
 
Chapter 6 

MEMORY AND A POSTERIORI INFERENCE 
      

mpiricists have always regarded observation and memory as the fundamental input for 
empirical knowledge; they say that further knowledge is obtained mainly by a posteriori 
inference.  In the last chapter I discussed the sort of knowledge that can be obtained by 

observation.  After just a few pages it became obvious that observational knowledge is very 
closely related to inferential knowledge; in fact, much of what we think we know by observation 
actually requires some kind of a posteriori inference.  It will turn out that memory knowledge is 
basically the same as observational knowledge in this respect.  A posteriori inference is therefore 
fundamental to most empirical knowledge.  I shall be principally concerned with salient varieties 
of a posteriori inference in this chapter, but I begin with a brief discussion of memory and 
eventually conclude with an empiricist defense of the presumptions on which our everyday 
claims about the external world are ultimately based. 

 
Memory as A Source of Knowledge 

Although empiricists have always regarded memory as an indispensable source of our empirical 
knowledge, they have generally praised memory with a slightly bad conscience.  The problem 
with memory is that it purports to tell us something about occurrences that do not exist when the 
memory occurs.  A recollection occurs in the present; the occurrence it refers to took place in the 
past.  But the past is over and done with, and the same is true of the occurrences we ostensibly 
remember.  Any correspondence between a current memory and a past occurrence cannot 
therefore be ascertained by direct inspection.  Since we cannot infer such a correspondence by a 
priori reasoning, there is no inconsistency in the supposition that the world came into existence 
just a moment ago, complete with the recollections we now have.  This possibility cannot 
apparently be ruled out by a posteriori reasoning, at least if that reasoning is the sort of thing 
empiricists have taken it to be: a matter of generalizing from experience.  If we never directly 
experience a connection between present impression and past occurrence, we have absolutely no 
basis for any such generalization.  By what right can we trust memory if we have no way of 
proving that it is ever correct? 

I have just rehearsed the classic case for a skeptical view of memory.  At first sight, it is a 
very impressive case, but reflection shows that it is highly exaggerated.  Do we not sometimes 
have direct perceptual access to part of the past?  If we can perceive things in motion, we must 
have this access.  When someone smiles, waves a hand, or throws a ball, the action takes time, and 
the first part of the action is over (a past occurrence) when the last part occurs.  The perception of 
any movement is thus attached to a temporal interval that includes past, present, and future.  The 
past and future occurrences are past and future in a relative sense: in an occurrence with three 
distinguishable segments A, B, and C, the segment B is a past occurrence in relation to C but a 
future occurrence in relation to A.  This relative futurity is a genuine kind of futurity because 
when A begins to occur, B has not yet taken place.  When B does take place, A has taken place.   
 Saint Augustine, who was seriously perplexed about time, had a very different view of 
the present.  As he explained it,  

If an instant of time be conceived which cannot be divided into the smallest particles of 
moments, this only is it which may be called present….  For if it be, it is divided into past 
and future.  The present has no space.1 
  

If Augustine was right here, the present is a timeless moment.  But we are not conscious of a 
timeless moment when we make observations.  The world we perceive or otherwise experience is 
always in motion: it is consciously changing, and we experience it as changing.  The idea of a 
“spaceless” present is created by a process of abstraction, by thinking away the terminal elements 
of an experienced moment.  The idea thus created is comparable to the idea of an imperceptible 
triangle.  Our knowledge of it results from inference, not observation.  The moments we observe 
contain relative pasts and futures as well as extended nows. 
 As strange and possibly puzzling as the idea of an extended present may be, we have as 
much reason to believe we perceive extended moments containing changing things as we have to 
believe that we perceive anything at all.  Of course, the amount of the past included in what we 
can perceive is relatively little: I can perceive a smile, but I probably do not perceive the whole of a 
forward pass in football.  I watch a quarterback move his arm forward, I see the release, and I 
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watch the ball move down the field.  I suppose it is more accurate to say that I observe a series of 
movements.  When I observe the later movements, I am recalling the earlier ones.  I know what 
these are like because I remember observing them. 

Philosophers of an earlier time devoted a lot of attention to the phenomenology—the 
qualitative aspects—of memory experience.2  Thinking about this aspect of memory is no longer 
fashionable in philosophy; perhaps it is now supposed that the experience of remembering may 
be different in different people.  But the qualitative character of remembering does not seem 
important for epistemology anyway.  What is important is the truth or probable truth of the 
claims people make about what they remember.  People who say they vividly remember certain 
things are generally very confident in the truth of what they say; those who declare that their 
memories are dim are usually less confident; and those with memories of intermediate vividness 
have intermediate confidence in what they say they recall. Of course, some people are naturally 
more cautious or more conscientious than others; some are even more interested in calling 
attention to themselves or in telling a good story than in being right.  The timid claims of some are 
therefore sometimes more trustworthy than confident claims of others.   

When people claim to recall things they once experienced, their recollections can often be 
supported or criticized by other records of the past—by diaries, letters, photographs, films, and 
the like.  Because of such things, we do not have to rely entirely on a person’s words for our 
picture of what actually happened.  Yet words are centrally important for many past occurrences.  
What Tom promised Ted or what Sally told her students on Friday could never be known in any 
other way.  To decide whether this or that person’s recollection is correct, we must in fact consider 
the variety of factors that are pertinent to the assessment of an observation report.  Since people 
ostensibly remember what they saw, heard, tasted, or learned in some way, the truth of what they 
remember depends crucially on the truth of what they think they perceived or otherwise learned.  
In assessing the probable truth of memory impressions or reports, we must therefore take into 
account the considerations pertinent to evaluating an observation report in addition to those 
specifically applicable to the reliability of a subject’s memory and the motives he or she may have 
for embellishing or even falsifying a true recollection.  If the truth of a certain memory claim or the 
occurrence of an event a person was in a position to recall is very important, as it commonly is in a 
legal proceeding, we might insist on having the subject cross-examined by a competent lawyer.  
Not only will our existing evidence be tested by the cross-examination, but further evidence will 
also be obtained.  As every reader of mysteries knows, the process of discovering what actually 
happened on this or that occasion can be extremely complicated.  

In spite of the complications that I have just emphasized, most memory claims might be 
described as past-tense observation claims: they may differ from a typical observation claim by no 
more than “I see Spot run” differs from “I saw Spot run.”  I emphasized the variety of 
considerations pertinent to evaluating an observation claim in chapter five; the complications 
pertinent to assessing a typical memory claim may be no greater than those pertinent to its 
present-tensed cousin.  In fact, if a person is seriously questioned about what he or she now 
observes, the duration of the questioning may easily convert the target of the investigation into a 
memory claim.  What is logically special about a memory claim—what makes it deserving of 
separate treatment—is that the inferences properly supporting its truth or probability are 
essentially backward looking.  A fact about the past is inferred from facts about the present. 

What sort of inference is capable of providing this kind of support?  Hume considered it 
experimental.  As I explained in chapter five, the reasoning Hume called “experimental” is causal 
inference; it consists in inferring one fact from another by means of a causal principle obtained 
from experience.  If we represent a certain causal principle by “As cause Bs,” we can identify two 
associated forms of experimental inference.  One infers Bs from As, or effects from causes; another 
infers As from Bs, or causes from effects.  When Hume treats particular causal inferences in detail, 
as he does in his Dialogues Concerning Natural Religion, he emphasizes that the causes and 
effects appropriate to a given causal principle have to be identified very carefully; but his basic 
idea is that “all experimental reasonings are founded on the supposition that similar causes prove 
similar effects and that similar effects prove similar causes.”3  If Hume is right, the inferences 
supporting the truth of memory claims are experimental inferences of his second kind: a past 
cause is inferred for present effects. 

The cause that is inferred by such an inference is the occurrence that is ostensibly 
remembered.  What effects provide a proper basis for such an inference?  If the emphasis is 
squarely on memory and not other effects of past occurrences, the relevant effect is probably the 
subject’s memory experience or memory belief.  Suppose I have the experience of ostensibly 
remembering (or seeming to remember) parking my car a half hour ago in section C4 of the 
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parking lot outside the restaurant where I am now having lunch.  If I can assume that this kind of 
experience is probably caused by the sort of actual occurrence it seems to represent, I can conclude 
that I (probably) did park my car a half hour ago in section C4 of that parking lot.  In Hume’s 
view, all the inferences that provide empirical support for the truth or probable truth of memory 
claims are of this causal kind.  If a given claim receives additional support from a note written in a 
diary, the note must be viewed, if Hume is right, as an indirect effect of the occurrence it 
describes. 

I noted in chapter five that Hume thought the causal principles used in experimental 
inferences resulted from experience but were not themselves inferred from any premises at all.  
Later empiricists generally disagreed with Hume on this last point; the consensus was, and 
possibly still is, that causal principles are obtained by induction, an inferential process also known 
as inductive generalization or enumerative induction.  The skeptical view of memory that I 
described early in this chapter was based on the idea that inductive inferences of this kind are 
rationally unjustifiable.  If inductive inferences can be justified, memory claims can no doubt often 
be justified in the way Hume thought—by causal reasoning.  But there are many problems with 
induction.  Now is a good time to see what they are. 

 
What is Induction? 

One of the problems about induction is how the rule should be formulated.  One way of 
presenting this problem is to show the defects of a commonly offered formulation.  The one I shall 
begin with is given by William Lycan (1988), and it is similar to a formulation used by Laurence 
BonJour.  Both writers accompany their formulations with qualifying remarks, Lycan’s identifying 
fallacious applications of the rule.  His rule is this: 

  
  n% of all the observed Xs have been F. 

   Therefore [probably] roughly n% of all Xs are F.4 
 
The fallacious applications he has in mind, which his formulation does not itself rule out, occur 
when the number of observed Xs is too low to represent a “sufficient” sample or when the 
observed Xs constitute a biased one.  If your evidence class—that is, the class of observed Xs—
were very small, you would normally have a very poor basis for claiming that approximately n% 
of all Xs have the property F.5  Similarly, if the Xs you observe were not selected in some impartial 
or fair way, you would normally have a very poor basis for making a comparable claim. 

In view of these fallacies, it is important to look for a rule that disallows them.  Consider 
the following: 

 
  n% of all the observed Xs have been F. 
  A representative example of Xs have been observed. 
  Therefore, [probably] n% of all Xs are F. 
 

This formulation would no doubt disallow generalizations from insufficient and biased samples, 
but to apply it, we would have to know how we are to identify a representative sample.  Suppose 
we are told that a sample of Xs is representative of a larger reference class with respect to the 
frequency of having F just when the percentage of Xs having F in the evidence class is 
approximately the same as the percentage of Xs having F in the reference class.  If this is what we 
are to understand by a representative sample of Xs having F, the revised inference schema would 
be deductively valid: the corresponding conditional statement would be analytically true.  This 
would give us an unquestionably valid form of “inductive” inference, but we would have no way 
of knowing when a particular evidence class is representative in the specified sense. 

In Human Knowledge: Its Scope and Limits, the only one of his many books in which he 
seriously discussed inductive inference, Bertrand Russell offered the following as an inductive 
rule: 

 
Given a number n of α's which have been found to be βs, and no α which has been found 
to be not a β, then the two statements: (a) "the next α will be β", (b) "all α's are β's", both 
have a probability which increases as n increases, and approaches certainty as a limit as n 
approaches infinity.6  
 

                                                
4 Lycan (1988), p.179. 
5 The word “normally” appears in this and the following sentence for a reason that will become evident as the discussion 
proceeds. 
6 Russell (1948), p. 419. 



To apply this rule we do not have to know whether we have a representative sample of αs and βs, 
but the rule will give us little help if we are interested in drawing a conclusion about the 
percentage of native-born Norwegians having blond hair.  To draw a conclusion about a reference 
class that, although finite, is too large to examine as a whole, we shall need some way of 
estimating the size of an acceptable evidence class and of identifying an impartial way of selecting 
its members.  Unfortunately, no general description of how these tasks may be accomplished 
appears to be available. 

A possible reason for the dearth of general descriptions is that dramatically different 
sample sizes and methods of selection appear to be acceptable in different cases.  Consider the 
way new models of automobiles are evaluated each year by Consumer Reports.  Normally, just 
one example of a given model is examined, and the example is obtained merely by buying it from 
some randomly chosen dealer without disclosing the actual identity of the buyer.  Although one 
might initially suppose that a single example is far too small to be an acceptable evidence class, 
reflection shows that a single example is almost certain to be representative of the model to be 
sold with respect to traits deemed important for the entire class.  The reason for this is that 
automobiles are mass-produced objects subject to standard quality controls.  Some manufacturers 
produce more reliable products than others do, but a given manufacturer is apt to produce 
instances of a particular model in the same way using basically the same materials.  Anomalies 
occur, of course, but one instance can be expected to be substantially similar to any other instance 
of the same model, particularly if the dealer selling it has no reason to suppose that the buyer will 
use a particular instance in a way that will compromise future sales. 

The acceptability of the sample size and the method of selecting instances in this last case 
obviously depend on background information about automobiles and the way they are produced.  
Here the acceptability of one inductive inference appears to depend on the acceptability of others.  
The question therefore arises, “Is there is a basic rule for rationally compelling enumerative 
induction whose application does not require background knowledge of this kind?”  As far as I 
know, the answer is no.  Hume, assuming no relevant prior knowledge of the objects of an 
empirical generalization, argued that an evidence class, no matter how selected and how extensive 
it may be, provides no rational basis for the conclusion that the objects of the reference class, many 
of whose members may exist in the distant past or the remote future, are at all similar (in the 
relevant ways) to those already examined.  We naturally expect them to be similar—“we expect 
the future to be [relevantly] like the past”, he said—but this expectation has no basis in reason or 
any operation of the understanding.  It is purely instinctive.  There is no inconsistency supposing 
that the future will be unlike the past in relevant respects; and any a posteriori reason that could 
be offered to dispute this would be based on the same supposition and thus beg the question at 
issue.7 

 
Induction: Arguments Pro and Con 

Laurence BonJour recently countered Hume’s criticism with an a priori argument, one featuring a 
form of inference that Hume did not consider.  BonJour’s a priori argument, which is of course a 
defense of enumerative induction, is noteworthy for two basic reasons.  It includes novel 
qualifications to the inductive rule designed to avoid objections raised only in recent times, and it 
relies on an additional form of inference that is now fashionable with philosophers and deserving 
of critical attention. 

BonJour’s argument applies to what can only be called a very incomplete formulation of 
an inductive rule.  Initially, he identifies the sort of situation in which an inductive inference could 
(as he sees it) be reasonably made.  The situation would involve “a large number of observed 
instances” of something A, a fraction m/n of which have “some logically independent observable 
property” B.  The locations and times of observation, the identity of the observers, the conditions 
of observation, and any further pertinent background circumstances must be varied “to a 
substantial degree” and there must be no relevant background information available concerning 
either the incidence of Bs in the class of As or the connection, if any, between being A and being 
B.”8  If these conditions are met and the observed proportion of As that are Bs “converges over 
time to the fraction m/n and thereafter remains at least approximately constant as significant 
numbers of new observations come in,” then the conclusion of the argument is likely to be true (p. 
207).   

As I noted, BonJour attaches some important qualifications to the inference he describes 
here, but his a priori argument for its acceptability—for the fact that its conclusion is probably true 
when its premises are true—is that the truth of the conclusion provides the best explanation for 
the data that the premises describe.  The crucial data here pertain to the “convergence and 
                                                
7 See Hume, Enquiry, Sect. IV. 
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constancy of the observed proportion,” and although it is possible, he says, that this proportion is 
a matter of chance, it is highly likely that the observed proportion is an accurate reflection of an 
objective regularity (p. 209).  Such a regularity cannot be a mere constant conjunction, as Hume 
thought; to provide the required explanation it must be a “metaphysically robust” regularity, 
involving a necessary connection (p. 215) or a “substantial propensity to persist into the future” 
(p. 214). 

The qualifications BonJour adds to his account apply to two kinds of counterexamples 
independently discovered by Bertrand Russell and Nelson Goodman in the late 1940s.  Both 
philosophers observed that any objects chosen as the basis for an inductive generalization possess 
some features that support objectionable generalizations—generalizations that are either patently 
false or incompatible with other generalizations that are equally well supported by the available 
evidence.   

Russell’s examples showed his usual wit.  One was based on the well-known belief that 
Immanuel Kant had never been more than ten miles from his hometown of Königsberg.9  If Kant 
had been interested in drawing inductive conclusions about sheep, one property that he might 
have observed in every sheep he examined is that of being within ten miles of Königsberg.  To get 
as large a sample as possible, he could have devoted years to the task of observing sheep and, to 
make his selection as unbiased as possible, he might have observed them in fields, in barns, on 
houses, and possibly even in ponds.  A generalization supported by his observations would have 
been the patently false “All sheep are within ten miles of Königsberg.”  Other properties 
possessed by every sheep he might have observed are being observed by Immanuel Kant, being 
observed by someone, living in Germany, living in Europe, and being outside of Italy.  Obviously, 
this list could be extended indefinitely.   

Goodman’s examples featured contrived predicates such as “grue,” the latter applying to 
an object, Goodman stipulated, just when it is either green and examined before a distantly future 
time t or blue and not so examined.  Goodman argued that if we are examining emeralds for color 
and find that they are invariably green, we can use the inductive principle to draw two 
incompatible conclusions, neither of which is better supported than the other.  They are “All 
emeralds are green” and “All emeralds are grue.”  These conclusions are incompatible because 
they disagree about the color of emeralds not examined before t.  According to one, they are 
green; according to the other, they are blue.  These conclusions are equally well supported 
because every emerald we examine will inevitably be examined before t and thus, if it is green, 
count as grue.  Since the time t may be placed arbitrarily far in the future, we cannot avoid the 
difficulty by waiting to see how emeralds look when t arrives.  We are, in fact, faced with a 
general problem arising from the inductive principle itself.  It permits us to draw incompatible 
conclusions from the same body of data.  This defect is illustrated by the hypothesis featuring the 
word “grue,” but it is common to countless other hypotheses.  To avoid it, the inductive principle 
needs significant qualification. 

As you might expect, one of BonJour’s qualifications requires that the predicates used in 
an acceptable inductive inference do not include the contrived sort exemplified by “grue” (p. 189, 
note 2).  Unfortunately, this qualification is not actually effective in avoiding the problem 
Goodman raised.  The choice of predicates is in fact irrelevant to the issue.  Instead of using the 
predicate “grue,” Goodman could raise his problem simply by speaking of things that are either 
green before the time t or blue afterwards.  If every emerald we examine is green, every emerald 
we examine is either green before t or blue after t.  Because of this, the emeralds support the 
hypothesis H2, that all emeralds are either green before t or blue afterwards, just as strongly as 
they support the hypothesis H1, that all emeralds are green.  But H2 conflicts with H1 in regard to 
the color emeralds have after t.  This problem is evidently not avoided by the inductive rule that 
BonJour attempts to justify.  The problem does not arise, incidentally, from the disjunctive 
character of one of the hypotheses.  It can arise just as easily from curve fitting problems.10  

When Goodman introduced predicates such as “grue,” his aim was to call attention to 
what he called a new problem of induction.  This new problem was essentially the same as the one 
Russell raised: the familiar inductive rule needs serious qualification if it is to be acceptable.  
Russell did not suggest a qualification for the standard rule; Goodman did.  Oddly enough, the 
qualification Goodman offered bears an interesting similarity to the principal qualification 
BonJour provided.  Somewhat like BonJour, Goodman ruled out troublesome hypotheses—the 
one’s containing words with the same extension as predicates such as “grue” 11—on the ground 
that they are not “lawlike.”12  He distinguished lawlike from non-lawlike hypothesis by reference 
                                                
9 Russell used this last property to illustrate the “shaky” character of induction by simple enumeration in Russell (1951), p. 
126. 
10 See Grunstra (1969), pp. 102-106. 
11 Predicates P1 and P2 have the same extension just when they apply to the same objects. 
12 Goodman (1965), p. 73. 



to a property that he called “entrenchment,” which BonJour did not come close to mentioning, but 
he did imply that the hypotheses strongly confirmed by their instances could be regarded as laws, 
or statements of laws.  This recalls BonJour’s claim that regularities inferable by enumerative 
induction must be “metaphysically robust” regularities, involving necessary connections or 
“substantial propensities to persist into the future.” 

 
Induction and Laws 

The idea that the generalizations reasonably inferred from data samples are or must be 
laws is so implausible that it is hard to take seriously.  People who conduct public opinion polls 
draw general conclusions from their samples, but they rarely if ever suppose that their 
conclusions hold true eternally or even far into the future.  The same is true of conclusions about 
the effects of advertisements, the fear of epidemics, or any of the thousands of topics that are 
investigated by statistical methods every year.  There is nothing “lawlike” about the conclusion 
that the U.S. President’s approval rating among voters is ten per cent less today than it was two 
months ago, even though this conclusion was inferred from samples taken all over the country. 

Some of the generalizations inferred from experimental data might, I suppose, be 
considered “laws,” although the very idea of a scientific law is less widely accepted these days 
than it used to be.13 But there is no agreement among statisticians that inferred laws are generally 
more secure than short-term generalizations about public opinion.14  If this is right, then if 
enumerative induction deserves to be regarded as an acceptable form of a posteriori inference, 
BonJour’s a priori justification at best applies only to a limited class of these inferences—and not 
to a favored class whose members are used with greater confidence than the others.  The 
qualifications he places on the kinds he defends do rule out some of the counterexamples Russell 
constructed, but they do not succeed against Goodman’s counterexamples, which do not really 
depend on special predicates, nor do they succeed against the full range of counterexamples 
Russell had in mind, which are essentially the same as Goodman’s.15  

Like BonJour, Goodman wanted to disallow the “bent” hypotheses he discussed as well-
confirmed examples of inductive conclusions, and he did so, I said, by claiming that they are not 
lawlike and so not confirmable by their instances.  But Goodman’s solution to his new riddle of 
induction is arguably too restrictive even for the case of scientific “laws”.  Citing specific scientific 
theories, Rosenkrantz (1981)  
persuasively argued that scientific advances often result in hypotheses that are more “bent” than 
the ones they supersede.  The grue hypothesis, he said, in fact “belongs to a class of hypotheses 
that are not only scientifically quite respectable but are the very ones whose introduction so often 
marks the breakthroughs we are wont to label ‘scientific revolutions’” (p. 7.1, 4).  The price of 
adopting Goodman’s “entrenchment” solution to the new riddle, Rosenkrantz contends, is much 
too great to tolerate.  

An enormous literature has grown up around Goodman’s new riddle and his proposed 
solution to it, and Rosenkrantz’s criticism, as impressive as I find it, is no doubt not the last word 
on the matter.  Specialists in the history and methodology of science can speak to it far more 
effectively than I can.  But BonJour’s a priori defense of induction has another feature that raises 
important issues of a different kind.  It is based on what is now known as an inference to the best 
explanation, a form of inference that is widely regarded as a posteriori rather than a priori.  I will 
discuss the logical structure of this kind of inference a little later; right now I want to say 
something about BonJour’s belief that the inference he employs in defending a schematic example 
of enumerative induction is a priori. 

Judging by the steps he takes in constructing his argument, I think it is fair to say that 
BonJour’s belief in this matter rests on two assumptions, which he thinks he knows to be true a 
priori:16  

  
1. The best explanation (meaning “best explanatory account”) that can be given for a 

body of data is most likely to be true. 
   

2. The best explanation that can be given for the truth of a standard inductive premise 
is the straight inductive explanation, namely that the observed proportion m/n 
reflects (within a reasonable degree of approximation) a corresponding objective 
regularity in the world. 

 
                                                
13 See van Fraassen (1989), Part 1, pp. 15-128. 
14 See Phillips (1974), chapter 6, for an elementary discussion of probability densities. 
15 See Russell (1948), p. 422. 
16 See BonJour’s principle (I-2) in BonJour (1998), p. 212. 



In formulating these two assumptions I am ignoring some claims that BonJour makes in the 
course of his argument but that are actually not needed for it.17  The “best explanation” that he 
identifies in (2) is clearly the best that can be given in his opinion; and the truth of (1) is something 
he thinks he can simply see to be true.  The assumption I now want to say something about is (2). 

BonJour thinks what he calls “the straight inductive explanation” (or SIE) is the best one 
for two reasons.  First, he thinks the connection between A and B observed in the evidence class 
must be explainable by some law.  And second, he thinks that any genuine law consistent with the 
evidence but requiring a divergence from the observed ratio m/n in a way that would falsify SIE 
would not really be possible.  A genuine law requiring a divergence from m/n could be owing 
only to a further characteristic C, he says, one that affects the facts of observation itself, and this 
runs afoul of one of the qualifications he mentioned in describing acceptable induction in the first 
place.   

These two reasons are idiosyncratic and certainly not convincing.  As for the first, I can 
think of no tenable basis for supposing that a regularity observed to hold during some finite 
interval, however long, can be explainable only by a law.  A more extensive regularity, one 
without temporal limits, will certainly do as well.  An actual law is not needed, I should say, 
because explanation, pragmatic considerations aside, is prediction after the fact, and anything 
predictable by a law is equally predicable by a temporally unrestricted regularity: the modal 
character of a law, its supposed necessity, has no distinctive observable consequences.  As for the 
second reason, an appropriate regularity between A and B can certainly be such that m/n of As 
are B in one spatial or temporal region but j/n of As are B elsewhere (j being significantly larger or 
smaller than m).  The variation can simply be a matter of the way A is related to B; another 
characteristic is not needed to account for the divergence from m/n. The sort of “bent” hypotheses 
(or supposed laws) that Rosenkrantz cites in criticizing Goodman provide actual examples of such 
lawfully predicable divergences.18 

If I am right about these last points, BonJour’s attempted priori justification of 
enumerative induction does not succeed; it does not even overcome the arguments casting doubt 
on the idea that enumerative induction does not deserve to be considered an acceptable form of 
inference.  But there is a further matter to be discussed, the acceptability of the form of inference 
that BonJour relied on in his attempted justification--namely, Inference to the Best Explanation or 
IBE.  This form of inference is now widely accepted; in fact, some well-known writers—for 
example, William F. Lycan—regard IBE as the basic form of a posteriori inference.  According to 
Lycan, enumerative induction can be reconstructed as a special case of IBE.19 

 
 

Inference to the Best Explanation 
To evaluate this form of inference, one must understand its logical structure.  Lycan 

describes this structure as follows: 20 

 
1. F1,…,Fn are facts. 
2. Hypothesis H, if true, would explain F1,…,Fn. 
3. No available competing hypothesis would, if true, explain the Fi as well as H 

does. 
4. Therefore, [probably] H is true. 
 
There is no doubt that we often reason according to this pattern in everyday life, but it is 

actually very doubtful whether the practice is as commendable as Lycan supposes.21  The third 
premise should raise immediate doubts.  What count as competing hypotheses in a particular 
case?  If we are to apply the method, we must be able to survey all the available “competing” 
                                                
17 One assertion that does no work in his argument is that “it is highly likely that there is some explanation (other than 
mere coincidence or chance) for the convergence and constancy of the observed proportion….” (p. 208).  This is obviously 
not needed if he can simply identify the best explanation. 
18 Rosenkrantz (1981) describes these hypotheses as positing “theoretically well-founded deviations from an overriding 
‘straight’ hypothesis at extreme ranges of the relevant variables.”  His examples are taken from both special and general 
relativity.  See Rosenkrantz, ch. 7, sect. 1.  See also Rosenkrantz’s lucid paper (1982), which deserves to be considered a 
classic on the philosophy of induction.  
19 Lycan (1988), 178-188.  A more extensive discussion is given in Lipton (2004), but Lycan’s description is adequate for the 
task at hand. Bas C. van Fraassen and others discuss critically the second edition of Lipton’s book (2004) in van Fraassen 
(2006).   See below, footnote 21. 
20Ibid. p. 129.  I alter Lycan’s description in trivial ways compatible with his intent.  He uses “explain” where I use “would 
explain if true,” but he says he is using “explain” in the “nonsuccess” sense equivalent to “would explain if true.”  
21 van Fraassen (1989) criticizes this form of inference in some detail.  His objections are in general agreement with the 
objections I develop here.  See also his contribution to the review symposium on the second edition of Lipton’s Inference to 
the Best Explanation in van Fraassen (2006), pp. 344-352. 



hypotheses.  If a pertinent hypothesis is overlooked, we cannot be sure we have found the best 
explanatory account.  The class of competing hypotheses must therefore be limited to those we 
can think of; they cannot comprise a class of ideal alternatives.  But why should a reasonable 
philosopher suppose that the right explanation for the Fi is generally supplied by one of the 
hypotheses some actual person can think of?  It is obvious that most of the facts we can explain 
today by the quantum theory or the theory of relativity could not be rightly explained by any 
hypothesis that Plato or Aristotle could even conceive of.  Are we to suppose that we are bound to 
be in a better position to explain an arbitrary occurrence than they were?  If a phenomenon is 
similar to others that we have successfully explained by accepted principles, we can approach it 
with a fund of knowledge that may assist us in identifying the likely explanatory factors.  But if 
we lack this knowledge, the account that seems best to us might be wide of the mark and certainly 
not “probably true.”   

As it happens, real-life inferences to the best explanation are commonly fanciful and 
irresponsible.  People not trained to weigh evidence confidently offer explanations in cases where 
they lack the information to provide any reasonable explanation at all.22  A skeptical attitude does 
not seem to be natural to ordinary human beings.  When a fanciful explanation is offered for some 
fact, judicious observers are apt to reject it immediately even if no alternative explanation is available; 
they do so because they doubt the proffered account is actually true.  If they do accept an 
explanatory account, it is only because it is already significantly credible; in choosing it, they are 
generally convinced that it rather than some other acceptable principle is applicable to the facts in 
question.  If no generally accepted principle seems to apply, they may speculate about a possible 
explanation, but they never, if they are judicious, actually accept an explanatory hypothesis as 
“probably true” (at least they ought not to do so) if they merely regard it as preferable to the other 
explanatory accounts that they can think of.  They might regard it as providing a possible 
explanation that deserves to be kept in mind and tested further, but they would not accept it as 
“probably true” if it had nothing else in its favor. 

 About the only time a hypothesis is regarded as strongly supported by its evident success 
in explaining certain observed facts is when that hypothesis is antecedently probable, that is, 
already acceptable in a significant degree, or the facts are antecedently improbable, not 
predictable by other accepted principles.  An example of a hypothesis supported this way was 
Einstein’s general theory of relativity; photographs of fixed stars taken during a solar eclipse 
supplied the supporting facts.23   Before the photos were taken, the theory was not regarded as 
sufficiently probable to be accepted, but the disjunction “Either Einstein’s theory is true or 
Newton’s theory of light and gravitation is true” was regarded as highly probable, and not 
entirely owing to the probability of the Newtonian disjunct.  The facts were antecedently 
improbable, because the fixed stars had never been observed in the precise arrangement 
predictable by Einstein’s theory and verifiable by the photographs.  Unlike the hypothesis 
supported in this example, one with a low antecedent probability generally receives only weak 
support from the data predictable by means of it.  To obtain nontrivial support for such a 
hypothesis, persistent testing will normally be needed.  Those who favor the hypothetico-
deductive method emphasize the importance of such testing, but it is not even suggested by 
Lycan’s description of Inference to the Best Explanation. 

The HD or hypothetico-deductive method is a kind of precursor to IBE.24  According to it, 
a hypothesis is tested by deducing consequences from it in conjunction with auxiliary 
assumptions that are considered true or approximately so.  If the consequences are verified, the 
hypothesis is confirmed in a positive degree; if they are refuted, the hypothesis is amended and 
tested again, or simply rejected.  This kind of testing is supposed to be persistent, for a hypothesis 
is considered acceptable only if it stands up to a considerable amount of testing.  In this respect, its 
confirmation is similar to what a hypothesis is thought to require from enumerative induction.  
Understood as I have described it, the HD method seems a bit simple-minded, because the 
testable consequences of one hypothesis can always be inferred from another one. (This is trivially 
true, because an investigator can create a new hypothesis from an old one by adding on some 
qualification, humdrum or exotic.)25  For this reason, the HD method is naturally modified along 
the lines of Inference to the Best Explanation.  The aim now is to choose the best hypothesis from a 
family of alternatives.  Testing is by prediction, as before, but now alternatives covering the same 
data must compete.  The best hypothesis should ideally be the simplest, the most testable, and one 
that fits in best with background knowledge.  

                                                
22 Evidence for this is given in Tversky and Kahneman (1983). 
23 See Carnap (1956), pp. 158ff. 
24 See Aune (1970), pp. 167-182, and Earman (1983). 
25 The HD method does not require that each alternative hypothesis must be antecedently probable in a significant degree.  
A requirement of this kind is appropriate to the view of confirmation I discuss in the next section. 



As I see it, the modified HD method, like Lycan’s description of IBE, does not accord with 
reasonable scientific methodology.  For one thing, it possesses one of the basic defects of IBE: the 
family of alternatives it features are just the alternatives someone can think of, and there is no a 
priori basis for thinking that one of these alternatives is apt to be true.  For this, additional 
knowledge is needed.  For another thing, the probability of the conclusion we can expect to infer 
from observed data is bound to admit of degrees: some conclusions are weakly supported at best; 
others are supported more strongly.  The antecedent probability (or plausibility) of the other 
hypotheses should also be taken into account, and the same is true of the supposed facts that these 
hypotheses are supposed to predict or explain.  Clearly, some hypotheses are more far-fetched 
than others, and the existence of antecedently unlikely facts predicted by a hypothesis will 
support it far more strongly than will those that are likely to occur anyway.  A conception of 
experimental inference that does not accommodate these probabilistic considerations cannot be 
deemed satisfactory.  Inferences conforming to the HD method or Lycan’s pattern are generally 
dubious, I should say, because they ignore too much that is pertinent to the support of an 
acceptable hypothesis.26  

 
Inferences Based on Bayes’ Theorem 

There is an alternative form of inference that does not possess the limitations I have just 
mentioned.  It is based on the use of a simple theorem of probability theory, one known as Bayes’ 
theorem.  Ordinary people and even most scientists rarely employ this theorem in routine 
inferences, but then they rarely employ formal logic either. Formal logic and probability theory 
are indispensable when informal inferences need to be evaluated for rational acceptability—for 
validity or cogency. Since experimental inferences have conclusions that are more or less probable, 
the evaluative principles particularly appropriate to them should include the principles of 
probability. Bayes’ theorem is a very important principle of this kind. 

To understand how Bayes’ theorem can be used in the evaluation and logical 
reconstruction of experimental inferences, we have to understand something about the principles 
of probability and how they can be applied to the task at hand.  Studying probability theory can 
take you quickly into some serious mathematics, but the inferences I intend to describe here can 
be understood with only a minimal exposure to mathematical symbolism.  I shall say just enough 
about the principles of probability to make an elementary use of Bayes’ theorem understandable.  
You can understand me if you can recall the elementary parts of your high school algebra.  

Formally speaking, the principles of probability comprise a remarkably simple 
mathematical system commonly known as the probability calculus.  An important feature of this 
calculus (understood as a formal system) is that it can be interpreted in many different ways.27  On 
one standard interpretation it applies to physical outcomes (changes in the world); on the one I 
shall use, it applies to statements or assertions.  Applied this last way, the calculus concerns what 
are sometimes called epistemic or evidential probabilities.28  As I shall understand them, these 
probabilities are degrees of certainty and evidential support.  

The simplest probability statements of the kind in question are categorical in form; an 
example is “P(p) = a,” which may be read “the probability of p equals a.”  The values assigned to 
these statements—for instance, the value represented here by “a”—are taken from the real 
numbers between 0 and 1 inclusive.  1 is the maximum value, indicating certain truth; 0 is the 
minimum value, indicating certain falsity.  Since “p ∨ ∼p” is certainly true and “p ∧ ∼p” is 
certainly false, P(p ∨ ∼ p) = 1 and P(p ∧ ∼p) = 0.  The probability value of statements that are 
neither certainly true nor certainly false are represented by real numbers between 1 and 0; the 
value of statements closer to 1 are progressively more certain than those whose values approach 
zero and are progressively less certain than those closer to one.  If we believe that a statement’s 
degree of certainty is fairly close to 1, we might assign it a probability value of 0.9.  If we think it is 
very uncertain, we might assign it a value of 0.2, which is tantamount to assigning its negation a 
value of 0.8.   

These last remarks can be expanded to reassure readers not used to thinking of numerical 
degrees of certainty and support.  Since certain truth is equivalent to a probability of 1 and certain 
falsity is equivalent to a probability of 0, a probability of 0.5 is equivalent to probabilistic 
indifference, where a statement is no more likely to be true than its negation.  A probability of 0.75 
is then intermediate between such indifference and certainty, so it amounts to “fairly probable” in 

                                                
26 Another consideration, emphasized by van Fraassen, is that any inductive principle that yields conclusions incompatible 
with those obtained by the probability calculus (on the same evidence) possess a kind of incoherence.  He supports this 
consideration by a so-called Dutch book argument, which I do not discuss in this book.  See van Fraassen (1989), ch. 7.  For 
further discussion of such an argument see Skyrms (1986), ch. 6. 
27 See Skyrms (1986). 
28 Ibid, p. 15. 



everyday terms.  Probabilities over 0.9 therefore count as “high.”  The fact that the probability 
assignments resulting from informal inferences to the best explanation are commonly thought to 
be no more precise than “slightly probable,” “quite probable,” and “highly probable” suggests 
that numerical assignments need not, in practice, be exact either.  In most cases one can think of a 
numerical assignment as an approximation, representing a value in the neighborhood of what the 
number strictly represents. 

Bayes’ theorem provides a principle for calculating what are known as conditional 
probabilities.  The formula “P(q/p) = a”, as I shall interpret it, may be read “the probability of q 
on the assumption p = a” or, more simply, “the probability of q on p = a”; it expresses the degree 
to which q is evidentially supported on the assumption that p is true.29  As in the case of ordinary 
deduction, the evidential support represented by conditional probability is hypothetical, because a 
false premise does not unconditionally support a conclusion that it entails.  If Rover is a dog, the 
statement “Rover is a cat” entails “Something is a cat” but it does not succeed in showing that the 
latter is true.  When we say that q is evidentially supported to the degree x by the hypothesis that 
p, we mean that the truth of that hypothesis would provide x degrees of support for q: it would 
raise p’s probability by that amount. (Other evidence that counts against q could, of course, 
undermine this degree of support if the latter is limited.)  

Although, according to chapter one, evidence need not be propositional, a statement can 
always describe its nature or character.  We can therefore use the term “P(h/e)” to denote the 
probability of h on the evidence e.  If e entails h, the probability of h on e is maximal, as great as 
evidential support can be.  Maximal support is represented by “1”, the integer that also represents 
certain truth.  As you would expect, maximal disconfirmation is represented by “0”: if e entails ∼h, 
P(h/e) = 0.  Although conditional probability statements are ideally suited to express the degree to 
which a statement of evidence would, if true, support some hypothesis, they serve the more 
general purpose of expressing the degree to which one statement with a given probability value 
hypothetically supports another statement with a given value.  Bayes’ theorem, as I said, provides 
a general principle for ascertaining such a degree of support.  

A simple form of Bayes’ theorem can be stated as follows: 
 
(SBT) If P(e) ≠ 0, then P(h/e) = P(h) × P(e/h) / P(e).  
 
This statement is much less complicated that it might initially appear.  Evidence 

statements are almost always contingent statements, not certain falsities, so their probability is 
almost always positive.  Thus the significant core of the theorem is the equality: 

   

€ 

P (h / e) =
P (h) × P (e / h )

P (e )
 

 
The left side of the equation can be taken to denote the probability of some hypothesis on 

the evidence e; the right side gives the formula by means of which this probability can be 
calculated, namely: 

 

    

€ 

P(h) ×  P(e/h)
P(e)

  

 
This last formula is not only very simple, but it encapsulates the commendable aspects of 

the reasoning in the hypothetico-deductive method and in inferences to the best explanation 
without including their defects.  Unlike these other methods, it is sensitive to three things whose 
importance for hypothesis testing I have emphasized: the acceptability or antecedent probability 
of the hypothesis being tested (represented by “P(h)”), the antecedent probability of a predicted 
outcome (represented by “P(e)”), and the degree to which the hypothesis hypothetically supports 
that outcome (represented by “P(e/h)”). 

Suppose that the hypothesis h (into which we can incorporate pertinent background 
information) predicts e with a positive degree of certainty n.  If we contemplate the fraction by 
which the degree to which e hypothetically supports h can be calculated—namely, 

   

€ 

P(h) ×  P(e/h)
P(e)

  

 

                                                
29 The formula “P(q/p)” is often glossed as “the probability of q given p,” but the dangling participle in this locution is no 
clearer, in my opinion, than a dangler is in most other cases.  I therefore prefer to avoid it here. 



—we can see that the more improbable e is, that is, the lower the value of P(e), the larger the value 
of the fraction will be and, therefore, the greater the value of P(h/e) and the more strongly e will 
hypothetically support h.  We can also see that the higher the credibility (or antecedent 
probability) of the hypothesis h, the larger the numerator of the fraction will be and therefore the 
larger that fraction will be.  This means that (other things being equal) the greater the probability 
of the hypothesis, the more strongly it is supported by the occurrence of what it predicts.  These 
facts accord beautifully with informal principles of a posteriori inference: implausible, ad hoc 
hypotheses that accord with observable data are not (generally speaking) strongly supported by 
that data; and the occurrence of antecedently unlikely data strongly supports hypotheses that 
predict it.   

I mentioned earlier that if p entails q—that is, if it is certain that p ⊃ q—the conditional 
probability of q on p = 1.  This principle holds for all p and q.  As a result of this, if a hypothesis h 
entails e, the negation of e entails the negation of h—that is to say, ∼e entails ~h.  But if ∼e entails 
∼h, P(∼h/∼e) =1.  We therefore have a mathematically sound basis for the principle that the 
nonoccurrence of evidence predicted by a hypothesis effectively refutes that hypothesis, rendering 
its negation conditionally certain.    

What about the problem of alternative hypotheses that I mentioned in the last section?  
When I discussed the hypothetico-deductive method, I observed that the occurrence of predicted 
data cannot accord significant support to a hypothesis by itself because data that accords with one 
hypothesis always accords with other hypotheses, thus adding no support to any hypothesis in 
particular.  Does this observation undermine the usefulness of the version of Bayes’ theorem we 
are considering?  The answer is no.  If, in computing the value of P(h/e), we assign a high 
antecedent probability to the hypothesis h, we single it out as a special hypothesis that (other 
things being equal) will receive significant support from data whose occurrence it allows us to 
predict.  And if, on the other hand, we assign a low antecedent probability to e, the basis for our 
assignment can only be other hypotheses that we are tacitly taking account of; we are in effect 
assuming that e has, on the average, a low probability given the totality of hypotheses bearing 
upon its value. 

 
Ascertaining Prior Probabilities 

The answer I gave in the last paragraph is bound to raise a more fundamental question: 
“How are we to ascertain the antecedent probabilities, the ones such as P(h), P(e/h), and P(e), that 
are needed to apply Bayes' theorem?”  Actually, I have already given part of the appropriate 
answer.  As far as P(e/h) is concerned, the appropriate value can often be obtained by ordinary 
deduction.  If h is a compound formula containing not only a hypothesis but the background 
assumptions needed to support a prediction e, h can be expected to entail e, so that P(e/h) = 1. To 
make matters more perspicuous, we might identify these background assumptions explicitly, 
using a term such as “P(e/h ∧ a)” (meaning “the probability of e on h and a) rather than the 
“P(e/h).”30  As in the simpler case of “P(e/h),” we can often calculate the value of a term such as 
“P(e/h ∧ a)” by ordinary deduction.  If the conjunction of h and a entails e, P(e/h ∧ a) = 1; if that 
conjunction implies that e has a lesser value j, P(e/ h ∧ a) = j as well. 

The antecedent probability of the categorical h’s or e’s required to apply Bayes’ theorem 
can usually be calculated from pre-existing information concerning those assertions.  Often the 
calculation for a hypothesis h can be made by a rule of conditioning (as it is called) applied to 
prior applications of Bayes’ theorem.  If, having used Bayes’ theorem to calculate a value, say n, 
for the conditional probability of an assertion h on evidence e*—that is, for P(h/e*)—we may 
proceed to assign the value n to h itself—that is, to P(h)—if we learn that e* is in fact true.  When 
we do this, we are updating the value of h.  We needed an antecedent or “prior” probability for h 
in order to calculate its conditional value on the evidence of a predicted e*, but when we learn that 
“e*” is actually true we can give h a new “posterior” probability.  This posterior probability can 
become a prior probability for further applications of Bayes’ theorem; the designations “prior 
probability” and “posterior probability” are in fact applicable to an assertion only in relation to a 
Bayesian calculation and a verified prediction.  Bayes’ theorem is a powerful investigative tool 
because it can be applied again and again to a single hypothesis, updating its probability value as 
evidence accumulates. Thus, the value we assign to P(h) in an application of Bayes’ theorem may 
often be computed by a prior application of that theorem to some prior, ascertained evidence e*. 

                                                
30 Calculating the value of this more complicated probability requires a slightly more complicated Bayesian rule, 
specifically: 
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P(h / e∧a) =
P( h / a) × P( e / h ∧ a)

P( e / a)

€ 

, if P(e / a) ≠ 0.  



As for the probability of an evidence statement e in an application of Bayes’ theorem, we 
can often calculate this by estimating its value in relation to background hypotheses.  If j and k are 
incompatible hypotheses one of which is bound to be  
true, we can estimate the value of P(e) by ascertaining its probability on both of these hypotheses 
and qualifying each conditional probability by factoring in the antecedent probability of each 
hypothesis.  The rule to apply here, expressed symbolically, is “if j and k are jointly exhaustive, 
mutually incompatible hypotheses, then P(e)  =  P(j) × P(e/j) + P(k) × P(e/k).”31 Here is a simple 
example of how the rule is applied.  Suppose we have the following information about one 
member of a pair of dice: it is either fair or slightly biased in favor of heads, but much more likely 
to be fair than biased.  We also know that the probability of getting heads if it is biased is 0.7 and 
that the probability of its being biased is 0.2.  Consistency then requires us to assume that the 
probability of getting heads if it is fair is 0.5 and the probability that it is fair is 0.8.  What, we want 
to know, is P(e), the probability of getting heads on a single throw of this die?  The answer is P(e) 
= P(f) × P(e/f)  + P(b) × P(e/b) = 0.8 × 0.5 + 0.2 × 0.7 = 0.4 + 0.14 = 0.54. 

These strategies for computing values for the probabilities needed to apply Bayes’ 
theorem have an obvious drawback from a philosophical point of view.  They show us how to 
assign a probability value to a statement only if we already know other relevant probability 
values.  These strategies do not therefore tell us how a basic probability value is rightly 
determined.  Yet without basic probability values, we cannot assign a value for any probability 
other than a so-called likelihood—that is, a statement giving the conditional probability of an 
outcome on some hypothesis and background assumptions.  (I have said that this kind of 
probability can often be determined by ordinary deduction.)  How can we possibly ascertain basic 
probability values?  

According to an influential school of statisticians known as subjective Bayesians, the basic 
probabilities needed for experimental inference can simply be assumed, because they do not have 
to be well founded or accurate in some sense. Experimental inference based on Bayes' theorem is, 
they say, self-correcting. If we begin with prior probabilities that are not extreme (close to zero or 
one) and continue to update our probability values by the rule of conditioning, the effect of our 
initial prior probabilities will become progressively smaller as we proceed: two people starting 
out with different prior probabilities and updating their probability values by successive 
conditioning involving the same evidential input will eventually agree on the probabilities they 
ascribe to relevant hypotheses.  This claim, which can be demonstrated mathematically, shows 
that inferred probabilities can be acceptable without being based on objectively correct priors.32  

The mathematical fact that people who update their prior probability functions by 
persistent conditioning on the same evidential data will eventually agree on the probability values 
they assign to resultant hypotheses does not really dispose of the philosophical problem at issue 
here.   In actual cases in which the resultant agreement is approximated, there is a great deal of 
presupposed agreement on the admissible evidence, on the alternative hypotheses to be 
considered, and on such things as the probabilistic independence of occurrences pertinent to their 
calculations.33  It is possible to seek experimental support for what is thus presupposed; but to 
obtain this support, further inferences of a probabilistic sort will have to be made, and these 
inferences will require further assumptions about prior probabilities and evidential data.  If 
people with different priors disagree on any of these matters, the probabilities they eventually 
assign to the relevant hypotheses are not likely to be the same.  

If we are to use Bayes’ theorem as a basic rule of experimental inference, we must 
therefore find some way of justifying basic probability statements.  If a statement is analytically 
true, it is of course certain and has a probability of 1; and if a statement p implies a statement q, 
the probability of q on p is also 1.  Similarly, statements that are analytically false have a zero 
probability, and if p is inconsistent with q, the probability of q on p is also 0.  In other cases, 
probability theory applied to statements cannot itself assign a value to any categorical statement.   

It is important to realize that the limitation I have just mentioned also holds true for 
ordinary deductive logic: only logically true and logically false statements are given a definite 
value by logic itself.  The value of contingent statements must be determined empirically.  As 
regards these statements, logic can tell us only what is true, or false, if something else is true, or 
false.  Generally speaking, the point in knowing that Q is a deductively valid consequence of a 
premise P is that we should be inconsistent if we accept both P and ∼Q.  If these propositions 
concern matters of fact, the choice between them is not a logical one.  If we accept P, we must not 
accept ∼Q; if we accept ∼Q, we must not accept P.   

                                                
31 The antecedent here is “(j ∨ k) ∧ ∼(j ∧ k).”  
32 See Phillips (1973), Rosenkrantz (1981), Skyrms (1986), and Howson and Urbach (1989). 
33 I show this in the Appendix to Aune (1991). 



According to a subjectivist interpretation, the probability calculus places consistency 
conditions on statements expressing degrees of belief or confidence in propositions.  As Frank 
Ramsey put it is his pioneering essay, “the laws of probability are laws of consistency, an 
extension to partial beliefs of formal logic, the logic of consistency.”34   This way of looking at the 
probability calculus can be illustrated by a fumbling attempt to apply Bayes' theorem.  Since an 
antecedently unlikely occurrence strongly supports a hypothesis from which it is predictable, and 
since antecedently probable hypotheses are, other things being equal, more strongly supported by 
the predictions they warrant than antecedently improbable hypotheses, it might occur to a person 
beginning the study of probability that a favorite hypothesis h (to which he assigns a moderately 
high probability of 0.8) would be very strongly supported by a testable consequence e with a low 
antecedent probability of 0.4.  A simple computation shows, however, that this arrangement of 
probabilities is inconsistent.  If e is deducible from h (so that “h ⊃ e” is certain), P(e/h) = 1.  Given 
this value of the likelihood P(e/h), one can infer from Bayes' theorem that P(h/e) = P(h)/P(e), 
which = 2 in this case.  But this is an impossible result, since no probability can be greater than 1.  
Reflection shows that if p entails q, the probability of q cannot be less than the probability of p—
and this fact was not appreciated in the case I have described. 

 
Basic Prior Probabilities 

The fact that epistemic probabilities are constrained by analytic certainties is enough to 
show that a purely subjectivist interpretation does not accord with the approach I have taken 
here.  It is not a matter of subjective belief that Q is analytically true or analytically false; it is 
also not a matter of subjective belief that a contingent R or S is known to be true.  Contingent 
matters cannot be known to be true for certain, so they do not deserve a probability of 1; but 
anything that is known to be true in a looser sense deserves a very high probability--less than 1 
but reasonably close to it.  Since so called likelihoods—that is, assertions of the form “P(e/h∧a) 
= n”— can usually be given a probability value on the basis of deduction, the remaining 
probability statements that need some extra-logical justification are those assigning values to 
basic prior probabilities, those not inferred from other probabilities.  The question is, “How can 
these basic probability statements possibly be justified?” 

An answer to this question can be located by reflecting on a basic epistemic principle 
laid down by that critic of empiricism, R. M. Chisholm.  The principle is: 

 
CP: If S accepts h and if h is not disconfirmed by S's total evidence, then h is probable for 

S.35 
 
The conception of probability involved in this principle is not the conception I have been 
concerned with in this chapter; it is an idiosyncratic conception that Chisholm expresses by the 
adjective “internally probable.”  According to him, a proposition is internally probable for a 
person S just when S is more justified in believing the proposition than he or she is in believing 
its negation.36   

If the conception of being justified that Chisholm employs is supposed to be closely 
related to truth, I would reject CP right away.  There is surely no good reason to suppose that if 
anyone accepts something that is not disconfirmed by his or her total evidence, that 
proposition is apt to be true or even close to the truth.  Ignorant and barbarous people, as 
Hume would say, believe all sorts of patently false things that are not disconfirmed by the 
evidence available to them.37  Surely things so believed are not true more often than not.  
People pertinaciously obstinate in their delusions (another Humean turn of phrase) refuse to 
consider evidence ostensibly contrary to those delusions, so they are, in effect, insulated from 
anything that might disconfirm them.  The mere fact that they are believed is hardly evidence 
in their favor. 

Reasonable people who have a sincere interest in discovering the truth will not protect 
their illusions this way, so the fact that their beliefs are not disconfirmed by the evidence 
available to them is an epistemically much more significant fact.  May we not suppose that 
such people have probably confronted ostensibly disconfirming evidence for their beliefs and 
ruled it out on rational grounds?  May we not conclude that their surviving beliefs are apt to be 
true more often than not?  I would say no; a general conclusion of this kind is excessively 
indiscriminate.  A well-considered judgment on this matter must take into account contingent 

                                                
34Ramsey (1931), p. 182. 
35 Chisholm (1989), p. 72. 
36 Ibid., p. 87. 
37 Hume thought of some human beings as “extremely ignorant and stupid” and “ready to swallow even the grossest 
delusion.”  See Hume (1777), p. 120. 



facts about these people and about the kind of beliefs they are apt to form.  If, like the 
investigators Locke would have commended, they are in the habit of proportioning their 
beliefs to the evidence, they are unlikely to have beliefs for which they lack positive supporting 
evidence; their non-disconfirmed beliefs are probable only because they are rendered so by 
such evidence.  Other people might be slightly less circumspect in forming beliefs, and some 
might not be circumspect at all.  The latter may be willing to consider contrary evidence but 
they may readily form beliefs about domains for which there is little or no possibility of 
obtaining evidence: they may have elaborate theologies, mythologies, or fanciful histories that 
dominate their thoughts but have no testable consequences.  The otherworldly beliefs that 
survive disconfirmation for these people may be almost invariably false; there is no reason to 
suppose that they are ever true. 

Although Chisholm’s unqualified principle CP is thoroughly unacceptable,38 a 
qualified version strikes me as defensible.  The first qualification concerns the word 
“acceptance.”  This is really not a good word for a properly qualified version of CP, because 
the notion of probability appropriate for such a principle is the degree of certainty notion I 
have been discussing, and the degree of probability appropriate to the “accepted” hypothesis 
must be minimal if the subject lacks positive evidence.  For a properly qualified CP, the 
acceptance in question is best described as that of weak acceptance on a trial basis.  The second 
qualification is closely related to the first one: the word “probable” must refer to a minimal 
degree of certainty.   Since 0.5 represents probabilistic indifference, where the certainty of “P” 
is the same as the certainty of “∼p,” and 0.75 represents moderate certainty, the midpoint 
between indifference and certainty, minimal probability can be taken to be somewhere 
between 0.55 and 0.6.  A probability in this range can be corrected by further testing involving 
Bayes’ theorem.  Its posterior value will depend on the way it is supported empirically. 

I have now explained how the probabilities needed to apply Bayes’ theorem can 
justifiably be obtained.  The priors needed for hypotheses are obtained by testing more 
primitive priors that were initially adopted as conjectures having predictive (Lycan would say 
“explanatory”) potential; likelihoods are obtained principally by deduction from hypotheses 
and auxiliary assumptions; and priors needed for evidence statements are deduced from 
background information concerning the theoretical principles applicable in the case at hand.  
The results of predictions are ascertained, ultimately, by observation.  In practice observations 
involve the application of theoretical knowledge, but this knowledge ultimately results from 
the observation of predicted results.  When we update priors by applying the rule of 
conditioning, we are in effect assigning a probability of 1 to a verified observation statement.  
A lesser probability is, strictly speaking, appropriate, since empirical statements are always 
uncertain to some degree.39  In practice this uncertainty is commonly disregarded, since precise 
probabilities are not generally required for most empirical investigation.  We can always be 
more precise if we think we have to. 

There are many issues pertinent to Bayesian reasoning that I have not touched on here; in 
fact, there are problems of varying seriousness that specialists in probability theory continue to 
debate.40  One problem concerns old evidence.  I observed that hypotheses are not strongly 
supported by the occurrence of events with a high prior probability, but sometimes there is a 
serious question about how old or familiar data is to be explained, and a hypothesis’ ability to 
account for that data is assumed to count strongly in favor of it.  Is such an assumption always 
objectionable?  I would say no.  If there is a serious question about how some familiar data is to be 
explained—if no available explanatory account is accepted as applying to it—then that data can 
reasonably be considered unlikely in relation to accepted principles, and statements reporting its 
occurrence can be assessed as such for explanatory purposes.  Theoretically, the data, though 
actual and therefore probable, is surprising; and its surprise value is what is represented by the 
low probability value.  A plausible hypothesis that can predict its occurrence is therefore 
increased in probability value; for purposes of the calculation its actuality is ignored.  When the 
calculation is completed, the fact that the data is obtained may then be used to update the 
probability value of the hypothesis, making its posterior value a new prior.   It seems to me that 
this procedure raises no significant problems.  An investigator who supports a hypothesis by old 
data will of course want to test it further by means of new data, but the old data is more 
significant than it would be if it had to be assigned a probability close to one for purposes of the 
calculation.  

Although there is much more that needs to be said about Bayesian inference,41 what I have 
said is enough to show that it is far preferable to Inference to the Best Explanation, the alternative 
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widely acceptable today.  Apart from the actual defects that I have noted, IBE has no evident 
rationale in the first place: even lacking identifiable defects of the kind I mentioned, there is no 
evident reason why a rational person should be moved to adopt it.  The same is not true of 
Bayesian inference.  Bayes’ theorem is a mathematically sound principle, inferable from axioms 
that, interpreted in the way I have suggested, are reasonably regarded as analytic.42  This gives 
Bayesian inference a rationale not possessed by other principles of experimental inference.  Of 
course, the results of a Bayesian inference are not analytic, for nonanalytic premises are required 
for the inference.  But these nonanalytic premises are rationally defensible for the reasons I have 
given.  Nothing analogous appears to be true for Inference to the Best Explanation, the only 
evident alternative for reasoning about matters that transcend the domain of the observable.   

 
The BIV Hypothesis Again 

If Bayes' theorem provides a valid form for experimental inference and if, in addition, we 
may justifiably accept (under the conditions I mentioned) observational premises, prior 
probability assignments, and delimited sets of alternative hypotheses, the way is then open for 
confirming the facts about observers that support or refute what they claim to have observed or 
remembered.  More than this is actually possible: Means are now available for dismissing 
Putnam’s BIV hypothesis, and doing so by straightforward empirical means.  Since this latter task 
is more fundamental than that of supporting pertinent facts about observers or those purporting 
to remember something, discussing the strategy for dismissing the BIV hypothesis is a fitting way 
of ending this chapter. 

 To show that Putnam’s hypothesis deserves to be rejected on empirical grounds, we need 
only show that an alternative, realist hypothesis—one formulating our best estimate about the 
actual nature of ourselves and our world—is better supported, empirically, than the hypothesis 
about BIVs and their relation to the computer that orchestrates their delusional experiences.  This 
would seem to be a very easy thing to so, because the BIV hypothesis represents a mere 
conceptual possibility, one that, like Descartes’ hypothesis of an evil genius, has absolutely no 
evidence in its favor.  If we can show that the realist hypothesis we actually accept has any 
evidence in its favor, we would evidently accomplish this task in short order.  Unfortunately, the 
issue is not quite this simple.  If we take the BIV hypothesis seriously as even a possibility, we will 
be thinking of our available evidence as consisting of facts about the subjective experience of the 
relevant subjects.  So the question for us to consider is whether, by reference to that kind of 
experience, we can show that our realist view is better supported than Putnam’s BIV hypothesis.   

To support the view that we actually accept—it sounds odd to call it a hypothesis, but I 
shall do so for the sake of argument—it is convenient to begin with a simpler, more specific 
hypothesis, ST, one that entails some of the consequences of the accepted alternative for my own 
current physical situation in the world.  ST asserts something very specific--namely, that I am 
(really) sitting at my desk in my study looking into my word processor and that there is behind 
me a Bertoia chair covered with red upholstery.  As I implied at the beginning of this section, 
Bayes theorem permits us to show that this simple hypothesis can readily be confirmed by 
reference to my subjective experience.  The procedure is straightforward. 

Given ST and some related assumptions concerning the nature of what I take sitting, 
looking, seeing chairs, and acting to be, I can justifiably predict that if I will to turn around 180° 
and subsequently have the experience of doing so, I will in fact turn around this way and 
subsequently see, and so have the experience of seeing, the red Bertoia chair.  I so will and I have 
the predicted experiences.  The likelihood here, the probability of having the indicated 
experiences on the supposition that the hypothesis and auxiliary assumptions are true, can 
reasonably be set very high: the hypothesis and assumptions can be elaborated in a way that 
warrants this prediction with a high degree of certainty.  The antecedent probability43 of having 
the experience of seeing a red Bertoia chair if I merely will to turn around can, by contrast, be 
reasonably considered quite low, since willing to turn my head is rarely followed by such a visual 
experience: it is so followed only in cases when I believe I am in my study looking into my word-
processor.  What then about the prior probability of my hypothesis, ST?  If I am not to beg the 
question against BIV, I cannot make use of the evidence I would normally advance if I if were 
asked to defend my conviction that I am at my desk in my study facing my word processor.  That 
evidence is based on defeasible presumptions that are now in question.  Without that evidence, I 
cannot support a high prior probability for ST; I can only give it a moderately low prior 
probability in accordance with the strategy I described when I mentioned Chisholm’s principle 
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CP.  But even with a moderately low prior for ST, a high value for P(e/ST) and a low value for 
P(e) yields a high value for P(ST/e) and, in view of the truth of e, a high posterior value for P(ST).   
 Of course, since the prior for ST was assumed on a trial basis, further tests are required, 
possibly with slightly different priors chosen for ST.  But if the predications made on the basis of 
these different priors are satisfied to a comparable degree (as they would be, since the predictions 
would be the same), the posterior values for ST would remain high and justify a high value for 
that hypothesis.  Since BIV is incompatible with ST, a high posterior value for ST requires a low 
value for BIV.  Thus, BIV is effectively ruled out in favor of ST. 
 A supporter of BIV might object to this reasoning, saying that the antecedent probability 
of BIV deserves to be set as high (for purposes of the argument) as ST and that it would be 
confirmed just as strongly as ST since it will warrant the same predictions as ST.  This objection 
fails, however.  It is true that on a generous interpretation of what BIV asserts—one specifying 
appropriate links between the intentions and know-how of the scientific maniacs, the computer 
program, and the experiences of the disembodied brains—BIV will predict everything that ST 
predicts.  But BIV makes many untestable claims that ST (or the realist hypothesis that ST 
represents) does not make, and this surplus content requires it to have a lower prior probability 
than ST—far lower, in view of its extravagantly rich sci-fi content.  

Why does the surplus, untestable content of BIV require it to have a lower prior 
probability than ST?  The reason is this.  If BIV has every testable consequence that ST has but not 
vice versa, then BIV can be divided into two parts, A and B, one of which, A, represents the 
untestable content of BIV and the other, B, represents the part that is empirically equivalent to ST.  
Now A is probabilistically independent of B; P(A on B) = P(A).  (If A and B are independent, the 
probability of either is unaffected by the truth of the other.)  We knows that A and B are 
independent because B represents the part of BIV that does not have testable consequences, and A 
represents the rest of it, which has the testable consequences of the fully testable RT.  But if A and 
B are independent in this way, P(A ∧ B) is less then both P(A) and P(B) if A and B are neither 
analytically true nor analytically false (as they are in the BIV case). This is a consequence of the 
theorem for the probability of such conjunctions: If A and B are independent, P(A ∧ B) = P(A) ×  
P(B).44  Thus, owing to its untestable part B, the prior probability of BIV is less than the prior 
probability of ST.  Given Bayes’ theorem, we can therefore conclude that ST is more strongly 
confirmed by its supporting evidence than BIV is by its supporting evidence.  By hypothesis, the 
supporting evidence in both cases is the same. 

It is vital to realize that simplicity is not the only consideration that matters here.  Equally 
important is the fact of empirical equivalence, the fact that the rival theories have the same 
testable consequences.  Someone might argue that the ST hypothesis may be simpler, in the 
indicated way, than the BIV hypothesis, but that other rivals to ST may be even simpler. One such 
rival is a form of phenomenalism, the doctrine that only experiences are fundamentally real and 
that words such as “person” and “physical body” refer to nothing other than aggregates of, or 
constructs wholly reducible to, experiences.45  There is no doubt that a theory of this kind is 
ontologically simpler—simpler in the sense of postulating fewer irreducible objects—but no such 
theory has ever been worked out in a satisfactory way,46 and the best examples of the kind have 
been acknowledged to be inadequate by their authors.47  Apart from this, the testable 
consequences of such a theory are by no means the same as those of ST: the latter, even the limited 
representative of the full-blown realist hypothesis that we actually accept, concerns the 
experiences of this or that person, and a person is a subject of experiences, not an aggregate of 
them.   

I do not wish to plunge into the swamp of suggestions and replies that were once pursued 
when “Our Knowledge of the External World” was the leading topic on a philosopher’s agenda.  
My argument against the BIV hypothesis was prompted by an imagined challenge--that of 
showing that skeptical hypotheses that are possible alternatives to the realist views we normally 
accept are not uncritically brushed aside but deserve to be rejected for identifiable reasons.  I have 
tried to put my finger on some of those reasons.  Much more could be said; the ST hypothesis as I 
described it was not the full-blown realist alternative to the BIV one: it was merely a limited 
hypothesis about me in my study, not a full-scale hypothesis about the nature of the world I 
inhabit and the creatures that share it with me.  To move from ST to the alternative I have 
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inadequately sketched, I should defend more of the presumptions we commonly make in thinking 
about the world.  One is that the animated bodies I call people do not just behave intelligently and 
smile or frown when they are stroked or poked, but also think and feel much as I do.  This 
presumption, also high on the philosophical agenda at another time, can be defended as well by a 
Bayesean strategy, but I have no interest in pursuing it here. 

Historically, philosophers presented with skeptical hypotheses of the kind I have been 
considering have tried to refute them—to rule them out—by some kind of a priori strategy.  They 
are cognitively meaningless; they fall short of the requirements for objective reference; they 
presuppose a nonsensical private language; they violate the sound requirements for the acceptable 
interpretation of meaningful discourse; and so forth.  But according to the standards of a 
reasonable empiricism, these hypotheses are clearly meaningful.  We know exactly what they 
mean; they would not be problematic for us if we could not understand them.  They are, of course, 
far fetched, but that is not enough to show that they are false.  What entitles us to reject them is 
that they are not nearly as well supported by available evidence as the hypotheses we accept.  This 
evidence supporting accepted hypotheses is not perfect; it does not render them acceptable 
beyond the shadow of a theoretical doubt.  Yet it is sufficient for knowledge in the sense that we 
commonly employ.  If we recognize only perfect knowledge, we will have to cope with a form of 
skepticism.48  But there is no actual need to proceed this way. 

When I hear philosophers seriously endorsing a skeptical view of human knowledge, I 
think of a photograph I recently saw of the Martian landscape, one of a series taken by the Rover 
vehicles in 2004 and transmitted back to earth.  The photo looked a lot like a photo of the Mojave 
Desert.  The color of the landscape was different, but it seemed very similar nevertheless.  When 
the photo comes to mind, I am struck by the extraordinary achievement it represents.  The 
engineers who created the Rover vehicles and the rockets that carried them to Mars had to possess 
an enormous amount of detailed knowledge about a bewildering variety of phenomena, and those 
who carried out the missions that produced the photos had to be right in more calculations than I 
could possibly enumerate.  Yes, there are many things we do not know about our universe and 
ourselves, but there is an astonishing amount that we do know very well.  It is sometimes hard to 
believe that the creatures who were hunting with arrows and spears ten centuries ago can now 
send robots to distant planets and then later leisurely view in their home television screens the 
photos sent back to them, doing so as they sip a cup of coffee or drink a glass of wine. 

 
Concluding Remarks 

 The empiricist epistemology I have defended in this book is partly classical, partly 
reformed.  Its basic structure is largely classical, recalling the empiricism of David Hume.  
Corresponding to Hume’s division of the objects of human inquiry into “relations of ideas” and 
“matters of fact and existence,” I have defended a distinction between analytically true and 
synthetically true statements.  My distinction is not categorical, however; it does not place every 
true statement into one of two disjoint classes.  Natural dialects or even idiolects are not 
sufficiently determinate to allow such a distinction, but careful speakers seriously concerned 
about the precision and truth-value of what they say can make their meaning sufficiently 
determinate to place the important things they want to say into one or the other of these classes.49  
Assertions that are analytically true are either logically true or A-true in Carnap’s sense.  This 
conception of analyticity rests on a distinction between the theorems of some assumed system of 
formal logic and assertions warranted by stipulative explications or determinate verbal 
conventions.  The rationalist’s supposed example of a synthetic a priori truth, ““Nothing can be 
both determinately green and determinately yellow all over,” is actually an assertion of this last 
kind; it is in fact inferable, as I show, from a verbal convention about what counts as a single 
determinate color. Spelling out all the distinctions and qualifications needed to extend an 
analytic/synthetic distinction to thoughts as well as statements requires a fairly elaborate 
exposition; what I have just said is merely a skeleton summary of points I defended in chapters 
two and three. 
 Another classical element of my empiricism is the list of basic sources by which we can 
ascertain matters of fact and existence.  Hume referred to these sources as observation, memory, 
and experimental inference.  Each source is beset by distinctive problems, but each is 
unquestionably a source of genuine knowledge, at least when measured by ordinary, imperfect 
standards. A key component in all three sources is human experience, which is fundamentally 
directed to a world of things and persons. It is by hearing my fiddle that I know it to be in or out 
of tune; it is by tasting my wine that I know it to be Zinfandel, and it is by looking at a clock that I 
know what the time is supposed to be. The knowledge of the world that we get from the three 
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sources is not certain, but it can be improved by other data.  Initial probabilities are transformed 
into progressively more certain convictions.  Because empirical confirmation is a dynamic process, 
taking place in many different directions, the totality of what we know at any particular time is 
inevitably somewhat disorganized; we can only strive for greater unity.  As a consequence of 
these facts, popular depictions of the structure of what we know—foundationalism, coherentism, 
or even Quine’s holism—are all inaccurate in some significant way.  
 As I have emphasized, empirical knowledge as we commonly understand it is not the 
kind of knowledge that Descartes was after.  It falls far short of rational certainty.  When 
knowledge is understood this last way, far-fetched possibilities such as Descartes’ evil demon or 
Putnam’s brains in a vat assume an epistemic importance they do not really deserve.  We have no 
way of proving that these possibilities are not actual—that the stories they involve are in fact 
false—but we can show that they are far-fetched and that the contrary views we actually accept 
are much more likely to be true.  And this is enough for a reasonable empiricism, one appropriate 
for a philosopher who aspires to be tough-minded but epistemically up-to-date.  Classical 
empiricists often emulated Descartes in their quest for certainty, and skeptical scenarios have 
therefore persistently threatened them.  We can avoid this outcome by a more realistic estimate of 
the kind of certainty we can hope to achieve. 
 Two assumptions once thought distinctive of a responsible empiricism must be firmly set 
aside.  One is the assumption that our empirical knowledge or well-founded opinion must rest on 
a foundation of subjective experience.  Not only does our empirical knowledge fail to rest on 
anything that deserves to be called a foundation, but the nature of our subjective experience is 
also, as I noted, quite questionable, generating on-going controversy among philosophers and 
even empirical scientists.  The other objectionable assumption is that inherently unobservable 
objects are unknowable and cannot meaningfully be described or referred to.  The classical view of 
meaning and legitimate reference on which this assumption is based is simply untenable.  
Meaningful words or ideas need not, as Hume said, be “traced back to original impressions”;50 
they arise from inbuilt neural mechanisms and goal-directed, usually cooperative behavior,51 
neither of which is understandable by reference to immediate impressions. 
 Because the use of Bayes’ theorem provides a rationally acceptable means of confirming 
hypotheses about objects and process that fall outside the domain of the observable, knowledge as 
we commonly understand it need not be restricted to observable phenomena.  Saying this does 
not commit me to the view that acceptable scientific theories must always be interpreted 
“realistically,” as describing actually existing, mind-independent objects. Acceptable theories can 
do different things:  some can provide mere models or vehicles of prediction, which do not 
purport to describe anything observable. The most that we can generally require of an empirical 
theory is that it be, in van Fraassen’s words, “observationally adequate.”52  But a general 
requirement of this kind does not preclude a realistic interpretation of some theories.  That would 
be going too far. Empirical reality can contain many things too remote or too small to be perceived 
by us, and it can contain numerous things that we could never observe for reasons that we cannot 
even anticipate. A reasonable empiricism prescribes experience as our ultimate basis for empirical 
knowledge, but it does not limit our knowledge to things that we can observe or otherwise 
experience. 
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