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Preface

I'his is a revised and much enlarged edition of Introduction to Mathematical
Logic, Part I, which was published in 1944 as one of the Annals of Mathe-
matics Studies. In spite of extensive additions, it remains an introduction
rather than a comprehensive treatise. It is intended to be used as a textbook
by students of mathematics, and also within limitations as a reference work.
As a textbook it offers a beginning course in mathematical logic, but
presupposes some substantial mathematical background.

An added feature in the new edition is the inclusion of many exercises
for the student. Some of these are of elementary character, straightforward
illustrations serving the purpose of practice; others are in effect brief sket-
ches of difficult developments to which whole sections of the main text might
have been devoted; and still others occupy various intermediate positions
between these extremes. No attempt has been made to classify exercises
systematically according to difficulty. But for routine use by beginning
students the following list is tentatively suggested as a basis for selection:
12.3-12.9, 14.0-14.8, 15.0-15.3, 15.9, 15.10, 18.0-18.3, 19.0-19.7, 19.9,
10.10, 23.1-23.6, 24.0-24.5, 30.0-30.4 (with assistance if necessary), 34.0,
34.3-34.6, 35.1, 35.2, 38.0-38.5, 39.0, 41.0, 43.0, 43.1, 43.4, 45.0, 45.1,
18.048.11, 52.0, 52.1, 54.2-54.6, 55.1, 55.2, 55.22, 56.0-56.2, 57.0-57.2.

The book has been cut off rather abruptly in the middle, in order that
Volume I may be published, and at many places there are references forward
to passages in the still unwritten Volume II. In order to make clear at least
the general intent of such references, a tentative table of contents of Volume
[T has been added at the end of the table of contents of the present volume,
and references to Volume II should be understood in the light of this.

Volume I has been written over a period of years, beginning in 1947,
and as portions of the work were completed they were made available in
manuscript form in the Fine Hall Library of Princeton University. The work
was carried on during regular leave of absence from Princeton University
from September, 1947, to February 1, 1948, and then under a contract of
Princeton University with the United States Office of Naval Research from
February 1 to June 30, 1948. To this period should be credited the Introduc-
tion and Chapters I and IT—although some minor changes have been made
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. this material since then, including the addition of exercises 15.4, 18.3,
0.12, 24.10, 26.3(2), 26.3(3), 26.8, 29.2, 29.3, 29.4, 29.5, as well as changes
esigned to correct errors or to take into account newly published papers.
‘he remainder of the work was done during 1948-1951 with the aid of
rants from the Scientific Research Fund of Princeton University and the
‘ugene Higgins Trust Fund, and credit is due to these Funds for making
ossible the writing of the latter half of the volume.

For individual assistance, I am indebted still to the persons named in
he Preface of the edition of 1944, especially to C. A. Truesdell — whose
Jotes on the lectures of 1943 have continued to be of great value, both in the
writing of Volume I and in the preliminary work which has been done towards
the writing of Volume II, and notwithstanding the extensive changes which
have been made from the content and plan of the original lectures. I am
also indebted to many who have read the new manuscript or parts of it and
have supplied valuable suggestions and corrections, including especially
E. Adler, A. F. Bausch, W. W. Boone, Leon Henkin, J. G. Kemeny, Maurice
L’Abbé, E. A. Maier, Paul Meier, I. L. Novak, and Rulon Wells.

Aronzo CHURCH
Princeton,, New Jersey
August 31, 1951

(Added November 28, 1955.) For suggestions which could be taken into
account only in the proof I am indebted further to A. N. Prior, T. T. Robin-
son, Hartley Rogers, Jr., J. C. Shepherdson, F. 0. Wyse, and G. Zubieta
Russi; for assistance in the reading of the proof itself, to Michael Rabin and

to Zubieta; and especially for their important contribution in preparing the
indexes, to Robinson and Zubieta.

(Added January 17, 1958.) In the second printing, additional corrections
which were necessary have been made in the text as far as possible, and those
which could not be fitted into the text have been included in a list of Errata

at the end of the book. For some of these corrections I am indebted to Max

Black, S. C. Kleene, E. J. Lemmon, Walter Stuermann, John van Heijenoort;

for the observation that exercise 55.3(3) would be better placed as 5§5.2(3),
to D. S. Geiger; and for important corrections to 38.8(10) and footnote 550,

]

to E. W. Beth. For assistance in connection with Wajsberg’s paper (see the

correction to page 142) I am further indebted to T. T. Robinson.
ALoNzO CHURCH
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Introduction

This introduction contains a number of preliminary explanations, which
it seems are most suitably placed at the beginning, though many will be-
come clearer in the light of the formal development which follows. The
reader to whom the subject is new is advised to read the introduction through
once, then return to it later after a study of the first few chapters of the book.
I'ootnotes may in general be omitted on a first reading.

00. Logic. Our subject is logic—or, as we may say more fully, in order
to distinguish from certain topics and doctrines which have (unfortunately)
been called by the same name, it is formal logic.

Traditionally, (formal) logic is concerned with the analysis of sentences
or of propositions' and of proof? with attention to the form in abstraction
from the matter. This distinction between form and matter is not easy to
make precise immediately, but it may be illustrated by examples.

To take a relatively simple argument for illustrative purposes, consider
the following:

| Brothers have the same surname; Richard and Stanley are brothers;
Stanley has surname Thompson; therefore Richard has surname
Thompson.

liveryday statement of this argument would no doubt leave the first of the
{hree premisses® tacit, at least unless the reasoning were challenged; but

'See §04.

"In the light both of recent work and of some aspects of traditional logic we must
ndd here, besides proof, such other relationships among sentences or propositions as
vnn be treated in the same manner, i.e., with regard to form in abstraction from the
matter. These include (e.g.) disproof, compatibility; also partial confirmation, which
In important in connection with inductive reasoning (cf. C. G. Hempel in The Journal
o/ Symbolic Logic, vol. 8 (1943), pp. 122—143).

But no doubt these relationships both can and should be reduced to that of proof,
by making suitable additions to the object language (§07) if necessary. E.g., in reference
to an appropriate formalized language as object language, disproof of a proposition or
sentence may be identified with proof of its negation. The corresponding reduction of
the notions of compatibility and confirmation to that of proof apparently requires
maodal logic—a subject which, though it belongs to formal logic, is beyond the scope
ol this book.

"I'ollowing C. S. Peirce (and others) we adopt the spelling premiss for the logical
torm to distinguish it from premise in other senses, in particular to distinguish the
plural from the legal term premises.
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for purposes of logical analysis all premisses must be set down explicitly.
The argument, it may be held, is valid from its form alone, independently
of the matter, and independently in particular of the question whether the
premisses and the conclusion are in themselves right or wrong. The reasoning
may be right though the facts be wrong, and it is just in maintaining this
distinction that we separate the form from the matter. '

For comparison with the foregoing example consider also:

II  Complex numbers with real positive ratio have the same amplitude;
i — V/3/3 and w are complex numbers with real positive ratio; w has
amplitude 27/3; therefore i — V/3/3 has amplitude 27/3.

This may be held to have the same form as I, though the matter is different,
and therefore to be, like I, valid from the form alone.

Verbal similarity in the statements of I and II, arranged at some slight
cost of naturalness in phraseology, serves:to highlight the sameness of
form. But, at least in the natural languages, such linguistic parallelism
is not in general a safe guide to sameness of logical form. Indeed, the
natural languages, including English, have been evolved over a long
period of history to serve practical purposes of facility of communication,
and these are not always compatible with soundness and precision of
logical analysis.

To illustrate this last point, let us take two further examples:

III I have seen a portrait of John Wilkes Booth; John Wilkes Booth
assassinated Abraham Lincoln; thus I have seen a portrait of an
assassin of Abraham Lincoln.

IV T have seen a portrait of somebody; somebody invented the wheeled
vehicle; thus I have seen a portrait of an inventor of the wheeled
vehicle.

The argument IIT will be recognized as valid, and presumably from the
logical form alone, but IV as invalid. The superficial linguistic analogy of
the two arguments as stated is deceptive. In this case the deception is quickly
dispelled upon going beyond the appearance of the language to consider the
meaning, but other instances are more subtle, and more likely to generate
real misunderstanding. Because of this, it is desirable or practically necessary
for purposes of logic to employ a specially devised language, a formalized
language as we shall call it, which shall reverse the tendency of the natural
languages and shall follow or reproduce the logical form—at the expense,

§01] NAMES 3

where necessary, of brevity and facility of communication. To adopt a
particular formalized language thus involves adopting a particular theory
or system of logical analysis. (This must be regarded as the essential feature
of a formalized language, not the more conspicuous but theoretically less
important feature that it is found convenient to replace the spelled words
of most (written) natural languages by single letters and various special

symbols.
symbols.) N

01. Names. One kind of expression which is familiar in the natural
languages, and which we shall carry over also to formalized languages, is the
proper name. Under this head we include not only proper names which are
arbitrarily assigned to denote in a certain way—such names, e.g., as
“Rembrandt,” “Caracas,” “‘Sirius,” ‘‘the Mississippi,” “The Odyssey,”
"“eight”—but also names having a structure that expresses some analysis
of the way in which they denote. As examples of the latter we may cite:
““five hundred nine,” which denotes a certain prime number, and in the way
expressed by the linguistic structure, namely as being five times a hundred
plus nine; ‘“‘the author of Wauverley,” which denotes a certain Scottish
novelist, namely Sir Walter Scott, and in the particular way expressed by
the linguistic structure, namely as having written Waverley; ‘‘Rembrandt’s
birthplace”; “‘the capital of Venezuela”’; ‘““the cube of 2.”

The distinction is not always clear in the natural languages between the
two kinds of proper names, those which are arbitrarily assigned to have a
certain meaning (primitive proper names, as we shall say in the case of a
formalized language), and those which have a linguistic structure of mean-
ingful parts. E.g., “The Odyssey” has in the Greek a derivation from
"Odysseus,” and it may be debated whether this etymology is a mere
matter of past history or whether it is still to be considered in modern
linglish that the name “The Odyssey” has a structure involving the name
"Odysseus.” This uncertainty is removed in the case of a formalized
language by fixing and making explicit the forrhation rules of the
language (§07).

There is not yet a theory of the meaning of proper names upon which

»

‘We extend the usual meaning of proper name in this manner because such alternative
torms as singular name or singular tevm have traditional associations which we wish to
avold, The single word name would serve the purpose except for the necessity of
dintinguishing from the common names (or gemeval names) which occur in the natural
lunguages, and hereafter we shall often say simply name.

We do use the word term, but in its everyday meaning of an item of terminology,
and not with any reference to the traditional doctrine of “‘categorical propositions”
or the like,



4 INTRODUCTION

general agreement has been reached as the best. Full discussion of the
question would take us far beyond the intended scope of this book. But it
is necessary to outline briefly the theory which will be adopted here, due in
its essentials to Gottlob Frege.

The most conspicuous aspect of its meaning is that a proper name always
is, or at least is put forward as, a name of something. We shall say that a
proper name denotes® or names? that of which it is a name. The relation
between a proper name and what it denotes will be called the name relation,®

5See his paper, “Ueber Sinn und Bedeutung,” in Zeitschvift fiir Philosophie und
philosophische Kritik, vol. 100 (1892), pp. 25-50. (There are an Italian translation of
this by L. Geymonat in Gottlob Frege, Avitmetica ¢ Logica (1948), pp. 215-252, and
English translations by Max Black in The Philosophical Review, vol. 57 (1948), pp.
207-230, and by Herbert Feigl in Readings in Philosophical Analysis (1949), pp.
85-102. See reviews of these in The Journal of Symbolic Logic, vol. 13 (1948), pp.
152-153, and vol. 14 (1949), pp. 184-185.)

A similar theory, but with some essential differences, is proposed by Rudolf Carnap
in his recent book Meaning and Necessity (1947).

A radically different theory is that of Bertrand Russell, developed in a paper in
Mind, vol. 14 (1905), pp. 479-493; in the Introduction to the first volume of Principia
Mathematica (by A. N. Whitehead and Bertrand Russell, 1910); and in a number of
more recent publications, among them Russell’s book, An Inquiry into Meaning &
Truth (1940). The doctrine of Russell amounts very nearly to a rejection of proper
names as irregularities of the natural languages which are to be eliminated in constructing
a formalized language. It falls short of this by allowing a narrow category of proper
names which must be names of sense qualities that are known by acquaintance, and
which, in Fregean terms, have Bedeufung but not Sinn.

¢In the usage of J. S. Mill, and of others following him, not only a singular name
(proper nathe in our terminology) but also a common or general name is said to denote,
with the difference that the former denotes only one thing, the latter, many things.
E.g., the common name ‘“‘man” is said to denote Rembrandt; also to denote Scott;
also to denote Frege; etc. ’

In the formalized languages which we shall study, the nearest analogues of the com-
mon name will be the variable and the form (see §02). And we prefer to use a different
terminology for variables and forms than that of denoting—in particular because we
wish to preserve the distinction of a proper name, or constant, from a form which is
concurrent to a constant (in the sense of § 02), and from a variable which has one thing
only in its range. In what follows, therefore, we shall speak of proper names only as
denoting.

From another point of view common names may be thought of as represented in the
formalized languages, not by variables or forms, but by proper names of classes (class
constants). Hence the usage has also arisen according to which a proper name of a class
is said to denote the various members of the class. We shall not follow this, but shall
speak of a proper name of a class as denoting the class itself. (Here we agree with Mill,
who distinguishes a singular collective name, or proper name of a class, from a common
or general name, calling the latter a ““‘name of a class” only in the distributive sense of
being a name of each individual.)

7We thus translate Frege’s bedeuten by denote or name. The verb to mean we reserve
for general use, in reference to possible different kinds of meaning.

8The name relation is properly a ternary relation, among a language, a word or phrase
of the language, and a denotation. Butitmay be treated as binary by fixing thelanguage
in a particular context. Similarly one should speak of the denotation of a name with
respect to a language, omitting the latter qualification only when the language has been
fixed or when otherwise no misunderstanding can result.
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and the thing® denoted will be called the denotation. For instance, the proper
name ‘‘Rembrandt” will thus be said to denote or name the Dutch artist
Rembrandt, and he will be said to be the denotation of the name ‘“Rem-
brandt.” Similarly, ‘“‘the author of Waverley” denotes or names the Scottish
author, and he is the denotation both of this name and of the name “‘Sir
Walter Scott.”

That the meaning of a proper name does not consist solely in its denotation
may be seen by examples of names which have the same denotation though
their meanings are in some sense different. Thus “Sir Walter Scott” and
“the author of Waverley” have the same denotation; it is contained in the
meaning of the first name, but not of the second, that the person named is
a knight or baronet and has the given name “Walter”” and surname ““Scott” ;10
and it is contained in the meaning of the second name, but not of the first,
that the person named wrote Waverley (and indeed as sole author, in view
of the definite article and of the fact that the phrase is put forward as a
proper name). To bring out more sharply the difference in meaning of the
two names let us notice that, if two names are synonymous (have the same
meaning in all respects), then one may always be substituted for the other
without change of meaning. The sentence, ‘‘Sir Walter Scott is the author of
Waverley,” has, however, a very different meaning from the sentence, “Sir
Walter Scott is Sir Walter Scott”: for the former dentence conveysanimportant
fact of literary history of which the latter gives no hint. This difference in
meaning may lead to a difference in truth when the substitution of one name
for the other occurs within certain contexts.! E.g., it is true that “George IV
once demanded to know whether Scott was the author of Waverley”; but
false that ‘“George IV once demanded to know whether Scott was Scott.”12

%The word thing is here used in its widest sense, in short for anything namable.

10The term proper name is often testricted to names of this kind, i.€., which have
as part of their meaning that the denotation is so called or is or was entitled to be so
called. As already explained, we are not making such a restriction.

Though it is, properly speaking, irrelevant to the discussion here, it is of interest to
recall that Scott did make use of ‘“the author of Waverley” as a pseudonym during the
time that his authorship of the Waverley Novels was kept secret.

11Contexts, namely, which render the occurrences of the names oblique in the sense
explained below.

12The particular example is due to Bertrand Russell; the point which it illustrates,
to Frege.

This now famous question, put to Scott himself in the indirect form of a toast ““to the
author of Waverley” at a dinner at which Scott was present, was met by him with a flat
denial, “Sire, I am not the author of Waverley.” We may therefore enlarge on the
oxample by remarking that Scott, despite a pardonable departure from the truth, did
not mean to go so far as to deny his self-identity (as if he had said “I am not I”).
And his hearers surely did not so understand him, though some must have shrewdly
guessed the deception as to his authorship of Waverley.
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Therefore, besides the denotation, we ascribe to every proper name an-_

other kind of meaning, the sense,!3 saying, e.g., that “Sir Walter Scott”
and ‘“‘the author of Waverley” have the same denotation but different sen-
ses.1* Roughly, the sense is what is grasped when one understands a name,1%
and it may be possible thus to grasp the sense of a name without having
knowledge of its denotation except as being determined by this sense. If, in
particular, the question ‘“‘Is Sir Walter Scott the author of Waverley?” is
used in an intelligent demand for new information, it must be that the
questioner knows the senses of the names “Sir Walter Scott” and “the
author of Waverley”’ without knowing of their denotations enough to identify
them certainly with each other.

We shall say that a name denotes or names its denotation and expresses!®
its sense. Or less explicitly we may speak of a name just as having a certain
denotation and kaving a certain sense. Of the sense we say that it defermines
the denotation, or 7s a conceptl? of the denotation.

Conceptst? we think of as non-linguistic in character—since synonymous
names, in the same or different languages, express the same sense or concept
—and since the same name may also express different senses, either in
different languages or, by equivocation, in the same language. We are even

13We adopt this as the most appropriate translation of Frege’s Sinu, especially since
the technical meaning given to the word sense thus comes to be very close indeed to the
ordinary acceptation of the sense of an expression. (Russell and some others following
him have used ‘‘“meaning’ as a translation of Frege's Sinn.)

1A similar distinction is made by J. S. Mill between the denotation and the connota-
tion of a name. And in fact we are prepared to accept connotation as an alternative trans-
lation of Sinx, although it seems probable that Frege did not have Mill’s distinction in
mind in making his own. We do not follow Mill in admitting names which have denotation
without connotation, but rather hold that a name must always point to its denotation
in some way, i.e., through some sense or connotation, though the sense may reduce in
special cases just to the denotation’s being called so and so (e.g., in the case of personal
names), or to its being what appears here and now (as sometimes in the case of the
demonstrative ““this’’). Because of this and other differences, and because of the more
substantial content of Frege’s treatment, we attribute the distinction between sense and
denotation to Frege rather than to Mill. Nevertheless the discussion of names in Mill’s
A System of Logic (1843) may profitably be read in this connection.

151t is not meant by this to imply any psychological element in the notion of sense.
Rather, a sense (or a concept) is a postulated abstract object, with certain postulated
properties. These latter are only briefly indicated in the present informal discussion;
and in particular we do not discuss the assumptions to be made about equality of senses,
since this is unnecessary for our immediate purpose.

16This is our translation of Frege’s dviickt aus. Mill’s term connotes is also acceptable
here, provided that care is taken not to confuse Mill’s meaning of this term with other
meanings which it has since acquired in common_ English usage.

17This use of concept is a departure from Frege's terminology. Though not identical
with Carnap’s use of concept in recent publications, it is closely related to it, and was
suggested to the writer by correspondence with Carnap in 1943, Tt also agrees well

with Russell’s use of class-concept in The Principles of Mathematics (1903)-—cf. §69
thereof.
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prepared to suppose the existence of concepts of things which have no name
in any language in actual use.(But every concept of a thing is a sense of
some name of it in some (conceivable) language.

The possibility must be allowed of concepts which are not concepts of
any actual thing, and of names which express a sense but have no denotation.
Indeed such names, at least on one very plausible interpretation, do occur
in the natural languages such as English: e.g., “Pegasus,”® “the king of
I'rance in A.D. 1905.” But, as Frege has observed, it is possible to avoid
such names in the construction of formalized languages.’® And it is in fact
often convenient to do this.

To understand a language fully, we shall hold, requires knowing the senses
of all names in the language, but not necessarily knowing which senses
determine the same denotation, or even which senses determine denotations
at all. '

In a well constructed language of course every name should have just one
sense, and it is intended in the formalized languages to secure such univ-

'""While the exact sense of the name ‘“Pegasus’’ is variable or uncertain, it is, we take
it, roughly that of the winged horse who took such and such a part in such and such
nupposed events—where only such minimum essentials of the story are to be included as
it would be necessary to verify in order to justify saying, despite the common opinion,
that “Pegasus did after all exist.”

We are thus maintaining that, in the present actual state of the English language,
"Pogasus” is not just a personal name, having the sense of who or what was called so
and so, but has the more complex sense described. However, such questions regarding
the natural languages must not be supposed always to have one final answer. On the
vontrary, the present actual state (at any time) tends to be indeterminate in a way to
loave much debatable.

"I‘or example, in the case of a formalized language obtained from one of the logistic
syntems of Chapter X (or of a paper by the writer in The Journal of Symbolic Logic,
vol, 6 (1940), pp. 56-68) by an interpretation retaining the principal interpretation of
the variables and of the notations A (abstraction) and ( ) (application of function to
argument), it is sufficient to take the following precautions in assigning senses to the
primitive constants. For a primitive constant of type o or ¢ the sense must be such
anon the basis of accepted presuppositions—to assure the existence of a denotation in
the wppropriate domain, © (of truth-values) or § (of individuals). For a primitive
tonntant of type off the sense must be such as—on the same basis—to assure the exist-
snce of adenotation which is in the domain A%, i.e., which is a function from the (entire)
domain W which is taken as the range of variables of type f, to the domain U which is
tulien an the range of variables of type o.

I'hen every well-formed formula without free variables will have a denotation, as
tdead it must if such interpretation of the logistic system is to accord with formal
propertion of the system.

Au i the case, e.g., of tx(ox), it may happen that the most immediate or naturally
sippested interpretation of a primitive constant of type aff makes it denote a function
fromea proper part of the domain 98 to the domain . In such a case the definition of
the function must be extended, by artificial means if necessary, over the remainder of
e domain W, 5o as to obtain a function having the entire domain 9 as its range. The
e pasignod to the primitive constant must then be such as to determine this latter

function an denotation, rather than the function which had only a proper part of 8
wn e range
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ocacy. But this is far from being the case in the natural languages. In par-
ticular, as Frege has pointed out, the natural languages customarily allow,
besides the ordinary (gewohnlich) use of a name, also an obliqgue (ungerade)
use of the name, the sense which the name would express in its ordinary use
becoming the denotation when the name is used obliquely.20

Supposing univocacy in the use of names to have been attained (this
ultimately requires eliminating the oblique use of names by introducing
special names to denote the senses which other names express?'), we make,
with Frege, the following assumptions, about names which have a linguistic
structure and contain other names as constituent parts: (1) when a con-

20For example, in ‘‘Scott is the author of Waverley” the names ‘“‘Scott,” ‘“Waverley,”
‘““the author of Waverley” have ordinary occurrences. But in “George IV wished to
know whether Scott was the author of Waverley”” the same three names have oblique
occurrences (while ““George IV’ has an ordinary occurrence). Again, in ‘“‘Schliemann
sought the site of Troy”’ the names ‘“Troy’’ and ‘‘the site of Troy’’ occur obliquely.
For to seek the site of some other city, determined by a different concept, is not the
same as to seek the site of Troy, not even if the two cities should happen as a matter of
fact (perhaps unknown to the seeker) to have had the same site.

According to the Fregean theory of meaning which we are advocating, ‘‘Schliemann
sought the site of Troy’’ asserts a certain relation as holding, not between Schliemann
and the site of Troy (for Schliemann might have sought the site of Troy though Troy
had been a purely fabulous city and its site had not existed), but between Schliemann
and a certain concept, namely that of the site of Troy. This is, however, not to say that
“Schliemann sought the site of Troy”’ means the same as ‘‘Schliemann sought the con-
cept of the site of Troy.” On the contrary, the first sentence asserts the holding of a
certain relation between Schliemann and the concept of the site of Troy, and is true;
but the second sentence asserts the holding of a like relation between Schliemann and
the concept of the concept of the site of Troy, and is very likely false. The relation
holding between Schliemann and the concept of the site of Troy is not quite that of
having sought, or at least it is misleading to call it that—in view of the way in which
the verb fo seek is commonly used in English.

(W. V. Quine—in The Journal of Philosophy, vol. 40 (1943), pp. 113-127, and else-
where—introduces a distinction between the ‘‘meaning” of a name and what the name
‘‘designates” which parallels Frege’s distinction between sense and denotation, also a
distinction between “‘purely designative’ occurrences of names and other occurrences
which coincides in many cases with Frege’s distinction between ordinary and oblique
occurrences. For a discussion of Quine’s theory and its differences from Frege’s see a
review by the present writer, in The Journal of Symbolic Logic, vol. 8 (1943), pp. 45—-47;
also a note by Morton G. White in Philosophy and Phenomenological Research, vol. 9,
no. 2 (1948), pp. 305-308.)

#1As an indication of the distinction in question we shall sometimes (as we did in the
second paragraph of footnote 20) use such phrases as ‘‘the concept of Sir Walter Scott,”
““the concept of the author of Waverley,” ‘‘the concept of the site of Troy”’ to denote the
same concepts which are expressed by the respective names ‘“‘Sir Walter Scott,” ‘“‘the
author of Waverley,” ““the site of Troy.” The definite article ‘‘the’” sufficiently distin-
guishes the phrase (e.g.) ‘‘the concept of the site of Troy” from the similar phrase ‘‘a
concept of the site of Troy,” the latter phrase being used as a common name to refer to
any one of the many different concepts of this same spot.

This device is only a rough expedient to serve the purpose of informal discussion. It
does not do away with the oblique use of names because, when the phrase ‘‘the concept
of the site of Troy” is used in the way described, it contains an oblique occurrence of
“the site of Troy.”
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stituent name is replaced by another having the same sense, the sense of the
entire name is not changed; (2) when a constituent name is replaced by
another having the same denotation, the denotation of the entire name is
not changed (though the sense may be).22

We make explicit also the following assumption (of Frege), which, like
(1) and (2), has been implicit in the foregoing discussion: (3) The denotation
of a name (if there is one) is a function of the sense of the name, in the sense
ol §03 below; i.e., given the sense, the existence and identity of the deno-
tation are thereby fixed, though they may not necessarily therefore be
known to every one who knows the sense.

02. Constants and variables. We adopt the mathematical usage
according to which a proper name of a number is called a constant, and in
connection with formalized languages we extend this usage by removing
the restriction to numbers, so that the term constant becomes synonymous
With proper name having a denotation.

However, the term constant will often be applied also in the construction
ol uninterpreted calculi—logistic systems in the sense of §07—some of the
symbols or expressions being distinguished 9s constants just in order to
treat them differently from others in giving the rules of the calculus. Ordi-
narily the symbols or expressions thus distinguished as constants will in
lact become proper names (with denotation) in at least one of the possible
interpretations of the calculus.

As already familiar from ordinary mathematical usage, a variable is a
symbol whose meaning is like that of a proper name or constant except that
the single denotation of the constant is replaced by the possibility of various
values of the variable.

Hecause it is commonly necessary to restrict the values which a variable
may take, we think of a variable as having associated with it a certain non-
“mpty range of possible values, the range of the variable as we shall call it.

Involved in the meaning of a variable, therefore, are the kinds of meaning
which belong to a proper name of the range.?8 But a variable must not be
10 avoid serious difficulties, we must also assume when a constituent name has no

denotation that the entire name is then likewise without denotation. In the natural
Iniagen such apparent examples to the contrary as “the myth of Pegasus,’” ‘‘the

sarch by Ponce de Leon for the fountain of youth’ are to be explained as exhibiting
shiliiue occurrences of the italicized constituent name.

s the distinetion of sense and denotation comes to have an analogue for variables
Fwa variablos with ranges determined by different concepts have to be considered as

Saiablon of different kinds, even if the ranges themselves should be identical. However,
Becaiue of the restricted variety of ranges of variables admitted, this question does not

s vonnection with any of the formalized languages which are actually considered
bidiow
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identified with a proper name of its range, since there are also differences
of meaning between the two.*

The meaning which a variable does possess is best explained by returning
to the consideration of complex names, containing other names as constit-
uent parts. In such a complex name, having a denotation, let one of the
constituent names be replaced at one or more (not necessarily all) of its
occurrences by a variable, say x. To avoid complications, we suppose that =
is a variable which does not otherwise occur,?’ and that the denotation of the
constituent name which x replaces is in the range of #. The resulting expres-
sion (obtained from the complex name by thus replacing one of the constit-
uent names by a variable) we shall call a form.?¢ Such a form, for each value
of « within the range of z, or at least for certain such values of z, has a value.
Namely, the value of the form, for a given value of z, is the same as the
denotation of the expression obtained from the form by substituting every-
where for « a name of the given value of « (or, if the expression so obtained

24That such an identification is impossible may be quickly seen from the point of
view of the ordinary mathematical use of variables. For two proper names of
the range are fully interchangeable if only they have the same sense; but .two
distinct variables must be kept distinct even if they have the same range determined
by the same concept. E.g., if each of the letters x and y is a variable whose range
is the real numbers, we are obliged to distinguish the two inequalities z(z + y) = 0
and z(x + @) = 0 as different —indeed the second inequality is universally true, the
first one is not.

25This is for momentary convenience of explanation. We shall apply the name form
also to expressions which are similarly obtained but in which the variable x may oyher-
wise occur, provided the expression has at least one occurrence of z as a free variable
(see footnote 28 and the explanation in §06 which is there referred to). ]

26This is a different use of the word form from that which appeared in §00 in the dis-
cussion of form and matter. We shall distinguish the latter use, when necessary, by
speaking more explicitly of logical form. .

Our present use of the word form is similar to that which is familiar in algebra., anq in
fact may be thought of as obtained from it by removing the restriction to a spec:lal kind
of expressions (polynomials, or homogeneous polynomials). For the special case of
propositional forms (see §04), the word is already usual in logic in this sense, indepen-
dently of its use by algebraists—see, e.g., J. N. Keynes, Formal Logic, 4th edn., 1996,
p. 53; Hugh MacColl in Mind, vol. 19 (1910), p. 193; Susanne K. Langer, Introduction
to Symbolic Logic, 1937, p. 91; also Heinrich Scholz, Vorlesungen iibey Grundziige der
Mathematischen Logik, 1949 (for the use of Aussageform in German).

Instead of the word form, we might plausibly have used the word variable here, by
analogy with the way in which we use constant. 1.e., just as we apply the term constant
to a complex name containing other names (constants) as constituent parts, so we might
apply the term variable to an appropriate complex expression containing varlal?les as
constituent parts. This usage may indeed be defended as having some sanction in
mathematical writing. But we prefer to preserve the better established usage accordx.ng
to which a variable is always a single symbol (usually a letter or letter with

subscripts). ' o
The use, by some recent authors, of the word function (with or without a quthymg
adjective) for what we here call a form is, in our opinion, unfortunate, because it tends

to conflict with and obscure the abstract notion of a function which will be explained
in §03.
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has no denotation, then the form has no value for that value of x).27

A variable such as z, occurring in the manner just described, is called a
[ree variable®® of the expression (form) in which it occurs.

Likewise suppose a complex name, having a denotation, to contain two
constituent names neither of which is a part of the other, and let these two
constituent names be replaced by two variables, say « and y respectively,
cach at one or more (not necessarily all) of its occurrences. For simplicity
suppose that x and y are variables which do not occur in the original complex
name, and that the denotations of the constituent names which « and y
replace are in the ranges of x and y respectively. The resulting expression
(obtained by the substitution described) is a form, with two free variables
xand y. For certain pairs of values of  and y, within the ranges of z and y
respectively, the form has a value. Namely, the value of the form, for given
values of x and y, is the same as the denotation of the expression obtained
from the form by substituting everywhere for # and % names of their re-

Y1t follows from assumption (2), at the end of §01, that the value thus obtained
for the form is independent of the choice of a particular name of the given value of .

The distinction of sense and denotation is, however, relevant here. For in addition
to a value of the form in the sense explained in the text (we may call it more explicitly
n denotation value), a complete account must mention also what we may call a sense
value of the form. Namely, a sense value of the form is determined by a concept of some
value of 2, and is the same as the sense of the expression obtained from the form by
sibstituting everywhere for  a name having this concept as its sense.

It should also be noted that a form, in a particular language, may have a value even
for a value of  which is without a name in that language: it is sufficient that the given
vilue of @ shall have a name in some suitable extension of the language—say, that
obtained by adding to the vocabulary of the language a name of the given value of z,
and allowing it to be substitutable for # wherever « occurs as a free variable. Likewise
n form may have a sense value for a given concept of a value of z if some suitable ex-
tension of the language contains a name having that concept as its sense.

It is indeed possible, as we shall see later by particular examples, to construct
fnnguages of sorestricted a vocabulary as to contain no constants, but only variables and
formu. But it would seem that the most natural way to arrive at the meaning of forms
which oceur in these languages is by contemplating languages which are extensions of
them and which do contain constants—or else, what is nearly the same thing, by
allowing a temporary change in the meaning of the variables (‘‘fixing the values of the
varinbles”) so that they become constants.

“"We adopt this term from Hilbert (1922), Wilhelm Ackermann (1924), J. v. Neu-
mann (1927), Hilbert and Ackermann (1928), Hilbert and Bernays (1934). For what we
here cnll a free variable the term real variableis also familiar, having been introduced
hy Gluseppe Peano in 1897 and afterward adopted by Russell (1908), but is less satis-
fnctory because it conflicts with the common use of ‘‘real variable” to mean a variable
whone range is the real numbers.

Au we shall see later (§06), a free variable must be distinguished from a bound variable
(1 the torminology of the Hilbert school) or apparent variable (Peano’s terminology).
Ihe difference is that an expression containing @ as a free variable has values for various
visluen of @, but an expression, containing @ as a bound or apparent variable only, has
# meaning which is independent of a—not in the sense of having the same value for
svery value of @, but in the sense that the assignment of particular values to « is not a
telovant procedure,
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spective values (or, if the expression so obtained has no denotation, then the
form has no value for these particular values of z and Y).

In the same way forms with three, four, and more free variables may be
obtained. If a form contains a single free variable, we shall call it a singulary?®
form, if just two free variables, binary, if three, ternary, and so on. A form
with exactly # different free variables is an n-ary form.

Two forms will be called concurrent if they agree in value—i.e., either
have the same value or both have no value—for each assignment of values
to their free variables. (Since the two forms may or may not have the same
free variables, all the variables are to be considered together which have
free occurrences in either form, and the forms are concurrent if they agree
in value for every assignment of values to these variables.) A form will be
called concurrent to a constant if, for every assignment of values to its free
variables, its value is the same as the denotation of the constant. And two
constants will be called concurrent if they have the same denotation.

Using the notion of concurrence, we may now add a fourth assumption,
or principle of meaning, to the assumptions (1)=(3) of the last two para-
graphs of §01. This is an extension of (2) to the case of forms, as follows:
(4) In any constant or form, when a constituent constant or form is replaced
by another concurrent to it, the entire resulting constant or form is con-
current to the original one.® The significance of this principle will become
clearer in connection with the use of operators and bound variables, explained
in §06 below. It is to be taken, like (2), as a part of our explanation of the
name relation, and thus a part of our theory of meaning.

As in the case of constant, we shall apply the terms variable and form
also in the construction of uninterpreted caleuli, introducing them by special
definition for each such calculus in connection with which they are to be
used. Ordinarily the symbols and expressions so designated will be ones
which become variables and forms in our foregoing sense under one of the
principal interpretations of the calculus as a language (see §07).

It should be emphasized that a variable, in our usage, is a symbol of a

*¥We follow W. V. Quine in adopting this etymologically more correct term, rather
than the presently commoner “‘unary.”

%For completeness—using the notion of sense value explained in footnote 27 and
extending it in obvious fashion to #-ary forms—we must also extend the agsumption (1)
to the case of forms, as follows. Let two forms be called sense-concurvent if they agree
in sense value for each system of concepts of values of their free variables; let a form
be called sense-concurrent to a constant if, for every system of concepts of values of its

free variables, its sense value is the same as the sense of the constant; and let two con-
stants be called sense-concurrent if they express the same sense, Then: (6) In any con-
stant or form, when a constituent constant or form is replaced by another which is sense-
concurrent toit, the entireresulting constant or form is sense-concurront to theoriginal one.
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certain kind3! rather than something (e.g., a number) which is denoted or
otherwise meant by such symbol. Mathematical writers do speak of “‘variable
real numbers,” or oftener ‘‘variable quantities,” but it seems best not to
interpret these phrases literally. Objections to the idea that real numbers
are to be divided into two sorts or classes, ‘‘constant real numbers’” and
““variable real numbers,” have been clearly stated by Frege3? and need not
be repeated here at length.33 The fact is that a satisfactory theory has never
been developed on this basis, and it is not easy to see how it might be done.

i3]

The mathematical theory of real numbers provides a convenient source of
examples in a system of notation®* whose general features are vs.fell estabh'shed.
Turning to this theory to illustrate the foregoing discussion, we cite as particular
examples of constants the ten expressions:

0 -—i- e —i, 41_4+1, det, e e — e, — 1, Smﬂ”.
’ 2" 27 4r 2z @f7
et us say that « and y are variables whose range is the real numbers, and m, #, 7
are variables whose range is the positive integers.3® The following are examples
of forms:

MTherefore, a variable (or more precisely, particular instancgs or occurrences of a
variable) can be written on paper—just as the figure 7 can be written on paper, thoqgh
the number 7 cannot be so written except in the indirect sense of writing something
which denotes it. ' ) o i

And similarly constants and forms are symbols or expressions of c‘e:rtam kmd,&,‘.. tis
indeed usual to speak also of numbers and physical quantities as cox_lstants T—but
this usage is not the same as that in which a constant can be contrasted with a variable,
and we shall avoid it in this book. ) ,

¥See his contribution to Festschrvift Ludwig Boltzmann Gewidmet, .1904. (Frege’s
theory of functions as ‘“‘ungesittigt,” mentioned at the end of his paper, is anot.her mat-
ter, not necessarily connected with his important poin_t about variables. It will not be
adopted in this book, but rather we shall take a funqtmn-——see §03—to be more nearly
what Frege would call ‘“Werthverlauf einer Function.”) )

“However, we meéntion the following parallel to one of Frege’s examples. Sl_lall we
say that the usual list of seventeen names is a complete list of_ the Saxon kings of
lingland, or only that it is a complete list of the constant Saxon kings of Epgland, and
that account must be taken in addition of an indefinite number of val.'la.ble Saxon
kings? One of these variable Saxon kings would appear tc_) be a human being of a very
ntriking sort, having been, say, a grown man named Alfred in A.D. 876, and a boy named
Iidward in a.D. 976. ] )

According to the doctrine we would advocate (following Erege), ther.e are just seven-
teen Saxon kings of England, from Egbert to Harold, and neither a variable Saxon k§ng
nor an indeterminate Saxon king is to be admitted to swell the number. And the like
holds for the positive integers, for the real numbers, and fo; all pther domains abstract
and concrete. Variability or indeterminacy, where such exists, is a matter of language
and attaches to symbols or expressions. o

"We say “‘system of notation’’ rather than ‘“language’’ because only the specxhcg,lly
numerical notations can be regarded as well established in ordinary mathematical
writing. They are usually supplemented (for the statement of theorems and proofs)
by one or another of the natural languages, according to the choice of the particular
writer, )

"livery positive integer is also a real number. I.e., the terms must be so understood
for purposes of these illustrations.
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1 1 1 1 —4+1
Y, — = — o 4, weT, a%,
Y z 2z 4x
x y sinxz siny
r—x, n—n, —, T Ty T f
2z 2r ¥
Y v x—m+ 1
yes, ——, ——,
xy xv mr

The forms on the first two lines are singulary, each having one free variable, y, z, »,

or 7as the case may be. The forms on the third line are binary, the first two having

z and y as free variables, the third one x and 7, the fourth one z and .36
The constants

are not identical. But they are concurrent, since each denotes the same number.??
Similarly the constants e — e and 0, though not identical, are concurrent because
the numbers ¢ — ¢ and 0 are identical. Similarly — =/2x and — 1/2.

The form ze®, for the value 0 of z, has the value 0. (Of course it is the number
0 that is here in question, not the constant 0, so that it is equally correct to say
that the form «xe®, for the value 0 of z, has the value e — ¢; or that, for the value
e — e of z, it has the value 0; etc.) For the value 1 of x the form ze® has the
value e. For the value 4 of « its value is 4e*, a real number for which (as it happens)
no simpler name is in standard use.

The form ye®, for the values 0 and 4 of # and y respectively, has the value 4.

36To illustrate the remark of footnote 28, following are some examples of expressions
containing bound variables:

. ® m=n
2 . singz z—m 4+ 1
x%dx, lim 5 z I I —
0 z—>0 T WTT
n=1 m=1

The first two of these are constants, containing x as a bound variable. The third is a
singulary form, with x as a free variable and m and % as bound variables.

A variable may have both free and bound occurrences in the same expression. An
example is [fz®dz, the double use of the letter z constituting no ambiguity. Other
examples are the variable Az in (D, sin #)4z and the variable x in  E (%), if the notations
D, sinz and E(k) are replaced by their equivalents

sin(z + dz) — sin x

lim
Az —> 0 Az
1 — ph2p2
and \/—ki dx respectively.
oV1 — a?

37Whether these two constants have the same sense (as well as the same denotation)
is a question which depends for its answer on a general theory of equality of senses,
such as we have not undertaken to discuss here—cf. footnote 15. It is clear that Frege,
though he formulates no complete theory of equality of senses, would regard these two
constants as having different senses. But a plausible case might be made out for sup-
posing that the two constants have the same sense, on some such ground as that the
equation between them expresses a necessary proposition or is true on logical grounds
alone or the like. No doubt there is more than one meaning of ‘“‘sense,”” according to
the criterion adopted for equality of senses, and the decision among them is a matter
of convention and expediency.
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For the values 1 and 1 of # and y it has the value 1¢!; or, what is the same thing,
it has the value e.

The form — y/ay, for the values ¢ and 2 of x and y respectively, has the value
— 1/e. For the values ¢ and ¢ of « and y, it has again the value — 1/e. For the
values ¢ and 0 of « and y it has no value, because of the non-existence of a quo-
tient of 0 by 0.

The form — #/xr, for the values ¢ and 2 of x and # respectively, has the value
— 1/e. But there is no value for the values ¢ and e of z and #, because ¢ is not
in the range of 7 (e is not one of the possible values of 7).

The forms

are concurrent, since they are both without a value for the value 0 of x, and
they have the same value for all other values of x. The forms — 1/x and — y/xy
fail to be concurrent, since they disagree for the value 0 of y (if the value of x
is not 0). But the forms — 1/z and — #/av are concurrent.

The forms — 1/y and — 1/x are not concurrent, as they disagree, e.g., for the
values 1 and 2 of x and y respectively.

The forms x — x and # — # are concurrent to the same constant, namely 0,38
and are therefore also concurrent to each other.

The forms — x/2x and — #/2r are non-concurrgnt because of disagreement
for the value 0 of z. The latter form, but not the former, is concurrent to a
constant, namely to — 1/2.

03. Functions. By a function—or, more explicitly, a one-valued singulary
function—we shall understand an operation3? which, when applied to some-
thing as argument, yields a certain thing as the value of the function for that
argument. It is not required that the function be applicable to every possible
thing as argument, but rather it lies in the nature of any given function to
be applicable to certain things and, when applied to one of them as argu-
ment, to yield a certain value. The things to which the function is applicable
constitute the range of the function (or the range of arguments of the function)
and the values constitute the range of values of the function. The function
itself consists in the yielding or determination3® of a value from each argu-
ment in the range of the function.

As regards equality or identity of functions we make the decision which is

"Or also to any other constant which is concurrent to 0.

®Of course the words “‘operation,” ‘‘yielding,” ‘‘determination’ as here used are
noar-synonyms of ‘‘function” and therefore our statement, if taken as a definition,
would be open to the suspicion of circularity. Throughout this Introduction, however,
wo are engaged in informal explanation rather than definition, and, for this purpose,
olaboration by means of synonyms may be a useful procedure. Ultimately, it seems, we
inust take the notion of function as primitive or undefined, or else some related notion,

sich as that of a class. (We shall see later how it is possible to think of a class as a
spocial case of a function, and also how classes may be used, in certain connections or
for cortain purposes, to replace and do the work of functions in general.)
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usual in mathematics. Namely, functions are identical if they have the same
range and have, for each argument in the range, the same value. In other
words, we take the word “function” to mean what may otherwise be called
a function in extension. If the way in which a function yields or produces
its value from its argument is altered without causing any change either in
the range of the function or in the value of the function for any argument,
then the function remains the same; but the associated function concept,
or concept determining the function (in the sense of §01), is thereby changed.

We shall speak of a function from a certain class fo a certain class to mean
a function which has the first class as its range and has all its values in the
second class (though the second class may possibly be more extensive than
the range of values of the function).

To denote the value of a function for a given argument, it is usual to
write a name of the function, followed by a name of the argument between
parentheses. And of course the same notation applies (mutatis mutandis)
with a variable or a form in place of either one or both of the names. Thus
if f is a function and « belongs to the range of f, then f(x) is the value of the
function f for the argument z.4

This is the usual notation for application of a function to an argument,
and we shall often employ it. In some contexts (see Chapter X) we find it
convenient to alter the notation by changing the position of the parentheses,
so that we may write in the altered notation: if f is a function and « belongs
to the range of f, then (fz) is the value of the function f for the argument .

So far we have discussed only one-valued singulary functions (and have
used the word “function” in this sense). Indeed no use will be made in this
book of many-valued functions,#* and the reader must always understand

4This sentence exemplifies the use of varfables to make general statements, which
we assume is understood from familiar mathematical usage, though it has not yet been
explained in this Introduction. (See the end of §06.)

411t is the idea of a many-valued (singulary) function that, for a fixed argument,
there may be more than one value of the function. If a name of the function is written,
followed by a name of an argument between parentheses, the resulting expression is a
common name (see footnote 6) denoting the values of the function for that argument.

Though many-valued functions seem to arise naturally in the mathematical theories
of real and complex numbers, objections immediately suggest themselves to the idea
as just explained and are not easily overcome. Therefore it is usual to replace such many-
valued functions in one way or another by one-valued functions. One method is to
replace a many-valued singulary function by a corresponding one-valued binary prop-
ositional function or relation (§04). Another method is to replace the many-valued
function by a one-valued function whose values are classes, namely, the value of the
one-valued function for a given argument is the class of the values of the many-valued
function for that argument. Still another method is to change the range of the function,
an argument for which the function has » values giving way to # different arguments
for each of which the function has a different one of those # values (this is the standard
role of the Riemann surface in the theory of complex numbers).
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“function” to mean a one-valued function. But we go on to explain functions
of more than one argument.

A binary function, or function of two arguments,*? is characterized by being
applicable to two arguments in a certain order and yielding, when so applied,
a certain value, the value of the function for those two arguments in that
order. It is not required that the function be applicable to every two things
as arguments; but rather, the function is applicable in certain cases to an
ordered pair of things as arguments, and all such ordered pairs constitute
the range of the function. The values constitute the range of values of the
function.

Binary functions are identical (i.e., are the same function) if they have the
same range and have, for each ordered pair of arguments which lies in that
range, the same value.

To denote the value of a binary function for given arguments, it is usual
to write a name of the function and then, between parentheses and separated
by a comma, names of the arguments in order. Thus if / is a binary function
and the ordered pair of  and y belongs to the range of f, then f(z, y) is the
value of the function f for the arguments x and y in that order.

In the same way may be explained the notion of a ternary function, of a
quaternary function, and so on. In general, an n-ary function is applied to
n arguments in an order, and when so applied yields a value, provided the
ordered system of # arguments is in the range of the function. The value of
an n-ary function for given arguments is denoted by a name of the function
followed, between parentheses and separated by commas, by names of the
arguments in order.

Two binary functions ¢ and y are called converses, each of the other, in
case the two following conditions are satisfied: (1) the ordered pair of  and
¥ belongs to the range of ¢ if and only if the ordered pair of y and « belongs
to the range of ; (2) for all z, y such that the ordered pair of  and y belongs
to the range of é,43

$(@ y) = p(y, ).
A binary function is called symmetric if it is identical with its converse,
The notions of converse and of symmetry may also be extended to #n-ary
lunctions, several different converses and several different kinds of symme-

L I'x‘nugh it is in common use we shall avoid the phrase “function of two variables”
(and “function of three variables” etc.) because it tends to make confusion between
""'i,"f','"’”"‘ to which a function is applied and variables taking such arguments as values

I'he use of the sign = to express that things are identical is assumed familiar t(;

10 reader, We do not restrict this notati
tl ’l : on to the spe(:lal case of D.llnlbels, but use it
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try appearing when the number of arguments is three or more (we need not
stop over details of this).

We shall speak of a function of things of a certain kind to mean a function
such that all the arguments to which it is applicable are of that kind. Thus
a singulary function of real numbers, for instance, is a function from some
class of real numbers to some (arbitrary) class. A binary function of real
numbers is a binary function whose range consists of ordered pairs of real
numbers (not necessarily all ordered pairs of real numbers).

We shall use the phrase “____ is a function of ,’ filling the blanks
with forms,%* to mean what is more fully expressed as follows: ‘“There
exists a function f such that

.

for all ___,” where the first two blanks are filled, in order, with the same
forms as before, and the third blank is filled with a complete list of the
free variables of those forms. Similarly we shall use is a function of
and ,” filling the three blanks with forms, to stand for: ‘“There
exists a binary function f such that

=f_ . )
for all ____,” where the first three blanks are filled, in order, with the same
forms as before, and the last blank is filled with a complete list of the free
variables of those forms.#* And similar phraseology will also be used where
the reference is to a function f of more than two arguments.

The phraseology just explained will also be used with the added statement
of a condition or restriction. For example, “____is a function of ____ and
if ____,” where the first three blanks are filled with forms, and the
fourth is filled with the statement of a condition involving some or all of

the free variables of those forms,#® stands for: “There exists a binary function
f such that

== f(————! —-—)

for all for which ,”’ where the first three blanks are filled, in order,

#Qur explanation assumes that neither of these forms has the particular letter f as
one of its free variables. In the contrary case, the explanation is to be altered by using
in Place} of the letter f as it appears in the text some variable (with appropriate range)
which is not a free variable of either form.

%The theory of real numbers again serving as a source of examples, it is thus true
.that x® 4 y® is a function of # 4 y and xy. But it is false that a3 4 a%y — ay? + y®
is a function of @ + y and @y (as is easily seen on the ground that the form x? 4 %y —
zy* 4 y® is not symmetric). Again, % 4 Yyt 4 24+ dady + day® + 4a%z + 4o
4y®z + 4yz® is a function of © + y + z and xy + 2z + yz. But x 4 y* + z* is not
a function of @ + y + 2z and axy + 2z + ya.

“Thus with a propositional form in the sense of §04 below.
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with the same forms as before, the fourth blank is filled with a complete
list of the free variables of those forms, and the fifth blank is filled in the
same way as the fourth blank was before. 4

Also the same phraseology, explained in the two preceding paragraphs,
will be used with common names® in place of forms. In this case the forms
which the common names represent have to be supplied from the context.
For example, the statement that “The density of helium gas is a function
of the temperature and the pressure” is to be understood as meaning the same
as “The density of h is a function of the temperature of h and the pressure of h,”
where the three italicized forms replace the three original italicized common
names, and where % is a variable whose values are instantaneous bits of
helium gas (and whose range consists of all such). Or to avoid introducing the
variable & with so special a range, we may understand instead: ‘“The density
of b is a function of the temperature of b and the pressure of b if b is an
instantaneous bit of helium gas.” Similarly the statement at the end of §01
that the denotation of a name is a function of the sense means more explic-
itly (the reference being to a fixed language) that there exists a function f
]

denotation of N = f(sense of N)

such that

for all names N for which there is a denotation.

It remains now to discuss the relationship between functions, in the ab-
stract sense that we have been explaining, and forms, in the sense of the pre-
ceding section (§02).

If we suppose the language fixed, every singulary form has corresponding
to it a function f (which we shall call the associated function of the form) by
the rule that the value of f for an argument « is the same as the value of the
form for the value z of the free variable of the form, the range of f consisting
of all #’s such that the form has a value for the value  of its free variable.t®

“Accordingly it is true, for example, that: 43 + 2%y — xy® + y*isa functionof » + y
and wy if @ = y. For the special case that the variables have a range consisting of real or
complex numbers, a geometric terminology is often used, thus: a* 4 % — 2y* + y°
in a function of # + y and xy in the half-plane =z = y.

W5ee footnotes 4, 6.

#lior example, in the theory of real numbers, the form (e® — ¢~°) determines the
function sinh as its associated function, by the rule that the value of sinh for an argu-
mont @ is §(¢® — e~®). The range of sinh then consists of all #’s (i.e., all real numbers x)
for which §(¢® — e~®) has a value. In other words, as it happens in this particular case,
the range consists of all real numbers.

Of course the free variable of the form need not be the particular letter , and indeed
it may be clearer to take an example in which the free variable is some other letter.

I'hus the form §(e¥ — e~¥) determines the function sinh as its associated functionm,
by the rule that the value of sinh for an argument « is the same as the value of the form
4(e¥ — V) for the value @ of the variable y. (IL.e., in particular, the value of sinh for
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But, still with reference to a fixed language, not every function is necessarily
the associated function of some form.%

It follows that two concurrent singulary forms with the same free variable
have the same associated function. Also two singulary forms have the same
associated function if they differ only by alphabetic change of the free vari-
able,5! i.e., if one is obtained from the other by substituting everywhere
for its free variable some other variable with the same range—with, however,
the proviso (the need of which will become clearer later) that the substituted
variable must remain a free variable at every one of its occurrences resulting
from the substitution.

As a notation for (i.e., to denote) the associated function of a singulary
form having, say, z as its free variable, we write the form itself with the
letters Ax prefixed. And of course likewise with any other variable in place of
2.52 Parentheses are to be supplied as necessary.5?

the argument 2 is the same as the value of the form (e — e~¥) for the value 2 of the
variable y; and so on for each different argument x that may be assigned.)
Ordinarily, just the equation

sinh (z) = 4(e* — e7%)

is written as sufficient indication of the foregoing. And this equation may even be called
a definition of sinh, in the sense of footnote 168, (1) or (3).

80 A ccording to classical real-number theory, the singulary functions from real num-
bers to real numbers (or even just the analytic singulary functions) are non-enumerable.
Since the forms in a particular language are always enumerable, it follows that there is
no language or system of notation in which every singulary function from real numbers
to real numbers is the associated function of some form.

Because of the non-enumerability of the real numbers themselves, it is even impossible
in any language to provide proper names of all the real numbers. (Such a thing as,
e.g., an infinite decimal expansion must not be considered a name of the corresponding
real number, as of course an infinite expansion cannot ever be written out in full, or
included as a part of any actually written or spoken sentence.)

S1E.g., as appears in footnote 49, the forms }(e* — ¢~%) and }(¢¥ — ¢~¥) have the
same associated function.

52Thus the expressions Az($(e® — e~%)), Ay(3(e? — e~¥)), sinh are all three synony-
mous, having not only the same denotation (namely the function sinh), but also the
same sense, even under the severest criterion of sameness of sense.

(In saying this we are supposing a language or system of notation in which the two
different expressions sinh -and Az(}(e® — ¢=*)) both occur. However, the very fact of
synonymy shows that the expression sinh is dispensable in principle: except for con-
siderations of convenience, it could always be replaced by the longer expression
Ax(}(e® — e~®)). In constructing a formalized language, we prefer to avoid such dupli-
cations of notation so far as readily possible. See §11.)

The expressions Az (4(e® — e~®)) and Ay(3(e¥ — e~¥)) contain the variables  and y
respectively, as bound variables in the sense of footnotes 28, 36 (and of §06 below).
For, according to the meaning just explained for them, these expressions are constants,
not singulary forms. But of course the expression }(e* — e~®) is a singulary form, with
« as a free variable.

The meaning of such an expression as Az(ye®), formed from the binary form ye”
by prefixing Ax, now follows as a consequence of the explanation about variables and
forms in §02. In this expression, @ is a bound variable and y is a free variable, and the
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As an obvious extension of this notation, we shall also prefix the letters
Az (Ay, etc.) to any constant as a notation for the function whose value is
the same for all arguments and is the denotation of the constant, the range
of the function being the same as the range of the variable 2.5 This function
will be called an associated singulary function of the constant, by analogy
with the terminology ‘‘associated function of a form,” though there is the
difference that the same constant may have various associated functions
with different ranges. Any function whose value is the same for all argu-
ments will be called a constant function (without regard to any question
whether it is an associated function of a constant, in some particular language
under consideration).%

Analogous to the associated function of a singulary form, a binary form
has two associated binary functions, one for each of the two orders in which
the two free variables may be considered—or better, one for each of the two
ways in which a pair of arguments of the function may be assigned as values
to the two free variables of the form.

The two associated functions of a binary form are identical, and thus
reduce to one function, if and only if they are symmetric. In this case the
binary form itself is also called symsmetric.5¢

Likewise an #-ary form has #! associated #-ary functions, one for each
of the permutations of its free variables. Some of these associated functions
are identical in certain cases of symmetry.

Likewise a constant has associated m-ary functions, form =1,2,3,...,
by an obvious extension of the explanation already made for the special
case m = 1. And by a still further extension of this we may speak of the
associated m-ary functions of an #n-ary form, when m > ». In particular a

expression is a singulary form whose values are singulary functions. From it, by pre-
fixing Ay, we obtain a constant, denoting a singulary function, and the range of values
of this singulary function consists of singulary functions.

"In constructing a formalized language, the mannér in which parentheses are to be
put in has to be specified with more care. As a matter of fact this will be done, as we
shinll see, not by associating parentheses with the notation Az, but by suitable provision
for parentheses (or brackets) in connection with various other notations which may
occur in the form to which Ax is prefixed.

“T'hus in connection with real-number theory we use Az2 as a notation for the func-
tion whose range consists of all real numbers and whose value is 2 for every argument.

MNote should also be taken of expressions in which the variable after 4 is not the
satme as the free variable of the form which follows; thus, for example, Ay (3(e® — e7%)).
An in ween from the explanation in §02, this expression is a singulary form with z as
itu free variable, the values of the form being constant functions. For the value 0 of z,
¢, the form Ay(4(e® — e=®)) has as its value the constant function Ay0.

In both expressions, Ay(4(e® — ¢=*)) and Ay0, y is a bound or apparent variable.

"Wao have already used this term, as applied to forms, in footnote 45, assuming the
teader’s understanding of it as familiar mathematical terminology.
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singulary form has not only an associated singulary function but also
associated binary functions, associated ternary functions, and so on.
(When, however, we speak simply of #ke associated function of a singu-
lary form, we shall mean the associated singulary function.)

The notation by means of A for the associated functions of a form, as
introduced above for singulary functions, is readily extended to the case of
m-ary functions,? but we shall not have occasion to use such extension in this
book. The passage from a form to an associated function (for which the
A-notation provides a symbolism) we shall speak of as abstraction or, more
explicitly, m-ary functional abstraction (if the associated function is m-ary).

Historically the notion of a function was of gradual growth in mathe-
matics, and its beginning is difficult to trace. The particular word ‘‘function”
was first introduced by G. W. v. Leibniz and was adopted from him by
Jean Bernoulli. The notation f(z), or fx, with a letter such as f in the role
of a function variable, was introduced by A. C. Clairaut and by Leonhard
Euler. But early accounts of the notion of function do not sufficiently sep-
arate it from that of an expression containing free variables (or a form).
Thus Euler explains a function of a variable quantity by identifying it with
an analytic expression,® i.e., a form in some standard system of mathemat-
ical notation. The abstract notion of a function is usually attributed by
historians of mathematics to G. Lejeune Dirichlet, who in 1837 was led by
his study of Fourier series to a major generalization in freeing the idea of a
function from its former dependence on a mathematical expression or law
of circumscribed kind.®® Dirichlet’s notion of a function was adopted by
Bernhard Riemann (1851),% by Hermann Hankel (1870),%1 and indeed by
mathematicians generally. But two important steps remained to be taken by

57This has been done by Carnap in Nofes for Symbolic Logic (1937) and elsewhere.

58 Functio quantitatis vaviabilis est expressio analytica quomodocunque composita ex
illa quantitate variabili et numevis seu quantitatibus constantibus. Omnis ergo expressio
analytica, in qua praeter quantitatem variabilem z omnes quantitates illam expressio-
nem componentes sunt constantes, erit functio ipsius 2 ... Functio ergo quantitatis
variabilis ipsa evit quantitas vaviabilis.” Intvoductio in Amnalysin Infinitorum (1748),
p. 4; Opera, ser. 1, vol. 8, p. 18. See further footnote 62.

%See his Werke, vol. 1, p. 135. It is not important that Dirichlet restricts his state-
ment at this particular place to continuous functions, since it is clear from other pas-
sages in his writings that the same generality is allowed to discontinuous functions. On
page 132 of the same volume is his well-known example of a function from real numbers
to real numbers which has exactly two values, one for rational arguments and one for
irrational arguments.

Dirichlet’s generalization had been partially anticipated by Euler in 1749 (see an
account by H. Burkhardt in Jahvesbericht dev Deutschen Mathematiker-Vereinigung,
vol. 10 part 2 (1908), pp. 13-14) and later by J. B. J. Fourier (see his Oeuvres, vol. 1,
Pp. 207, 209, 230-232).

OWerke, pp. 3—4.

®In a paper reprinted in the Mathematische Annalen, vol, 20 (1882), pp. 63-112.
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Frege (in his Begriffsschrift of 1879 and later publications): (i) the elimina-
tion of the dubious notion of a variable quantity in favor of the variable as
a kind of symbol;2 (ii) the admission of functions of arbitrary range by
removing the restriction that the arguments and values of a function be
numbers. Closely associated with (ii) is Frege’s introduction of the prop-
ositional function (in 1879), a notion which we go on to explain in the
next section.
ny

04. Propositions and propositional functions. According to gram-
marians, the unit of expression in the natural languages is the sentence,
an aggregation of words which makes complete sense or expresses a
complete thought. When the complete thought expressed is that of
an assertion, the sentence is called a declarative semience. In what follows
we shall have occasion to refer only to declarative sentences, and the

s . 5
simple word “‘sentence” is to be understood always as meaning a declarative
sentence, 3

4

We shall carry over the term semfence from the natural languages
also to the formalized languages. For logistic systems in the sense of
§07—uninterpreted calculi—the term sentence will be introduced by special
definition in each case, but always with the intention that the expres-
sions defined to be sentences are those which will become sentences in

our foregoing sense under interpretations of the calculus as a formalized
language.%

In order to give an account of the meaning of sentences, we shall adopt a
theory due to Frege according to which sentences are names of a certain
kind. This seems unnatural at first sight, because the most conspicuous
use of sentences (and indeed the one by which we have just identified or

""The passage quoted from Euler in footnote 58 reads as if his variable quantity were
a kind of symbol or expression. But this is not consistent with statements made else-
where in ‘tlhc same work which are essential to Euler’s use of the notion of function
“—e.g., “Si fuerit y functio quaecunque ipsius z, tum vicissim z evit functio ipsius y”’
(()/wm, P- 24), “Sed omnis transformatio consistit in alio modo eandem functionem
exprimendi, quemadmodum ex Algebra constat eandem quantitatem per plures
(hvutr‘sas formas exprimi posse”’ (Opera, p. 32).
. ”lhg question may be raised whether, say, an interrogative or an imperative logic
i8 poss:lble, in which interrogative or imperative sentences and what they express
(qucstxpps or commands) have roles analogous to those of declarative sentences and
propositions in logic of ordinary kind. And some tentative proposals have in fact been
made towards an imperative logic, and also towards an optative logic or logic of wishes
But ‘thcsc matters are beyond the scope of this book. ‘

%Cf. the explanation in §02 regarding the use in connection with logistic systems of
the terms constant, variable, form. An analogous explanation applies to a number of
terms of like kind to be introduced below—in particular, propositional variable, prop-
ositional form, opervator, quantifier, bound variable, commective. '
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described them) is not barely to name something but to make an assertion.
Nevertheless it is possible to regard sentences as names by distinguishing
between the assertive use of a sentence on the one hand, and its non-asser-
tive use, on the other hand, as a name and a constituent of a longer sentence
(just as other names are used). Even when a sentence is simply asserted, we
shall hold that it is still a name, though used in a way not possible for other

’

names.%5

An important advantage of regarding sentences as names is that all the
ideas and explanations of §§01-03 can then be taken over at once and applied
to sentences, and related matters, as a special case. Else we should have to
develop independently a theory of the meaning of sentences; and in the
course of this, it seems, the developments of these three sections would be
so closely paralleled that in the end the identification of sentences as a kind
of names (though not demonstrated) would be very forcefully suggested as
a means of simplifying and unifying the theory. In particular we shall require
variables for which sentences may be substituted, forms which become
sentences upon replacing their free variables by appropriate constants, and
associated functions of such forms—things which, on the theory of sentences
as names, fit naturally into their proper place in the scheme set forth in
§§02-03. '

Granted that sentences are names, we go on, in the light of the discussion
in §01, to consider the denotation and the sense of sentences.

As a consequence of the principle (2), stated in the next to last paragraph
of §01, examples readily present themselves of sentences which, though in
some sense of different meaning, must apparently have the same denotation.
Thus the denotation (in English) of “Sir Walter Scott is the author of
Waverley” must be the same as that of “Sir Walter Scott is Sir Walter Scott,”

65T distinguish the non-assertive use of a sentence and the assertive use, especially
in a formalized language, Frege wrote a horizontal line, —, before the sentence in the
former case, and the character |- before it in the latter case, the addition of the vertical
line thus serving as a sign of assertion. Russell, and Whitehead and Russell in Principia
Mathematica, did not follow Frege’s use of the horizontal line before non-asserted
sentences, but did take over the character |- in the role of an assertion sign.

(Frege also used the horizontal line before names other than sentences, the expression
so formed being a false sentence. But this is a feature of his notation which need not
concern us here.)

In this book we shall not make use of a special assertion sign, but (in a formalized
language) shall employ the mere writing of a sentence displayed on a separate line or
lines as sufficient indication of its assertion. This is possible because sentences used
non-assertively are always constituent parts of asserted sentences, and because of the
availability of a two-dimensional arrangement on the printed page. (In a one-dimen-
sional arrangement the assertion sign would indeed be necessary, if only as punctuation.)

The sign | which is employed below, in Chapter I and later chapters, is not the Frege-
Russell assertion sign, but has a wholly different use.
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the name ""the author of Waverley” being replaced by another which has

the sume denotation, Again the sentence ‘‘Sir Walter Scott is the author of

Waverley” must have the same denotation as the sentence ‘‘Sir Walter

Seott is the man who wrote twenty-nine Waverley Novels altogether,” since
)

the name “"the author of Waverley” is replaced by another name of the same
person; the latter sentence, it is plausible to suppose, if it is not synonymous
with "“I'he number, such that Sir Walter Scott is the man who wrote that
muny Waverley Novels altogether, is twenty-nine,” is at least so nearly

s an to ensure its having the same denotation; and from this last sentence
i turn, replacing the complete subject by another name of the same number,
we obtain, as still having the same denotation, the sentence ‘“The number of

counties in Utah is twenty-nine.”

Now the two sentences, ““Sir Walter Scott is the author of Waverley”
und “The number of counties in Utah is twenty-nine,” though they have
the same denotation according to the preceding line of reasoning, seem
actunlly to have very little in common. The most striking thing that they
o have in common is that both are true. Elaboration of examples of this
lind leads us quickly to the conclusion, as at least plausible, that all true
sentences have the same denotation. And parallel examples may be used in
the same way to suggest that all false sentences have the same denotation
(0.7, ""Sir Walter Scott is not the author of Waverley”” must have the same
denotation as “Sir Walter Scott is not Sir Walter Scott”). -

I'herefore, with Frege, we postulate®® two abstract objects called truth-
vilues, one of them being ruth and the other one falsehood. And we declare
nll true sentences to denote the truth-value truth, and all false sentences
o denote the truth-value falsehood. In alternative phraseology, we shall
ulho speak of a sentence as having the truth-value truth (if it is true) or
having the truth—value falsehood (if it is false).8?  «

I'he sense of a sentence may be described as that which is grasped when
une understands the sentence, or as that which two sentences in different
lanpuages must have in common in order to be correct translations each of
(he other. As in the case of names generally, it is possible to grasp the sense

““To Frege, as a thoroughgoing Platonic realist, our use *

#To iy 5 of the word ‘‘postulate’”
'll“l‘ : '\vqylllfl ;ottbe i,l(icip;able. It would represent his position better to sag that the
situation indicates that there are tw h thi
BB doe Fotoiy o such things as truth and falsehood (das Wahre

""I'he explicit use of two truth-values a i i i
‘ : > ppears for the first time in a paper by C. S.
: ';“. © ,m the American Journal of Mathematics, vol. 7 (1885), pp. 180—505) (or Zee his

0 Il, cled Papers, vol. 3, PpP- 2‘1 0-238). Frege's first use of truth-values is in his Funktion
wnid Begriff of 1891 and in his paper of 1892 which is cited in footnote 5; it is in these
thiat the account of sentences as names of truth-values is first put forward.
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of a sentence without therefore necessarily having knowledge of its denota-
tion (truth-value) otherwise than as determined by this sense. In particular,
though the sense is grasped, it may sometimes remain unknown whether the
denotation is truth.

Any concept of a truth-value, provided that being a truth-value is contained
in the concept, and whether or not it is the sense of some actually available
sentence in a particular language under consideration, we shall call a prop-
osition, translating thus Frege’s Gedanke. .

Therefore a proposition, as we use the term, is an abstract object of the
same general category as a class, a number, or a function. It has not the
psychological character of William of Ockham’s propositio mentalis or of
the traditional judgment: in the words of Frege, explaining his term
Gedanke, it is “‘nicht das subjective Thun des Denkens, sondern dessen
objectiven Inhalt, der fahig ist, gemeinsames Eigenthum von Vielen zu
sein.”

Traditional (post-Scholastic) logicians were wont to define a proposition
as a judgment expressed in words, thus as a linguistic entity, either a sen-
tence or a sentence taken in association with its meaning.®® But in non-
technical English the word has long been used rather for the meaning (in
our view the sense) of a sentence,® and logicians have latterly come to

accept this as the technical meaning of ‘“‘proposition.” This is the happy
result of a process which, historically, must have been due in part to sheer
confusion between the sentence in itself and the meaning of the sentence.
It provides in English a distinction not easily expressed in some other
languages, and makes possible a translation of Frege’s Gedanke which is
less misleading than the word ‘‘thought.””

According to our usage, every proposition determines or is a concept of

6E g, in Isaac Watts’s Logick, 1725: “A Proposition is a Sentence wherein two or
more Ideas or Terms are joined or disjoined by one Affirmation or Negation. ... In
describing a Proposition I use the Word Terms as well as Ideas, because when mere
Ideas are join’d in the Mind without Words, it is rather called a Judgment; but when
clothed with Words, it is called a Proposition, even tho’ it be in the Mind only, as well
as when it is expressed by speaking or Writing.” Again in Richard Whately’s Elements
of Logic, 1826: ““The second part of Logic treats of the proposition; which is, ‘ Judgment
expressed in words.” A Proposition is defined logically ‘a sentence indicative,” i.e.
affirming or denying; (this excludes commands and questions.)”’ Here Whately is follow-
ing in part the Latin of Henry Aldrich (1691). In fact these passages show no important
advance over Petrus Hispanus, who wrote a half millennium earlier, but they are quoted
here apropos of the history of the word ‘‘proposition” in English.

#Consider, for example, the incongruous result obtained by substituting the words
“declarative sentence’’ for the word ‘‘proposition” in Lincoln’s Gettysburg Address.

0For a further account of the history of the matter, we refer to Carnap's Introduction
to Semantics, 1942, pp. 2356-236; and see also R. M. Eaton, General Logic, 193L.
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(or, as we shall also say, has) some truth-value. It is, however, a somewhat
arbitrary decision that we deny the name proposition to senses of such
sentences (of the natural languages) as express a sense but have no truth-
vilue, To this extent our use of {)roposition deviates from Frege’s
ne of Gedanke. But the question will not arise in connection with the
formalized languages which we shall study, as these languages will be
#0 constructed that every name—and in particular every sentence—has

i denotation.

A proposition is then #rue if it determines or has the truth-value truth
fulse if it has the truth-value falsehood. When a sentence expressing a prop-
osition is asserted we shall say that the proposition itself is thereby
wsserled.”™

A variable whose range is the two truth-values—thus a variable for which
sontences (expressing propositions) may appropriately be substituted—is
valled a propositional variable. We shall not have occasion to use variables

"'ty the remark of footnote 22, such are sentence: i i i
o more names that express a sense but lack a derlco’csagg;xcﬁi?I;E)al?oﬁgrle;i%bh%}rl: lz o:vle
shall take them. Examples are: ‘“The present king of France is bald”’; “The greseng; l,i'ne
ul France is not bald”; “The author of Principia Mathematica was borIr)l in 18611’g'
(An to the last example, it is true that the phrase ‘‘the author of Principia Mathematia;"

i some appropriate supporting context may be an ellipsi ingli
8 o | ] : psis for somethinglike ‘“the auth
| I" incipia Mathematica who was just mentioned” and therefore have E denotatioxil‘ bSi
::‘.- “..v.’-:l imp])nﬂ(‘, tl:jat t{lere is no such supporting context, so that the phrase can ’only
N 10 one @ incipi ica”
Rt | ¢ and only author of Principia Mathematica’” and therefore have no

o wentonces as a special case of names, of course the second remark of footnote 22

wluo applios, Thus we understand as true (and containing oblique occurrences of names)
such of the sentences: “Lady Hamilton was like Aphrodite in beauty’’; ‘“The fountain
;*l youth s not located in Florida; ‘““The present king of France d,oes not exist.”
n'.l.'.‘; v ol ;qul ‘»l whether a sentence has a truth-value or not are also not difficult 1':0
i thin connection, the exact meaning of various phraseologies in the natural

lm:.t.'u‘...;- u being often insufficiently determinate for a decision
“olice the following distinction. The statement that a cer'tain proposition was
wusetted (say on such and such an occasion) need not reveal what language was used
nuo' make any reference to a particular language. But the statement that a certain
-:: :. .' .;' o wan asserted (l()cs‘ not convey the meaning of the transaction unless it is added
it lnnguage was used. For not only may the same proposition be expressed by differ-

UL sentences in I(I,f[('l'(?lll languages, but also the same sentence may be used to assert
diterent propositions according to what language the user intends. It is beside the
Wit that the latter situation is comparatively rare in the principal known natural
Alpiages; It s not rare when all possible languages are taken into account

Fhiiin 'nl the language is English, the statement, ‘“‘Seneca said that man is a rational
siimal " conveys the proposition that Seneca asserted but not the information what
Bpiape he usod, On the other hand the statement, ‘‘Seneca wrote, ‘Rationale enim
sl eat homo," "' gives only the information what succession of letters he set down
ot whint proposition he asserted. (The reader may guess or know from other source;
::-:‘: siecn umed Latin, but th‘is is neither said nor implied in the given statement—for

W e many languages besides Latin in which this succession of letters spells a de-
hative sentence and, for all that thou and I know, one of them may once have been

Rl ume,)
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whose values are propositions, but we would suggest the term intensional
propositional variable for these.

A form whose values are truth-values (and which therefore becomes a
sentence when its free variables are replaced by appropriate constants) is
a propositional form. Usage sanctions this term™ rather than “truth-value
form,” thus naming the form rather by what is expressed, when constants
replace the variables, than by what is denoted.

A propositional form is said to be satisfied by a value of its free variable,
or a system of values of its free variables, if its value for those values of its
free variables is truth. (More explicitly, we should speak of a system of
values of variables as satisfying a given propositional form iz a given
language, but the reference to the particular language may often be omitted
as clear from the context.) A propositional form may also be said to be frue
or false for a given value of its free variable, or system of values of its free
variables, according as its value for those values of its free variables is truth
or falsehood.

A function whose range of values consists exclusively of truth-values, and
thus in particular any associated function of a propositional form, is a
propositional function. Here again, established usage sanctions ‘‘proposi-
tional function’’?* rather than “truth-value function,” though the latter
term would be the one analogous to, e.g., the term “numerical function” for
a function whose values are numbers.

A propositional function is said to be satisfied by an argument (or
ordered system of arguments) if its value for that argument (or ordered
system of arguments) is truth. Or synonymously we may say that a
propositional function Aolds for a particular argument or ordered system
of arguments.

From its use in mathematics, we assume that the notion of a class is
already at least informally familiar to the reader. (The words set and
aggregate are ordinarily used as synonymous with class, but we shall not
follow this usage, because in connection with the Zermelo axiomatic set

73Cf. footnote 26.

"This statement seems to be on the whole just, though the issue is much obscured by
divergencies among different writers as to the theory of meaning adopted and in the
accounts given of the notions of function and proposition. The idea of the propositional
function as an analogue of the numerical function of mathematical analysis originated
with Frege, but the term ‘‘propositional” function is originally Russell’s. Russell’s
early use of this term is not wholly clear. In his introduction to the second edition of
Principia Mathematica (1925) he decides in favor of the meaning which we are adopting
here, or very nearly that.

404)  PROPOSITIONS AND PROPOSITIONAL FUNCTIONS 29

theory” we shall wish later to give the word sef a special meaning, somewhat
different from that of class.) We recall that a class is something which has
or may have members, and that classes are considered identical if and only
i lln-vy have exactly the same members. Moreover it is usual mathematical
practice to take any given singulary propositional form as having associated

with it a class, namely the class whose members are those 'values of the free
variable for which the form is true.

In connection with the functional calculi of Chapters III<VI, or rather
with the formalized languages obtained from them by adopting one of the

indicated principal interpretations (§07), it turns out that we may secure
overything necessary about classes by just identifying a class with a
singulary propositional function, and membership in the class with
matisfaction of the singulary propositional function. We shall consequently
muke this identification, on the ground that no purpose is served by
;n|.u||:§:|i1|i11g a distinction between classes and singulary propositional
unctions,

We must add at once that the notion of a class obtained by thus identi-
Iying classes with singulary propositional functions does not quite coincide
with the informal notion of a class which we first described, because it does
not fully preserve the principle that classes are identical if they have the
same members. Rather, it is necessary to take into account also the range-
members of a class (constituting, i.e., the range of the singulary propositional
function). And only when the range-members are given to be the same is the
principle preserved that classes are identical if they have the same members.
['hiis or some other departure from the informal notion of a class is in fact
necessary, because, as we shall see later,?® the informal notion—in the pres-
thee of some other assumptions difficult to avoid—is self-inconsistent and
leads to antinomies. (The sefs of Zermelo set theory preserve the principle
thal wets having the same members are identical, but at the sacrifice of the
‘-i'lm iple that an arbitrary singulary propositional form has an associated
at,)

Since, then, a class is a singulary propositional function, we speak
ul the range of the class just as we do of the propositional function
(Lo, 1t I8 the same thing). We think of the range as being itself a class,
Having ns members the range-members of the given class, and having the
saine range-members.

(I any particular discussion hereafter in which classes are introduced
’

" lm|a|c'| X1,
in Chapter VI,
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and in the absence of any indication to the contrary, it is to be understood
that there is a fixed range determined in advance and that all classes have
this same range.)

Relations may be similarly accounted for by identifying them with binary
propositional functions, the relation being said to hold between an ordered
pair of things (or the things being said to stand in that relation, or to bear
that relation one to the other) if the binary propositional function is satisfied
by the ordered pair. Given that the ranges are the same, this makes two re-
lations identical if and only if they hold between the same ordered pairs,
and to indicate this we may speak more explicitly of a relation in extension—
using this term as synonymous with relation.

A property, as ordinarily understood, differs from a class only or chiefly
in that two properties may be different though the classes determined by
them are the same (where the class determined by a property is the class
whose members are the things that have that property). Therefore we

identify a property with a class concept, or concept of a class in the sense of
§01. And two properties are said to coincide in extension if they determine
the same class.

Similarly, a relation in intension is a relation concept, or concept of a

relation in extension.

To turn once more for illustrative purposes to the theory of real numbers and
its notations, the following are examples of propositional forms:

sin =0, sinx = 2,
e > 0, e > 1, x>0,
e >0, e <0,
x® + y® = 3y, zF#Y
e —yl <t le — yl < e

1f |x — y| < 6 then |sin @ — sin y| < e

{ as variables whose range is the real numbers, and & and 0

Here we are using z, ¥,
forms on the

as variables whose range is the positive real numbers. The seven
first three lines are examples of singulary propositional forms. Those on the
fourth line are binary, on the fifth line ternary, while on the last line is an exam-
ple of a quaternary propositional form.

Each of the singulary propositional forms has an associated
the form sin # = 0 is associated the class of those real numbers whose sine is 0,
i.e., the class whose range is the real numbers and whose members are 0, m, — 7,
9, — 2m, 3w, and so on. As explained, we identify this class with the prop-
- 0), or in other words the function from real num-

class. Thus with

ositional function Ax(sin @
bers to truth-values which has for any argument x the value sin @ = 0.
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he oy
6 ?Pn ’Lwo propositional forms ¢® > 1 and x > 0 have the same associated
m.:‘. .‘,I 1 :‘unel.y-, the class whose range is the real numbers and whose members
o e positive real numbers. This class is identified with either Az(e® > 1)
0 @X(r > iti i
: ‘,|('. ‘> 0), th_ese two propositional functions being identical with each other
.\. 1 convention about identity of functions adopted in §03
| ‘ \x.m e the proPosltlonal form sin # = 2 has the value falsehood for every val
ol w, the associated class Az(sin # = 2) has no members T
”“:\ ‘<'|:|ss “f-nCh has no members is called a null class or an empty class. From
q ,‘.')‘ll‘V(,"n ions about identity of propositional functions and of classes, if the
|.| K ITINTOH, it follows that there is only one nuil class. But, e g., the ra,mge of
i null class associated with the form sinx = 2 ‘ i
R ol < : = 2 and the range of the null
; .“ 15 xl)( 1z_t?:ed with the form ¢ < 0 are not the same: the former range is the
i m:m >; IS, fazl;li the latter range is the positive real numbers.”” We shall speak
tenpectively of the “null class of real ” “nul
upectively of eal numbers’” and of the “null class of positive
BN oy ot - s .
" |l \ wlnc.h coincides with its range is called a universal class. For example
o class assoc i i : :
A _:?\,(Tb,lated.WIth th.e form e® > 0 is the universal class of real numbers;
10 class associated with the form & > 0 is the universal cl Hive
tonl numbers. ‘ s of positive
Illul- binary propositional forms 2® + y® = 3y and x £ y are both symmetri
' ( A W N 1 e rl
Im [ s; ref n(. each hav§ one associated binary propositional function OZ rela‘cionC
: i I| mrticular, the associated relation of the form = £ y is the relation of diversit :
N.. '\\It on n-.llv:mmbers; or in other words the relation which has the pairs of re;;
winbers as its range, which any two different r
, eal
awitl which no real number bears to itself. 7 mumbers bear fo cach ofher
I'he ternary propositional forms [ — y| < ¢ and [ — y| < ¢ have each th
T 3 R eg. g
\ lnted ternary propositional functions? (being symmetric in z and y) zﬁ

Wi ol 'I hese propositional functions are different; but an appropriately chosen
| ;.Iu ..| |||1'||l,‘()n(‘, associated with each form, will be found to agree in value for
all videred triples of arguments which are in the range of both, differing only in

that the first one has the value fal
) as sehood for certain o 1
which are not in the range of the other. rcred triples of argnments

A . g &

‘ 08, Improper symbols, connectives. When the expressions, especially

”n wntences, of a language are analyzed into the single symbols of which
10y consist, symbols which may be regarded as indivisible in the sense that

TAvom ! 31 I 1 entica
ding to the informal notion that classes with the same members are identical
»

Howould be true absolutely that there i
3 F re is onl isti i
e & ) y one null class. The distin
fises (I”I ‘:':h I ut} ranges was introduced by Russell in 1908 as a parlt g?l(i?s (‘zflenuu
o “| > ' : llll.lul|‘y(h-|)r\l/ I ¥ :[hu same thing had previously been done by Ernst Schrécére};
\ 0 ) ( s Alge Y 3 i
L s Algebra dev Logik (1890), though with a very different moti-
WG iy also occasionall 3¢ ' )
asionally use the term tevnary vel i

a - o ! y velation (and quatl

e simple term velation will be reserved for the spucial( cascqo[ﬂl:g’ilfl;{;el'lgltgt)ﬁ)itcg;

sty propositional function,
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no division of them into parts has relevance to the meaning,” we have
seen that there are two sorts of symbols which may in particular appear,
namely primitive proper names and variables. These we call proper symbols,
and we regard them as having meaning in isolation, the primitive names as
denoting (or at least purporting to denote) something, the variables as
having (or at least purporting to have) a non-empty range. But in addition
to proper symbols there must also occur symbols which are improper—or
in traditional (Scholastic and pre-Scholastic) terminology, syncategorematic
—i.e., which have no meaning in isolation but which combine with proper
symbols (one or more) to form longer expressions that do have meaning
in isolation.®0

Conspicuous among improper symbols are parentheses and brackets of
various kinds, employed (as familiar in mathematical notation) to show the
way in which parts of an expression are associated. These parentheses and
brackets occur as constituents in certain combinations of improper symbols
such as we now go on to consider—either exclusively to show association and
in connection with other improper symbols which carry the burden of show-
ing the particular character of the notation,’ or else sometimes in a way
that combines the showing of association with some special meaning-pro-
ducing character.82

Conmectives are combinations of improper symbols which may be used
together with one or more constants to form or produce a new constant.

®The formalized languages are to be so constructed as to make such analysis into
single symbols precisely possible. In general it is possible in the natural languages only
partially and approximately—or better, our thinking of it as possible involves a certain
idealization.

In written English (say), the single symbols obtained are not just the letters with
which words are spelled, since the division of a word into letters has or may have no
relevance to the meaning. Frequently the single symbols are words. In other cases they
are parts of words, since the division, e.g., of “books” into ‘‘book’ and ‘‘s” or of
“‘colder” into “‘cold” and ‘“‘er’”’ does have relevance to the meaning. In still other cases
the linguistic structure of meaningful parts is an idealization, as when ‘‘worse” is taken
to have an analysis parallel to that of ‘“‘colder,” or “‘I went’’ an analysis parallel to that
of “‘I shall go,” or “had I known’’ parallel to that of “‘if I should hear.” (Less obvious
and more complex examples may be expected to appear if analysis is pressed more in
detail.)

80Apparently the case may be excluded that several improper symbols combine with-
out any proper symbols to form an expression that has meaning in isolation. For the
division of that expression into the improper symbols as parts could then hardly be said
to have relevance to the meaning.

81Thus in the expression (! — (¥ — y)) we may say that the inner parentheses serve
exclusively to show the association together of the part # — y of the expression, and
that they are used in connection with the sign —, which serves to show subtraction.

82In real number theory, the usual notation | | for the absolute value is an obvious
example of this latter. Again it may be held that the parentheses have such a double
use in either of the two notations introduced in §03 for application of a singulary func-
tion to its argument.
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‘Then, as follows from the discussion in §02, if we replace one or more of the
constants each by a form which has the denotation of that constant among
its values, the resulting expression becomes a form (instead of a constant);
and the free variables of this resulting form are the free variables of all the
forms (one or more) which were united by means of the connective (with
onch other and possibly also with some constants) to produce the resulting
form. In order to give completely the meaning-producing character of a
particular connective in a particular language, not only is it necessary to
give the denotation®® of the new constant in every permissible case that the
connective is used together with one or more constants to form such a new
constant, but also, for every case that the connective may be used with forms
or ‘forms and constants to produce a resulting form, it is necessary to give
the complete scheme of values of this resulting form for values of its free
viriables. And this must all be done in a way to conform to the assump-
tions about sense and denotation at the end of {01, and to the conventions
nbout meaning and values of variables and forms as these were described in
402, Connectives may then be used not only in languages which contain
constants but also in languages whose only proper symbols are variables.?

I'he constants or forms, united by means of a connective to produce a
new constant or form, are called the operands. A connective is called sin-
pulary, binary, ternary, etc., according to the number of its operands.

A singulary connective may be used with a variable of appropriate range
an the operand (this falls under our foregoing explanation since, of course,
i variable is a special case of a form). The form so produced is called an
ussoctated form of the connective if the range of the variable includes the
tenotations of all constants which may be used as operands of the connective
and all the relevant values of all the forms which may be used as operands
ol the connective (where by a relevant value of a form used as operand is
meant a value corresponding to which the entire form, consisting of con-
fnective and operand, has a value). And the associated function of a sin-
pulary connective is the associated function of any associated form. The
wanociated function as thus defined is clearly unique.

"1 dn not necessary (or possible) to give the sense of the new constant separately,
siice the way in which the denotation is given carries with it a sense—the same phrase
which v used to name the denotation must also express a sense.

Further questions arise if, besides constants, names having a sense but no denotation
s ullowed, Such names seem to be used with connectives in the natural languages and
sl wystems of mathematical notation, and indeed some illustrations which we
Wave employed depend on this. However, as already explained, we avoid this in the
fotmnlized languages which we shall consider.

MOt footnote 27,
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The notion of the associated function of a singulary connective is possible
also in the case of a language containing no variable with a range of the kind
required to produce an associated form, namely we may consider an exten-
sion of the language obtained by adding such a variable.

In the same way an sm-ary connective may be used together with »
different variables as operands to produce a form; and this is called an
assoctated form of the connective if, for each variable, the range includes
both the denotations of all constants and all relevant values of all forms
which may be used as operands at that place. The associated function of the
connective is that one of the associated s-ary functions of an associated
form which is obtained by assigning the arguments of the function, in their
order, as values to the free variables of the form in their left-to-right order
of occurrence in the form.

In general the meaning-producing character of a connective is most
readily given by just giving the associated function, this being sufficient
to fix the use of the connective completely.®

Indeed there is a close relationship between connectives and functional
constants or proper names of functions. Differences are that (a) a functional
constant denotes a function whereas a connective is associated with a function,

(b) a connective is never replaced by a variable, and (c) the notation for
application of a function to its arguments may be paralleled by a different
notation when a corresponding connective takes the place of a functional
constant. But these differences are from some points of view largely non-
essential because (a) notations of course have such meaning as we choose
to give them (within limitations imposed by requirements of consistency
and adequacy), (b) languages are possible which do not contain variables
with functions as values and in which functional constants are never re-
placed by variables, and (c) the notation for application of a function
to its arguments may, like any other, be changed—or even duplicated

85For example, the familiar notation ( — ) for subtraction of real numbers may be
held to be a connective. That is, the combination of symbols which consists of a left
parenthesis, a minus sign, and a right parenthesis, in that order, may be considered as
a connective—where the understanding is that an appropriate constant or form is to
be filled in at each of two places, namely immediately before and immediately after
the minus sign. To give completely the meaning-producing character of this connective,
it is necessary to give the denotation of the resulting constant when constants are filled
in at the two places, and also to give the complete scheme of values of the resulting form
when forms are filled in at the two places, or a form at one place and a constant at the
other. In order to do this in a way to conform to §§01, 02, it may often be most expedi-
tious first to introduce (by whatever means may be available in the particular context)
the binary function of real numbers that is called subtraction, and then to declare this
to be the associated function of the connective.

§05] IMPROPER SYMBOLS, CONNECTIVES 35

by introducing several synonymous notations into the same language.8¢

In the case of a language having notations for application of a function to
its arguments, it is clear that a connective may often be eliminated or dis-
pensed with altogether by employing instead a name of the associated func-
tion—by modifying the language, if necessary, to the extent of adding such
A name to its vocabulary. However, the complete elimination of all connec-
tives from a language can never be accomplished in this way. For the no-
tations for application of a singulary function to its argument, for application
of a binary function to its arguments, and so on (e.g., the notations for these
which were introduced in §03) are themselves connectives. And though
these connectives, like any other, no doubt have their associated functions,??
nevertheless not all of them can ever be eliminated by the device in question.®®

""'I'hus,} to use once more the example of the preceding footnote, we may hold that
the notation ( — )isa connective and that the minus sign has no meaning in isolation.
Or alternatively we may hold that the minus sign denotes (is a name of) the binary
Iulu‘ln.m, subtraction, and that in such expressions as, e.g., (x — y) or (5 — 2) we have
i npecial notation for application of a binary function to its arguments, different from
the notation for this which was introduced in §03. The choice would seem to be arbitrary
botween these two accounts of the meaning of the minus sign. But from one standpoint
It may be argued that, if we are willing to invent some name for the binary function
then this name might just as well, and would most simply, be the minus sign. '

"As ('x.plal.ned below, we are for expository purposes temporarily ignoring difficulties
or complications which may be caused by the theory of types or by such alternative
to the theory of types as may be adopted. On this basis, for the connective which is the
notation [ur‘ application of a singulary function to its argument, we explain the asso-
tinted function by saying that it is the binary function whose value for an ordered pair
ol arguments £, x is f(x). But if a name of this associated function is to be used for the
Pirpose u.f climinating the connective, then another connective is found to be necessary
the notation, namely, for application of a binary function to its arguments. If the latter
tonnective is to be eliminated by using a name of its associated function, then the no-
tution for application of a ternary function to its arguments becomes necessary. And
s on, Obviously no genuine progress is being made in these attempts.

(After studying the theory of types the reader will see that the foregoing statement
and others we have made, remain in some sense essentially true on the basis of thaé

theory. It is only that the connective, e.g., which is the notation for application of a
sinpulary function to its argument must be thought of as replaced by many different
tonnectives, corresponding to different types, and each of these has its own associated
finotion, Or alternatively, if we choose to retain this connective as always the same con-
nective, regardless of considerations of type, then there may well be no variable in the
lanjinge with a range of the kind required to produce an associated form: an extension

ol the language by adding such a variable can be made to provide an associated form
bt not wo casily a name of the associated function. See Carnap, The Logical Syntax o;
Fungwage (cited in footnote 131), examples at the end of §53, and references there given;
#lao Bernard Noteutt’s proposal of “intertypical variables” in Mind, n.s. vol. 43 (1934):

=v|- ' u:l‘ 'l'{l,‘;t;u)l remarks by Tarski in the appendix to his Wahrheitsbegriff (cited in
totnote 4 "

*1Ihere in, however, a device which may be used in appropriate context (cf. Chapter
%) to eliminate all the connectives except the notation for application ofasingulary
funetion to its argument. This is done by reconstruing a binary function as a singulary
funetion whose values are singulary functions; a ternary function as a singulary function

whose values are binary functions in the foregoing sense; and so on. For it turns out
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Connectives other than notations for application of a function to its
arguments are apparently always eliminable in the way described by a
sufficient extension of the language in which they occur (including if nec-
essary the addition to the language of notations for application of a function
to its arguments). Nevertheless such other connectives are often used—
especially in formalized languages of limited vocabulary, where it may be
preferred to preserve this limitation of vocabulary, so as to use the language
as a means of singling out for separate consideration some special branch
of logic (or other subject).

In particular we shall meet with sentence connectives in Chapter I. Namely,
these are connectives which are used together with one or more sentences
to produce a new sentence; or when propositional forms replace some or
all of the sentences as operands, then a propositional form is produced rather
than a sentence.

The chief singulary sentence connective we shall need is one for negation.
In this role we shall use, in formalized languages, the single symbol ~, which,
when prefixed to a sentence, forms a new sentence that is the negation of
the first one. The associated function of this connective is the function from
truth-values to truth-values whose value for the argument falsehood is truth,
and whose value for the argument fruth is falsehood. For convenience in
reading orally expressions of a formalized langudge, the symbol ~ may be
rendered by the word “not” or by the phrase “it is false that.”

The principal binary sentence connectives are indicated in the table which
follows. The notation which we shall use in formalized languages is shown
in the first column of the table, with the understanding that each of the
two blanks is to be filled by a sentence of the language in question. In the
second column of the table a convenient oral reading of the connective is
suggested, or sometimes two alternative readings; here the understanding
is that the two blanks are to be filled by oral readings of the same two sen-
tences (in the same order) which filled the two corresponding blanks in the
first column; and words which appear between parentheses are words which

that #-ary functions in the sense thus obtained can be made to serve all the ordinary
purposes of n-ary functions (in any sense).

The alternative device of reducing (e.g.) a binary function to a singulary function by
reconstruing it as a singulary function whose arguments are ordered pairs is also useful
in certain contexts (e.g., in axiomatic set theory). This device does not (at least prima
facie) serve to reduce the number of connectives to one, as besides the notation for
application of a singulary function to its argument there will be required also a con-
nective which unites the names of two things to form a name of their ordered pair
(or at least some notation for this latter purpose). Nevertheless it is a device which
may sometimes be used to accomplish a reduction, especially where other connectives—
or operators (§06)—are available.
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may ordinarily be omitted for brevity, but which are to be supplied whenever
necessary to avoid a misunderstanding or to emphasize a distinction. In
the third column the associated function of the connective is indicated by
means of a code sequence of four letters: in doing this, t is used for truth and
f for falsehood, and the first letter of the four gives the value of the function
for the arguments t, t, the second letter gives the value for the arguments
t, f, the third letter for the arguments f, t, the fourth letter for the argu-
ments f, f. In many cases there is an English name in standard use, which
may denote either the connective or its associated function. This is indicated
in a fourth column of the table; where alternative names are in use, both are
given, and in some cases where none is in use a suggested name is supplied.

[ v ] or (or both). tttf (Inclusive) disjunction,
alternation.
[ c ] if 89 ttft Converse implication.
[ =] ] If then ;89 tftt The (truth-functional)
conditional, 90
_ (materially) implies (material) implication.
89
=] if and only if 8 tfft The (truth-functional)
biconditional,®®
is (materially) equi- (material) equivalence.
valent to B9
[ ) and . tfff Conjunction.
| | ] Not both and . fttt Non-conjunction,
Sheffer’s stroke.
| ] or but not both, fttf Exclusive disjunction,
is not (materially) (material) non-
equivalent to 58 equivalence.
| b -] . but not ; ftff (Material) non-implication.
[ d ] Not____but fftf Converse non-implication.
[ vV | Neither nor ‘ ffft Non-disjunction.
"1ho use of the English words “if,” “‘implies,”” “‘equivalent’” in these oral readings

st not be taken as indicating that the meanings of these English words are faithfully
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The notations which we use as sentence connectives—and those which we
use as quantifiers (see below)—are adaptations of those in Whitehead and
Russell’s Principia Mathematica (some of which in turn were taken from
Peano). Various other notations are in use,®® and the student who would

rendered by the corresponding connectives in all, or even in most, cases. On the con-
trary, the meaning-producing character of the connectives is to be learned with accuracy
from the third column of the table, where the associated functions are given, and the
oral readings supply at best a rough approximation.

As a matter of fact, the words ““if . . . then” and “implies” as used in ordinary non-
technical English often seem to denote a relation between propositions rather than
between truth-values. Their possible meanings when employed in this way are difficult
to fix precisely and we shall make no attempt to do so. But we select the one use of the
words “if ... then” (or “implies’’)—their material use, we shall call it—in which they
may be construed as denoting a relation between truth-values, and we assign this
relation as the associated function for the connective [ o 1.

As examples of the material use of ““if . . . then,”” consider the four following English
sentences:
(1) If Joan of Arc was a patriot then Nathan Hale was a patriot.

(ii) If Joan of Arc was a patriot then Vidkun Quisling was a patriot.

(iii) If Vidkun Quisling was a patriot then attar of roses is a perfume.

(iv) If Vidkun Quisling was a patriot then.Limburger cheese is a perfume.

For the sake of the illustration let us suppose examination of the historical facts to
reveal that Joan of Arc and Nathan Hale were indeed patriots and that Vidkun Quisling
was not a patriot. Then (i), (iii), and (iv) are true, and (ii) is false; and to reach these
conclusions no examination is necessary of the characteristics of either attar of roses or
Limburger cheese. (If the reader is inclined to question the truth of, e.g., (iii) on the
ground of complete lack of connection between Vidkun Quisling and attar of roses,
then this means that he has in mind some other use of ““if . ... then’’ than the material
use.)

**These terms were introduced by Quine, who uses them for ‘‘the mode of composition
described in” the list of truth-values as given in the third column of the table—i.e.,
in effect, and in our terminology, for the associated function of the connective rather
than for the connective itself. See his Mathematical Logic, 1940, pp- 15, 20.

We prefer the better established terms material implication and matevial equivalence,
from which the adjective material may be omitted whenever there is no danger of con-
fusion with other kinds of implication or equivalence—as, for example, with formal
implication and formal equivalence (§06), or with kinds of implication and equivalence
(belonging to modal logic) which are relations between propositions rather than be-
tween truth-values.

1Worthy of special remark is the parenthesis-free notation of Jan ELukasiewicz. In
this, the letters N, 4, C, E, K are used in the roles of negation, disjunction, implication,
equivalence, conjunction respectively. Further letters may be introduced if desired
(R has been employed as non-equivalence, D as non-conjunction). In use as a sentence
connective, the letter is written first and then in order the sentences or propositional
forms together with which it is used. No parentheses or brackets or other notations
specially to show association are necessary. E.g., the propositional form

4 [P > lgvr]] D ~p]
(where p, ¢, » are propositional variables) becomes, in the Fukasiewicz notation,
CCpAgrNp.
It is of course possible to apply the same idea to other connectives, in particular to
the notation for application of a singulary function to its argument. Hence (see foot-
note 88) parentheses and brackets may be avoided altogether in a formalized language.

The possibility of this is interesting. But the notation so obtained is unfamiliar, and
less perspicuous than the usual one.
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compare the treatments of different authors must learn a certain facility
in shifting from one system of notation to another.

The brackets which we indicate as constituents in these notations may in
actual use be found unnecessary at certain places, and we may then just omit
them at such places (though only as a practically convenient abbreviation).

We shall use the term truth-function®? for a propositional function of truth-
values which has as range, if it is #-ary, all ordered systems of » truth-values.
Thus every associated function of a sentence connective is a truth-function.
And likewise every associated function of a form built up from propositional
variables solely by iterated use of sentence connectives.?

06. Operators, quantifiers. An operator is a combination of improper
symbols which may be used together with one or more variables—the
operator variables (which must be fixed in number and all distinct)—and one
or more constants or forms or both—the operands—to produce a new con-
stant or form. In this new constant or form, however, the operator variables
are at certain determinate places not free variables, though they may have
been free variables at those places in the operands.

To be more explicit, we remark that, in any application of an operator, the
operator variables may (and commonly will) occur as free variables in some
of the operands. In the new constant or form produced we distinguish three
possible kinds of occurrences of the operator variables, viz.: an occurrence
in one of the operands which, when considered as an occurrence in that
operand alone, is an occurrence as a free variable; an occurrence in one of
the operands, not of this kind; and an occurrence which is an occurrence as an
operator variable, therefore not in any of the operands. In the new constant
or form, an occurrence of one of the two latter kinds is never an occurrence
as a free variable, and each occurrence of the first kind is an occurrence asa
free variable or not, according to some rule associated with the particular
operator.? The simplest case is that, in the new constant or form, none of the
occurrences of the operator variables are occurrences as free variables. And
this is the only case with which we shall meet in the following chapters

92We adopt this term from Principia Mathematica, giving it substantially the meaning
which it acquires through changes in that work that were made (or rather, proposed)
by Russell in his introduction to the second edition of it.

%3For example, the associated function of the propositional form mentioned in foot-
note 91.

94We do require in the case of each operator variable that all occurrences of the first
kind shall be occurrences as free variables or else all not, in any one occurvence of a
particular opevand in the new constant or form produced. For operators violating this
requirement are not found among existing standard mathematical and logical notations,
and it is clear that they would involve certain anomalies of meaning which it is prefer-
able to avoid.
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(though many operators which are familiar as standard mathematical
notation fail to fall under this simplest case).

Variables thus having occurrences in a constant or form which are not
occurrences as free variables of it are called bound variables of the constant or
form.% The difference is that a form containing a particular variable, say 2,
as a free variable has values for various values of the variable, but a constant
or form which contains x as a bound variable only has a meaning which is
independent of z—not in the sense of having the same value for every value
of 2, but in the sense that the assignment of particular values to z is not a
relevant procedure.®®

It may happen that a form contains both free and bound occurrences of
the same variable. This case will arise, for example, if a form containing a
particular variable as a free variable and a form or constant containing that
same variable as a bound variable are united by means of a binary connec-
tive.9?

As in the case of connectives, we require that operators be such as to con-
form to the principles (1)-(3) at the end of §01; also that they conform to the
conventions about meaning and values of variables as these were described
in §02, and in particular to the principle (4) of §02.%

An operator is called m-ary-n-ary if it is used with m distinct operator
variables and # operands.® The most common case is that of a singulary-
singulary operator—or, as we shall also call it, a simple operator.

In particular, the notation for singulary functional abstraction, which

95Cf. footnote 28.

96Therefore a constant or form which contains a particular variableasa bound variable
is unaltered in meaning by alphabetic change of that variable, at all of its bound occur-
rences, to a new variable (not previously occurring) which has the same range. The
condition in parentheses is included only as a precaution against identifying two varia-
bles which should be kept distinct, and indeed it may be weakened somewhat—cf. the
remark in §03 about alphabetic change of free variables.

E.g., the constant jﬁm”dw (see footnote 36) is unaltered in meaning by alphabetic
change of the variable « to the variable y: it has not only the same denotation but also
the same sense as [oy'dy.

97See illustrations in the second paragraph of footnote 36.

98And also to the principle (5) of footnote 30.

9Thus, in the theory of real numbers, the usual notation for definite integration is a
singulary-ternary operator. And in, e.g., the form [qz*dx (see footnote 36) the oper-
ator variableis « and the three operands are the constant 0, the form z, and the form z*.

Again, the large [] (product sign), as used in the third example at the beginning of
footnote 36, is part of a singulary-ternary operator. The signs = above and below the
II are not to be taken as equality signs in the ordinary sense (namely that of footnote
43) but as improper symbols, and also part of the operator. In the particular application
of the operator, as it appears in this example, the operator variable is m and the
operands are 1, %, and

x—m + 1

mit '
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was introduced in §03, is a simple operator (the variable which is placed
immediately after the letter A being the operator variable). We shall call
this the abstraction operator or, more explicitly, the singulary functional
abstraction operator. In appropriate context, as we shall see in Chapter X,
all other operators can in fact be reduced to this one.1®®

Another operator which we shall use—also a simple operator—is the
description operator, (1 ). To illustrate, let the operator variable be . Then the
notation (12) is to have as its approximate reading in words, ““the  such
that”; or more fully, the notation is explained as follows. It may happen
that a singulary propositional form whose free variable is x has the value
truth for one and only one value of #, and in this case a name of that value
of z is produced by prefixing (1z) to the form. In case there is no value of z
or more than one for which the form has the value truth, there are various
meanings which might be assigned to the name produced by prefixing (1)
to the form: the analogy of English and other natural languages would
suggest giving the name a sense which determines no denotation; but we
prefer to select some fixed value of x and to assign this as the denotation
of the name in all such cases (this selection is arbitrary, but is to be made
once for all for each range of variables which is used)

Of especial importance for our purposes are the quantifiers. These are
namely operators for which both the operands and the new constant or form
produced by application of the operator are sentences or propositional forms.

As the universal quantifier (when, e.g., the operator variable is x) we use
:)\Csc‘a;;lroetnltig e(:)zfax;ln},)liv Zf ;}lzglication of the same operator, showing both bound and free

m=m+n+1 & =y i B
memil T

Examples of operators taking more than one operator variabl i ili

no;itic;lns 1gor 1double and multiple limits, doublg and multiptl)eei?;czgzlzd in familiar
should also be note - i i i -

O-aryomary operators,Ot d that n-ary connectives may, if we wish, be regarded as

100Tn the cc_)mbmatory logic of H. B. Curry (based on an idea due to M. Schonfinkel)
a more drastic reduction is attempted, namely the complete elimination of operators
of va_rxables,. and of all connectives, except a notation for application of a singulary'
f uncthn to its argument, so as to obtain a formalized language in which, with the
exception of the one connective, all single symbols are constants, and which is neverthe-
I«ss @dequate for some or all of the purposes for which variables are ordinarily used
This is a matter beyond the scope of this book, and the present status of the undertakiné
is too complex for brief statement. The reader may be referred to a monograph by the
present writer, The Calculi of Lambda-Conversion (1941), which is concerned with a
related topic; also to papers by Schonfinkel, Curry, and J. B. Rosser which are there
cited, to several papers by Curry and by Rosser in The Journal of Symbolic Logic in 1941
and 1942, to an expository paper by Robert Feys in Revue Philosophique de Louvain,

lv’(l;l z:;t](_l;)gg}), pp. 74-103, 237-270, and to a paper by Curry in Synthese, vol. 7 (1949),
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the notation (Vx) or (x), prefixing this to the operand. The universal
quantifier is thus a simple operator, and we may explain its meaning as

follows (still using the particular variable z as an example). (x) is
true if the value of is truth for all values of z, and (x) is false if
there is any value of « for which the value of is falsehood. Here the

blank is to be filled by a singulary propositional form containing  as a free
variable, the same one at all four places. Or if as a special case we fill the
blank with a sentence, then (z)____is true if and only if is true. (The
meaning in case the blank is filled by a propositional form containing other

variables besides x as free variables now follows by the discussion of variables
in §02, and may be supplied by the reader.)

Likewise the existential quantifier is a simple operator for which we shall
use the notation (3 ), filling the blank space with the operator variable and
prefixing the whole to the operand. To take the particular operator variable
x as an example, (Ix)____ is true if the value of is truth for at least
one value of z, and () is false if the value of is falsehood for all
values of x. Here again the blank is to be filled by a singulary propositional
form containing « as a free variable. Or if as a special case we fill the blank
with a sentence, then (Jx)___ is true if and only if is true.

In words, the notations “(x)”” and “(3x)” may be read respectively as
“for all & (or “for every 2”’) and “there is an x such that.”

To illustrate the use of the universal and existential quantifiers, and in
particular their iterated application, consider the binary propositional form,

[xy > 0],
where z and y are real variables, i.e., variables whose range is the real
numbers. This form expresses about two real numbers x and y that their
product is positive, and thus it comes to express a particular proposition as

soon as values are given to z and y. If we apply to it the existential quantifier
with y as operator variable, we obtain the singulary propositional form,

(Fy)[zy > 0],
or as we may also write it, using the device (which we shall find frequently
convenient later) of writing a heavy dot to stand for a bracket extending,
from the place where the dot occurs, forward,

(Jy) azy > 0.
This singulary form expresses about a real number  that there is some real

number with which its product is positive; and it comes to expressa partic-
ular proposition as soon as a value is given to «. If we apply to it the uni-
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versal quantifier with « as operator variable, we obtain the sentence,
(x)(Jy) w2y > 0.

This sentence expresses the proposition that for every real number there is
gome real number such that the product of the two is positive. It must be
distinguished from the sentence,

) (@) a2y >0,

expressing the proposition that there is a real number whose product with
every real number is positive, though it happens that both are false.1t To
bring out more sharply the difference which is made by the different order
of the quantifiers, let us replace product by sum and consider the two
sentences:

@) (Ay) ez +y>0

FAy)(x) vz +y>0
Of these sentences, the first one is true and the second one false.1%?

It should be informally clear to the reader that not both the universal and
the existential quantifier are actually necessary in a formalized language, if
negation is available. For it would be possible, in place of (J=z)__, to
write always ~(x)~___; or alternatively, in place of (z) , to write
always ~(3z)~____. And of course likewise with any other variable in place
of the particular variable z.

In most treatments the universal and existential quantifiers, one or both,

101The single counterexample, of the value 0 for z, is of course sufficient to render the
first sentence false.

The reader is warned against saying that the sentence (z)(Jy) »xy > 0 is “nearly
always true” or that it is “true with one exception’ or thelike. These expressions are
appropriate rather to the propositional form (Jy) .y > 0, and of the sentence it must
be said simply that it is false.

1024 somewhat more complex example of the difference made by the order in which
the quantifiers are applied is found in the familiar distinction between continuity and
uniform continuity. Using # and y as variables whose range is the real numbers, and &
and & as variables whose range is the positive real numbers, we may express as follows
that the real function f is continuous, on the class F of real numbers (assumed to be an
open or a closed interval):

®)()(30) (@) - Fly) D F@) Dulz —yl <D . |/(@) — [y)] <
And we may express as follows that f is uniformly continuous on F:
(e)(30) (@) (y) « Fly) D - Flz) D« fle) — ty)l <e

To avoid complications that are not relevant to the point being illustrated, we have
here assumed not only that the class F is an open or closed interval but also that the
range of the function f is all real numbers. (A function with more restricted range may
always have its range extended by some arbitrary assignment of values; and indeed it
is a common simplifying device in the construction of a formalized language to restrict
attention to functions having certain standard ranges (cf. footnote 19).)

z—y|<d>D.
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are made fundamental, notations being provided for them d.irectl'y in setting
up a formalized language, and other quantifiers a.re explalfled in terms. of
them (in a way similar to that in which, as we I.la.ve just seen in thf: prece.dmg
paragraph, the universal and existential quantlfle.rs may be explamec?, either
one in terms of the other). No definite or compelling reason can _be given for
such a preference of these two quantifiers above others that might equally
be made fundamental. But it is often convenient. . .
The application of one or more quantifiers to an operan<.1 .(esl?emally uni-
versal and existential quantifiers) is spoken of as quantiﬁcat?on.m
Another quantifier is a singulary-binary quantifier for which we shall
use the notation [ > __ ], with the operands in the two blan1.<s, and
the operator variable as a subscript after thesign ©. It may be explained by
saying that [ >, ____]is to mean the same as (@) [ s ], the
two blanks being filled with two propositional forms or serftenc.es, ﬂ%e same
two in each case (and in the same order); and of course likewise w1t}'1 any
other variable in place of the particular variable x. The namE formal .Mjnﬁlt-
cation'® is given to this quantifier—or to the associated binary p'roposmonal
function, i.e., to an appropriate one of the two associated funct'lons of (say)
the form [F(4) D, G(u)], where is a variable with some assigned .ra?nge,
and F and G are variables whose range is all classes (singulary propositional
functions) that have a range coinciding with the range ?f. u. .
Another quantifier is that which (or its associated propo.smonal function)
is called formal equivalence.** For this we shall use the notation [
with the two operands in the two blanks, and the op.erator variable as a sub-
script after the sign =. It may be explained by saying thati [ . : ]
is to mean the same as (#)[___ = ], thetwo blanks bemg.fﬂled in each
case with the two operands in order; and of course likewise with any other
variable in place of . .
We shall also make use of quantifiers similar in character to those ]us_t
explained but having two or more operator variables: Th'ese. (or Athe1r
associated propositional functions) we call binary formal m.tplzcatwn, bm.ary
formal equivalence, ternary formal implication, etc. Eg., blnz.try formal im-
plication may be explained by saying that [ Day ___]is to mean the

=

—z

ifi igi i in 1879. And independently of Frege

108The use of quantifiers originated with Frege in i8 I : A

the sar:e idea wgs introduced somewhat later by Mitchell and Peirce. (See the historical
nt in §49. ) )

a'C(‘:‘?‘l'i‘he nar§nes )]‘ormal implication and formal equivalence are "ch.oseusedby \Vthllt;ahﬁ:;g
and Russell in Principia Mathematica, and have become sufflclent_ly wel? e.s‘ a )tlse
that it seems best not to change them—though the adjective formal is perha})s’ Eoy‘vcr');
well chosen, and must not be understood here in the same sense that we shall give 1
elsewhere.
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same as (z)(y)[___ D 1, the two blanks being filled in each case with
the two.operands in order; and likewise with any two distinct variables in
place of  and y as operator variables. Similarly binary formal equivalence
[ ], ternary formal implication [____ D, 1, and so on.105

Besides the assertion of a sentence, as contemplated in §04, it is usual also
to allow assertion of a propositional form, and to treat such an assertion as
a particular fixed assertion (in spite of the presence of free variables in the
expression asserted). This is common especially in mathematical contexts;
where, for instance, the assertion of the equation sin (¢ 4+ 27) = sin  may

=y

105With the aid of the notations that have now been explained, we may return to §00
and rewrite the examples I-IV of that section as they might appear in some appropriate
formalized language.

For this purpose let 2 and b be variables whose range is human beings. Let v be a
variable whose range is words (taking, let us say for definiteness, any finite sequence of
letters of the English alphabet as a word). Let B denote the relation of being a brother
of. Let S denote the relation of having as surname. Let p and o denote the human beings
Richard and Stanley respectively, and let v denote the word ‘“Thompson.” Then the
three premisses and the conclusion of I may be expressed as follows:

B(a, b) Dy« S(a, v) =, S(b, v)
B(e, o)
S(o, T)
S(e. 7)

Further, let z and w be variables whose range is complex numbers, and z a variable

whose range is real numbers. Let R denote the relation of having real positive ratio, and

let 4 denote the relation of having as amplitude. Then the premisses and conclusion
of II may be expressed as follows:

R(z, w) Dy A2, 2) =, 4 (w, 2)
R(GE — V33, 0)
A (w, 27/3)
A@ — V33, 2n/3)
Here it is obvious that the relation of having real positive ratio is capable of being
analyzed, so that instead of R(z, w) we might have written, e.g.:
(Az) [z > 0][z = zw]
Likewise the relation of having as amplitude or (in I) the relation of being a brother of
might have received some analysis. But these analyses are not relevant to the validity
of the reasoning in these particular examples. And they are, moreover, in no way
final or absolute; e.g., instead of analyzing the relation of having real positive ratio, we
might with equal right take it as fundamental and analyze instead the relation of being
greater than, in such a way that, in place of z > y would be written R(z — ¥, 1).
In the same way, for III and IV, we make no analysis of the singulary propositional
functions of having a portrait seen by me, of having assassinated Abraham Lincoln,
and of having invented the wheeled vehicle, but let them be denoted just by P, L and

W respectively. Then if f§ denotes John Wilkes Booth, the premisses and conclusion of
III may be expressed thus:

P(f) L(B) (Ha)[P(a)L (a)]
And the premisses and fallacious conclusion of IV thus:
(da) P(a) (Ha)W (a) (3a)[P(a) W (a)]

When so rewritten, the false appearance of analogy between III and IV disappears.

It was due to the logically irregular feature of English grammar by which ‘‘somebody”’
in construed as a substantive.
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be used as a means to assert this for all real numbers z; or the assertion of the
inequality #2 + y* = 2xy.may be used as a means to assert that for any real
numbers x and y the sum of the squares is greater than or equal to twice the
product.

It is clear that, in a formalized language, if universal quantification is
available, it is unnecessary to allow the assertion of expressions containing
free variables. E.g., the assertion of the propositional form

x? + y? = 2wy
could be replaced by assertion of the sentence
() (y) = 2* + 9* = 2uy.

But on the other hand it is not possible to dispense with quantifiers in a
formalized language merely by allowing the assertion of propositional forms,
because, e.g., such assertions as that of

~(x)(y) asin (x + y) = sinz + sin y,108
or that of
(W) z] = lyl] Dg=2 =0,

could not be reproduced.

Consequently it has been urged with some force that the device of assert-
ing propositional forms constitutes an unnecessary duplication of ways of
expressing the same thing, and ought to be eliminated from a formalized
language.1” Nevertheless it appears that the retention of this device often
facilitates the setting up of a formalized language by simplifying certain
details; and it also renders more natural and obvious the separation of such
restricted systems as propositional calculus (Chapter I) or functional cal-
culus of first order (Chapter III) out from more comprehensive systems of
which they are part. In the development which follows we shall therefore
make free use of the assertion of propositional forms. However, in the case
of such systems as functional calculus of order w (Chapter VI) or Zermelo set
theory (Chapter XI), after a first treatment employing the device in question
we shall sketch briefly a reformulation that avoids it.

106This assertion (which is correct, and must sometimes be made to beginners in
trigonometry) is of course to be distinguished from the different (and erroneous)

assertion of
~ sin (z + y) = sinz 4 sin y.

107The proposal to do this was made by Russell in his introduction to the §econd edi-
tion of Principia Mathematica (1925). The elimination was actually carried out by
Quine in his Mathematical Logic (1940), and simplifications of Quine’s methf)d were
effected in papers by F. B. Fitch and by G. D. W. Berry in The Journal of Symbolic
Logic (vol. 6 (1941), pp. 18-22, 23-27).
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07. The logistic method. In order to set up a formalized language
we must of course make use of a language already known to us, say English
or some portion of the English language, stating in that language the vocab-
ulary and rules of the formalized language. This procedure is analogous to
that familiar to the reader in language study—as, e.g., in the use of a Latin
grammar written in English1®—but differs in the precision with which the
rules are stated, in the avoidance of irregularities and exceptions, and in
the leading idea that the rules of the language embody a theory or system of
logical analysis (cf. §00).

This device of employing one language in order to talk about another is
one for which we shall have frequent occasion not only in setting up formal-
ized languages but also in making theoretical statements as to what can be
done in a formalized language, our interest in formalized languages being
less often in their actual and practical use as languages than in the general
theory of such use and in its possibilities in principle. Whenever we employ
a language in order to talk about some language (itself or anotherl®), we
shall call the latter language the object language, and we shall call the
former the meta-language 110

In setting up a formalized language we first employ as meta-language a
certain portion of English. We shall not attempt to delimit precisely this
portion of the English language, but describe it approximately by saying
that it is just sufficient to enable us to give general directions for the manip-

108t is worth remark in passing that this same procedure also enters into the learn-
ing of a first language, being a necessary supplement to the method of learning by
example and imitation. Some part of the language must first be learned approximately
by the method of example and imitation; then this imprecisely known part of the lan-
guage is applied in order to state rules of the language (and perhaps to correct initial
misconceptions); then the known part of the language may be extended by further
learning by example and imitation, and so on in alternate steps, until some precision
in knowledge of the language is reached.

There is no reason in principle why a first language, learned in this way, should not
be one of the formalized languages of this book, instead of one of the natural languages.
(But of course there is the practical reason that these formalized languages are ill
adapted to purposes of facility of communication.)

19The employment of a language to talk about that same language is clearly not
appropriate as a method of setting up a formalized language. But once set up, a formal-
ized language with adequate means of expression may be capable of use in order to
talk about that language itself; and in particular the very setting up of the language may
afterwards be capable of restatement in that language. Thus it may happen that object
language and meta-language are the same, a situation which it will be important later
to take into account.

W0The distinction is due to David Hilbert, who, however, speaks of ‘“Mathematik”
(mathematics) and ‘Metamathematik’” (metamathematics) rather than ‘‘object
language” and ‘““meta-language.” The latter terms, or analogues of them in Polish or
German, are due to Alfred Tarski and Rudolf Carnap, by whom especially (see footnotes
131, 140) the subjects of symtaxy and semantics have been developed.
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ulation of concrete physical objects (each instance or occurrence of one of
the symbols of the language being such a concrete physical object, e.g., a
mass of ink adhering to a bit of paper). It is thus a language which deals
with matters of everyday human experience, going beyond such matters
only in that no finite upper limit is imposed on the number of objects that
may be involved in any particular case, or on the time that may be required
for their manipulation according to instructions. Those additional portions of
English are excluded which would be used in order to treat of infinite classes
or of various like abstract objects which are an essential part of the subject
matter of mathematics.

Our procedure is not to define the new language merely by means of
translations of its expressions (sentences, names, forms) into corresponding
English expressions, because in this way it would hardly be possible to avoid
carrying over into the new language the logically unsatisfactory features of
the English language. Rather, we begin by setting up, in abstraction from
all considerations of meaning, the purely formal part of the language, so
obtaining an uninterpreted calculus or logistic system. In detail, this is done
as follows.

The vocabulary of the language is specified by listing the single symbols
which are to be used.’™® These are called the primitive symbols of the lan-
guage, 12 and are to be regarded as indivisible in the double sense that (A) in

1 Notice that we use the term ‘“‘language’ in such a sense that a given language has
a given and uniquely determined vocabulary. E.g., the introduction of one additional
symbol into the vocabulary is sufficient to produce a new and different language. (Thus
the English of 1849 is not the same language as the English of 1949, though it is con-
venient to call them by the same name, and to distinguish, by specifying the date, only
in cases where the distinction is essential.)

112The fourfold classification of the primitive notations of a formalized language
into constants, variables, connectives, and operators is due in substance to J.'v.
Neumann in the Mathematische Zeitschrift, vol. 26 (1927), see pp. 4-6. He there adds a
fifth category, composed of association-showing symbols such as parentheses and
brackets. Our terms “‘connective’” and “‘operator’” correspond to his “Operation’ and
“Abstraktion’ respectively.

Though there is a possibility of notations not falling in any of von Neumann'’s cate-
gories, such have seldom been used, and for nearly all formalized languages that have
actually been proposed the von Neumann classification of primitive notations suffices.
Many formalized languages have primitive notations of all four (or five) kinds, but it
does not appear that this is indispensable, even for a language intended to be adequate
for the expression of mathematical ideas generally.

As an interesting example of a (conceivable) notation not in any of the von Neumann
categories, we mention the question of a notation by means of which from a name of a
class would be formed an expression playing the role of a variable with that class as its
range. Provision might perhaps be made for the formation from any class name of an
infinite number of expressions playing the roles of different variables with the class as
their range. But these expressions would have to differ from variables in the sense of
§02 not only in being composite expressions rather than single symbols but also in the
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setting up the language no use is made of any division of them into parts
and (B) any finite linear sequence of primitive symbols can be regarded in
only one way as such a sequence of primitive symbols.1® A finite linear
sequence of primitive symbols is called a formula. And among the formulas,
rules are given by which certain ones are designated as well-formed formulas
(with the intention, roughly speaking, that only the well-formed formulas
are to be regarded as being genuinely expressions of the language).}** Then
certain among the well-formed formulas are laid down as axioms. And
finally (primitive) rules of inference (or rules of procedure) are laid down,
rules according to which, from appropriate well-formed formulas as prem-
isses, a well-formed formula is ¢mmediately inferred's as conclusion. (So
long as we are dealing only with a logistic system that remains uninterpreted,
the terms premiss, immediately infer, conclusion have only such meaning as
is conferred upon them by the rules of inference themselves.)

A finite sequence of one or more well-formed formulas is called a proof if
each of the well-formed formulas in the sequence either is an axiom or is
immediately inferred from preceding well-formed formulas in the sequence
by means of one of the rules of inference. A proof is called a proof of the last
well-formed formula in the sequence, and the theorems of the logistic system

possibility that the range might be empty. A language containing such a notation has
never been set up and studied in detailand it is therefore not certain just whatis feasible.
(A suggestion which seems to be in this direction was made by Beppo Levi in Universi-
dad Nacional de Tucumdn, Revista, ser. A vol. 3 no. 1 (1942), pp. 13-78.)

The use in Chapter X of variables with subscripts indicating the range of the variable
(the type) is not an example of a notation of the kind just described. For the variable,
letter and subscript together, is always treated as a single primitive symbol.

118]n practice, condition (B) usually makes no difficulty. Though the (written)
symbols adopted as primitive symbols may not all consist of a single connected piece,
it is ordinarily possible to satisfy (B), if not otherwise, by providing that a sequence of
primitive symbols shall be written with spaces between the primitive symbols of fixed
width and wider than the space at any place within a primitive symbol.

The necessity for (B), and its possible failure, were brought out by a criticism by
Stanistaw Leé$niewski against the paper of von Neumann cited in the preceding footnote.
See von Neumann’s reply in Fundamenta Mathematicae, vol. 17 (1931), pp. 331-334,
and Le$niewski’s final word in the matter in an offprint published in 1938 as from
Collectanea Logica, vol. 1 (cf. The Journal of Symbolic Logic, vol. 5, p. 83).

114The restriction to one dimension in combining the primitive symbols into ex-
pressions of the language is convenient, and non-essential. Two-dimensional arrange-
ments are of course possible, and are familiar especially in mathematical notations, but
they may always be reduced to one dimension by a change of notation. In particular
the notation of Frege’s Begriffsschrift relies heavily on a two-dimensional arrangement;
but because of the difficulty of printing it this notation was never adopted by any one
else and has long since been replaced by a one-dimensional equivalent.

115No reference to the so-called immediate inferences of traditional logic is intended.
We term the inferences immediate in the sense of requiring only one application of a
rule of inference—not in the traditional sense of (among other things) having only one
premiss.
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are those well-formed formulas of which proofs exist.1’® As a special case,
each axiom of the system is a theorem, that finite sequence being a proof
which consists of a single well-formed formula, the axiom alone.

The scheme just described—viz. the primitive symbols of a logistic
system, the rules by which certain formulas are determined as well-formed
(following Carnap let us call them the formation rules of the system), the
rules of inference, and the axioms of the system—is called the primitive basis
of the logistic system.1?

In defining a logistic system by laying down a primitive basis, we employ
as meta-language the restricted portion of English described above. In ad-
dition to this restriction, or perhaps better as part of it, we impose require-
ments of effectiveness as follows: (I) the specification of the primitive sym-
bols shall be effective in the sense that there is a method by which, whenever
a symbol is given, it can always be determined effectively whether or not it
is one of the primitive symbols; (II) the definition of a well-formed formula

118Following Carnap and others, we use the term ‘‘language” in such a sense that for
any given language there is one fixed notion of a proof in that language. Thus the intro-
duction of one additional axiom or rule of inference, or a change in an axiom or rule of
inference, is sufficient to produce a new and different language.

(An alternative, which might be thought to accord better with the everyday use of
the word ““language,” would be to define a ‘‘language’ as consisting of primitive sym-
bols and a definition of well-formed formula, together with an interpretation (see below),
and to take the axioms and rules of inference as constituting a ‘‘logic’ for the language.
Instead of speaking of an interpretation as sound or unsound for a logistic system (see
below), we would then speak of a logic as being sound or unsound for a language. Indeed
this alternative may have some considerations in its favor. But we reject it here, partly
because of reluctance to change a terminology already fairly well established, partly
because the alternative terminology leads to a twofold division in each of the subjects
of syntax and semantics (§§08, 09)—according as they treat of the object language
alone or of the cbject language together with a logic for it — which, especially in the
case of semantics, seems unnatural, and of little use so far as can now be seen.)

H7Besides these ‘minimum essentials, the primitive basis may also include other
notions introduced in order to use them in defining a well-formed formula or in stating
the rules of inference. In particular the primitive symbols may be divided in some way
into different categories: e.g., they may be classified as primitive constants, variables,
and improper symbols, or various categories may be distinguished of primitive constants,
of variables, or of improper symbols. The variables and the primitive constants together
are usually called proper symbols. Rules may be given for distinguishing an occurrence
of a variable in a well-formed formula as being a free occurrence or a bound occurrence,
well-formed formulas being then classified as forms or constants according as they do or
do not contain a free occurrence of a variable. Also rules may be given for distinguishing
certain of the forms as propositional forms, and certain of the constants as senfences.
In doing all this, the terminology often is so selected that, when the logistic system
becomes a language by adoption of one of the intended principal interpretations (sec
below), the terms primitive comstant, vaviable, improper symbol, proper symbol, free,
bound, form, constant, propositional form, sentence come to have meanings in accord
with the informal semantical explanations of §§02-06.

The primitive basis of a formalized language, or interpreted logistic system, is ob-
tained by adding the semantical rules (see below) to the primitive basis of the logistic
system.,
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shall be effective in the sense that there is a method by which, whenever a
formula is given, it can always be determined effectively whether or not it
is well-formed; (IIT) the specification of the axioms shall be effective in the
sense that there is a method by which, whenever a well-formed formula is
given, it can always be determined effectively whether or not it is one of
the axioms; (IV) the rules of inference, taken together, shall be effective in
the strong sense that there is a method by which, whenever a proposed
immediate inference is given of one well-formed formula as conclusion from
others as premisses, it can always be determined effectively whether or not
this proposed immediate inference is in accordance with the rules of infer-
ence.

(From these requirements it follows that the notion of a proof is effective
in the sense that there is a method by which, whenever a finite sequence of
well-formed formulas is given, it can always be determined effectively
whether or not it is a proof. But the notion of a theorem is not necessarily
effective in the sense of existence of a method by which, whenever a well-
formed formula is given, it can always be determined whether or not it is
a theorem—for there may be no certain method by which we can always
cither find a proof or determine that none exists. This last is a point to which
we shall return later.)

As to requirement (I), we suppose that we are able always to determine
about two given symbol-occurrences whether or not they are occurrences of
the same symbol (thus ruling out by assumption such difficulties as that of
illegibility). Therefore, if the number of primitive symbols is finite, the
requirement may be satisfied just by giving the complete list of primitive
symbols, written out in full. Frequently, however, the number of primitive
symbols is infinite. In particular, if there are variables, it is desirable that
there should be an infinite number of different variables of each kind
because, although in any one well-formed formula the number of different
variables is always finite, there is hardly a way to determine a finite upper
limit of the number of different variables that may be required for some
particular purpose in the actual use of the logistic system. When the number
of primitive symbols is infinite, the list cannot be written out in full, but the
primitive symbols must rather be fixed in some way by a statement of finite
length in the meta-language. And this statement must be such as to conform
to (I).

A like remark applies to (III). If the number of axioms is finite, the re-
quirement can be satisfied by writing them out in full. Otherwise the axioms
must be specified in some less direct way by means of a statement of finite
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length in the meta-language, and this must be such as to conform to (III).
It may be thought more elegant or otherwise more satisfactory that the
number of axioms be finite; but we shall see that it is sometimes convenient
to make use of an infinite number of axioms, and no conclusive objections
appear to doing so if requirements of effectiveness are obeyed.

We have assumed the reader’s understanding of the general notion of
effectiveness, and indeed it must be considered as an informally familiar
mathematical notion, since it is involved in mathematical problems of a
frequently occurring kind, namely, problems to find a method of computa-
tion, i.e., a method by which to determine a number, or other thing, effec-
tively. 18 We shall not try to give here a rigorous definition of effectiveness,
the informal notion being sufficient to enable us, in cases we shall meet,
to distinguish given methods as effective or non-effective.119

The requirements of effectiveness are (of course) not meant in the sense
that a structure which is analogous to a logistic system except that it fails
to satisfy these requirements may not be useful for some purposes or that
it is forbidden to consider such—but only that a structure of this kind is
unsuitable for use or interpretation as a language. For, however indefinite
or imprecisely fixed the common idea of a language may be, it is at least
fundamental to it that a language shall serve the purpose of communication.
And to the extent that requirements of effectiveness fail, the purpose of
communication is defeated.

Consider, in particular, the situation which arises if the deﬁrﬁtion of well-

18A well-known example from topology is the problem (still unsolved even for ele-
mentary manifolds of dimensionalities above 2) to find a method of calculating about
any two closed simplicial manifolds, given by means of a set of incidence relations,
whether or not they are homeomorphic—or, as it is often phrased, the problem to find
a complete classification of such manifolds, or to find a complete set of invariants.

As another example, Euclid’s algorithm, in the domain of rational integers, or in
certain other integral domains, provides an effective method of calculating for any two
elements of the domain their greatest common divisor (or highest common factor).

In general, an effective method of calculating, especially if it consists of a sequence of
steps with later steps depending on results of earlier ones, is called an algorithm. (This
is the long established spelling of this word, and should be preserved in spite of any
considerations of etymology.)

8For a discussion of the question and proposal of a rigorous definition see a paper by
the present writer in the American Journal of Mathematics, vol. 58 (1936), pp. 345-363,
especially §7 thereof. The notion of effectiveness may also be described by saying that
an effective method of computation, or algorithm, is one for which it would be possible
to build a computing machine. This idea is developed into a rigorous definition by A. M.
Turing in the Proceedings of the London Mathematical Society, vol. 42 (1936--1937),
Pp. 230-265 (and vol. 43 (1937), pp. 544-546). See further: S. C. Kleene in the Mathe-
matische Annalen, vol. 112 (1936), pp. 727-742; E. L. Post in The Journal of Symbolic
Logic, vol. 1 (1936), pp. 103-105; A. M. Turing in The Journal of Symbolic Logic, vol. 2
(1937), pp. 153-163; Hilbert and Bernays, Grundlagen dev Mathematik, vol. 2 (1939)
Supplement II.
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formedness is non-effective. There is then no certain means by which, when
an alleged expression of the language is uttered (spoken or written), say as
an asserted sentence, the auditor (hearer or reader) may determine whether
it is well-formed, and thus whether any actual assertion has been made.120
Therefore the auditor may fairly demand a proof that the utterance is well-
formed, and until such proof is provided may refuse to treat it as constituting
an assertion. This proof, which must be added to the original utterance in
order to establish its status, ought to be regarded, it seems, as part of the
utterance, and the definition of well-formedness ought to be modified to
provide this, or its equivalent. When such modification is made, no doubt
the non-effectiveness of the definition will disappear; otherwise it would be
open to the auditor to make further demand for proof of well-formedness.

Again, consider the situation which arises if the notion of a proof is non-
effective. There is then no certain means by which, when a sequence of
formulas has been put forward as a proof, the auditor may determine wheth-
er it is in fact a proof. Therefore he may fairly demand a proof, in any
given case, that the sequence of formulas put forward is a proof; and until
this supplementary proof is provided, he may refuse to be convinced that the
alleged theorem is proved. This supplementary proof ought to be regarded,
it seems, as part of the whole proof of the theorem, and the primitive basis
of the logistic system ought to be so modified as to provide this, or its
equivalent.’?! Indeed it is essential to the idea of a proof that, to any one
who admits the presuppositions on which it is based, a proof carries final

T say that an assertion has been made if there is a meaning evades the is;ue
unless an effective criterion is provided for the presence of meaning. An understanding
of the language, however reached, must include effective ability to recognize meaning-
fulness (in some appropriate sense), and in the purely formal aspect of the language, the
logistic system, this appears as an effective criterion of well-formedness. .

""IPerhaps at first sight it will be thought that the proof as so modified m1ght con-
nist of something more than merely a sequence of well-formed formulas. For 1nsta1}ce
there might be put in at various places indications in the meta-language as to which
rule of inference justifies the inclusion of a particular formula as immediately inferred
from preceding formulas, or as to which preceding formulas are the premisses of the
immediate inference.

But as a matter of fact we consider this inadmissible. For our program is to express
proofs (as well as theorems) in a fully formalized object language, and as long_as any
part of the proof remains in an unformalized meta-language the logical analys1s‘must
bo held to be incomplete. A statement in the meta-language, e.g., that a particular
formula is immediately inferred from particular preceding formulas—if it is not super-
fluous and therefore simply omissible—must always be replaced in some way by one or
more sentences of the object language.

Though we use a meta-language to set up the object language, we require that, once
set up, the object language shall be an independent language capable, without continued
support and supplementation from the meta-language, of expressing those things for
which it was designed.
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conviction. And the requirements of effectiveness (1)-(IV) may be thought
of as intended just to preserve this essential characteristic of proof.

After setting up the logistic system as described, we still do not have a
formalized language until an ¢néerpretation is provided. This will require a
more extensive meta-language than the restricted portion of English used
in setting up the logistic system. However, it will proceed not by translations
of the well-formed formulas into English phrases but rather by semantical
rules which, in general, use rather than mention English phrases (cf. §08),
and which shall prescribe for every well-formed formula either how it
denotes!?? (so making it a proper name in the sense of §01) or else how it has
values'?? (so making it a form in the sense of §02).

In view of our postulation of two truth-values (§04), we impose the re-
quirement that the semantical rules, if they are to be said to provide an
interpretation, must be such that the axioms denote truth-values (if they
are names) or have always truth-values as values (if they are forms), and
the same must hold of the conclusion of any immediate inference if it holds
of the premisses. In using the formalized language, only those well-formed
formulas shall be capable of being asserted which denote truth-values (if

1*2Because of the possibility of misunderstanding, we avoid the wordings ‘“‘what it
denotes” and ‘“what values it has.”

For example, in one of the logistic systems of Chapter X we may find a well-formed
formula which, under a principal interpretation of the system, is interpreted as denoting:
the greatest positive integer # such that 1 + #" is prime, 7 being chosen as the least
even positive integer corresponding to which there is such a greatest positive integer .
Thus the semantical rules do in a sense determine what this formula denotes, but the
remoteness of this determination is measured by the difficulty of the mathematical
problem which must be solved in order to identify in some more familiar manner the
positive integer which the formula denotes, or even to say whether or not the formula
denotes 1.

Again in the logistic system F1b of Chapter III (or A® of Chapter V) taken with its
principal interpretation, there is a well-formed formula which, according to the seman-
tical rules, denotes the truth-value thereof that every even number greater than 2 is
the sum of two prime numbers. To say that the semantical rules determine what this
formula denotes seems to anticipate the solution of a famous problem, and it may be
better to think of the rules as determining indirectly what the formula expresses.

In assigning how (rather than what) a name denotes we are in effect fixing its sense,
and in assigning how a form has values we fix the correspondence of sense values of
the form (see footnote 27) to concepts of values of its variables. (This statement of the
matter will be sufficiently precise for our present purposes, though it remains vague
to the extent that we have left the meaning of ‘“‘sense’ uncertain—see footnotes 15, 37 J)

It will be seen in particular examples below (such as rules a—g of §10, or rules a—f
of §30, or rules a—{ of §30) that in most of our semantical rules the explicit assertion is
that certain well-formed formulas, usually on certain conditions, are to denote certain
things or to have certain values. However, as just explained, this explicit assertion is
so chosen as to give implicitly also the sense or the sense values. No doubt a fuller treat-
ment of semantics must have additional rules stating the sense or the sense values ex-
Plicitly, but this would take us into territory still unexplored.
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they are names) or have always truth-values as values (if they are forms);
and only those shall be capable of being rightly asserted which denote truth
(if they are names) or have always the value truth (if they are forms). Since

it is intended that proof of a theorem shall justify its assertion, we call an
interpretation of a logistic system sound if, under it, all the axioms either
denote truth or have always the value truth, and if further the same thing
holds of the conclusion of any immediate inference if it holds of the premisses.
In the contrary case we call the interpretation unsound. A formalized lan-
puage is called sound or unsound according as the interpretation by which
it is obtained from a logistic system is sound or unsound. And an unsound
interpretation or an unsound language is to be rejected.

(The requirements, and the definition of soundness, in the foregoing para-
graph are based on two truth-values. They are satisfactory for every formal-
ized language which will receive substantial consideration in this book.
But they must be modified correspondingly, in case the scheme of two truth-
values is modified—cf. the remark in §19.)

The semantical rules must in the first instance be stated in a presupposed
and therefore unformalized meta-language, here taken to be ordinary
Iinglish. Subsequently, for their more exact study, we may formalize the
meta-language (using a presupposed meta-meta-language and following the
method already described for formalizing the object language) and restate
(he semantical rules in this formalized language. (This leads to the subject
ol semantics (§09).)

As a condition of rigor, we require that the proof of a theorem (of the ob-
ject language) shall make no reference to or use of any interpretation, but
shall proceed purely by the rules of the logistic system, i.e., shall be a proof
in the sense defined above for logistic systems. Motivation for this is three-
fold, three rather different approaches issuing in the same criterion. In the
lirst place this may be considered a more precise formulation of the tradi-
tional distinction between form and matter (§00) and of the principle that
the validity of an argument depends only on the form—the form of a
proof in a logistic system being thought of as something common to its
meanings under various interpretations of the logistic system. In the second
place this represents the standard mathematical requirement of rigor that
i proof must proceed purely from the axioms without use of anything
(however supposedly obvious) which is not stated in the axioms; but this
requirement is here modified and extended as follows: that a proof must
proceed purely from the axioms by the rules of inference, without use of
anything not stated in the axioms or any method of inference not validated



56 INTRODUCTION

by the rules. Thirdly there is the motivation that the logistic system is
relatively secure and definite, as compared to interpretations which we may
wish to adopt, since it is based on a portion of English as meta-language so
elementary and restricted that its essential reliability can hardly be doubted
if mathematics is to be possible at all.

It is also important that a proof which satisfies our foregoing condition
of rigor must then hold under any interpretation of the logistic system, so
that there is a resulting economy in proving many things under one pro-
cess.128 The extent of the economy is just this, that proofs identical in form
but different in matter need not be repeated indefinitely but may be sum-
marized once for all.12

Though retaining our freedom to employ any interpretation that may be
found useful, we shall indicate, for logistic systems set up in the following
chapters, one or more interpretations which we have especially in mind for
the system and which shall be called the principal interpretations.

The subject of formal logic, when treated by the method of setting up a
formalized language, is called symbolic logic, or mathematical logic, or logistic.1%®
The method itself we shall call the logistic method.

123This remark has now long been familiar in connection with the axiomatic method
in mathematics (see below).

124¢The summarizing of a proof according to its form may indeed be represented to a
certain extent, by the use of variables, within one particular formalized language.
But, because of restricted ranges of the variables, such summarizing is less comprehen-
sive in its scope than is obtained by formalizing in a logistic system whose interpretation
is left open.

The procedure of formalizing a proof in a logistic system and then employing the
formalized proof under various different interpretations of the system may be thought
of as a mere device for brevity and convenience of presentation, since it would be pos-
sible instead to repeat the proof in full each time it were used with a new interpretation.
From this point of view such use of the meta-language may be allowed as being in
principle dispensable and therefore not violating the demand (footnote 121) for axd in-
dependent object language.

(If on the other hand we wish to deal rigorously with the notion of logical form of
proofs, this must be in a particular formalized language, namely a formalized meta-
language of the language of the proofs. Under the program of §02 each variable of this
meta-language will have a fixed range assigned in advance, according, perhaps, with the
theory of types. And the notion of form which is dealt with must therefore be cor-
respondingly restricted, it would seem, to proofs of a fixed class, taking no account of
sameness of form between proofs of this class and others (in the same or a different
language). Presumably our informal references to logical form in the text are to be
modified in this way before they can be made rigorous—cf. §09.)

125The writer prefers the term ‘‘mathematical logic,” understood as meaning logic
treated by the mathematical method, especially the formal axiomatic or logistic method.
But both this term and the term “‘symbolic logic” are often applied also to logic as
treated by a less fully formalized mathematical method, in particular to the “‘algebra
of logic,” which had its beginning in the publications of George Boole and Augustus
De Morgan in 1847, and received a comprehensive treatment in Ernst Schroder’s
Vorlesungen tiber die Algebra dev Logik (1890-1905). The term ‘‘logistic” is more defi-
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Ifamiliar in mathematics is the axiomatic method, according to which a
branch of mathematics begins with a list of undefined terms and a list of
assumptions, or postulates involving these terms, and the theorems are to
be derived from the postulates by the methods of formal logic.1?6 If the last
phrase is left unanalyzed, formal logic being presupposed as already known,
we shall say that the development is by the informal axiomatic method.12?
And in the opposite case we shall speak of the formal axiomatic method.

The formal axiomatic method thus differs from the logistic method only
in the following two ways:

(1) In the logistic system the primitive symbols are given in two cate-
pories: the logical primitive symbols, thought of as pertaining to the under-
lying logic, and the undefined terms, thought of as pertaining to the particular
branch of mathematics. Correspondingly the axioms are divided into two
citegories: the logical axioms, which are well-formed formulas containing
only logical primitive symbols, and the postulates, 28 which involve also
the undefined terms and are thought of as determining the special branch of
mathematics. The rules of inference, to accord with the usual conception of

nitoly restricted to the method described in this section, and has also the advantage that
It 18 more easily made an adjective. (Sometimes ‘‘logistic’’ has been used with special
ieference to the school of Russell or to the Frege-Russell doctrine that mathematics
In 0 branch of logic—cf. footnote 545. But we shall follow the more common usage

which attaches no such special meaning to this word.)

"Logica mathematica” and “logistica’ were both used by G. W. v. Leibniz along
with “calculus ratiocinator,” and many other synonyms, for the calculus of reasoning
which he proposed but never developed beyond some brief and inadequate (though

fignificant) fragments. Boole used the expressions ‘“‘mathematical analysis of logic,”
""mathematical theory of logic.” ‘‘Mathematische Logik” was used by Schréder in
1877, "ma’gématiééskaé logika” (Russian) by Platon Poretsky in 1884, “logica matema-
fica” (Italian) by Giuseppe Peano in 1891. “‘Symbolic logic’’ seems to have been first
tied by John Venn (in The Princeton Review, 1880), though Boole speaks of ‘“‘sym-
bolical reasoning.” The word ““logistic”” and its analogues in other languages originally
meant the art of calculation or common arithmetic. Its modern use for mathematical
logic dates from the International Congress of Philosophy of 1904, where it was proposed
uuh‘-‘penQently by Itelson, Lalande, and Couturat. Other terms found in the literature
are “logischer Calcul” (Gottfried Ploucquet 1766), “algorithme logique” (G. F. Castillon
'I’Noﬁi), “calculus of logic” (Boole 1847), ““calculus of inference’’ (De Morgan 1847),
'ln;;lque' algorithmique” (J. R. L. Delboeuf 1876), “Logikkalkul” (Schroder 1877),
"'theoretische Logik” (Hilbert and Ackermann 1928). Also ‘‘Boole’s logical algebra’’
(C. S. Peirce 1870), “logique algébrique de Boole” (Louis Liard 1877), ‘‘algebra of
logic” (Alexander Macfarlane 1879, C. S. Peirce 1880).

'**Accounts of the axiomatic method may of course be found in many mathematical
toxtbooks and other publications. An especially good exposition is in the Introduction
to Vebl.en_ and Young’s Projective Geometry, vol. 1 (1910).

*7This is the method of most mathematical treatises, which proceed axiomatically
:mll ar:z )not specifically about logic—in particular of Veblen and Young (preceding
ootnote).

'"The words ‘‘axiom’ and ‘‘postulate’” have been variously used, either as synon-
ymous or with varying distinctions between them, by the present writer among others.
In this book, however, the terminology here set forth will be followed closely.
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the axiomatic method, must all be taken as belonging to the underlying
logic. And, though they may make reference to particular undefined
terms or to classes of primitive symbols which include undefined terms,
they must not involve anything which, subjectively, we are unwilling to
assign to the underlying logic rather than to the special branch of mathe-
matics.1?®

(2) In the interpretation the semantical rules are given in two categories.
Those of the first category fix those general aspects of the interpretation
which may be assigned, or which we are willing to assign, to the underlying
logic. And the rules of the second category determine the remainder of the
interpretation. The consideration of different representations or interpre-
tations of the system of postulates, in the sense of the informal axiomatic
method, corresponds here to varying the semantical rules of the second
category while those of the first category remain fixed.

08. Syntax. The study of the purely formal part of a formalized language
in abstraction from the interpretation, i.e., of the logistic system, is called
syntax, or, to distinguish it from the narrower sense of ‘“‘syntax’ as con-
cerned with the formation rules alone,3 logical syntax.'3! The meta-language
used in order to study the logistic system in this way is called the syntax
language 13t

We shall distinguish between elementary syntax and theoretical syntax.

The elementary syntax of a language is concerned with setting up the
logistic system and with the verification of particular well-formed formulas,

129Qrdinarily, e.g., it would be allowed that the rules of inference should treat differ-
ently two undefined terms intended one to denote an individual and one to denote a
class of individuals, or two undefined terms intended to denote a class of individuals
and a relation between individuals; but not that the rules should treat differently two
undefined terms intended both to denote a class of individuals. But no definitive con-~
trolling principle can be given.

The subjective and essentially arbitrary character of the distinction between what
pertains to the underlying logic and what to the special branch of mathematicsisillus-
trated by the uncertainty which sometimes arises, in treating a branch of mathematics
by the informal axiomatic method, as to whether the sign of equality is to be considered
as an undefined term (for which it is necessary to state postulates). Again it is illustrated
by Zermelo’s treatment of axiomatic set theory in his paper of 1908 (cf. Chapter XI)
in which, following the informal axiomatic method, he introduces the relation € of
membership in a set as an undefined term, though this same relation is usually assigned
to the underlying logic when a branch of mathematics is developed by the informal
axiomatic method.

130Cf, footnote 1186.

131The terminology is due to Carnap in his Logische Syntax dev Sprache (1934), trans-
lated into English (with some additions) as The Logical Syntax of Language (1937). In
connection with this book see also reviews of it by Saunders MacLane in the Bulletin
of the Amervican Mathematical Society, vol. 44 (1938), pp. 171-176, and by S. C. Kleene
in The Journal of Symbolic Logic, vol. 4 (1939), pp. 82-87.
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axloms, immediate inferences, and proofs as being such. The syntax language
In the restricted portion of English which was described in the foregoing

sction, or a correspondingly restricted formalized meta-language, and the
touirements of effectiveness, (I)-(IV), must be observed. The demonstra-
Hon of derived rules and theorem schemata, in the sense of §§12, 33, and
their application in particular cases are also considered to belong to ele-
mentary syntax, provided that the requirement of effectiveness holds which
I explained in §12.

I'heoretical syntax, on the other hand, is the general mathematical theory
ol u logistic system or systems and is concerned with all the consequences of
their formal structure (in abstraction from the interpretation). There is no
festriction imposed as to what is available in the syntax language, and re-
(uirements of effectiveness are or may be abandoned. Indeed the syntax
language may be capable of expressing the whole of extant mathematics. But
It mny also sometimes be desirable to use a weaker syntax language in order
o oxhibit results as obtained on this weaker basis.

Like any branch of mathematics, theoretical syntax may, and ultimately
must, be studied by the axiomatic method. Here the informal and the formal
axlomatic method share the important advantage that the particular
tharacter of the symbols and formulas of the object language, as marks upon
puper, sounds, or the like, is abstracted from, and the pure theory of the
stivcture of the logistic systemn is developed. But the formal axiomatic
method-—the syntax language being itself formalized according to the pro-
gram of §07, by employing a meta-meta-language—has the additional ad-
vantage of exhibiting more definitely the basis on which results are obtained,
and of clarifying the way and the extent to which certain results may be
ublained on a relatively weaker basis.

I this book we shall be concerned with the task of formalizing an object
lnnguage, and theoretical syntax will be treated informally, presupposing
I uny connection such general knowledge of mathematics as is necessary
lor the work at hand. Thus we do not apply even the informal axiomatic
method to our treatment of syntax. But the reader must always understand
thit syntactical discussions are carried out in a syntax language whose for-
malization is ultimately contemplated, and distinctions based upon such
lormalization may be relevant to the discussion.

In such informal development of syntax, we shall think of the syntax
lnnguage as being a different language from the object language. But the
prosnibility is important that a sufficiently adequate object language may be
tapible of expressing its own syntax, so that in this case the ultimate for-
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malization of the syntax language may if desired consist in identifying it
with the object language.132

We shall distinguish between theorems of the object language and theo-
rems of the syntax language (which often are theorems about the object
language) by calling the latter syntactical theorems. Though we demonstrate
syntactical theorems informally, it is contemplated that the ultimate formal-
ization of the syntax language shall make them theorems in the sense of §07,
i.e., theorems of the syntax language in the same sense as that in which we
speak of theorems of the object language.

We shall require, as belonging to the syntax language: first, names of the
various symbols and formulas of the object language; and secondly, vari-
ables which have these symbols and formulas as their values. The former
will be called syntactical comstants, and the latter, syntactical variables.13®

As syntactical variables we shall use the following: as variables whose
range is the primitive symbols of the object language, bold Greek small
letters (a, B, v, etc.); as variables whose range is the primitive constants and
variables of the object language—see footnote 117—bold roman small
letters (a, b, ¢, etc.); as variables whose range is the formulas of the object
language, bold Greek capitals (T, A, etc.); and as variables whose range is
the well-formed formulas of the object language, bold roman capitals (A,
B, C, etc.). Wherever these bold letters are used in the following chapters,
the reader must bear in mind that they are not part of the symbolic appara-
tus of the object language but that they belong to the syntax language
and serve the purpose of talking about the object language. In use of the
object language as an independent language, bold letters do not appear
(just as English words never appear in the pure text of a Latin author
though they do appear in a Latin grammar written in English).

As a preliminary to explaining the device to which we resort for syntac-
tical constants, it is desirable first to consider the situation in ordinary

132C{. footnote 109. In particular the developments of Chapter VIII show that the
logistic system of Chapter VII is capable of expressing its own syntax if given a suitable
interpretation different from the principal interpretation of Chapter VII, namely, an
interpretation in which the symbols and formulas of the logistic system itself are counted
among the individuals, as well as all finite sequences of such formulas, and the functional
constant S is given an appropriate (quite complicated) interpretation, details of which
may be made out by following the scheme of Gédel numbers that is set forth in Chapter
VIII.

133Given the apparatus of syntactical variables, we could actually avoid the use of
syntactical constants by resorting to appropriate circumlocutions in cases where syn-
tactical constants would otherwise seem to be demanded. Indeed the example of the
preceding footnote illustrates this, as will become clear in connection with the cited
chapters. But it is more natural and convenient, especially in an informal treatment of
syntax, to allow free use of syntactical constants.

§Ou| SYNTAX 61

Inglinh, with no formalized object language specially in question. We must
ke into account the fact that English is not a formalized language and the
conseguent uncertainty as to what are its formation rules, rules of inference,
undd semantical rules, the contents of ordinary English grammars and dic-
Honaries providing only some incomplete and rather vague approximations
to wuch rules. But, with such reservations as this remark implies, we go on to
consider the use of English in making syntactical statements about the
nplish language itself.

I'tequently found in practice is the use of English words autonymously (to
wdopt o terminology due to Carnap), i.e., as names of those same words.134
Iixamples are such statements as ““The second letter of man is a vowel,”
"'Man is monosyllabic,” “Man is a noun with an irregular plural.” Of course
It v equivocal to use the same word, man, both as a proper name of the
Itnglish word which is spelled by the thirteenth, first, fourteenth letters of
the alphabet in that order, and as a common name (see footnote 6) of
leatherless plantigrade biped mammals!®—but an equivocacy which, like
tnny others in the natural languages, is often both convenient and harmless.
Whenever there would otherwise be real doubt of the meaning, it may be
temoved by the use of added words in the sentence, or by the use of quotation
marks, or of italics, as in: ““The word man is monosyllabic”’; ““ ‘Man’ is
monosyllabic”; “Man is monosyllabic.”

I'ollowing the convenient and natural phraseology of Quine, we may
distinguish between use and mention of a word or symbol. In “Man is a
tational animal” the word ““man’ is used but not mentioned. In ‘“The Eng-
lish translation of the French word homme has three letters”” the word ‘‘man”
In mentioned but not used. In “Man is a monosyllable”” the word ‘“‘man’’ is
hoth mentioned and used, though used in an anomalous manner, namely
autonymously.

I'rege introduced the device of systematically indicating autonymy by
(uotation marks, and in his later publications (though not in the Begriffs-
shrift) words and symbols used autenymously are enclosed in single quota-
fion marks in all cases. This has the effect that a word enclosed in single

'""In the terminology of the Scholastics, use of a word as a name of itself, i.e., to de-
note itself as a word, was called suppositio materialis. Opposed to this as suppositio
[ormalis was the use of a noun in its proper or ordinary meaning. This terminology is
wmetimes still convenient.

I'he various further distinctions of suppositiones are too cumbrous, and too uncertain,
to be usable. All of them, like that between suppositio materialis and formalis, refer to
peculiarities and irregularities of meaning which are found in many natural languages
but which have to be eliminated in setting up a formalized language.

""To follow a definition found in The Century Dictionary.
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quotation marks is to be treated as a different word from that without the
quotation marks—as if the quotation marks were two additional letters in
the spelling of the word-—and equivocacy is thus removed by providing two
different words to correspond to the different meanings. Many recent writers
follow Frege in this systematic use of quotation marks, some using double
quotation marks in this way, and others following Frege in using single
quotation marks for the purpose, in order to reserve double quotation marks
for their regular use as punctuation. As the reader has long since observed,
Frege’s systematic use of quotation marks is not adopted in this book.13¢
But we may employ quotation marks or other devices from time to time,
especially in cases in which there might otherwise be real doubt of the
meaning.

To return to the question of syntactical constants for use in developing the
syntax of a formalized object language, we find that there is in this case

136Besides being rather awkward in practice, such systematic use of quotation marks
is open to some unfortunate abuses and misunderstandings. One of these is the misuse
of quotation marks as if they denoted a function from things (of some category) to
names of such things, or as if such a function might be employed at all without some
more definite account of it. Related to this is the temptation to use in the role of a
syntactical variable the expression obtained by enclosing a variable of an object lan-
guage in quotation marks, though such an expression, correctly used, is not a variable
of any kind, and not a form but a constant.

Also not uncommon is the false impression that trivial or self-evident propositions
are expressed in such statements as the following: * ‘Snow is white’ is true if and only
if snow is white’ (Tarski’s example); * ‘Snow is white’ means that snow is white’;
‘ ‘Cape Town’ is the [or a] name of Cape Town.’

This last misunderstanding may arise also in connection with autonymy. A useful
method of combatting it is that of translation into another language (cf. a remark by
C. H. Langford in The Journal of Symbolic Logic, vol. 2 (1937), p. 53). For example,
the proposition that ‘Cape Town’ is the name of Cape Town would be conveyed thus
to an Italian (whom we may suppose to have no knowledge of English): * ‘Cape Town’
¢ il nome di Citta del Capo.” Assuming, as we may, that the Italian words have exactly
the same sense as the English words of which we use them as translations—in particular
that ‘Citta del Capo’ has the same sense as ‘Cape Town’ and that * ‘Cape Town’ ’ has
the same sense in Italian as in English—we see that the Italian sentence and its English
translation must express the very same proposition, which can no more be a triviality
when conveyed in one language than it can in another.

The foregoing example may be clarified by recalling the remark of footnote 8 that
the name relation is properly a ternary relation, and may be reduced to a binary re-
lation only by fixing the language in a particular context. Thus we have the more ex-
plicit English sentences: ‘ ‘Cape Town’ is the English name of Cape Town’; * ‘Citta del
Capo’ is the Italian name of Cape Town.’ The Italian translations are: * ‘Cape Town’ &
il nome inglese di Citta del Capo’; ¢ ‘Citta del Capo’ ¢ il nome italiano di Citta del Capo.’
Of the two propositions in question, the first one has a false appearance of obviousness
when expressed in English, the illusion being dispelled on translation into Italian;
the second one contrariwise does not seem obvious or trivial when expressed in English,
but on translation into Italian acquires the appearance of being so.

(In the three preceding paragraphs of this footnote, we have followed Frege’s syste-
matic use of single quotation marks, and the paragraphs are to be read with that under-
standing. As explained, we do not follow this usage elsewhere.)
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nothing equivocal in using the symbols and formulas of the object language
nutonymously in the syntax language, provided that care is taken that no
formula of the object language is also a formula of the syntax language in
any other wise than as an autonym. Therefore we adopt the following
practice:

The primitive symbols of the object language will be used in the syntax
language as names of themselves, and juxtaposition will be used for juxta-
position. 137

‘T'his is the ordinary usage in mathematical writing, and has the advantage
ol being self-explanatory. Though we employ it only informally, it is also
rendily adapted to incorporation in a formalized syntax language!3® (and in
fact more so than the convention of quotation marks).

As a precaution against equivocation, we shall hereafter avoid the
prictice—which might otherwise sometimes be convenient—of borrowing
formulas of the object language for use in the syntax language (or other
mota-language) with the same meaning that they have in the object
language. Thus in all cases where a single symbol or a formula of
the object language is found as a constituent in an English sentence,
it is to be understood in accordance with the italicized rule above, i.e.,
nutonymously.

Since we shall later often introduce conventions for abbreviating well-
lormed formulas of an object language, some additional explanations will
e necessary concerning the use of syntactical variables and syntactical
constants (and concerning autonymy) in connection with such abbreviations.
I'hese will be indicated in §11, where such abbreviations first appear. But,
un explained in that section, the abbreviations themselves and therefore
uhy special usages in connection with them are dispensable in principle,
hiowever necessary practically. In theoretical discussions of syntax and in
ptticular in formalizing the syntax language, the matter of abbreviations
ol woll-formed formulas may be ignored.

, Juxtaposition will be used in the syntax language as a binary connective having
i aperation of juxtaposition as its associated function. Technically, some added no-
fation in needed to show association, or some convention about the matter, such as
it ol wasociation to the left (as in §11). But in practice, because of the associativity
ab Justaponition, there is no difficulty in this respect.

RIS I, of course, on the assumption that the syntax language is a different lan-
puape from the object language.

Hoon the contrary a formalized language is to contain names of its own formulas,
i o name ol a formula must ordinarily not be that formula. E.g., a variable

Falanpuage-must not be, in that same language, also a name -of itself; for a proper
e ol wovariable is no variable but a constant (as already remarked, in another con-
uection, i footnote 136).
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09. Semantics. Let us imagine the users of a formalized language,
say a written language, engaged in writing down well-formed formulas of
the language, and in assembling sequences of formulas which constitute
chains of immediate inferences or, in particular, proofs. And let us imagine
an observer of this activity who not only does not understand the language
but refuses to believe that it is a language, i.e., that the formulas have
meanings. He recognizes, let us say, the syntactical criteria by which for-
mulas are accepted as well-formed, and those by which sequences of well-
formed formulas are accepted as immediate inferences or as proofs; but he
supposes that the activity is merely a game—analogous to a game of chess
or, better, to a chess problem or a game of solitaire at cards—the point of
the game being to discover unexpected theorems or ingenious chains of
inferences, and to solve puzzles as to whether and how some given formula
can be proved or can be inferred from other given formulas.%®

To this observer the symbols have only such meaning as is given to them
by the rules of the game—only such meaning as belongs, for example, to
the various pieces at chess. A formula is for him like a position on a chess-
board, significant only as a step in the game, which leads in accordance
with the rules to various other steps.

All those things about the language which can be said to and understood
by such an observer while he continues to regard the use of the language as
merely a game constitute the (theoretical) syntax of the language. But those
things which are intelligible only through an understanding that the well-
formed formulas have meaning in the proper sense, e.g., that certain of them
express propositions or that they denote or have values in certain ways,
belong to the semantics of the language.

Thus the study of the interpretation of the language as an interpretation
is called semantics.® The name is applied especially when the treatment is

1A comparison of the rules of arithmetic to those of a game of chess was made by
J. Thomae (1898) and figures in the controversy between Thomae and Frege (1903—
1908). The same comparison was used by Hermann Weyl (1924) in order to describe
Hilbert’s program of metamathematics or syntax of a mathematical object language.

140The name (or its analogue in Polish) was introduced by Tarski in a paper in
Przeglaqd Filozoficzmy, vol. 39 (1936), pp. 50-57, translated into German as ‘‘Grundle-
gung der wissenschaftlichen Semantik’ in Actes du Congrés International de Philosophie
Scientifique (1936). Other important publications in the field of semantics are: Tarski’s
Pojgcie Prawdy w Jezykach Nauk Dedukcyjwych (1933), afterwards translated into
German (and an important appendix added) as “‘Der Wahrheitsbegriff in den forma-
lisierten Sprachen” in Studia Philosophica, vol. 1 (1936) pp. 261-405; and Carnap’s
Introduction to Semantics (1942). Concerning Carnap’s book see a review by the present
writer in The Philosophical Review, vol. 52 (1943), pp. 298-304.

The word semantics has various other meanings, most of them older than that in
question here. Care must be taken to avoid confusion on this account. But in this book
the word will have always the one meaning, intended to be the same (or substantially
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in a formalized meta-language. But in this book we shall not go beyond some
unformalized semantical discussion, in ordinary English.

Theorems of the semantical meta-language will be called semantical theo-
rems, and both semantical and syntactical theorems will be called metatheo-
rems, in order to distinguish them from theorems of the object language.

As appears from the work of Tarski, there is a sense in which semantics
can be reduced to syntax. Tarski has emphasized especially the possibility
of finding, for a given formalized language, a purely syntactical property
of the well-formed formulas which coincides in extension with the semantical
property of being a true sentence. And in Tarski’s Wahrheiisbegriff'4! the prob-
lem of finding such a syntactical property is solved for various particular
formalized languages.142 But like methods apply to the two semantical con-
cepts of denoting and having values, so that syntactical concepts may be found
which coincide with them in extension.l43 Therefore, if names expressing

#0) as that in which it is used by Tarski, C. W. Morris (Foundations of the Theory of
Signs, 1938), Carnap, G. D. W. Berry (Harvard University, Summaries of Theses 1942,
pp. 330-334).

141Cited in the preceding footnote.

142 Tarski solves also, for various particular formalized languages, the problem of
finding a syntactical relation which coincides in extension with the semantical relation
of satisfying a propositional form.

In a paper published in Monatshefte fiiv Mathematik und Physik, vol. 42, no. 1 (1935),
therefore later than Tarski’s Pojecie Prawdy but earlier than the German translation
and its appendix, Carnap also solves both problems (of finding syntactical equivalents
of being a true sentence and of satisfying a propositional form) for a particular formal-
|zed language and in fact for a stronger language than any for which this had previously
boen done by Tarski. Carnap’s procedure can be simplified in the light of Tarski’s
appendix or as suggested by Kleene in his review cited in footnote 131.

On the theory of meaning which we are here adopting, the semantical concepts of
being a true sentence and of satisfying a propositional form are reducible to those of
denoting and having values, and these results of Tarski and Carnap are therefore
implicit in the statement of the following footnote.

1More explicitly, this may be done as follows. In §07, in discussing the semantical
rules of a formalized language, we thought of the concepts of denoting and of having
values as being known in advance, and we used the semantical rules for the purpose
of giving meaning to the previously uninterpreted logistic system. But instead of this it
would be possible to give no meaning in advance to the words “denote” and ‘“‘have
vilues' as they occur in the semantical rules, and then to regard the semantical rules,
{nken together, as constituting definitions of “‘denote’” and “‘have values” (in the same
way that the formation rules of a logistic system constitute a definition of “well-
formed’”). The concepts expressed by ‘‘denote” and ‘‘have values” as thus defined
holong to theoretical syntax, nothing semantical having been used in their definition.
it they coincide in extension with the semantical concepts of denoting and having
vilues, as applied to the particular formalized language.

I'he situation may be clarified by recalling that a particular logistic system may be
sxpected to have many sound interpretations, leading to many different assignments
of denotations and values to its well-formed formulas. These assignments of denotations
and values to the well-formed formulas may be made as abstract correspondences, so
{hat their treatment belongs to theoretical syntax. Semaitics begins when we decide
the meaning of the well-formed formulas by fixing a particular interpretation of the
jyatem. The distinction between semantics and syntax is found in the different signif-
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these two concepts are the only specifically semantical (non-syntactical)
primitive symbols of a semantical meta-language, it is possible to transform
the semantical meta-language into a syntax language by a change of inter-
pretation which consists only in altering the sense of those names without
changing their denotations.

However, a sound syntax language capable of expressing such syntactical
equivalents of the semantical concepts of denoting and having values—or
even only a syntactical equivalent of the semantical property of truth—
must ordinarily be stronger than the object language (assumed sound), in
the sense that there will be theorems of the syntax language of which no
translation (i.e., sentence expressing the same proposition) is a theorem of
the object language. Else there will be simple elementary propositions about
the semantical concepts such that the sentences expressing the correspond-
ing propositions about the syntactical equivalents of the semantical con-
cepts are not theorems of the syntax language.!4*

For various particular formalized languages this was proved (in effect)
by Tarski in his Wahrheitsbegriff. And Tarski’s methods!4s are such that they
can be applied to obtain the same result in many other cases—in particular
in the case of each of the object languages studied in this book, when a
formalized syntax language of it is set up in a straightforward manner. No
doubt Tarski’s result is capable of precise formulation and proof as a result
about a very general class of languages, but we shall not attempt this.

The significance of Tarski’s result should be noticed as it affects the ques-
tion of the use of a formalized language as semantical meta-language of
itself. A sound and sufficiently adequate language may indeed be capable

icance given to one particular interpretation and to its assignment of denotations and
values to the well-formed formulas; but within the domain of formal logic, including
pure syntax and pure semantics, nothing can be said about this different significance
except to postulate it as different.

Many similar situations are familiar in mathematics. For instance, the distinction
between plane Euclidean metric geometry and plane projective geometry may be found
in the different significance given to one particular straight line and one particular
elliptic involution on it. And it seems not unjustified to say that the sense in which
semantics can be reduced to syntax is like that in which Euclidean metric geometry
can be reduced to projective geometry.

All this suggests that, in order to maintain the distinction of semantics from syntax,
“denote”’ and ‘‘have values’’ should be introduced asundefined terms and treated by the
axiomatic method. Our use of semantical rules is intended as a step towards this. And in
fact Tarski’s Wahrheitsbegriff already contains the proposal of an axiomatic theory of
truth as an alternative to that of finding a syntactical equivalent of the concept of truth.

1447 more precise statement of this will be found in Chapter VIII, as it applies to the
special case of the logistic system of Chapter VII when interpreted, in the manner
indicated in footnote 132, so as to be capable of expressing its own syntax.

15Related to those used by Kurt Godel in the proof of his incompleteness theorems,
set forth in Chapter VIII.
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ol expressing its own syntax (cf. footnote 132) and its own semantics, in
the sense of containing sentences which express at least a very comprehen-
sive class of the propositions of its syntax and its semantics. But among
these sentences, if certain very general conditions are satisfied, there will
nlways be true sentences of a very elementary semantical character which
are not theorems—sentences to the effect, roughly speaking, that such and
such a particular sentence is true if and only if _____, the blank being filled
by that particular sentence.*® Hence, on the assumption that the language
satisfies ordinary conditions of adequacy in other respects, not all the se-
mantical rules (in the sense of §07), when written as sentences of the lan-
puage, are theorems.

On account of this situation, the distinction between object language and
meta-language, which first arises in formalizing the object language, re-
mains of importance even after the task of formalization is complete for
both the object language and the meta-language.

In concluding this Introduction, let us observe that much of what we
have been saying has been concerned with the relation between linguistic
expressions and their meaning, and therefore belongs to semantics. However,
our interest has been less in the semantics of this or that particular language
than in general features common to the semantics of many languages. And
very general semantical principles, imposed as a demand upon any language
that we wish to consider at all, have been put forward in some cases, notably
assumptions (1), (2), (3) of §01 and assumption (4) of §02.147

We have not, however, attempted to formalize this semantical discussion,
or even to put the material into such preliminary order as would constitute
a first step toward formalization. Our purpose has been introductory and
explanatory, and it is hoped that ideas to which the reader has thus been
informally introduced will be held subject to revision or more precise for-
mulation as the development continues.

From time to time in the following chapters we shall interrupt the rig-
orous treatment of a logistic system in order to make an informal semantical
aside. Though in studying a logistic system we shall wish to hold its inter-
pretation open, such semantical explanations about a system may serve in

'A more careful statement is given by Tarski.
- By the results of Godel referred to in the preceding footnote (or alternatively by
l'arski’s reduction of semantics to syntax), true syntactical sentences which are not
theorems must also be expected. But these are of not quite so elementary a character.
And the fundamental syntactical rules described in §07 may nevertheless all be theorems
when written as sentences of the language.

7And assumption (5) of footnote 30.
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particular to show a motivation for consideration of it by indicating its
principal interpretations (cf. §07). Except in this Introduction, semantical
passages will be distinguished from others by being printed in smaller type,
the small type serving as a warning that the material is not part of the formal
loguistic development and must not be used as such.

As we have already indicated, it is contemplated that semantics itself
should ultimately be studied by the logistic method.

But if semantical passages in this Introduction and in later chapters are
to be rewritten in a formalized semantical language, certain refinements
become necessary. Thus if the semantical language is to be a functional
calculus of order w in the sense of Chapter VI, or a language like that of
Chapter X, then various semantical terms, such as the term ‘“‘denote’
introduced in §01, must give way to a multiplicity of terms of different
types,8 and statements which we have made using these terms must be
replaced by axiom schematal4® or theorem schematal#® with typical ambi-
guity.®® Or if the semantical language should conform to some alternative
to the theory of types, changes of a different character would be required.
In particular, following the Zermelo set theory (Chapter XI), we would have
to weaken substantially the assumption made in §03 that every singulary
form has an associated function, and explanations regarding the notation A
would have to be modified in some way in consequence.

18A11 the expressions of the language—formulas, or well-formed formulas—may be
treated as values of (syntactical) variables of one type. But terms “denote” of different
types are nevertheless necessary, because in denotes ,” after filling the first
blank with a syntactical variable or syntactical constant, we may still fill the second
blank with a variable or constant of any type.

Analogously, various other terms that we have used have to be replaced each by a
multiplicity of terms of different types. This applies in particular to “‘thing,” and the
cousequent weakening is especially striking in the case of footnote 9—which must
become a schema with typical ambiguity.

See also the remark in the last paragraph of footnote 87.

149The terminology is explained in §§27, 30, 33, and Chapter VI. (The typical ambi-
guity required here is ambiguity with respect to fype in the sense described in footnote
578, and is therefore not the same as the typical ambiguity mentioned in footnote 585,
which is ambiguity rather with respect to level.)

I. The Propositional Calculus

The name propositional caleulus'® is given to any one of‘various logis-tic
systems—which, however, are all equivalent to one another 1.n a sense \thlCh
will be made clear later. When we are engaged in developing a particular
one of these systems, or when (as often happens) it is unnecessary for the
purpose in hand to distinguish among the different systems, we speak (?f ?he
propositional calculus. Otherwise the various logistic systems are distin-
guished as various formulations of the propositional calculus. .

The importance of the propositional calculus in one or another of its f'or—
mulations arises from its frequent occurrence as a part of more extensive
logistic systems which are considered in this book or have bee'n' consider.ed
elsewhere, the variables of the propositional calculus (propositional varia-
bles) being replaceable by sentences of the more extens.ive system. Bfacause
of its greater simplicity, in many ways than other logistic syster.ns which 'we
consider, the propositional calculus also serves the purposes of 1r{tr0f1uct%on
and illusfration, many of the things which we do in connection with it being
afterwards extended, with greater or less modification, to other systems.

In this chapter we develop in detail a particular formulation of the I?rop-
ositional calculus, the logistic system P;. Some ot/her formulations will be
considered in the next chapter.

KX s ¢

10. The primitive basis of P;.1%® The primitive symbols of P, are
three improper symbols
[ 2 ]
(of which the first and third are called brackets) and one primitive constant
f
and an infinite list of variables
P g r s b i oS P 92

(the order here indicated being called the alphabetic order of the Variabies).
The variables and the primitive constant are called proper symbols.t

10 Hijstorical questions in connection with the propositional calculus will be treated
briefly in the concluding section of Chapter II. ) )
1 lgegm‘ding the terminology, see explanations in §07 and in footnote 117.




