we can at once describe non-terminating decimals which
do not belong to thisrlist. Thus the decimal

0.h12fia,,,., 
t

where rr is different from a1, 12 different from b2, ra different from
ca, etc., has no place in the progression, since it differs from the ath
decimal in at least the nth digit.*

Therefore the class,of decimals cannot be denumerable.

* G. Cantor, Jahresbericltt der D. Math.-Ver., vol. 1 (1892), p. 75.

1. 0.arazat,...
2. O. br b2 bs

3. 0.crah,.,.
,

\



CHAPTER IV

Dpxsn Spmns: Es,ncw# rrm Tvpn 4 oF THE

RerroNel Nunrsnns

41. In this chapter we consider series (K, ( ) which satisfy the

g"rurri postulates 1-3 of $ 12, and also the special postulat-es I/1

iud I12, below; the properties here demanded being quite different

t-- tfr" properties- of the discrete series considered in the last

and, b are elemmts of the class K, onil

one element r in K zuch that a 1 r an'il

chapter.
Posnnerm f/1.* I! a

a 1b, then there is at least

r <.b.: 
Any series which has this property is said !'obe d'ense't Between

*-wery two elements of a dense suries thete will be at least one and

therlfore an infinity of other elementsl so that no element has a

successor, and no element a predecessor'
posrur,e.rn -E[2. The ctais K is d,errumerable; that is, thg ele-

ments of K can be put into one-to-one correspondence with the

elements of a Progression ($ 37)'

Any s"ri"s ihi.t satisfies thesg two postulates Hl and H2 is

cailed a d,enumerable ilense series, or more briefly, a ratiorlal series'

A series whose elements form a denumerable class may be called'

for brevttv, a iLenumerable series''" 
ai, 

"irrt'.i*rrest 
example of a series which is both denumerable

,"ffi.;* i* it J.tu* of prop", fractiont arrangecl in the usual order

(see$19,5). For,if a- mfnandb: pfq'anda {.b'thenthere
m*p

are elements r which lie between o and b (for example 
' 
r : iT;'

* The letter Il is intended to suggest the type z ($  a)'

t Cantor's tetm is iiberalt d.icht' Weber uses dicftt' wb'rch Russell replaces

by comport; fr;,ncietes of tutathemafii'cs, vol' 1' p' 271' See however' $ 62o'

u

35
DENSE SERTES

$45

reduced to its lowest terms) I and on the other hand' if we arrange

the elements in a two-dimensional array' and then read the table

diagonally, as in $ as, ; t;" at once that the class is denumer-

able.* (ComPare $ 19,6')

43. rn 
"r"ry 

*"i", ",,or-t "* 
we have to ao, strictly *p"1}rl1:

with turo serial relatioi.t**itf""spect to one' the series is densel

*iif, "*p".t 
to the other, the series is a' progression'

L4. The tupe n' AiiL;';"table dense leries' Iike all discrete

,Ju., ;r; # dirid"di"to-fo" g'o'pt' distinguished by the pres-

ence or absence ot n,st-"'a1ast i"ments' All the series of any one

of these four groups;;;t";ilt'i-il'"' as we shall prove below'

aud therefor" corstitutl ;Jefii_ii" iyp" oi.o'a"r' In particular' the

type of denumerable ;:##il*'iir' ""itn"t 
extreme is called by

"Tff.tff fl# l*u*pt" of a series oi th9 tvpe a is the class of

proper fractions t" ;#ti*'r"'Ji-" utt",,a" meutioned' By

adding an element oli 't itt" 
u"gio'i"e' or an Llement l/L a::!:e

""J,T" 
t"trr, wu hu,,J "' "*u-p"i" 

of a denumerable dense serres

with a flrst element, ;; hsi 
"i"m"ot' 

or both' 916"1 sxastples

will be given in $ 51.

46. We now give the proof t that any two denumerable dense

series are ordinallv .il"#, il"iJ"Jin"v agree in-regard ]o'lle
presence or absence 

"f 
*t'l*" elements;. it will clearly be sufficient

I" 
"""tia* 

two series of the type t1' having neither extreme' 
'

* Cantor, Crelln's Jau,m. !'ttr M?'l:l* ,8a 
(1877)' p' 250'

f Cantcr, Aoti'-i'm','ot' +o (rass)' $ 9' p' 504'

I 1 1 1...
345b
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-.*^*:klp^s_]v.en.qeries 
be .4. and Bt; and Iet the terms of each,when rearranged in the form of a progression, be a""ot"a ny"*

-and 
ab azt as, . .

v b2, b3,

In order to establisl a one--to-one correspondence between A and
f ,*I:::l::_ryi:ryj"q order, we p,o""-J .t"fi;;A;'u. irrj"l,r,* 

'erng 
understood that any step is to be omitted if'the erement

considered has alreadv been-assiEned: 
- -

T9 ,, p..igo the element.b,, an?.t-o br alsign the element ar.The elements ar a.nd 6, their divide gr"t, &-tfr"-"ri*i;ri,Jiiu* aand B into two sections.
As to o2, we find in which of the two sections of A itbelonss. andassign. to it the first of the unused A,. *t irn-[uft"g" irl;;;#"_

qno.nling. se_ction of B; .?nd. as to b2 (if not alrealflr..ii,iiaj"'*"
find in which section. of B it berongs, aird arsigo t" ii th" hT,;ld til"unused o's which belongs in the do*espl;Ai"c ;iil;f ;:* -
._ The elements u,and_;zthen divide th; s;"i;7l"lot*rriu" ,L"tio",
.(1|t,,?d, and 3d), wl-rile-the 

"l"m""t* 
b, ,"Aar-ai"ii"^if* ."r#grnto three corresponding-sections (lst, 2d, ana 

-gaj. - 
e, i, ," if ""tarready assigned, we. fiqd in which of'the'three 

"njctio"s 
or7 it ["_

19rgs, 
and assign to it the firrst of the (unused) a'" *hi"L rJo"E inthe corresponding section of B. Their ds to Ar,lf noi-;lr;;;;._flgned, we find in which of the three sections 6t A it n"ir"s.lr"a

a$sigrir.to it the first of the (unusedi;h;hi;-h ftft;Iil#?&_
sponding section of A. .

And so on. Afler.Zn steps, the ffrst n of the a,s will have beenassjgn-ed.and will divide ,E iitit % + t...tion., ana ine nrJ; ,f ;i"b's'will have been assigned ana wru ai"ia;'Bl;il;';"i";ffi_
gno.nfing- ge-ctiolrs. Then as to ao+tb if not alreadv assiqned. wegrd {n which of the z *- l sections'di'/ itil;;;;;j?.Effii.lit
the 6rst o{ the (unused) 

-b's which bel;il.1;?ii"-;##f#;"
se_ction of B. Arid as .to bo+r-,jf 

""t-rr."u'Jy';rri*""d, ;yfi#ifi
w"high o.f the n * 1 sections-oi'B ir bel;ns;;;""6*is; trlitfr?fr..tof the (unused) a's which berongs to trrE-torrespooii.rg .".iil"^"rA.

' Th" elefients called.for at each stage of this process will alwavsexist, since in 4ny Series of_type a inL"Li";ffi;;il ill"r"?"-Jiaafter any given el6ment,-ard 6"h;L;;;j t*o giren eiil;;;; ;;;
3il*T"*}i#"fr :lHflf 3f ffi:'Jil,ti1i*"nfilei+fiilj"di;
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It should be noticed that the correspondence between two series
of type r1 can be set up in an inflnite number of ways (compare the
case of the unlimited discrete series, $ 26).

Segment*of series '
46. In the following sections we define a few technical terms

which will be of great service in the study of dense and continuous
series.

In auy series ($ 12) a part C ($ 6) which has tt e following prop-
erties we shall call a lundamental segment of the series: (1) C is such
that if o is any element belonging to C, then every element that
precedes o also belongs to C; and (2) C has no last element.

Roughly speaking, #fundamental segment is a part of the series
beginning at the beginning, and taking in evelything as far as it
goes, but having no last element.*

41. Asegment in general may be defined as any part C of a series
having the following property: if o and b are any two elements
belonging to C,,then every element that lies between a and b also
belongs to C.

A s6gment'C such that if a belongs to C, then every element that

{m::*"'} , uuo berongs to c, is caued {l"tff;3"EffiEli}"
the series.t t

A fundamental segment, then, is a lower segment which has no
last element

48. It will be noticed at once that in some series no fundamental
segments are possible. For example, in a discrete series ($ 21) no
fundamental segments are possible, since every subclass which
satisfies condition 1 of $ 46 either has a last element or includes the
whole series. In other cases the number of fundamental ses-
rrurnts may be finite. For example, in a series like tlis:

t ltueeell's term is segmnnt, (without distinctive adjective). The notion
il,rolf, which is a modification of Dedekind's notion of a cut (i872), was intro-
rlu<xrd by M. Pasch (Di,fferenti,al- und, Integralrech,nunp,lS82), under the name
ol Zohlcnstreclte. The term segment was used by Peano in tLle Formulotire br
1800, p. 91, but seems to have been abandoued [n fater editions. ,.

t llussoll, loc, cit., p,271,
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7r,2rr 3r, .i 1z,2z, Br, .. .i 1s, 2s, Bs, . . .i la,2t;

only three fundamental segments are possible.
fn a d6nse series, however, the class of fundamental segments isalways infinite.

- +g' rn c/nnection with fundi,mental segmerlts the forowing' definition is important: rn any r""i"r, ii;b";:u" 
"r"*""Tllr.otlaj a given fundamentar segment 

"lin.ides *itr. trr" pr.i li,rr"series which precedes r, thei r is called the l;imi,t"t if.J."Sr""t.ff no such elemJnt r exists, then the segment has no limit in thegiven series.
'We may then distinguish two

first, those that have a limit in
those that have not. ,, '.

kinds of fundamental segments:
the given seriesl and secondly,

- 60' The importance of this distinction between the two kiuds offundamental segments w,l be crearer after the continuous series
,-have been discussed, in the nelt_chapter. For the p.".".ri, tfru *ort
I 
important thing is to see clearry that in some series fu,damental

f segrfients of the second Hna aciuaily;;t.- To illustrate this point,cldsider the class of proper fractions arranged in the usual orderand take as the subclass c the class of all"the f.*ti;-;);;;
wrich?mz is less than n21 this subclass c will then m o rr.rauluotur'segment having no limit in the givpn series.

To prove this statement,t notice first that c satisfies the defini_tion of a fundamental seEm""i-

",J*Ji},1ru.*,,:Ei,Ji.r"fis#/",,,tltkTiff /1;f :f #lfibelongs to C, then th".u u." f.u.tio-"i, :;;,
(6m'* 7)/6mn, I

* rn the series of arl real numbers, which is not under consideration at thispoint, the subclasg c wo,rd be described as the class oi au the rationar numbersthat precede {,B' rn verifying tne numericJla-ple below, note that
;H'i/.:n are integers, z* i."u+, be lese-;h; rf by-air;*l.l,i"iiri ,q

t R. Dedekind, Stetigheit und, inatinrnle Zahl,en,1g72; II. W.eber, Algebra,vol. 1, p. 6.

f Reduced to its Iowest terms,
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-which follow mfn and, still belong to C, so that C has no last
elementl and (3) C is neither empty nor contains the whole class,
since it contains l/4 and does not contain 3f 4.

Furthermore, there js no element a/y whichcan serve as the limit
of the segment. For,'first, 7f. 2rz were.less Lhan y2, there would be
elementsbf C, - for example (6n' * l) /6ry,* - which came after
r/y; secor.dly, if 2r2 were greater lhan y2, there would be elements
of the series,-for example (612 --l)/6ry,*-which preceded
r/y andyet did not, belong to C; and thirdly, if 2r2 : y2, we should
have an-equation containing the factor 2 an odd number of times
on the left hand side and an even number of times (if at all) on the
right hand side, which is impossible in view of the fact that a
natural number can be resolved into prime factors in only one way.

Hence the class C is a fundamental segment which has no limit.f

From this discussion it is clear that Dedekind's postulate ($ 21)

is false in every selies of tyge a; for (by $ 45) any series of type rl
may be replaced by the series of proper fractions in the usual order,
and if we divide this series into two parts, Kl and K2, so that Kr
contains every fraction mf n for which 2m2 I n2, and Kz all the
other fractions, then there will be no element in the series which
could serve as the element X required in De{lekind's postulate.

EromplE of denumerable ilense series

51. In this section we give a number of exarrlples of denumerable
dense series; any one of these systems is sufficient to show the
consistency of the postulates 1-3, H1-H2 (compare $ l9).

In every denumerable dense series all the postulates NL-NB for
discrete series ($ 2l) are false (compare $ 50).

(1) The simplest example of a series of type rl is the class of
proper fractions in the usual order, as already mentioned in $ 44.

Other examples are: ,
(2) The class of (absolute) rational numbers and
(3) the class of aZl rational numbers (positive, negative or zero),

-both being arranged in the usual order.

* Reduced to its lowest terms.
t A simpler example of the same sort is provided by the red elements fr

'\exa,rnple 1, $ 29.
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By ?n absolute ratipnal number we mean an ordered pair ofnatural,numbers, m/h, in which the uilt;;tur,'_*, _}r%a'tn"

1yi-91?,tr.t and thejecond nirmber, n, called.iild;";i"rt;;. ;;"relatrvely prime. By the usual orderin this ar.. *"-*"r"-it"tm/n,is to precede piq.when- X qi. t"..Jnurr z X i. 
*'"*" --

rne crass oI oil ratronars is then composed of threb kinds of ere-
Ar-ti,,, (t),, t\e positive rationals, *fiirn u." ut.ot"t"-rrtio.rJs
alrectreo wlth the urn f ; (2) the negative rationals, which areabsolute.rationals affect"a ,itf, thtsig; _ ; and (B)-a'n ;;; J;_ment called zero. Th" 

,, usual ordei,l in' this 
")h.G ;ffi*lydefined as follows: of two positive raiio"utr, i'frJt #" .frrU"oiffi"

Il9!g absolute value would pr"""a" 1"-iiie order 
"i ,U."f-"1. 

"r_tlonals; of two neEativ-e rationals, that one shall precede;h;"
a bs ot u te. vatu e wouid f ou o* I ; 

- 

ih;' o;;;; 
"I "ri. i,liit 5 r'r,ii X Ir[T "lr

|y__q. Illio"uls having 
. 
opposit e 

_ 
signs, in" *srr-i; pi"."alr.' tf*posrtrve; and the rdtio,al.0 follows'every nd!ati"" iuiio"ri *hpreeedes every positive rational.

The, rationals between 0 and 1/1, or the absorute rationars whichprecede tft, are the proper fractions fS ig; b) 
"- -

- If we assign to each absolute rational number p/q the proper
fraction p/ (p + g), we thereby establish an ordinal .o"i"*po.ra"rr."
between the series of absdlute rationals and the series of p;;;;;
fractions, in accordance witk the theorem of $ 45. This done,^an
ordinal correspondence between the series of absolute rationals and
the series of all rationals can be readily established.

(a) As another example of a series oi typ" 4, consider the crass of
points lying within a one-inch square, u.ra .r"n that their aistances,
r and g, from two sides of the square are proper fractioos of an irrh j
and let the points be arranged in order of magnitude of the ,;., o,
in case of equal r's, in order of magnitude of ihe y,s.

{lhis system clearly satisfies all the posturates for a series of tvoe
?; rt ought therefore to be possible to exhibit an ordinal ,or.esoo"rrd_
ence between this system ind the .u.i"r ,fprop"r-i-rurd;;;.""*'"-
, ll,rr may. E done.as fo_l!ows.* Starting with a line.AB of fixedrengtn, mark the mrddle third of it; then mark the middle third ofeach of the two remaining parts, tiren ttreo,iaaielUira ;i""ilt ;i
- - 

* 
-compare $ 52, 3, belo,r. The deviee is due to Ir. J. s. smirh, proc. Lonit.

Myt!,Soct vol.6 (1875),-p.147; cf. G. Cantor, Math. Ann.,"of. Zf tfSgA),p.590, note 11, and \M. H. yourrg, proc. Lwtd. Math. Soc.,"of. da (1SOZ), p.r#.
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the four remaining parts; and Jo o.r. The class of marked sections
of the line is then a denumerable class, Which forms a dense series
of type 4 along the line -4.8. Now the vertical lines in the given
square, correspqnding to fractional values of r, also form a de-
numerable series of type q; hence, by $ 45, the class of vertical
Iines can be brought immediately into ordinal correspondence
with the class of marked sections of the line AB. It remains merely
to determine on each section the class of what we may call, for the
moment, itB "fractional" points, that is, the class of points whose

distances from o{e end bf the section are fraetional parts of the
length of the section; tills class of points can then be brought
into ordinal correspondence with the "fractional" points of the
corresponding vertical line in the square by a suitable magnifica-
tion.

The given series of points in the square is thus reduced to a dense
series of points on the line ,4.B.

- 
By a double application of the same method, the " frac-

tional " points within a cube can be treated in a similar way.

Eramples oJ series which are not denLn'r,erable and, d,ense

62. The following examples of series which fail to satisfy one or
both of the postulates I11 and I12 show that these postulates are
independent of each other (compare $ 20).

(l) Derumerable series which are not ilense. '(o) One example of this kind is any unlimited discrete series,
such as _.)u, -2, -1, 0, +1, +2, +3, ! ,.

By adding an element -z at the beginnfrg, or an element +z at,

the end, or both, we obtain an example with a flrst or a{ast ele-
ment, or both. Progressions and regres$ions are also examples.

(b) Another example is a class coniposed of two sets of proper
fractions, say red and blue, with the relation of order defined as

follows: of two elements which have ,r.reqrril absolute values that
one shall precede which would precede in the usual order of proper
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$ 52

fractions, regardless of coror; of two elements which have the sameabso(ute value, the red shall precede. 
4-q r v u'u D.rl

- Th\s system is built 
"q by interpolating the elements of orredense series between the element. of u,ooth", dense seriesl the re_sulting series, instead of being ,,more 

dense,,, as one *ighihrv"
!,11 l"rnt"d to expect, has lost.the property of density altogether,
srnce e.trery red element has an immediate successor.

(2) Dense series which are not d,enumerable.
(o) Th'e class of non-terminating decimal fractions arranged inthe usual order (see $ 19, 9) is a den-se serief which *" h;";;i;;y

shown to be non-denumerable ($ 40).
(b) Another example is obtained from exampte (B), below, byoTittilC the ', points of division,, that form a part of that class.(c/ rior another example, see $ 64, B, (b), footnote.
(3) A series which is n ithu ainu*"rloiti nor dense.

. A striking exampre of a series which is neither denumerable nordense may be constructed as folrows: * starting with a rine oneinch long, mark the middle third of it; then mark the middle thirdof each of the two remaining parts, then the middle third of each ofthefour remainlng parts, and so on ($ 51,4); the class.;;;;;
contains (1) all the points of division, and (2) all the il;;;;points of the line; and the order of the points is the natural orderalong the line. ' 

,

^This 
series is clearly not dense, since if a andbare the end-points

of one of the marked sections, there is no point of the series ilt.hlies between them; indeed, no segment of'the series will f" a""*
srnce_ every segment ($ aD will contain a marked .u.tio;;ith" Ii";:
On the other hand, the class is not denumerablel the proof .f;hi;fact (which requires a little more mathematics tfran b;;;;;i;
assumed in this book) may be outlined as follows:

- Let the distance from one end of the rine to each point of the linebe represented bv a t"."u.y.f"acti"ri-ti".i"# rf ;;;ir";iil;t#;of an inch; that is, nv a lniritl or." ilifr"iili 
"xpression 

of the form
n* O.araaas...,

Cf. footnote under $ 51, 4.
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in which or shows the number of thirds, o2 the number of ninths,
aa the number of twenty-sevenths, and ii general a" the number of
(1/3")th,s; the digits ar, oa, as, etc.; being al-lowed to take anv of ihe
three values p, l, and2. It can then be shown, by a comp"utation
involving gnlv an elementary knowledge of the io-called geometric
series,.that tlie-points of the marked sections of the line-(without
the points of division) correspond to preciselv those ternarv frac-
tions in which the digit 1 o-ccurs; the points oi our class, the"refore,
correspond to the ternary fractions in which the dieits 0 and 2 onlv
are used; and this class can be shown to be non-denumerable bi
the method employed in $ 40 for the decimal fractions.

Arithmeti.cal operattions q,nxong the elemenls of a d,ense series

63. fn, conclupion, we notice that since the theorem of mathe-
matical inductiog does not apply to dense series, if is not possible
to give purely ordinal definitions for the sums and products of the
elements of such a series. All that we could do in this direction
would be to define the sums and products of the elements of some -/
particular dense series, say the series of the rational numbers in the
usual order, by the use of some extra-oldinal properties peculiar to
that series; then since all seriesbf type ,, are ordinally similar, the
definitions sbt up in the standard series could be transferred to any
other series of the same type by a one-to-one correspondence. This
method would be wholly inadequate, however, since the ordinal
correspondence could be set up in an.infinite number of ways.
fndeed, in the case of a series of type f (without extreme elemeut-s;,
unless we introduce some other fundamental notion beside the
notion of order, the elements have no ordinal properties by which
we cq,n tetl them apart. Il is better, therefdre, to iniroduce addition
and multiplication as fundamental notions of th9 system (compare
$ 11), and define their properties by postulates; .this problem is,
horvever, beyond the scope of thd present work.*

* See, for s).ample, my two *ooigruph, cited in the introduction.
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64. In the\preceding chapters we have considered the discrete
series ($ 21) and the dense series ($ 41); we turn now to the study
of the linear continuous series, which are the most important for
algebra.

A continuous series in general is defined as any series which satis-
fies postulates 1-3 of $ 12, and also Dedekind,s postulate (Cl,
below) and the postulate of density (c2); alinear eontinuous series
is then any continuous series which satisfies also a further condition,
which I shall call the postulate of linearity (CB).

Posrur,err Cl.* (Dedelcind;s postulate.) If Kr and, Kz are anA
two nowempty parts of K, such that euery element of K belongs
either to Kt or to K2 and, euery elemmt ol Kt preced,es eaery etementif
Kz, then there is o,t least one elemmt X in K such that:

(1) ana elernent that preced,es X belongs to K1, and,
(2) any element that follows X belongs to K2.
This is the same as postulate N1 in $ 21.
Posrur.ern C2. (Postulnte o! density.) I! a andb are elemmts of

the class K, and, a I b, then there,is at least one element r in K surn
thata l rand,r <.b.

This is the same as postulate I11 in $ 41.
Posrur,ern C\.l (Postulate of linearity.) The class K contuins

a d,erru,mnrable subclnss E ($ 37) in such a way that between any two
elements of the giaen class K there is an elemmt of R.

* R. Dedekind,loc. cit. (1872).
f G. Cantor, loc. cit. (L895), $ 11, p. E1f . O. Veblen replaces this postulate

of linea,rity by two other postulates which he calls the iseudo-Arctrimeaeaopostnlate and the postulate of uniformity fTrons. Ami, Math. Boc., vol, 6
(1905), pp. 165-17U. See also R. E. Root, Limitsintenns o! ord,er, Trans.
Amer. Math,Soc., vol. 1S 1/Sfe;, pp. 51-71.

14
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The consistency and independence of these postulates will be
discussed in $ 63 and $ 64; postulate C2 is clearly redundant when-
ever postulate CB is assumed.

66. The most familiar example of a linear continuous series is the
class of points sn 3 lins, say one inch long, the relation o { b sig-
nifying thal a lies on the left of b. Dedekind's postulate is satis-
fied in this system, since if Kr and K2 ate two parts of the kind
described in the postula.te, there will be a point of division on the
Iine (either the last point of Kr or the first point of K2), which will
serye as the point X demanded in the postulate. The postulate of
density is also clearly satisfied, since between any two points of the
line other points can be ftund. Finally, to see that tho postulate
of linearity holds, take as the subclass .R the class of all points
of the line whose distances from one end are rational fractions of
an inch.

An example of a continuous series which is not linear is the class

of all points (r, y) of a square (including the boundaries), arranged

in order of magnitude of the o's, or, in case of equal r's, in order
of magnitude of the y's. This series is continuous (satisfying pos-
tulates C1 and C2),b:ut no subclass.E of the kind demanded in
postulate C3 is possible within it; for, if there were such a subclass
it would have to contain elements corresponding to every point of
the base of the square and therefore could not be denumerable (see

$ 58'below).
Other examples, not depending on geometric intuition, will be

given in $ 63 and S 64, 3.
56. With the aid of the fbllowing definition, we may state two

theorems that hold fol all continuous series.
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DnrrNrrronr. Let C b3 anf 

_n_o1_empty subclass in any series(K;.5I if there i.* an elernent .X in tti r"riu, such that:(r/ rnere rs no element of. C which follows X, while

"(2) 
ilY is any element preceding x there is at least one elementof C which fo,ows F:-lhen tfriJ 

"f"m."t X i. .;,il- ;;;"";*liruit of. the subclass C.
If the subclass C happens to have a last element, this elementitself will be the ,rppur-riroit of the *brilr. rf c has no rast ere-ment, it may or mav 

19t.ha1e an upper limit; ii;;r;;;;;;;limit, then this upper limit is trru 
"riil"oi *ti"t "o-", ;.;;;the subclass C in the given series.*

Tnnonnu 1. In any continuous series, if C is any subctnss ail ofwho'se elements preced,e a gium etnnmt,ih"n C wAi nie ;; ;;;;limit in the series.
Briefly, this theorem ters us that in any continuous series, everysubclass which has any tpper bound ;ll ;;;;;"r;#il;"

bound, - the terms ,, 
"pp", 

limit ,, urrd ii lowest 
"ppu, 

Uorriil,being synon;rmous.
The full meaning of this theorem will be clearer after astudy ofthe examples given in $$ 6B_6a of series tt ut ,r" and those that arenot continuous (compare also g E0); the form;f p;;;l-f, 

"rSrf],given, as follows:

under the conditions stated, the-given series can be divided intotwo non-empty subclasses, Ki rft'Kr'tilH#:,";;#nj;T:j:::
ii:H1*xiili,:Er?,,.d;11*"+it jl?ri#T,,'i,i*"fi
postulate there riust d"th;";;; uii*""t-X,, dividing,, K1$y fr, moreo-\rer, there cannot n. i*".".n elements, for if therewere, one would be the last element 

"f f, u"J ti";#'tii" H:;element of Kz. so that noereme,t wouki ti"Llt*"*r, them (contrarw
lg Ju" postutate.of d"".iiyi. 

- ,ihil;i;iffi;'"i;;;; i;rffif ;iyeelement requfued in the t[eorem.

* It shourd be noticed that this definition of a Iimit of a subclass in generalis consistent witb the definition ur."uav giolo ri"'ii" rirrrt of a fundameqtarsegment (g 49).
t The subclass Kz wiII not bc an empty class, since by hypothesis there is atIeast one elegenr in It which totto*, ujiiUe 

"iJ*"""i, "t C.I 
_ ursuEuu

/'
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Similarly, we may define the tower l;imit of a subclass, and prove
the analogous theorem:

Tnnonnu 2. In arry continuous seri,es, i! C is any subclass all of
whose elements Jollow a giaen element, then C wi.tl haae a lower Limit in
the sqries.

That is, in any continuous series, every subclass which has oay
lower bound will have a highest lower bound, or lower limit.

Conor,r,eny. In,any continuous series which has a first anil a last
element, euery zubclass wi,ll haae both an upper Liru,it and a lower Limit
inthe series.

57. The following theorem gives us another form of the defini-
tion of continuous series.

Tuponru.* Inthe defi,ruitionof acontinuu.r,s serfes ($ 54), Deite_
kind,'s postulate may be replaced by the d,emund that eaery Junilamentat
segment shall haue a limit ($ 49).

For, if the elements of the whole series are divided into two sub-
classes -Kr alq K, as in the lVnothesis of Dedekind's postulate, then
K1 (or-K1 without its last element, if it happens to have o"e) #iffe
a fundamental segmen_t, and the limit of this segment wiir coire-
spond to the element X in Dedekind,s postulatel

68. The next theorem concerns the infinitude of the elements of
a continuous series.

Tnnonnu. The elements of any continuou,s serzes ($ 54) form an
infi,nite class which is not derrumerabte ($ 87).

The proof, which is due to Cantor,t is as follows:

$uBnosg p Sivgn continuous series to be denumerable; then with-
out disturbing t\e order of the elements we may attactrto 

"r"t, 
or"

a definite natural number, gsing thepotation d1n1 to represent ihe
element corresponding to'the number a.

, _ We may assume without loss of generality that the elements have
been so numbered that the element o(l) prLcedes the elemeni o(2).

.tnS." let pr and g, be the smallest irumbers for which o(p,) inh
g(g') lie between o(1) and a(2), andassume that the elemeriishave
been so numbered that a(p) ( o(qr); then

* Cf. a rema,rk due to W\itehead in Russell'a prinriptes o! Mathema,tics, vol.
1 (1903), p.299, footnote.

t G. Cantor, Crelle's Joutn. ftir Math., vol. 77 (1874), p. 260.
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.\"$,let pr and gz be the smallest numbers for which a(p2) and
a(q2)Ee between a(p,) andq.(g,) andassume a(pz) < o(q),'iothat

And so on. In general, 7et ppaland qaal be the smallest numbers
for which_ q(n1"+r) and a(q7a1) lie between a(p) and a(q), and
agSumg q({w){a(qo+r). In this way we determine a progres-
sion of elements a(p*) and a regression of elements o(q*), such
that

1 a(s) < a(q,) < o(2).

Now since the series is continuous, the progression in question
ought to have an upper limit ($ 56); but there is no element o(n)
which can serve as this upper limit, for if any element a(n) is pio-
posed, we can clearly carry the procesq[ust indicated so far that
a(n) will lie outside the interval a(pn) .- . . . . a(S*).

Therefore if the series is denumerable it cannot be continuous,
and the theorem is proved.

69. The theorems of $$ 56-53 hold for all continuous series; the
following theorems apply only to the linear continuous series.

Tnnonnu. Euery linear continuous seraes ($ 54) contains a sub-
class R ol type q ($ 44), such that between any two elements of the giaen
series there ,is an element of R.

For, the denumerable subclass .B whose existence is demande'd in
postulate C3, or the same subclass without its extreme elements if it
has them, is clearly of type 7 (the type of the rational numbers).

This subclass,E of type q may be called the skeleton, or frameworh,
of the given series; the elements which belong to R may be called,
for the moment, the rational elements, and those that do not belong
to R the ,irrational elements of the series.

Since the class of all the elements of any continuous series is non-
denumerably infinite ($ 58), it is clear that the rational elements of
a linear continuous series cannot exhaust the series; in fact the
class of irrational elements in any such series will itself be non-
denumerably infinite (compare $ 38).

60. The most important property of the rational elements is
given

$ 56:
in the following theorem, which follows immediately frbm
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Tnronnu. In ang linear continums *eriel' euery element a (unless

itbe the fi.rst) d,eterm'ines a fundamental segment G a6) of the so'called'

rational elements, narnely, the series of all the rat'ionals preced,ing a;
and conaersely, eaery lundamental segment of rationals ileterm,ines an
element of the g'iuen series, namely, the upper li,mit of the segmen ($ 56).

The rat)onal elements of the given series correspond to the fun-
damental segments which have limits in the series of rationals; the
irrational elementg corespond to the segments which have no

limits in the series of rationals ($$ 49, 50). The denumerable dense

series considered in the preceding chapter are not continuous, since,

as we have seen in $ 50, they contain fundamental segments which
have no limits; the theorem thus brings out clearly the sense in
which the linear continuous series are " richer " in elements than
the denumerable dense series.

61. The type 0. The linear continuous series, Iike the discrete

series or the denumerabie dense series, can be divided into four
groups, distinguished by the presence or absence of extreme ele-

mentsl all the series of any one group are ordinally similar (see

below), and therefore constitute a definite type of order. In parti-
cular, a linear iontinuous series (5 54) which has both a first and a last

element is called by Cantor a series of the type 0, or the type of the
linear contirnrum.x

The proof that any two series of type d are ordinally similar
follows readily from the analogous theorem in regard to series of
type q ($ 45).* For, by $ 59 each of the given series of type 0 will
contain a subclass of " rational " elements of type t; br $ 45 these

subclasses of rationals can be brogght into ordinal correspondence

with each other; and by $ 60 every element (except the first) of
each of the given series is uniquely determined as the limit of a
fundamental segment of rationals.

It should be noticed, however, that this couespondence can be

set up in an infinite number of ways, since not only the selection of
rational elements from the given series, but also the correspondence

between the two sets of rational elements, can be determined in an
infinite number of ways.

* G. Cantor, l,oc. cit. (1895), $ 11, p. 511. Russell, loc. cit., chap. 36.
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62' since the definition-of the type 0 here adopted differs inmanner of approach, 

{h.ough not in iubsiance, f.o"iihu J"fr"iii""given by Cantor. I3d$,^ii tUis .".iior,,-u statement of Cantor,sdefinition in its original iorm.I--

""f,'r"Hro6?*"1H'Zff m:m1,#,;*"it;;:;:;hf :i;i^Z;i};;element which is tlie limit 
"f ,;16;"J;;;,ht ;;d;ffi"(iot""limit in the case of a progressir;;ilr*;-ri;rr rn the case of a reqres-sion), is called a prinilpar ar-riit-(ui"feiement) of the series.T rfeverv f undamentar sequen ce wrri c'rr e"i sis 

-il ;"ii;# "";;i;"irL*

ifi ll,'t,l*.,t'irrhl",::-ff ;rutn,t";,,.'",*J1m,##,#,-J
quence, the series is said tobe d,ense.ti_it iA fWiriiirtJi;"#; 

";yseries which is both dense-in-iiselflr"a""r.,i,rt i, 
-i"i{ii'at't 

ffi"t(perJekt). tr'inally, if a series iss".i iirtf,"rween any two erementsthere are other erLment., tt u serr"sil;;iJ; be d,ense Qibera*dicht).The followinE theorems tottow a[-o"cIto* tt"." A;#;ffi;;,(1) If a ser6s is ctosea,li *iti ";ffii;-ila;d;;;Tli.ifirt"
($ 54).

(2) I{ a series satirs-fi-es Dedekind,s postulate, and has both ex_treme elements, it will be closed.
On the other hand, the following facts should be noticed:(3) A series mav satisfv Dedeki-nd;s-p".tiri"i"l rii"ffi'not u"elosed, as.witness "tr,e 

seril,s oi;it il;#., ilil."itJ?Iiiii#rnumbers.f
(4) A series mav be p.erfect .(that ig, dense_in_il,self-and closed),

Tg:^"lPt a9n99;- as witness th" ."ri"" ai.cussed in $ 52. tGiri,end-pornts), or the series of all real numbers from 0 tb S i".fir;i"with the omission of those between 1;il;. (
.* G. Cantor, tac. cit. (lg}i), Sg 10-11, p. EOg. An earlier defin;tion of thearithmetical continuum given by bant or' i tutin. Ann., voL.; (lg?rl ;. fi[cf.,ibid., vol. 21 (1888), pp. siz-sza1, involved extra-ordinal considerationsand need not concern us here. ' ,

t This def:rition of a Junda,mental sequence is inaccurately quoted byveblen (loc. cit,, p, rzr), who leaves out tne regressionr. tilrio A;-;;;#
2', l'i . . ., t, -2, -1, O, +1, +2, +8, . .; lrr 2n

the elemenf r/ would be a principal erement according to cantor,s definition,
}f:-l ::::lltS to Vebten,s. irr," rr-" *".a,' i und,amnnntreitre,. has beengleq Dy uartor rn anotherconnection, in discussing irrational numbira; Math./Ann.,vol.21 (t8g3), p. E6Zj.

t {t 1s 
t$r-efore perhaps rrnforfunate to speak of Dedekind,e postulate as thepostulate of closure.,
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(5) A series mav be dense-in-itself and de.nse, a1{ pot be closed,as, for exampte *ie series rfl ;ii;;;;;b;;; Gth ; #it""textreme elements).

_, 
(9) A series may be dense and closed and not be dense_in-itself *as lor e:tampLe the series V tO+*V, where I denoteilf;;;Iie

T9_.T-ult, Veblen,s,.seriesdescribed in g'64, e, b, aii'*i;L;;r;"se,es rn reverse order. Here the erement 0.is not the limit of any

flffi""xyff.::1,'"?*wg:*miixTlr,,l,'ilX; tilTf#ity.of cantor's reasoning in regard. to the t.i,nstriie wiri"iral'":"a
series (g 88).

(7) A series mav be.perfect (that is, dense-in-itself and crosed),
?ld v"! have_no ti,st elerneni ;;;;e*t;i;;;;;#";;;;t"
the series *V + V. Here I a"a V-Lu""-lii;' ;";;ri"ffi'jfr.'explained.t

By the aid of these definitions, Cantor defines a series o! tgpe 0by the following two conditiorr.,' ------
(A) these,iesmustbeperfect (that is, dense-in-itserf and closed);and
(B)_ thg series mru,st contain q, d,mumerable subclass R in sueh away 

.thatbetween 
qna two erements o! the giuen seri.es thire iuii-Lt"-ment of R.

Py".y series which satisfies condition B wiil clearlv be dense.The agreement bets,een this definition ;d;ffi'$;"'i" .q Or
par1, be rga.diJv.established by the reader. Th;-fs;?'bJa"_*,rg's posturate mstead.of th! nQstulale of closure impries the use
_"1, 

jt*t:ilfl-.:g*""is instead of trie fundamildi*.4;;il; ;thrs modrtication of Cantor's method seems to me ausiratiq-sirrc
gl:y_ !9C*!nt determines a uniqle .ele?ent, u"a e"u.i"fil;;;
oerermrles a uuque segmentl while in the case of the ieouen.".
?lt4ouCh every sequence determines a unique element, it i.;;;iil;
T,nat every element determines a unique sequence.f 

' I have pre_
ferred Dedekind's postulate to the posi'ula66f $;?;";ty ffi#;

ror rrs gre&ter s5rmmetry.

- 
*-Compare a question raised by Rusaell, loc, cil.,p. Bff). The series given in

the footnote on the preceding page is a cro'ed series which is neither d"t" oo"
dense-in-itself.

_ I _Cf. 
ffnnn fiahn, Monafsheftefii,r Math. und phgs.,vol.2l (1910), Ititeratur_

berichta, p.26,
I It can be shown, however, that the class of fundamental sequeaces in any

continuous series haa the same ' cardinal number,, ($ gg) as the class of ed-
ments in the seriee itseU (coinpare g Zl).
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$ 62a

62a. To avoid nossible^confusion yjth $ 62, it maybe well to men_tion here the defiiritions o{ some of thedrms u-sed in the theorv ofsets of points,* which is crosav."rut"J'm the theorv of series- 'A (Iinear) set of poiiti ii;;#;[,l""r p"i"#,."i;;#? u.,y
il*Te;,i:tt ll"*1"*r, "1 

, .t*igi,'i'iin".. e"y p-"i"i F 
"r 

ir,;
s"t,irine,,i;r:;;;;{;{f '*"i,{3{:::"!:;#!r;Xi"y";*.yjtrn*Ij:
are points of thc set 3 .l"grg;;-"i#**v g-, may not belong to the
;f,|..$ fl:l#_fl,jq .ao,ia"1iusdiiT,,i,ii ,r every cruste_r. p-oinr or
ne1,t"utr,";?;; jT.,.'*.,#;:j;1,q"*:,r;;-rui,;r"*ij:x
which is both closed ,"J-airr"_i;t*if. A, set ii cailed iuiry_
:!:';:lff :"i"ff 's:;;;;'vl;ffi iiiltp"i"i.;f i#1#i"f ;,*

A set can be nerfect a-nd nowhere dense, as, for example, theset described i" $ szj 
_1.^i"#;"Trir J ca_n be put into one_to_

;"fr::1,::Xrlffi ce. (sacrifi cing ua"ii 
-*itr, 

trr" *f, ,i 
"i"_#,i. 

.i"

*#H:1#ffi :ir##l'3fl,l"I""P#"d:::?rrrj":f
A set is ca'ed compari;f 

-;;g; 
ffi:i#J in the set has a cruster

fl#ii"i:.1'n" '"'' (contrasi R,ld"ll';;; of " comp4ct,,; 
-$ 

1,
Eramples o! linear conthruous series

63. The following examples serve to establish the consistencyof the postutates of the present chapter ($ il;;r*p;"; $ 
"rr; #i,

hlllf":r.r of them we avoid *uri"* ,", appeal tq geometric

(1) The simprest seometric example of a linear continuous seriesis the series of all'polnts on a line, ,f""ray considered in $ Eb.The most important rrorr_g"o*"t.i.ul 
"iu*pl". rr",(2) Theclass of (absoluteJ real;ffi;;a*anged in the usualorderl and

(3) The class of all real numbers (positive, negative, and zero),arranged in the usual order.
* For references to recent work in this field see R. E, I.ioot, Trans. Amcr.Math, Soc., vol, 15 (lgt4), pp. E1_21; ,o*" of tn"-rt*dard treatiseg are men_tioned in a footnote under $ 78.

$ OA CONTINUOUS SERIES 53
By the absolute rear numberswe mean the crass of a, fundamentarsegments (g a6) in the series of absolute ,riit"ii rir.rlli. i$ ui, ,1,u."d..bv the usual order.within tt i. .ir..'#u *"un that a sesment oshall pre,cede a segm_ent a *ii"" "1".;r;t;i;i 

w'rsw q uv.ruu,L
rnrs svstem clearly satisfies the general conditions for a series($ t2), since if a andi;.;-;rv #; atffil, fundamental segments

9i u"y dense series, one.of atid;;;"il""a p*rt of the other. andthe retation of in ilusion i. trrr.iii""l " 
Fr;t_h;.ih;'.;;i""." H;#;" ;for, if a segment o i..puri-of ;;d-;; a,-irrll" ;i:i;lr;;?i"rationars belonging to^b'and 

""ttr;l;legment r containinE thesegment o and some of these rationali'will;E;;il1,;;l;;;'i ;i."segments a and b. T9 shgw that fredekinA,;;"#hffi #,satisfi ed, supp ose that the whol" *ri"*-iil;;i;i"d ;; "#; ;;;, ff i,
* This is the definibion.adopted by Russell (loc. cit., chap. BB); it was first

*".": i" this form by M. pasch tofi*"iitii "i Intesratrechnuns, isat, h"z ahlenstr ecke (f undamental u"g"oi or rationJo u"i"u 
"' 

*"irh.rirJi ".r
Dedekind,s Schruitt or rut (lgi2). S;-if* a"n"itions have been given byDedekind (1822), cantor (1872), p.*" tls99),1rd oth"rr; a historical ac_count is given by peano in Reu. d,e Math., 

"ot. 
O iiSSS), pp. 126_140. The con-struction of the system of (absorute)-r.i ,r*b* -ay be briefly described asfollows (confining ourselves to the dsitive "r*rt".rr t (r) the integersare thenatural numbers, assumed as known; (2) the ,ion l, are pairoof integersland (3) the rears ari: classes (fundamental's"g**r of rationars, As a matterof convenience in notation, a pair of i"t"g"rJ'i" *iich the denominatoris 1 isrepresented by the numerator alonel ratiLal 
"u*L"". of this form are said tobe integral, while all other rational ,rr*f".. *"1u,tt" d, fractional. Again, a fun_damental segment which ha' a rimit in th s*i"s oi.utionare is represented bythe same svrnbol as its rimit; red numbers ;i;hi, i".* are said to be rationar,while all other real numbers are calted,irratiornt (*;p;;;$ ;0I ifrr. 

"*ffi,however' should not be interpreted * *u*irg'ihrt th" .tuu, of real numbersirrcludes the class of rationals, or that the 
"ruo?rlutiora numbers inctudes theclass of integers. On the contrar5r, while the ,, i.,tug", number 2,, mean'simply the seoond number in-the-naturJ ."ri"r,'irr. ,, rational number 2 ,, Imeans the pair of natural numbers 2 and, r, uoal, inu real number 2,, meansthe class of all rational uumbers *uicn p"eceae tn" r-utioour number 2/r. Therules by which the sum and product ,f ;;;;";-bers are defined do notconcern us, in this discussion of the purery slrrin,l ffosery, see o. stolz andJ_. A. Gmeiner, Themeu,sc.t1.,lrtln^"ui liSOt_ 

-lfJ. 
ruoo"", , Intro&rction d,tath^oric iles foruttorw (2rd. edit., lg04); ri. *uu.. *a .1. w"urt"ir,ir;r;r;;;;dder Elemcntar-Mathematik (vol l,- 1SOAI; E.-V. iuntington, Trarx, Amcr.

!:rh..Sy.,vol. 6 (1905),. op. 2Og-229, o. tn" t*o *oaographe cited in theintroductionl A. Loewy, Lehrbwh a* ibrbri fl;isl.
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two parts Kr and K, iucn that every element of K1 precedes every
element of K2; then*the class of all rationals wliich belone t"o
any element of Kr will be a fundamental segment in the serie"s of
ra,tionals,-and will-be the element X demanded in the postulate.
Finally, the series-is- a linear continuous series, since we rnay take
as the required subclass B all the elements of K which have-limits
in the series of rationals ($ 49).

- By the seriesof allreal numbers (positive, negative, or zero) we
then mean a series built up from the series olabsolute real nurnbers
in the game way,as the series of all rationals was built up from
the series of absolute rationals in $ 51, 3. Or again, all real num-
bers may be defined as fundamental segments of the series of all
rationals, just as the absolute real numbers are deflned as funda-
mental segments of the series of absolute rationals.

In the series of real numbers we have thus constructed an arti-
ficial system which certainly satisfies all the conditions for a linear
continuous series ($ 54); there can therefore be no doubt that those
conditions are free from inconsistency.* If we assume as geometri-
cally evident that the series of all points on a line an inch long also
satisfies these conditions, then an ordinal correspondence can be
established between the real numbers and the points of the line, in
accordance with $ 61 (taking as the " rational " points of the line
those points whose distances from one end of the line are proper
fractions of an inch); but in setting up this correspondence we
must recognizethat the continuity of the series of points on the line
is an assumption which is not capable of direct experimental veri-
fication.

(4) Another example of a linear continuous series is the class of
all non-terminating decimal fractions, arranged in the usual order
($ 19, 9; $ a0).

This series is dense; for, suppose o and b are any two of the
decimals such that a (b; let Bp be the first digit of b which is
greater than the corresponding digit of o, and let 0" be the first

* Cf. II. Weber, Algebra, vol. 1, p. 7, where the real numbers are defined
(after Dedekind) ae t' cuts " in the series of rationals, instead of as fundamental
segments of rationals. (A cal is simply a rule for dividing a series K into two
non-empty parts Kr and K2, such that every element of K1 precgdeo every ele-
ment of Kr, while Kr and Kz together exhaust the series K.)
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dieit beyold 0i. which is different from 0; then any decimal r in
wfiich the?rst ri - I digits are the same as in b, while the nth digit
is less by one than 0,, will lie between o and b. Further, the serr,es

satisfies Dedekind's postulate; for, if Kr and Kz are the given sub-
classes, we may determine the decimal X : _ .trE ta .-. . as fol-
lows: 

'tr 
is bhe-largest digit which occurs in the first place of any

decimal belonging to K1; tz is the largest digit which occurs in the
second place of any decimal beginning with {r atd belonging to K1;
ts is the largest digit which occurs in the third place of any decimal
beginning with {rtz and belonging to K'; and $o on. Finally, the
series is linear, since we may take as the subclass Ii the class of
those decimals in which all the places after any given place are
filled with 9's. - The serjes, as we notice, contains a last element
(.999 . . .), but no first.

(5) As a final example we mention the series described in $ 19, 8,

namely: K : the class of all possible infinite classes of the natural
numbers, no number being repeated in any one class; with the
relation ( so defined that o ( b when the smallest number in o is

less than the smallest number in b, or, if the smallest n, numbers of
a andb are the same, when the (ru * f)st number of o is less than
the (z * l)st number of b.

This series is continuous, as the reader may readily verifyl and
it may be shown that it satisfies the postubte of linearity, since w-e

mav iake as the subclass R the class of all the elements in which
onlv a finite number of the natural numbers are absent. We notice
also that the series contains a first element (namely the class of oll
the natural numbers), but no last element.

This example is particularly interesting as showing how a linear
continuous series can be built up directly from the natural numbers,

without making use of the rationals.*

Eramples of series which are not linear continuru,s series

64. The examples given in this section serve to show (compare

$ 20) that postulates C1 and C2 ($ 54) are independent of each

other, and that postulate C3 is independent of both of them.
Postulate C2, on the other hand, is clearly a consequence of postu-
late C3. 'E'

* B. Russell, Prinniples ol Math.ema,ti,cs, vol. 1, p. 299.

.$
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SERIAL ORDER 
$ M(l) Dense series which.d,o ngt sat;isfy Ded,ekincl,s postulate.(a) Denumerable series which are a*." but do not satisfyDedekind,s postulate are given in $ 51.

(b) A non-denumerabre-exampreif the same sort is the series ofall the points on a line.with. the exception of som" .i"d" ;;;;; ""better, the series described in $ b2, ;,;.-
(2) Series which satisfu Ded,ehind., s postulate, but are not d,ense.(o) The series describ:d ]" $ b2, B lconsisting of the ;r;;.yfractions in which the digitso a"a Z 

"rrffrre 
used) is not dense, butcan readily be shown to satisfy the postulate of Dedekind.(b) Any discrete series is also an ;.;;i" of this kind.

(3) Contfuruous series which a,re not linear.
(a) Let K be the 

"p... 
ol all couples k, y), *t 

"ru 
r and. yare realnumbers from 0 to 1 inclusive; and \it"(ir, ar) l-a;;;J^;;"fit 1 rzt or when *, : ? ?!d ur { y2. This series imi#i"*""

series (satisfying C1 and C2) ; ["t it i, .roiu li.r"u, ,r"ti;;;; ;;;,since no denumerable subclass.E of the ta.ra a"_urra"d il;;;;i;I"CB is possible within it. (The same 
"*.opl", in g"o*utlri" foil,has been mentioned already in $ bb; oii"" 

"*uroples 
of a similarkind will occur in g 20.)

^ 
(b) Let 

-ar1 
(or O) be the smallest of the well-ordered series ofCantor's third class (see_gg,, b"lo*);;;; connect each elementwith the next following element UV, U""* continuous seriesl theresulting series, which hasbeen propo."J Uy Veblen,* i, ;;;;;;,but contains no denumerabre subclasr c;i'the kind demanded inpostulate CB, since every denumerable subclass in the series hasan upper limit in the series (cf. $SS).

(4) A series which is not continuous anil not d,ense.

.. 
As a fi.nal example of a series which is not continuous, we men-

]ion a elass K composed of two sets of ,*i ,ru.rrt".s, say red andblue, with a relation of order defined u. ioito*., 
"f 

i;;"i;;;.
* O. Veblen, Trarx. Am,er, Math. Soc., vol. 6 (1905), p. 169. Another in-teresting series may be made from the slries * by coore"tiog each elementwith the nex-i following element by a se,ries oi t"'r; this series is denee anddense-in itself but not denumerable and not 

"fJrli t"f. $ 62, s).
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thjc-h h;e uirequal. numerical values, that one shall precede
which would precede in the usuar order of rear number*, 

"ugurJllr*of color; of two elements which have the same numericai va'iue, the
red shall precede.

This system is built up by interporating the elements of one con-
tinuous series between the elements of another continuous seriesl
the resulting series, instead of being ,,more continuous,, as one
might have been tempted to expect, is no longer even dense, since
every red element has an immediate .rrc."s.o.lcompare $ E2; 1, b).

Arithmetical operations arnong the eleruents of a continuous series
66. In the case of continuous series as in the case of dense series

it is not possible to give purely ordinal definitions of tnu sums ana
products of the elements; for, unless some other fundamental
notion besides the notion of order is introduced, the elements of
these series (except extreme elements) have no ord,inal propertti,es
by which we can tell them apart (compare $ bB). We might,'to be
sure, define sums and products of the elements of some lurti.rtu,
series (like the series of real numbers, in the usuar order) by trre uL
o{ extra-ordinal properties pecuriar to that series, and ttren t.ansfe.
these definitions to other series of the same type by a one-to-one
ordinal correspondence; but this method *o"ta be wholly i"ua"-
quate, since the ordinal correspondence could be set ,rp i, un
infinite number of ways. To construct a compretery d,etirminate
continuous system it is therefore necessary to introduce some
further notions, like addition and murtiplication, besides th" 

"otiooof order, as fundamental notions of the system.*

, , 
* S":-r:: example my set of postulates for ordinary complex algebra, Trarx.

Amer. Math. Soc., vol. 6 (1905), pp,20g_229, especially $ S, o. my monographot Th-e Fundamonktl Propositions o! Algebralcited in th" i.rtroaortio"; .;;;postulates for absorute 
.continuow magniiude, Traru. Amar. ain. s*-.,

vol. 3 (1902), pp.26*-279,



CIIAPTER VI
Cor.Irruuous Snnros or Monn ruer.r Olrn DrunrrlsroN,wrrrr a Noru om Mur,rrpr,y Onnpnno Clessos

, 66. In the preceding chapters we have studied various kinds ofseries, or simply o1{ered 
_"1*r.". (il;; _ especially the linearcontinuous series (g S4). In the f;;;ir* chapter we considerbriefly some kinds of continuous1""i., *fri.f, are not linear, andadd a short note on multiply oraur"J a#"u.

Continuous series o! more thqn one dimension.*
67' w-e sha' use the term one4'imensionar frameworro or skereton(E) to denote a series of t,ape.:t,th;;;;;;"numerable dense serieswithout extreme elements- fS i+i. l' o*_amrnsional, or Linear,conttinuous series is then any .o"ti"*r* .eries which contains aframework B, in such a way that between a.ry two elements of thegiven series there are elemJnts ;id, i$ ;;):Again, a two-d:imensionat.framato;i," i;, is any series formedfrom a one-dirnensional continuo;;;ffi i? r"ptu"i.rg each elementof that series bv a series of type ;, ;;;;;*o4.imensionar continu-ous series is any continuous ."riu.'*fri*f, ."ntains a framework Ezin the same way.

And so on. fn general, an n&imensional Jrameworh, Ro,is anyseries formed from an (? - 1);;;i;# continuous series bvreplacing each etement of thar'series;;;;;i-r#r;H: ;in4imensional continuous 
.series is u.qf .orrti.,ror. series whichcontains a framework -8. in such u *:uy tiJi n"t*""n any two ele_ments of the given series there a.e eleilenf'of g".

^ 
* Th9 study of the multi-rtimensional continuoucaator in Math. Ann..voi.2_r, p. 5ee ;;"-; (ffi;j:;:ffi:"ffJlJTji,3:been ca*ied out in deiail. ft ,i"rfat" i.t#r,|'t*? *"nd the discussion tocontinuous series of a transfinite ""*b;;;;;;;ions (cf. S 8s).
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68' Bf a h4imensionar section of any continuous series we sharlmean any segment ($ a7) which forms by itself a ft_dimensitnul

contiguous series, but is not a part of any other ,r.f, ,ugr."t.;fn an n-dimensional continuous seriJs each one_dimensional
section, untess it be the fl;f, ,riU have a fli.f etement, and these
elements taken in order w,l form an (z - l)-dimensionar continu-ous series. And so in general: each k_dimensional section, 

""f"r_ 
ft

be the f#rt, *, have a flTf f, - l)-dimensionat section, and these
(& - l)-dimensionar sections taken in order will be the erements ofan (n - /c)-dimensional continuous series.

..69. As already noted, there are four different types of one-dimensional continuous series, distinguished by the pr".*.u-o,
absence of extreme elementsj i" pJti.rt*., u o"r_ai*Lr*ioruf
continuous series with both a first ana a rasi element i. ;;u;J""
series of type 0 (g6t).

A twodimensional.continuous series may or may not have a firstone-dimensional section, and that section in turn may or may nothave a first element. Similarly, tfr"r" m# or may not be a lastone-dimensional section, whichln turn may or may not have a lastelement. There are therefore nine ditrerent types of such series,distinguished by their initial and t""-i.rripr"perties. fn particu_
lar, a two-dimensionar continuous..ri". *itr, both a first and a rastelement w€ may call a series of typea, fri"." it may be formed froma series.of type ? by replacing 

"r.h "iu*"rt by anothe" ..ri"r-oitype 8).t
And so. on._ In general, there will be (n * 1)2 different types ofndimensional continuous-series, distinguished b;r their i"id;i ;;terminal properties. rn $articurar, aJ n-dimensional .";;;;;;

series which has both a first and a last element may be called aseries of type 0".

* we may speak of a sectjon of a framework Bo, as well as of a section of acontinuous series. A ,, zerodimensiorr*t,, ru"iior?ould be, 
"f ;.*, ;-dd;eleylnj. - If preferred , the word-constitr-r;;;y Le r"ud instead of section.t Cf. Cantor,e notation for the ,,p.oJ".J,i 

"i t*, ;;u;;;;;:;,(s 86).
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$ ZO

The proof that any two series of the same type are ordinallysimilar, and that all,thetypes are distinci, i, ,.rdid;b*;;;;;;r,
extension of the methods used in $$ a5 and 6I.

-70' An exampre of an z-dimeo.iloal continuous series is a crasswhose elements are sets of real numbers (tr, tr, fra, . . , *r), whereo1 is any real numberiald a, fra, . )', *^ ur" restricted to theinterval from 0 to I inclusi""; it" elements of the crass beingarranged primarily in order of the rr,s; o, ir, 
"uu" 

,il;"J;;.;j"
order of the r2's1 or in case of equal rr;s ,ra 

"qrut a,., i" ora"i ,fthe ca's; etc.
If t.: 7:-2, or B, the elements of this class can be representedgeometrically: (I) by the points on a Iinel (2) by th" fii";;i,plane region bounded by two parallel fi"es; ana (B) by the pointsof a space region bounded by a square pri.mati" surface. If n isgreater than B, no simple geometrical inierpretation is possible.

-.71. Although the various types of series just .oo.iaJr"a urJ rUdistinct as types of order, yet iiis important to notice that the crasaof elements of an rc-dimensional 
"o"tiooorr* series can U" p"i 

-irrt"

one-to-one correspondence with the class of elementsof u "";;irr;;-sional continuous series, if the relatioo of o.a* is sacrificed;-il;
the terminology of modern geom etry, rhe points o! ail ,pr"",G'L"y
number. of d,imen*ions) can be put inio' one_to_one correspond,ence w,iththe points of a Line. one of cantor,s most interesting e;;r, ffi-coyeries was a device for actually setting up this correspondence;
we give a sketch of the method ftr the 

"I." oi t*o ai*"".i""..i"
As a preliminary step, we-notice that a one_to-one corresoond_ence can be set un between the. points-oi u"y t*o fi.r.r,;"ffin1h:;and b, with or wiihout 

"na_po1it 
.'i,J.,tu.n fine can be dividedinto a denumerable .et of sigmeni. ;iiil;th; ;a;ffi.y; #+]?:+, . . . of the lenEth of th;,il;;; 
"i"_t"_8"" 

correspondence canbe established bet-ween the.two'sJts*oi.Js;untr, and then (as ing 3) between the interior priit. 
"t "r"i'.J*?un, of one set and theinterior points of the corr6sn""ai"g;;;ffiof the other set: and aone-to-one corresoondence can ,t.i ul-".tuumrrra uJi",ii r;r."iilsets of points of division.

* Cantor, Crelle's Jou,rn. ltir Math., vol. g4, pp.24i_Z5g (lg17); cf. Math.Ann., vol. 40 p. 488 (18gS).

Consider now the ryo$ts (r, g) within a square one inch on a side

,8d,fi :1.a5,,i,,ifn*:l;fu*ttti*,l,Hyi"fl#ffi i*:erable set of segments ;fi";Ah. ;;i;;i,".": of an inch. A one_to_one correspond e nee betweenlhe pbiritii or the .q;;; a; ti,""ffi t,of the line ban then il ;trbii;HJ r* rJri"*.,(1) The points (r- v) for *hi.h-"*;;Jfire both rationar form adenumerabie set, aria" tun- ili"."itr"-uJ flri i.,to one-to-one corre-spondence with the ;.;;il;;f ;i;Ji"t. ""I il,""ii*'_irrri"iJ,"irr"points for which I is rational.
,, (2) .The.points (2, y) for which r is rationar and y irrational arethe " irrational " noiriis. of a denume.rur" ."t 

"i ;;iti."fii;"u-#aean therefore be-put i;io;;;i;_l'ril'l*.*.pondence with the
^'ay!l9nat,, p.oinjs of, .th9 a""ri*"rrif" set of segments whichocgyprgg, say, the Iast third of the line.(3) Sjmilarlv the noints (r, E) for *hi.h y is rational and c irra_tional.can be [rut inlo onl-i,]-6;;;";;;;;ndence wirh the ,,ina-
tional'.'..noin ts of the -iaat" tni.a ;T ;ilJli;".
_^(4].-Iip,lly, the points for which r u"i g ur" both iruational canbe put rnto one-to-one- correspondence "*ii[ th, ;-irr;;i;;i;points of the first third of tt e tiil*... for,irr""y irrationalnumber obetween 0 and 1 can be 

"*p.".r.a u.^""ili-iLrr*t;i"g";il;i;;;
tinued fraction, a : far, ";,;;-::\:j#i i.,

1
o, t --J

02+-
as*...,

where ar, aa, aa, . . . are positive integers; so that to the point
r : [xr, frzt frtt . . .ft
y : [ar, az, at, .f

in the square we can assign the point
t : lxr, U\ xz, Uz, !DB, As, . . . )

on the line; while inversely, to the point
t: [tr,h,tt, .7

on the line we can assign the point
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fr:[trrtark, ..],
a:[t,tE,ta, .7in the square.
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Thus the correspondence between the points -of the.square ald
the ooints of the line is complete; and the method is easily extended
to any number of dimensiois, finite or denumerably infinite'

Note on maltti'ply ordered closses

72. Lmutt;ipty ordered,closs is a systern ($ 11) consisting of a class

K the elements of which may be ordered according to several differ-
ent serial relations.

For example, a class of musical tones may be arranged in order

according to pitch, or according to intensity, or according to
duration. Again, the class of points in space may be ordered in
various ways according to their distances from three fixed planes'

A multiply ordered class may also be called a m,ultiple seraes,' but
a system of this kind is not strictly a series with respect to any one

of its ordering relations, since postulate 1 does not strictly hold
(see $ 12 or $ 74). A multiple series which is of type d with respect

to each of z serial relations is called an wiltimens,ional contiru.cum.

An extended discussion of multiply ordered classes is contained

in Cantor's memoir of 1888.*

* Cantor, Zei,tschr. l. Phil. u. philos- Kril;ttc, vol.92, PP' 240-265 (1888)'

See also F. Riesz, Math. Ann., vol' 61, pp. 406-421 (1905)'

CHAPTER VII

Wnr,r,-OnooRED SERTES, wrrrr aN INTRoDUCTToN To

Celron's Tne:trsrrxrrp NuMsPns

?3. In $$ 21, 41, and 54, certain special kinds of series (" dis-

crete," " ilnser" i'continuous ") have been defined, and their

chief properties discussed.

f.r it i* chapter a brief account is now to be given of another

"puauf 
kind oi series, which has proved to be of fundamental im-

plrtuo." in Cantor's ih""ry of the transfinite numbers' and I hope

ihut .o*" readers *uy b" led, by this brief introduction' to a
further study of that most recent' development of mathematical

thought, in itrich rnany problems of fundamental interest still

await solution.

The theory of the transfinite numb-ers was created by Georg

,"t". i"lsig, i.r, *o.rog*ph called Grun'dla.gen e'irwr al'lgeme'inenCu;;. iii' rsie, i" ;*o"os.upt' called' G run'dlagen ein'er -allgeme'inen
ff ;;;;iiAt;i;"tiii,n,i;-ii"'ma^thematisc!-nnnyrltr:lf ^y':;K2
Cantor in

;;-;;Z:l;;;' "[, r" i iiittiir" - i *"ch clei'rer presentation 9l l]:
ffi bi:;ffi iif #iqilq-iilF,E,$asi,i*P's'Nyfu"n,!::.,"::'H::1
ifrZi;;:.;,;;;;"'i#\iiliii*iyiiy,;ey,"eL,tits9,Lit?1))'*::)*,*f;f W'#:i:;"i{"i;,:i;;i;;;ii"iitnl'il#;f,n;{:T,#;tyr#-iri"ti*t, 

Numbers (Open Court Pub' Co', 1

#;l1u';ffi :'#i,i;;,ili!A;;;"s"gs"st"dtnth6Grundtasenhave
nbt yet been develoPed.*

* Among thj mo.e recent treatises may be mentioned: A. Schdnflies,

Entwickeluig der Mengenlehre und, ihrer Anwendungm' second edition' 1913

if:""U""", Leipzie); B. Russell, Principles ol Mathematics (1903); L' Cou-

turat, Les Priiai"r des mathdrnrt'liqwt irSOs); G' Hessenberg' Grundbgorifre

aq lrimgrnt"toe (1SOO); W. H' and G' C' Young, The Theora of Sets o! Puintx

iiS0Ol;".I. }Kdrig, Neue Gnm.illagen der Logik, Arithmetik unil Mengenlehre

iiri;i; F. Haus*dorff, Grunitziise-d'er Menoenkhre (1914); P' E' B' Jourdain'

ii" i;LArp**t ol tie Themv" o! Tronsfi'nite Numbus' published serially in

Archiu il.er Math. u.PhEr., s""."3, oolumes 10, 14, L6' 22 (190G-1913); and the
-;rh;i; 

Mathematicaby Whitehead and Russell, vol' 3 (1913)'
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74. A series, or sim,ply ordered, closs, has been defined in $ 12 as
any system (K, <) which satisfies the following three conditions:

Posrur,ern l. If a and b are d:isti.nct elements of the class K, then
eitheralborbla.

Posrur,em 2. If a 1 b, then a and b are distinct.
Posrur,rrrn 3. If a 1b andb I c, then a I c,

A, normal series, or " well-ordereil" series (wohlgeordnete Menge),*
is then any series which satisfies the following three conditions: t

* The earliest of Cantor's writings which bear upon this subject wilI be
fonnd in Math. Ann., vol. 5, pp. 123-lB2 (1872); and in Crelle's (or Bor-
chardt's) Joum. ftir Math., vol.77, pp.258-262 (1874); vol. 84, pp.242-258
(1877). Then came a series of six articles " tlbernendliche, lineare Punkt-
mannichfal'bigkeiten," Math. Ann., vol. 15, pp. 1-Z (1879); vol. 17, pp. 855-
358 (1880); vol.20, pp. 113-121 (1882); vol.21, pp.51-58 (1883); vol. 21,
pp. 545-591 (1883); vol. 23, pp. 453-488 (1884). The fifth of these articles is
identical with the monograph published in the same year (1883) under the
title " Grnndlagen einer allgemeinen Mannichfaltigkeitslehre ,, 

- page n of
the " Grundlagen " corresponding to page (rr * 544) of the article in the
Annalm. [A-ll the articles mentioned thus far, or partial extracts from them,
are translated into French irt the Acta Mathemnti,ca, vol. 2, 1883. The same
journal contains also some further contributionsl see vol. 2, pp. 409-414
(1883); vol.4, pp.381-392 (1884); vol. 7,pp. lo5-t24 (1885).1 These articles
were followed by a number of writings in defence of the new theory; Bee espe-
cially the Zeitscwt !1ir Phil. md. phil,os. Kri,tik, vol. 88, pp. 224-233 (1886);
vol. 91, pp. 81-125, 252-270 (1887) ; vol. 92, pp. 24C-265 (1883). Then came a
short but interesting note in the Jaltresber. d,, D. Math.-Ver., vol, 1, pp. 75-78
(1892), and finally the " Beitriige," etc., Math. Ann., vol. 6, pp. 481-512
(1895) ; vol. 49, pp.2O7-246 (1897); French translation by F. Marotte (1899) ;
English translation by P. E. B. Jourdain (1915). Since 1897 the literature of
the subject has rapidly increaeed, but nothing further has been published by
Cantor himself.

t G. Cantor, Moth. Arm., vol. 21 (1883), p.548; i,Ai.d,., vol. 49 (1897), p. 207.
The name " normal seriee " was suggested to me by the term " normally
ordered class," used by E. \M. Hobson as a translation of. wohlgeordrute Mm.ge;
Proc. Lond. Math. Soc., ser.2, vol.3 (1905), p. 170. It would have been a
better term than "well-ordered series," for the adjective "well-ordered,,
applies properly only to a closs, not to a serzes, oince a series is already an
ordored class, and a well-ordered class would be, as it were, a '{ well ,, Beries.
But the term " well-ordered " is so well establiehed in the literature that it
aeemsfest to retain it as the designation for this particular kind of series.

$76 WELI,-ORDERED SERIES

Posruuru 4. The series has a first elemen ($ 17).
Posrur,er:r 5. Euery element, unless it be the last, has an inxrne-

d;iute successor ($ 17).
Posrur,ern 6. Euery fundamental segnxent of the series has a

Umit.
Here a " fundamental segment " is any lower segment which

has no last element; the " limit " of a fundamental segment is
the element nexb following all the elements of the segment
(s$ 46, 4e).

The consistency and independence of these postulates are estab-
lished by the examples already given in $$ 28-29.

In a well-ordered series, any element which is the limit of a fun-
damental segment (and therefore has no immediate predecessor) is
called a li,miting element of the series (Grenzelenxent, Element d,er

zwei,ten Art*). Every element which is neither a limiting element,
nor the f,rst element of the series, will have a predecessor.

For example, the series

Ly21,3y . . .j 12,22,32,

is a well-ordered series in which the limiting elements (12, 1g, .;
1') form a progression followed by a last element 1'.

76. From postulates 1-6 it follows &t once that Dedekind's
postulate (see $ 21 or $ 54) will hold true in any well-ordered series;
indeed we maA use Dedelcind's postulate in place of postulate 6 in the
d,efi,nit;ion of a well-ordered, series;f I prefer postulate 6 in this case,
however, because it emphasizes the unsymmetrical character of the
well-ordered |eries.

76. Other, very convenient, forms of the definition a,re the
following:

(1) A well-ord,ered. series is anA series in which eaery subclass ($ 6)
has a fi,rst element.l

* G. Cantor, Math. Ann., vol. 49 (1897), p,226, Jourdain usea Limes; Phil.
Mag,, aer.6, vol. 7 (1904), p. 296. Compare g 62, above,

t O. Veblen, Trarx. Amsr. Math. Soc., vol. 6 (1905), p. 170.

f Cantor, loc. cit. (1897), p. 208.

65
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(2) A well-ord,ered, seri,es is any series which corrtains no subcrass of

the type *<^r; that is, no subclass which is a regressio" ($;iJ*-'
- The equivalence of each of these definitions with the Iefinition in
$ 74 is easily verified.

Eromples of well_ord,ered, suies
77. The simplest examples of well-ordered series are those which

contain only a finite number of elernents; and since two finiie
series are ordinally similar when and only when they have ir* .-*"
number of elements, there wiu be a distinct type of well-ordered
series corresponding to every natural number fto*pur" $ 27).- 

-'
The simplest example of a weli-ordered series with an infinite

number of elements is a series of type ar, that is, a progression (tt;i.
78. other examples of welr-ordered series, whictr witt ."rrru utlo

to explain the notation commonly used, are the following:
A progression of series each of which is itself of type i forms a

series of type c,rz:

1,2,3,. . . ll, 2,3,.. . 1tr, 2,3, .. . I " . ..
A progression of series each of which is of type ro2 forms a series of

type c,r3:

1,2,..1t,2,..1.. ll 1, 2,..11,2,..1.. j1L,2,..12,2,.. 1.. I1....
- So in general; a progression of series each of which is of type co,
forms a series of type ar-fl, where y is any positive integer.

Any type ov eart be represented by a series of points on a 1ine of
Iength a by the following device, illustrated for tle case of typ" rr.

Tirst, divide.the-given line into a denumerabre set of intervals, as

[rost conveniently by the set of points whose distances from the
rr\ht-hand end of the line are
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the points of division will forrn a series of type or. Nexb, divide
each interval into a denumerabre set of intervut. i, u *i"ritu" *ri;
all the points of division taken together will form a ."ri.. ot ifi"
ra,. Finally, repeating the same operation once again, we obtain'a
series of points of type <o3.

79. A series of the type called ar" may now be constructed as
follows: Take a line of rength a, and divide it into u d.rro*".ubl"
set of intervals as abovel in the first of these intervars insert a
series of type co, in the second a series of type or2, in the third a serie"
of type <o3, and so onl the total conectiorol points thus determined
forms a series of type ar.

- A series of type oro each of whose elements is a series of tlpe co.
forms a series of type (co.)z or c,t '2.

A series of type &,o each of whose elements is a series of type
or''2 fotms a series of type c.r,'a.

And so in general a series of type cro each of whose elements is a
series of type 6.', forms a series of type r,r(,+1).

_ A series of the type called co., can now be constructed as follows:
Divide a given line into a denumerabre set of intervals as before.
in the first of these intervals insert a series of type co-, in the seconi
a series of type r,r.'2, in.the third a series of type or.a, and so on; the
total collection of points thus determined forms a series of tyfe
1tro'o gy 1tra2.

- A series 
9f typu rod each of whose elements is a series of type co.,

forms a serie4s of type (or), or u@2'2.

A series of type ord each of whose elements is a series of type
oP''z forms a series of t;rpe or*'a.

And so in general a series of type o.2." may be constructed, and
hence a series of the type ad', ot or,,, by uroth", application of tfr"
denumerable set of intervals.

By an extension of the same methods we can thus construct
series of each of the types originally denoted by,u co2, tts, ,,
where b)! : (Dt o)z : ot@t, ag : o@r,

* cantor, loc. cit. (1897),p.242. rt shourd be noted that thig notation has
recently been abandoned, the subscripts under the ar,s being oor, *.aio"
another purpose; see $ 88.

aaaa
,' 4' g' 16''

* Jourdain, Phil,, Mag., ser. 6, vol. 7, p. 6E (1gO ).
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And so on ad, infiruitum; but none of the well-ordered series thus
constructed will contain more than a denumerable infinity of
elements (compare $ 38).

80. In order to understand one further matter of notation, con-
sider a well-ordered series of the type represented, say, by

o3.5+u2.7+@+2.
Here the plus signs indicate that the series is made up of four parts,
in order from left to right; the first part consists of a series of type
<o3 taken five times in succession; the second part consists of a
series of type co2 taken seven times in succession; the third part is
a single series of type o; and the last part is a finite series containing
two elements. - And so in general the notation

osr',vo * <,sp-L.yr{ ap-2.v2* ., . * vu,

where p is a positive integer, and the coefficients yo, yr, yz, . . . t /r,
are positive integers or zero, is to be interpreted in a similar way.*

It will be noticed that in the case of a progression, or of any well-
ordered series of the types described in $$ 78-79, the whole series is
ordinally similar to ea"cir of its upper segirents ($ +Z); thai is if w;
cut off any lower segment from the series, the type is nob altered.
This is not true in the case of the well-ordered 

-series 
of the types

described in the present section.

General properties of well-ordered series

81. The fundamental properbies of well-ordered series are devel-
oped very carefully and clearly in Cantor's memoir of 18g7; the
following theorems may be mentioned as perhaps the most im-
portant:

(1) Every subclass in a well-ordered series is itself a well-ordered
series.

(2) If each element of a well-ordered series is replaced by a well-
ordered series, and the whole regarded as a single series, the result
will be still a well-ordered series (compare the examples in $$ 78-
7e).

(These two theorems follow at once frour the definition in $ 76, 1.)
* Cantor, loc. cit. (1897),p.229.
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Dnrrxrrtors. The part of a well-ordered series preceding any
given element o is called a lower segm,ent (Abschrvi,tt) of the series

(compare $ 47).*
(3) A well-ordered series is never ordinally similar to any one

of its lower segments, or to any part of any one of its lower

segments.
(4) If two well-ordered series are ordinally similar, the ordinal

corespondence between them can be set up in only one way (com-

pare $$ 26,45,61, and $$ 53, 65).
(5) Any subclass of a well-ordered series is ordinally similar to

the whole series or else to some one of its lower segments.

(6) If any two well-ordered series, P and G, are given, then either
F is ordinally similar to G, or F is ordinally similar to some definite
lower segment of G, or G is ordinally similar to some definite lower

segment of F'; and these three relations are mutually exclusive. In
the first case, F and G are of the same type; in the second case, tr'

is said to be Zess than G; and in the third case, G is said to be Zess

than F.
82. By virtue of this theorem 6, the aarious types of well-ordered,

series, when arranged " 'in the order of moqrvitude " (as il,efi,ned, in the

theorem), form a serfes ($ 74) with respect to the relattion " less than" ;
and,! as Cantor has shown, thi,s series i,s itself a well-ordered series.

Moreover, by theorem 2, every possible collection of types of
well-ordered series, arranged in order of magnitude, will be itself
a well-ordered series.

Classifi,cati.on of the well-ordered series

83. The classification of the well-ordered series is a characteristic
feature of Cantor's theory; since, however, the method of pro-

cedure, when pushed to its logical extreme, has led to controversy,

* Most writers, including Russell, translate Abschnitt by segment (without
qualifying adjective); but since the word " segment " is already used in several

different senses (see, for example, Veblen, Trans. Amer, Math. Soc., vol. 6, p.

166, 1905), it has seemed to me safer to use the longer term " lower segment,"
about which there can be no ambiguity.
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il83the whole scheme is regarded with a certr 

.

Thc classification i" as folrows: iln measure of suspicion.*
First' euery we'-ord'sred' 

-tii" tn which the number of etements isfi'ruite is said to belong to lDe rrnsr 
"i".* ,r welr-ord,ered, series.Now take a, the types of 

""ri". ;;'i;;ing to the first class, andaruanse them in .l*:^?] _ugnitrJ" i$iz), tr,u resutt is a we[_ordered series of a certain type, called o, (compare 
$ 24)"Then eaery well_ord,ered,irtrr knrrrii*,,rnt, 

"on 
be put into one_to-o?w correspondence (gB) with tne ebmeiis-o1", ;; ;;;;;i,i"ri'ii-ro"

ffi:ilr:ffi-:;.Jl:ilJ::rar, the .u"i". or type o are the i*ail,t
Next, take all the types of series belonging to the second class,and arrange them in ora"" of _r*rfr"a",, the resulting series is awetl-ordered series of , ."rtri" lyi;;fJo r,rr (or o).* On the paradoxes of Burali-Forti, Russell, arrionsor-,ti.*utl"Ji9gi.,=.rro""*.*pi",,cl*"Tji1ii1;iy.,ff 

";;tr;.mat' di Pal'etnto, vol' 11 tisriX, ir.-lull];;'bleor"t, Lesons sta tatheori.e d*s'trffi .::??;:{^,*iffi"i{tzt*i;j:ixi:a_"a*i".116r;,-;;i;,_
D. nilbert, rahresba.. i. o a,rn._in:;;.;?lA6i.;ld;l B.,f,llhi"l}ciples o! Mathemntbs (1903),.chapter i,i;'ei.'#."rooroo, proc. Lond.. Math.Soc., Ber. 2, vol. B f r'Odl,,pp. rZ,_iSA; A]S.hir"dies and A. Korselt, Jahresber.
t';""!l!;rl3;uot, G 

,(rbm),r,. 
iL;;il;ilr1r; , E. B. rourdain and

I3"ar, ;. 6: il."q E.'f,'ff:il"#'fl'fJ;"lf J.ri.,f:ff*1ffi*.:*:
?;;;,' {#;!;"!;{;il f:,'";.'2;;"i;ii iil;, o, ru rz, w-zo, zr-zz
r+rrsb6),po.6iffi,';.';h};i;:::,i;!,tr,1;,!i;"?i!:'i'i1rrL;:;;'
2e6, a*d ,ru. Math.. v'ot.s qe,?);;;.;d;:;frTk;::;l rli.?;!,,i ,it"ff
'oc., 

vol. r+ lroosy, oo. tza_<+iif;. dr'*fl# E. Zermeto,and Ir. poin_caxe, A*a. Mojhemntica.:d g,2 fisorl, pp.Tiilrs+, ,ss_ros, and t9s_200:A. Koyr6 and B. Russeli 
.Rea. 

de iretu;izi,li:;;' i;r., vot.2o (Lst2), pp. r2z_7za 
lyyd z.z>-z26; H. 6ingrer, j ;;;*;;'.;.7: ;pp.ts07-Brs;rv.wi"*",ar,*""r;;";;;;t"r;;:,-#l;{?;;rtri];3?r,rlriJl

* 
"ul_olr. 

paper by H. Glause, E*a. aet-ir"'."lroi., 
"on. az+-eie ; u" J tn" 

"I ""rr rreatises bf ;;;;#r,"{;ff;::,. r]8,r,rrjjfl:cited in a footnote to g ZB: especially WhrilU.ra"*i n uxel7, princzpi.a Mathe_

ffff :ry #;Xtr#fi fr:ii'lx**:r,:H.*Ti*i rexfi: #ntproblem of consistency ."e 
""f"ruoc"J il;; 

'$ i;:"

$84 Wl,Ll,-OR,l)t,llilil) Sl,llillls Zl
Then euery wttll,qm,:*'rl, x:r.it:s roh,ose olorncnts can be put into one_

to-one corresTnruknutr rnith,.Lln t:lt:rrurd,s ,rf ,,. ir said. to'belong to theTHrnD clAss. In yxlrl,ir:ukur, 1,lu: scrics of type co1 are the imq,ilest
series of thc thirrl <rlr,ss.

- And so on, Irr grr,.ral, tntery well-ord,ereil series whose elements can
be put into onc-to-o^c correspond,ence with the elements oy ,, lwhere ,is any positivc intr:gor).e-s- said to belong to the (v { Zltt 

"ii.rl-rrathe series of type o, will be the smailJstseries of that class.*Moreover, by an extension of the device already emptoy"a
seve_ral times, we can define a class of well_order"a ."ri"*'*fro."
smallest type would be denoted by ,., or even o,,! and so on, odinfi,nitum; so that when we speak of th" nth chJ'of *af_ora"r.a
series, n need not be a positive integer, but may itself denote thetype of any well ordered series.

,, 
8f. 

-In order to justifythis classification, it is necessary to shorvthat the classes described are really aU iiltinct, so thai ;;;;li_
ordered_ series belongs to more than one class; and ilh;; il;well-ordered series belonging to each class actually 

"*i.t, .oitri*
class is " g*pty.,, Cantor has .oroptui"J-trri, i""".iis"ti;;;;;
as far as the flrst and.secord. classesl each of tt" u*rIipi". ;;;_tioned above is a wen-ordered series of the first or second. class(since tofue number of elements in each .ur"-i" at most denumerabre,in view of $ B8); no similar example of a series of even the thirdclass has yet been satisfactor,y constmctJ-f nroul"*r ,"*"*irg
- 

* 
Tlu notation co, for the smallest fupe of the (r f 2)th class was intro.duced by Russell, principles of-Matheiatics, 

"J. i tlSOAl, p.822; compare
{ourdain 

phil. Mo4., 
""". 

6, ool. Z ttlOll,-i,'2ii. hhe symbols ar and o werefirst used in this connecrion by Cantor ;-n;;: Ann., vol.2l, pp. 5ZZ, 5Bz(1883).

t The question whether every-"jt.:rl be arranged as a well_ordered series,was first proposed by Cantor in I88B (aoth. inn,'vf. zi p.lsrii-il;;;:troversy centere about two papers. by E. Z*riiio; Srrri, d,u, irdr-;;;"wohlgemdnet wqden kann, Math,_Ann , "of. 
SS iIdO+1, pp. 514_516 1 NeuerBewei* ltir die Mdglichkeii arro-Wonhran*,q,'M;;. Ann., :vol.65 (1907), pp.lO7-128. See, for example, J. Kdnig-, e. S"no"ni1., i,. Bernstein, E.,B;;;ij;rr.;P. E. 'B. Jourdain, Math. 

-Ann., "J OO (t-r05), pp. t7Z, t8t, 187, lg4, 4$5;J. rladamard, R. Baire, H. Leblsgue, ;iE6;i Buil, de ta Soc. Marh. ile
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the existence of the higher classes, and the question whether everycollection can be arranged as a well_orderei series, ;rtili ;;irgactively debated (see g g9).

86' The various crasses of wer-ordered series can arso be definedby purely ordinal postulates, us V"Ul"r, frus shown how to do in hisrecent memoir.*
Thus, a well-ordered series of the first closs is any we,-orderedseries which satisfies not only the postuiates l_6 of $ 74, but alsothe further conditions A and gr, #;t;-
Posrur,erp Z r. Euery elemen_t ircept thl first has a predecessor ($lZ) .Posrur,ern gr. There is a last rir*rri (StZ). ---' \d^'
The type <.r is then defined by postulaies 1_6 with 7, and g,r,

where 8'1, is the contraaictory oi Sr:
Posrur,arn g,r". There is no last-elemcnt.
Next, a well-ordered series of the seciri ctass is any wer-orderedseries, not of the first class, which satisfies Zz and.gr;"r;"ly;*'
Posrur,ern Zz. Euery element ,*uet tn, rtm Atnn'nou oiirar"ru-sor or is the upper ,T* ot.some subcfas, oityp, a (as just ,irl."rii.Posrurero 82. There is either a last et:;ent, or a subclass of tgpeu r*ich surpa,sses any. giuen element o! the s;a,ies.f

^. 
Th: type ,, (or o) is then defined Ly fostutates 1_6 with Zz and,8'2, where 8'2 is the contradictory of gr. '
Posrur,ern 8,2. There is no iast eiment; and, euery subclass oftype o: has an upper limit in the saies. .

Fratrce, vol. 38 (1g05) , pp.26'-2ZB; G. peano, Eiyista di Matematita, vol. g(1906), p. t4E; J. o.dni*, Math. eni., 
"oL 

u (isoir, ,o. 186_16q and vot. 68(1906), pp. 2L7-22t; Ir. poincar6, A,i a" ueiiiir. et de Mor.,vol. t4 (1906),pp. 294-BtZ; H. Lebesgue, Bu,. de t" soc. aoti. a* p*i",,uli: # iirrii,pp.2O2-212; G. Vivanti, Rend. del circ. *u. aiiirr*o, vol. 2b (190g), pp. 20$..208; G. Hessenberg, Crelle,s Journ. fA, Urli., 
"rl. IB5 (190g), pp. gl_l33,3r8;.E. Zermelo, Math. Ann., vol.6s tigotii,''pplzol_281; and the recenrtreatises by schdnflies, Krinig, and H"*io"a itl'a'i" 

" 
r"otr"f? $?r,l#cially Whitehead and Russeri'prt*tiii";i;;r;;,vor. B (lel,), p. B. For

" 
t!i* 

lp_ot by F. Hartogs (t9tb), see $ 89;. 
- '-"""'

" 0. Veblen, Trans. Amer. Ma!;h: S;, vol. 6, p. I70 (1905).f That is, if c ie anv eremeat of the given serili tuur" is an erement g in thesubclass for which a I u.
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Similarly, a well-ordered series of the third, class is any well_
ordered series, not of the first or second crass, which satisfies za and
83, namely:

Posrur,ern Z s. Euery element ercept the first either has a pred,eces-
sor, or is the upper limi-t of some subclass of type a, or is the upper
Limit of some subclass of type <l,1.

Posrur,erp 8t. There is either a last element, or a subclass of type
ot which surpasses any giuen element, or a subclass of type ,r'iirn
surpo,sses any giuen element.

The type crs is then defined by postulates 1_6 with Za and g/e,
where, as before, 8/a denotes the contradictory of g3:

Posr:ur,ern 8'* The-re is no lqst element; euery subclass of type o:
has an upper l:imit in the series; and, eueryiubclais of type ,"rii o-n
wpper limit in the series.

And so on. The estabrishment of definite sets of postulates like
these seems to me an essential step toward the sorution of the diffi-
cult problems connected with this subject. For example, Cartoris
proof that a series of type o is non-denumerable is simpi a dem_
onstration that no denumerable series can satisfy the eight postu-
lates here numbered l-6,22, and g!.

tr, The transfi,nite ordinal numbers

- 86., 
-It 

is now easy to explain what is meant by the ordinal nutrw
bers (Ord,nungszahlen), in the generalized ,"rr.. i, which Cantor
now uses that term: they are simply the uariru,s types of ordr, 

"i-hi,bited, by the well-ord,ered, se,ies.* I'other words, ,."o.ii.rg ; fir"
th99ry of Russell, the ordinal number corresponding to ariy given
well-ordered series is the closs of all series whiih are olanouy" in ttar
to the giuen series; a,ny one- of_these ordinally similar ,"ri"*"*uy b"
taken to represent the ordinal number of the given series.t

The ordinal numbers of therrsr crass ($ gB) are thefi,niteordinal
numbers, with which we have arways been farniliari tu" orJinui

] O-antor, Zeitschrilt ltir plvil.os. unit philos. Krttik, vol.9l (1882), p. g4;
and, Math. Ann., vol.49 (1892), p. 216.

t B,uesell, Priltciples of Mathematics, vol. 1 (f903), p. 812.
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numberc of the second or higher crosscs are the transfinite ordinal
numbers created by Cantor, which constitute, in u"""riui" t.u"
sense, ', eine Fortsetzung d,er realm ganzen Zahtenreihe t*er aou
U nendltiche hina u,s.,, *

The smallest of the transfinite ordinals is ro.

. By th9 s1tm, a * b, of _two ordinal numbers, aand.b,is meantsimply the type of series obtainedwhe;;;;;fi-k #;r"i. r"iii#.abv a series of tvoe b,and the.",hoit;"g;;a"a l.-'u'.iisi" I;.tiJ.tClearly a + b.wiil nor _rl;ry, d;;; ;;il; ., b * a (for examnle1 t y-: ro, while <, + L is a new tvp"i; n"t.f*ry.ir'Taj T'[:a * (b'l c).
pv the product, ab, of. a-nordinal number o multiplied by an ordi-

::|:ryP:, b, is mdant the t-ype ot ,"ri". lntained as foilbws: in a
:::"jE,1y!" b rgplace each element by a series of type 

", 
;il;;;;the whole as a sinsle series; the.resuk will be ; ;"eiifo;h;;;J;Fft'_(by 9.8.1, 2), and-1he typ6 qL this;ii;A;r;d ;;;i". ;J;h;i:-meant UV gP,.I Clearly ob will not always equal ba-(fo.iirri"f"z@: @, whrle o.Z is a new type); but dlways (ra), : ,Orl, i.iul*S,-r(b, t q).: 

"2 t "2, 
attnougti noi- (i'i cla : ba * ca.r ne oennrtron oI ab, where o and 6 are general ordinal numbers istoo complicated to repelt in this pta.".$--m";gh-h;;^r;;;ii*

been said to give at reast some 
"oiio" 

of trrl nature of the artificiaralgebra whic[ Cantor has here., i"dfi.til;;;t*#;6ruruura
The transfiruite card,inal numbers

87' For the sake of completeness I add here a brief note on the
meaning of some of the terms in Cantor,s theory of the qgeoerai_
ized) cardinal numbers.il This theory has noihing to Io *iit
series, or ordered classes, b"l 

1. a devllopment of ifru tt 
"o.y 

,i
classes as such ($ 1t); nevertheless the difficulties met *itr, i"irri,
theory are closely analogous to the difficulties we hur" poiot"a oot

* Math. Ann., vol.21 (lgg3), p. 545.
I Math. Ann., vol.21 (f8$), p. SEO.
I rn cantor's earlier defi.r_tion of the product ab, a waa the murtiprier(loc, cit.,,1883, p. 5El); the order was changed in his later urti"f"r, ,o-tfr-J ois now the myltiplicand (aee.to1. ci.t.,Ig87,;. 96, and 1897, pp. iti, ZA:i. 

-
!.!antor, Math. Ann., vol.49 (1g97), p,-23l; llu"uao"f, t".ii.7lfli'El,p. 147.
ll The standard account of this theory is in cantor's articre of 1g95.
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in the theory of thc orrlirur,l rnlrrrlrcrs ($ 84), and it is impossible
to read the litcraturc of .itlu:r l,hoory without some acquaintance
with the other.

88. rf two classes ,ln bc brought into one-to-one correspondence
($ 3), they are suid Lolt* equiualent (aquiualent). For example, the
class of rational nurnbers is equivalent to the class of positive
integers (comparc $ f 9, 6); or the class of points on a line is equiv-
alent to the class of all points in space ($ Z1).

The cardinal rutmber (Mdchtiqkeit) of a given class ,4. is then
defined as the class of all those closses wh,ich are eqwiualent to A!
The finite cardinal numbers are the cardinal numbers which belong
to finite classes; the transfinite cardinals are those which belong to
infinite classes ($ 7).

According to this definition, if two classes,4. and B are equiualent,
their cardinal numbers will clearly be identical.

If a class,4. is equivalent to a part of a class B, but not to the
whole, then .4 is said to be less than B; in this case the cardinal
number of ,4 will be Zess than the cardinal number of B.

We cannot, however, affirm that all cardinal numbers can be
arranged as a series, in order of magnitude, for while postulates 2
and 3 (f 74) clearly hold with regard to the relation ,,less than,, as
just defined, postulate 1, which may be called the prineiple oJ
comparison (Vergkichbarkeit) f.or classes, has never been proved.
In other words, non-equivalent classes may possibly exist, neither
of which is " less than " the other; but see $ 8ga.t

On the other hand, Cantor has proved that when any class is
given, a class can be constructed which shall have a greater cardi-
nal number than the given class.|

* The term Mtich.tigkeit waa first used by Cant or it Crell,e,s J oum. liir Math.,
vol. 84, p.2a2 G877). Power, potency, multitude, and dignity are some of the
English equivalents. The term carilinalzahl, was introduced in rgg7. cf.
Cantor, l,oc. cit. (L887), pp. 84 and 118. The notion of a cardinal number ag a
class is emphasized by Russelll Principl,e oJ Molhematics, vol. 1 (1g08), p.812.

t Compare E. Borel, Legons sw la thilorie iles fonctionx (lggg), pp. iOZ-f f O.
' f Cantor, J. d. D. Math.-Ver., vol. 1 (1892), p. ZZ; E. Borel, Ioc. cr.i. (1ggg),

p. 107; C. S. Peirce, Monist, vol. 16 (1906), pp.4DZ-802.
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For example,let C denote the class of elements in a linear con-
tinuum, say the class of points on a line one inch long (compare
$ 71); and let C' denote the class of all possible ,, bi-colored rods,,
which can be constructed by painting each point of the given line
either red or blue. Then the class of rods, C,, has a higher cardinal
number than the class of points, C, as may be proved as follows:

. In.the fi-rst place, C.is equiaalentto a part of C,; for example, to
the class of rods in which one point is paintedred-and all the other
points.blue- Secondly, C is not equiaalent to the whole of C,; for, if
a,ny alleged one-to-one correspondence between the rods and the
points were proposed, we could at once define a rod which would
not be included in the seheme: namelv, the rod in which the color
of- pq"\ point r is opposite to the coloi of the point r in the rod
which-is assigned to the point c of the given liiie; this rod would
differ from each rod of the proposed scheme in the color of at least
one point. (Cf. g 40.)

The class C'has therefore a higher cardinal number than the class
C.. It is- not l*gryr, howeverfwhether there may not be other
classes whose cardinal numbers lie between the cardinal numbers of
C and, C'.

89. Of special interest are the cardinal numbers of the various
types of well-ordered series; but when we speak of the cardinal
numher of a series, it must be understood that we mean the cardinal
number of the class o! elements which occtn in the series, without
regard to their order.

The cardinal numbers of the finite well-ordered series are the
finite cardinal numbers, with which we have always been familiar.

The cardinal number of a series of type ar ($ 2a) is denoted by
the Hebrew letter Aleph with a subscript 0:*

No.

This p6 will then be the cardinal number of any well-ordered series
of the second class ($ 83), since all the series of the second class are,
by definition, equivalent.

The cardinal number of a series of type orr (or O) is denoted by
Nr; this will then be the cardinal number of any well-ordered
series of the third class.

$ 894 WI'I,I,-ORDERED SERIES

And so on. fn gcneral, the cardinal number of a series of type
c.r, is denoted by x,; this will then be the cardinal number of any
well-ordcred series of the (z f 2)th class.

It we asw,me the series of classes o! ordinal rrumbers ($ &t): we thus
obtain a, series of cardinal numbers

NrrNrr...rN@r...,

arranged in order of increasing magnitude; this series will be a
well-ordered series with respect to the relation " less than,,, and
ordinally similar to the series of ordinal numbers; but all the diffi-
culties that are involved in the one series are involved in the other.
In particular, it requires proof to show that two Alephs, as N, and
Nya1, &r€ really non-equivalent, and that no other cardinal number
lies between them. Cantor has.shown merely that xo is the sraeallesl
transfinite cardinal number, and that xr is the number nert greater.*
Again, the vexed question: can the cardtirwl rrum,ber of the Linear
conttirruum ($ 5a) be fw,nd, among the Alephs ? is equivalent to the
question: can the class of elemmts in the continu,um be arrarryed, in
the torm of a well-ordered, series ? (See $ 8go.) It is usually supposed
that the cardinal number of the continuum will prove to be xr.

8.9o. Inlthis section we reproduce, in brief outline, Hartogs,s
recent proof of Zermelo's theorem that eaery class can be arranged
as a well-ordered series.t

Let there be given anv nonrmpty class. M.
. First, considei all posiible weil-br"dered series, G, H, . . ., whose

elements belong \o i[, and let N be the class'coinp6sed df ttrese
series, together with the null series, 0.

Next, within this class N, group tosether all the well-ordered
series G', Q-", -. . . which are simitaf to d into a subclass, g; group
togglher all the well-ordered series I/', H,,, . . . which i,iri simitar
to]I into a subclass, h; etc.

These-subclasses,'g,h, . . . (one of which is the null class) are
now to form the elements of a series, ,L, whose rule of order ii the
following: A subclass g is said to precede a subclass h (g < h), tf.

+ Math. Ann., trol.2l, p. 581 (1883).
t F. Hartogs, tlbr dns Problem da Wohlordnung, Math. Arm,, vol. 76

(1915), pp. 438-443.

77

* Cantor, Math. Ann., vol.46 (1895), p.492.
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Finally, if wo rurstttrto l,lrc prirrr:i1rlc of oomparison between classes
($ 88), thcro is ottl.y ottrr ttll,crtruliv<l ltrft, namely: itmustbe posl
sible to place llut ol,r:rtt,r':rtl,s of M in one-lo-one correspondence with
the elentints of o,1xrt <[ 1,, I]ut since L is well-ordered, every part
of .L is woll-ortlcnxl; lurttt:c we have the theorem that whatever
class M may lrc, il,s cLlnrerrts can always be so arranged as to form
a well-ordercd scrit:s.*

90. We spcak next of the sums and products of the cardinal
numbers.t

The sum A + B of two classes .4 and B which have no common
element is the class containing all the elements of .4 and B to-
gether.- If o and b are the cardinal numbers of two such classes A and B,
ihe sum, a, + b, of these two cardinals is then defined as the cardinal
number of A * B. Clearly e +b : b * a, and (o * b) f c :
a-F(bfc).

The product, AB, of two classes d and B which have no common
element is the class of all couples (o, 0), where o is any element of
,4, and B any element of B.

If o and b are the cardinal numbers of two such classes, the prod-
uct, ab, of these two cardinals is then delined as the cardinal num-
ber of ,4.,B. Clearly, ab : ba, (ab)c : o(bc), and a(b * c) :
ab*w.

Finolly, AB denotes the class of all coaerings (Belegungen) oI B by
,4., where a tt covering t' of. B by ,4. is any law according to which
each element of B determines uniquely an elemenh of A (not ex-
cluding the cases in which various elements of B may determine the
same element of ,4-).I

The b'n power of a, a6, where a and.b are the cardinal numbers of
any two classes.4 and B, is then defined as the cardinal number of
AB. Clearly aba" : aw", (ab)o : abc, arrd (ab)" : q"6".

In this way Cantor has constructed an artificial algebra of the
cardinal numbers, analogous to the algebra of the ordinal numbers,

* Hartogs's paper shows that the following three principles are equivalent:
(1) the principle of comparison between classes; (2) the principle that every
class can be well-ordered; and (3) the much discussed "multiplicative axiom"
of Zermelo, See referencee under $ 84, especially Whitehead and Russell,
Principia Mathemalica, vol. 1 (1910), p. 561.

I Zeitschr.!.Phil.u.ptuilos-Krit;ik,vol.91 (1887),pp. 120-121; Math.Ann.,
vol. 46 (1895), p. 485.

,f 
*o*. Ann,, vol. tl6 (1895), p. 487.

,t

$ 89a

any one of the well-ordered series_-beronging to g is similar to a
f -iiq:ffi 

:llrf, &Tff-::*xa1;"#;%*m*b11"f fl:fl TiHg, or which 11 is taken flortl, etc., since aU tfi" b,s i" g r;;#ii;to each other, and all !\g H's in I are similar to 
"u"t"ott"u;. 

;;.iFrom this definition it rotiows trrri"ir li,ilili;, tiinillrraillk]ll;
s and h, are distinct. then either g < h;r 

"t.;.h {;;;;ffi;il"t?i,
a-lso that if g,_h, i-aie thre_e subciassus ,*"f, ifrrt 'i {i "ii"i?'i,then g I i. In other words, the subclasss g,i, ,". . i;r*;;"r.il]/,,-with respeet to the rule of order staied- 

-

--Moreover, 
the series L thus "r"ti*tii- is a weil-ord,ered series.The p^ro.of is'as foltows-: i"i, i"-;;;"il;ri of Z, and tet G be anv

gne-of the weu-orderedserieJ beron[ins6;:" T[J" iii 
"r"ilJit.'1,'rL which precede s stand in a one-to]o"Z 

"oir"rp-ona";;; 6;;;;#"tiorder) with the lower segments of C. B;rihe lower segments of GIorB, well-ordered seri6s ;_ henc", 
-"o 

-uit"" what eieft-en; ; ;;
t?"ttit;iiff i"#:1T#:#:"".,:SJtg,lli,Tft yil;;#".,l:S,#
For, if Z_were not well-ordered, it *r"ta .".tri";; 6J;;;;;;:sion, r ($ Z0), so !!a! if g is ariy el"-""iof 'r, th";;il"j;i"?. .fr preceding-g would fonn-a series having ". ni.[ "ii-*J, i,ri irri.is impossible, since the elements .i r-p:r;;did;l.,?,#rt;1"iil';
:l:f:"!l of .L precedins.g, and f,,"n""'a.e"pu.i "ot u #"fi_"rJ"r"jserrls, a,nct as such must have a first elemeni. The whole .".i". iis therefore a well-ordered series.
. Further, each of the well-_ordered series G, H, . . . which can beformed out of elements 

"f 
M, i*;ir"iil;iJ'.o*u lower sesment ofL. In partigular,.the.well-ordered a;ri", ? ir;ililrr;;"th"# lo#isegment of .L which is determine{ !v !f,u;yb;1;;;il;i,i;il;belongs. For, as we have just no[ed, thuie rs a one_to_one corre-spondence- (preserving order) betweeri tt e suUcta;.* ;ir;;;r;;;gand the lower segments-of .G, and there is al;;;;;;i;;;5;";""::

;fl:1ffff:?{S:?il-* 
order) between rhe lower segments of G-and

Considering now the elements of- /:, without regard to their order.we see at once that the elements of L cannot O" Ft"ui t 
- r;:;:;1,correspondence with the elements iy M, no, with'tii elerne;i;;i ;;

!fi ,{ ff d;t, : r,t":#;:rmy;d*,t,ffrrm iirlxiy,;weil-ordered series. formed out of elements of M, and.ilil"ri; I;but this is impossible, since ;" hr;;;;;""i tr,r't """il;;h;"Ifordered series is similar to some to*ui s"gme"t oi l,"u'rrd'ir" r"i".segment of. L can be similar to Z itself. -
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but resemblins much more crosery the familiar argebra of thefinite integers.-
- Perhaps the most famous result obtained in this algebra is theformula*

c : 2No,

where c stands for the cardinal number of the continuum, and 2xois determined according to the ."i" J".ilt"t",i i;;-th";";;;.-;icardinal numbers. It becomes u" iriporta"t duriil,", ;i;;=ilr",to decide whether

2No : g,

or not (compare $ 89, end).

- 
91. In conclusion, it may be well to repeat that when we speak

of.a cariltinal number, we always mean the cardinal numb 
", 

,i;;;
giaen class; and when we speak of an ordinaZ number, *" ,f*ry,
mean the ordinal number of some giaen well_ord,ered, series.

Whether these new concepts will find important applicationp inpractical problems is a question for the future to decide. (+h;
elementary parts of Cantor,s work have already p.orr"J ,."f;i
hd:"-d_ almost indispensable, in the theory of funciions of u ,"ui
variable.t)

* Math. Ann., vol.46 (1895), p. 4gg.

_ !See, for example, R. Bair1, Legons sur les fonctinns ilisconttinues (LgOi);
E. Borel, Legotx sur la thdorie 

-de,s- 
fonctions,2nd edit. (1914); E. W. H;;;

Theorg of Functiow o! a Real VaiUbte (1SOZ); .I. pierpon[, Zraurrs iln
T.|reo-ru o{ Fun'ctiorw of a Real variabta (1905, ig12); etc.l also the treatisescited under g 73.

INDI'X 0IT TIi)CIINICAL TERMS

Tho prinoiprl bibliogrnplritnl fo()tnotos will bo found under the introduction, aud
undor ![ 73-74, atd $$ 83-84.

Alephe, $ 89.

Between, $ 17.

Binary fractions, $ 30.
Bound (upper and lower), $ 56.

Cardinal oumbers, $ 88.
Class, $ l. (See empty, null, finitrs,

infinite, denumerable, simply and
multiply ordered, well-ordered,
equivalent.)

Classes o{ transfinites, $$ 86, 89,
Closed (eeries), $ 62.

- 
(set of points), $ 62o.

, 0uster point, $ 62a.
rCompact (seriee), $ 41.

- 
(set of points), g 62a.

Comparison (of classes), $ 88.

Consistency (of postulates), $ 19.

Continued fractions, $ 71.
Continuous (series), $$ 54, 62, 67.
Continuum, $$ 61, 72.

- 
problem, g 89.

Correspondence (of ciasses), $ 3.

- 
(of series), g 16.

Covering, $ 90.

Decimal fraction, $$ 19 (9), 40,63 (4).
Dedekind's postulate, $$ 21, 54, 75,

Dense (series), $$ 41, 54, 62.

- 
(set of points), g 62a.

Denee-in-itself (series), $ 62.

-. 
(set of points), 5 62o.

Denumerable (ctrass), $ 37.

- 
(series), $ 41.

Derived set, $ 62a.
Digits, $ 30.
Dimensionality, $$ 67-71.
Diecrete (series), $$ 21, 26.
Distinct (elements), $ 2.

Element (of a class), $ 1. (See dis-
tinct, equal, first, last, rational,
irrational, principal, limit.)

Empty (class), $ 1.
Equal (elements), $ 2.
Equivalent (claeses), $ 88.

Finite (classes), $$ 7, 27.

- 
(series), $ 27.

- 
(numbers), gg 86, 88.

First (element of a series), $ 17.

Fr4ction, $ 19. (See proper, decimal,
binary, ternary, continued.)

Fra,mework (of a series), $$ 59, 67.
Fundamental (segment), $ 46.

- 
(sequence), g 62.

Independence (of postulates), $ 20.
Induction, $ 23.
Infinite (classes), $$ 7, 27.

- 
lnumbers), $$ 86, 88.

Integral (numbers), $$ 22, 34, 63 (3).
Irrational (elements), $ 59.

- 
(numbers), g 63 (3).
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Last (element of a series), $ 17.
Less than, $$ 82, 88.
Limit (series), $$ 49, 56, 74.
_- (set of points), $ 62a.
Linear (continuous series), $ 54.

Mathematical induction, g 23.
Multiply ordered (class), g 72.
Multiplicative a-xiom, g 89o.

Natural numbers, $$ 19 (1),30,36.
Normal (series), $ 74.
Normally ordered (class), $ 74.
Null (class), g 1.

Numbers, $ 63 (3). (See natural, inte-
gral, fractional, rational, irrationai,
real, cardinal, ordinal, finite, trans-
finite.)

Numeration, $ 30.

Operations, $$ 11, 53, 65.

- 
on natural mrmbers, $$ 81, 85.

- 
oD. transfinites, $$ 86, 90.

Order, $$ 12, 16,72,82.
Ordinal numbers, $ 86.
Ordinally similar (series), g 16.
Origin, $ 26.

Part (of a class), g 6.
Perfect (series), $ 62.
_- (set of points), g 62o.
Point sets, $ 62o.
Postulates, $$ 12, 21, 41, 54,74,85.

- 
consistency of, $ 19.

- 
independence of, g 20.

Powers (of numbers). See operations.

- 
(cardinals), g 88.

Predecessor, $ 17.
Principal (element of a series), $ 62.
Products. Seeoperations.
Progression, $$ 24, 85.
Proper fraction, $$ 19 (5), 42.

TECHNICAL TERMS

Rational (elemente), g 59.

- 
(numbers), $$ 51, 68 (g).

Real (numbers), gg 6A (g).
Regression, $ 25.
Relation, $$ 11, I"2, 13.

Section (of a continuous series), g 6g.
Segment, g 47.
.- (fundamental), g 46.__ (upper and lower), g 47.

-- 
(well-ordered series), g 81.

Self-representative, $ 28.
Sequence, $ 62.
Series, $ 12. (See discrete, dense,

denumerable, continuous, linear,
finite, closed, dense-in-itself, per-
fect, well-ordered, similar. )

Seto of points, $'62a.
Similar (series), $ 16.
Simply ordered (class), g 12.
Skeleton (ofaseries), gg 59, 67.
Subclass, $ 6.
Successor, $ 17.
Sums. See operations.
System, $ 11.

Ternary fractions, g 52 (B).
Transfinite numbers, $$ 86, 88.
Types of order, g 16.
Type o, $$ 24, 85.
---- *o, 

$ 25.

- 
*o+ o, $ 26.

-- z, $ 4[4.

--4 gs 61, 62.

- 
d", $ 69.

- 
@2t o', $$ 78, 79.

- 
d,, $$ 79, 83, 85.

- 
or gg 83, 95.

Well-ordered (series), $S 74, 70.


