
lnternational Library of Psychology
Philosophy and Scientific Method
GENERAL EDITOR: C. K. OGDEN, M.A. (MasdaleneCol lese,Cambtidge)

THIi  [ , ( ) ( } ICAL SYNTAX

OIi  LANGUAGE

By

RUDOLF CAR.NAP
Pnopnsson or Fur losopHy rN THE

Untvnnslry or Cgrcaco

t,ONDON

ROU'|LEDGE & KEGAN PAUL LTD
I IROAI)1\ / i \  \ '  I IOUSE: 6t i -7a C,\  R' l ' l i l  R LAN[, ,  E.C.44 Asterishs denote that other boohs bt ahe same author se includ,eil in the saies.

A cottplete l ist zcilt be lound at thi end oJ the tolume

I



I

r36 PART III. THE INDEFINITE LANGUACE II

for a sentence of the form (oJ(op)...(o,)(prr(ur,.,.on)=
Ptz (Dr, ,., 0")) we can always write pt, = pr2; and for a sentence of
the form (ur)... (0")(pr, (nr, ... u,) ) pr, (or,.., o,)) we can always
write pt, c prr. For this mode of symbolization without argumenta,
two different translations into word;language are possible. For
instance, let 'P 'and'Q'be pt l ;  then we can translate (pge'as:

"The property P implies the property Q'1 or, if we wish, as:
" the clase-P is a sub-class of the class Q', ; correspondingly ., sub-
relation ", when it is a question of many-termed pr. Further, we
can interpret the $r 'P v Q ' when it is used without arguments as
the " sunt of the classes P and Q ", and , P. Q ' as the,, prodtrct of
the classes P and Q";analogously also the,,sum', ahd,,product
of relations" in the case of many-termed pI. ,A'and,V'used

without arguments can be interpreted as ,, null class, and ,, uni-
oersal class" (or as "null relation" and ,,universal relationrr, re-
sp'ectively). As an example of an application of the class symbolism,
the Axiom of Selection PSII zr may be used (the p which occur
are to'be taken from suitable types of at least the second order):

l(Mc -Leer).(r)(c) (tM(E.M(G). -Leer(F.G)l c(r= Q)l e (3 n (n lM @) t Ar (F. rrl
Hereby'Al'("cardinal number r") is to be defined as follows
(compare g 38 D):

At (r) = (l r) (y) (F(y) = (y = x))
The mode of symbolization whose introduction is indicated in

the foregoing is completely analogous to Russell's symbolism of
classes; the whole theory of classes and relations of the fprinc.
Math.l can easily be put into this simplified form. But we shall
not go into this here, as it raises no further fundamental problems.

$ f8. Tur ErnwrNATroN oF CLASSES
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free variables serve to express indeterminateness and not univer-
sality). The extent (for instance, in the case of a propeity concept,

"i.e, of a one-termed sentential function, the corresponding class) is
represented either by a special expression containing the sentential
function, or else by a new symbol which is introduced as an ab-
breviation for this expression, An identity-sentence with class
expressions here means the coextensiveness of the corresponding
properties (if, for instance, 'k1' and 'ks' are the class symbols
belonging to the pt 'P1'and'Pr ' ,  then'kr :kz ' is  equivalent in
meaning to '(*) [Pr (r) = P, (r)] '). Later on, Russell proceeded in the
same mannbr, Following the traditional modes of thought, how-
ever, Frege made a mistake at a certain point; and this mistake was
discovered by Russell and subsequently corrected.

It was a decisive moment in the history of logic when, in the year
rgoz, a letter from Russell drew Frege's attention to the fact that
there was a contradiction in his system. After years of laborious
effort, Frege had established the sciences of logic and arithmetic on
an entirely new basis. But he remained unknown and unacknow-
ledged. The leading mathematicians of his time, whose mathematical
foundations he attacked with unsparing criticism, ignored him, His
books were not even reviewed, Only by means of the greatest per-
sonal sacrifices did he manage to get the first volume of his chief
workfGrundgesetae] published, in the year r893. The second volume
followed after a long interval.in r9o3. At last there came an echo-
not from the Gerrnan mathematicians, much less the German philoso-
phers, but from abroad: Russell in England attributed the greatest
importance to Frege's work. In the case of certain problems Russell
himself, many yebrs after Frege, but still in ignorance of him, had
hit upon the same or like solutions; in the case of some others, he
was able to use Frege's results in his own system. But now, when
the second volume of his work was almost printed, Frege learned
from Russell's letter that his concept of class led to a contradiction.
Behind the dry statement of this fact which Frege gives in the
Appendix to his second voluqne, one senses a deep emotion. But, at
all events, he could comfort himself with the thought that the error
which had been brought to light was not a peculiarity of his system;
he only shared the fate of all who had hitherto occupied themselves
with the problems of the extension of concepts, of classes, and of
aggregates---amongst them both Dedekind and Cantor.

The contradiction which was discovered by Russell is the anti-
nomy which has since become famous, namely that of the class of
those classes which are not members of themselves. In his Ap-
pendix, Frege examined various possibilities for a way out of the
difficulty, but without discovering a suitable one' Then Russell, in
an Appendix to his work ffuinciples) which appeared in the same
year (r9o3), suggested a solution in the form of. tt'e theory of types,
according to which only an individual can be an eletnent of a class of
the first level, and only a class of the nth level can be an element of
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a class of the n * rth level. According to this theory, a sentence of the
form ' A e &' s1' - (kek)' is neithertrue norfalse ; it is merelymeaning-
less. Lateron Russell showed that this antinomy can alsobe so formu-'
lated as to apply not only to classeb but to properties as well (the
antinomy of impredicable', see $ 6oa). Here, also, the contradiction
is eliminated by means of the rule of types; applied to prl (as sym-
bols for properties) it runs thus: the argument of a lpr can only be an
individual gymbol, and the argument of utt ,*rpt can only be an np!.

Now it"is a very remarkable fact that Frege himself had already
made a similar classification of all sentential functions into levels
and kinds which also were arranged according to the kinds of their
arguments (fGrundgesetzel Vol. r, pp. 3? ff.). In this he had done
important preliminary work for Russell's classification of types,
But on two points-like traditignal logic and Cantor's Theory of
Aggregates-he made errors, which were corrected by means of
Russell's rule of types. It is because of these errors that, in spite of
the perfectly correct classification of functions, the antinomies
arise. Frege's first error consisted in the fact that in his system all
expressions (or more exactly, all expressions which begin with the
asser{ion symbol) are either true or false. He was thus obliged to
count as false, expressions in which an unsuitable argument was
attributed to some predicate. It was Russell who first introduced
the triple classification into true, false, and meaningless expressions
-a classification which was to prove,so important for the further
development of logic and its application to empirical science and
philosophy. According to Russell, those expressions which have
unsuitable arguments are neither true nor false; they are meaning-
less (in our terminology: they are not sentences at all). When this
first error of Frege is corrected, then the antinomy of the term
'impredicable' can no longer be set up in his system-for the de-
finition would have to contain the contra-syntactical expression
' F (F)' .The antinomy which relates to classes, holvever, can still be
constructed in his system, For Frege made a second mistake in not
applying the type-classification of the predicates (sentential func-
tions), which he had constructed with such insight and clarity, to the
classes corresponding to the predicates; instead of that, he counted
the classes-and similarly the many-termed extensions-simply as
individuals (objects) quite independently of the level and kind of
the sentential function which defined the class in question. And
even after the discovery of the contradiction, he still thought that he
need not alter his procedure (Vol. rr, pp. 254 f.), because he believed
the names of objects and the names of functions to be differentiated
by the fact that the former have a meaning of their own while the
latter remain incomplete symbols which only become significant
after being completed by means of other symbols. Now, since Frege
held tlre numerals '0', ' 1 ', '2', etc,, tci be significant in themselves,
and since, on the other hand, he defined these symbols as class
symbols of the second level, he was compelled to regard class
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symbols, as opposed to predicates, as individual names. Today we
have the tendency to regard all the partial expressions of a sentence
which are not sentences in their turn as dependent; and to attribute
independent meaning at most to sentences.

In order to define a'cardinal number in Frege's senSe without
making use of classes, we have only to replace Frege's class of pro-
perties by a property of propErties (designated by a 2pr). It is re-
markable tJrat Frege at an earlier stage expressed this view himself
(lGrundlagen) 1884, p. 8o, Note): " I think that [in the definition of
'cardinal number'], instead of 'extent of the concept', we might
say simply'concept'. But then two kinds of objections would be
raised:.... I am of the opinion that both these objections could be
rernoved; but that might lead too far at this stage," I-ater he
apparently abandoned this view altogether. Then again-ds it
appears when one looks back-Russell seemed to be very close to
the decisive point of abandoning classes altogether. While for Frege
it was important to introduce the class symbols as well as the pre-
dicates-since in his system they obey different rules-the rvhole
question had a different aspect for Russell, In order to avoid
Frege's error, Russell did not adopt the class symbols as in-
dividual symbols but instead he divided them into types which
correspond exactly to the types of the predicates. But by this means
a quite unnecessary duplication was introduced. Russell himself
recognized that it was of no importance for logic whether " classes "
-that is to say, anything which is designated by the class symbols
-"really exist" or not ("no-class theory"). The further develop-
ment proceeded ever more definitely in the direction of the.stand-
point that class symbols are superfluous. In connection with
Wittgenstein's statements, R.ussell himself later discussed the view
that classes and properties are the same, but he did not as yet ac-
knowledge it (rgz5: fPrinc. Math.f, znd edition of Vol. l). The
whole question is connected with the problem of the Thesis of
Extensionality (see $ 67). Behmann lLogikl introduces the clbss
symbolism merely as an abbreviated method of writing, in which the
predicates are given without arguments; he insists, however, on
differentiating between extensional and intensional sentences, hold-
ing that this method of writing is only admissible for the former,
Von Neumann lBezuei.stheorie) and G6del fUnmtscheidbare) do not
even symbolically make any difference between predicates and the
corresponding class s1'rnbols; in the place of the latter, they simply
use thd former. The critique of Kaufmann (lUnendlichel, fBemer-
hungm)) concerning Russell's concept of class is also worthy of note.
But this criticism is really directed less against the Russellian system
itself than against the philosophical discussions by Russell and others
of the concept of class, which do not properly belong to the system.

We will summarize briefly the development which we have
just been considering. Frege introduced the class expressions in
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order to have, besides the predicates, something which could be
treated like an object-name. Russell recognized the inadmissi-
bility of such a treatment, but, nevertheless, retained the class
expressions. The former reason for their introduction having been
removed, however, they are now superfluous and therefore have
been finally discarded.

$ g8o. ON ExrsrrmcE AssuMprroNs rN Loclc

If logic is to be independent of empirical knowledge, then it
must assume nothing concerning the existence of objects. For this
reason Wittgenstein rejected the Axiom of Infinity, which asserts
the existence of an infinite number of objects. And, for kindred
reasons, Russell himself did not include this axiom amongst the
primitive sentences of his logic. But in Russell's system lPrinc.
Melh.l as well as in that of Hilbert lLogikl,.sentences such as

'(l a)(.F (*)v 
-F(r)) ' 

and '(l x) (x=r)', and others l ike them,
in which the existence of at least one object is stated, are (logi-
cally) demonstrable. Later on, Russell himself criticized this point
(lMath. PhiL), Chap. xvIII, Footnote). In the above-mentioned
systems, not only the sentences which are true in every domain,
independently of the number of objects in that domain, but also
sentences (for example, the one just given) which are true,"not in
every domain, but in every non-enqly domain, are demonstrable.
In practice, this distinction is immaterial, since we are usually
concerned with non-empty domains. But if, in order to separate
logic as sharply as possible from empirical science, we intend to
exclude from the logical system any assumptions concerning the
existence of objects, we must make certain alterations in the forms
of language used by Russell and Hilbert.

We may proceed somewhat as follows: No free variables are ad-
mitted in sentences and therefore universality can only be expressed
by means of universal operators. The schemata of primitive sen-
tences PSII 18 and 19 are retained (see $ go); PSU 16 and 17 are
replaced by rules of substitution: (o) (6t) can be transformed into

u,(""), and (pJ(e,) into u,(o"glnt). RIIz disappears; but

certain other rules must be laid down instead. In the language thus
altered, when an object-name such as'a'is given,'P(a)'can be
derived from'(r) (p("))'; and again,'( lc) (P(r))' from'P(a)'.
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The important point is that the eristential sentence can only be
derived from the universal one when a proper name is available; that
is to say, only when the domain is really non-empty. In the altered,
language, as opposed to the languages of Russell and Hilbert, the
sentence '(r) (P (r)) c (l x) (P (r)) ' is not demonstrable without the
use of a proper narne.

In our object-languages I and II, the matter is quite dif-
ferent owing to the fact that they are not name-hnguages but
coordinate-languages, The expressions of the type 0 here designate
not objects but positions. The Axiom of Infinity (see $ 33, 5a) and
sentences like '(3 r) (r = r) ' are demonstrable in Language II, as
are similar sentences in Language I. But the doubts previously
mentioned ate not relevant here. For here, those sentences only
mean, respectively, that for every position there is an immediately
succeeding one, and that at least one position exists. But whether
or not there are o jects to be found at these positions is not
stated. That such is or is not the case is expressed in a co-ordinate
language, on the one hand, by the fact that the fu5 at the positions
concerned have a value which appertains to the normal domain,
or, on the other, by the fact that they have merely a trivially
degenerate value. But this is stated not by analytic but by syn-
thetic gentences.

Exatnple. In the system of. the physical languagenthe sentence
which states that quadruples of real numbers (as qua?ruples of co-
ordinates) exist is analytic. In its material interpretation it means
that spatio-temporal positions exist. Whether something (matter or
an electro-magnetic field) is to be found at a pardcular position is
expressed by the fact that at the position in question the value of the
density-or of the field-vector, respectively-is not zero. But
whether anything at all exisB-that is to say, whether there is such
a non-trivially occupied position-can only be expressed by means
of a synthetic sentence.

If it is a question not of the existence of objects but of the
efistmce of lroptuties or clnsses (expressed by means of predicates),
then it is quite another matter. Sentences l ike'(l.F')(f '=F)'
("There exists a property (or class)") and '(1fl (Leer(F))'
(" There exists a null property (or class) ") are true in every possible
domain, including the null-domain; ihey are also analytic and
logically demonstrable in the aforesaid system without existence
assurnptions.
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incide. (D) The terms 'incomplete language', 'L-incomplete lan-
guage',' indeterminate language',' descriptive language' coincide.

Thborem 59.13. If S is d-complete, then it is resoluble; and
conversely. By Theorem 48.5.

For the d-terms, no valid theorems analogous to Theorems r r
and rz exist.

Theord S9.r+ (a) If S is contradictory, then S is both d-
complete and complete. (6) If S is inconsistent, then S is com-
plete. By Theorem r.

How the properties of languages here defined are transferred
from one language to another can be seen from the table on
p. 2zS (B). The relation of the terms to one another is indicated
by the arrows in the table below (as on p. r83).

Properties of languages
L-d-terms: d-terms: c-terrns: L-c-terms:

L-contrdidictory +contradictory +inconsistent +L-inconsistent
L-non-contra- non-contra-- 

dfi; 
--- * f-i;;J,y'- + consistent -+ L-consistent

L-d-complete \ . fd-complete 1 fcomplete'l f l-comolete
L-resolubte J*\resotuble /*'l g;lf*;"t" f*ll--aut"ioiii"t"

[ogical )
L-d-incompletel . fd-incomplete\ fincompletel fL-incomolete
L-irresotubte J*\irresolubte /-1 i;;;tei:- 

- 
f 

*1 
fu"J"iJi"rt,"t"y

l.-+"F I L syntheric
Loescnprtve J

We shall see that every consistent language which contains a
general arithmetic is irresoluble. Only poorer languages are re-
soluble, for example, the sentential calculus. A richer language,
though not resoluble, can yet be determinate and complete, pro-
videdthatsufficient indefinite rulesof transformation are laid down.
This is the case, for instance, with the logical sub-languages of I
and II. Forsuch an inesoluble but complete language, the following
classification of sentences holds; it is at the same time the classi-
fication of the logical sentences of any irresoluble language what-
soever (for the classification ofthe descriptive sentences, see p. r 85) :
(d-terms:) demonstrable irresoluble refutable

$ u.u.",.^,il;;:;*, 
2''

In investigating the non-contradictoriness of a language, the
first thing to be asked is whether the familiar so-called anti-
nomies or paradoxes which appeared in earlier systems of logic and
of the Theory of Aggregates have definitely been eliminated. This
point is an especially critical one when we are concerned with a
language which is rich enough to formulate, to any extent, its own
Byntax, whether in an arithmetized form or with the help of special
syntactical designations. The syntactical sentences may sometimes
speak about themselves, and t}te question arises whether this re-
flexiveness may not possibly lead to contradictions. This question
is signfficant because it is not concerned with calculi of a specially
constructed kind but with all systems whatsoever which contain
arithmetic. We shall now investigate this question and in doing so
we shall avail ourselves of the results obtained by G6del.

We shall follow Ramsey's example in dividing the antinomies
into two kinds, and we shall see that those of the second kind are
the ones which come into consideration forourinquiry. These will
therefore be examined more closely. In the examples we propose
to use partly the word-language and partly a symbolism similar to
that which was used in Language II; for the syntactical designa-
tions we shall employ in some cases Gothic symbols, and in others
inclusion in inverted cornmas. Let us consider, to begin with, the
following two antinomies.

r. Russell's antlnomy lPrinc. Math.ll; lMath. Phil.l. We de-
fine as follows: a property is called impredicable when it does not
apply to itself. Expressed in symbols : " Impr (F1 = 

- 
F (n', . lf

in this case we substitute ' Impr ' itself for ' F', we get the contra-
dictory sentence: " Impr (Impr) = 

- Impr (Impr)".
z. Grelling's autlnomy. Definition: in a languagewhich con-

tains its own Byntax, a syntactical predicate (for example, an
adjective) is called heterological if the sentence which ascribes the
property expressed by the predicate to the predicate itseH is false.
If, for instance, 'Q' is a syntactical predicate, then " Het ('Q') =

- Q ('Q') " is true. (The fundamental difference between this
antinomy and the foregoing, which is disregarded in many pre-
sentations, is to be noted, namely, that here the property Q is
attributed, not to the property Q but to the predicate, i.e. the

(c- and L-
terms:)

valid
analytic
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syrnbol' Q' .) E xample.' the adjective' monosyllabic' is heterological
because 'monosyllabic' is not monosyllabic but penta-syllabic.
Now, if instead of the predicate ' Q', we take the predicate 'Het'
itself which has just been defined, we get, from the definition as
stated, the contradictory sentence " Het ('Het') = - Het ('Het') ".

In order to avoid antinomies in his language, Russell set up a
complicated rule of types, which, particularly in the theory of real
numbers, gdre rise to certain difficulties, to overcome which he
found it necessary to state a special axiom, the so-called Axiom of
Reducibility. Ramsey (lFoundationsf Treatise I, r9z5) has shown
that the same object rnay be attained by a far simpler method. He
discovered, namely, that it is possible to differentiate between two
kinds of antinomies which may be designated as logical (in the
narrower sense) and syntactical (the latter are also called linguistic,
epistemological, or semantic). Example (r) belongs to the first
category and (z) to the second. Following Peano, Ramsey pointed
out that the antinomies of the second kind do not aPPear directly
in the symbolic system of logic, but only in the accompanying
text; for they are concerned with the expressions. From this fact
he drew the practical conclusion that in the construction of a
symbolic system it is not necessary to take note of these syntactical
antinomies. Now since the antinomies of the first kind are already
eliminated by the so-called simple rule of types, this is sufficient;
the branched nrle of types and the axiom of reducibility which it
necessitates are superfluous.

On the basis of the sirnple rule of ty6es (as in II for instance) the
type of a predicate is determined by the type of the appertaining
arguments alone. On the basis of Russell's branched rule of types,
the form of the chain of definitions of a predicate is also a factor
in determining its type (for instance, whether it is definite or not).
But the simple rule of types is sufficient to determine that a predicate
always belongs to a type other than that of the appertaining argu-
ments (namely, that it always belongs to a type of a higher level)'
Thui, here, a sentence cannot have the form'F(F)'. And hence a
definition of the form given for 'impredicable' is obviously impos-
sible. In the same way, the other well-known antinomies of the first
kind are obviated by means of the simple rule of types.

The problem of. the sjmtactical antinontees, however, obviously
reappears when it is a question of a language S in which the syntax
of S itself can be formulated, and tlerefore in the case of every

' 
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language which contains arithrnetic. There is a prevalent fear that
with a syntax of this sort, which refers to itself, either contradic-
tions similar to the syntactical antinomies will be unavoidable, or
in order to avoid them, special restrictions, something like the
" branched " rule of types, will be necessary. A closer investigation
will show, however, that this fear is not justified.

The above-mentioned view is held, for instance, by Chwistek.
He had already, before Ranrsey, had the idea of stating only the
simple rule of types, and thus rendering the axiorn of reducibility
unnecessary. Later, however, he came to the conclusion that with
the rejection of the branched rule of types the syntactical anti-
nomies-that of Richard, for example-would appear (see Chwistek
fNom. GrundlJ). In my opinion, however, the indispensability of
the branched rule of types in Chwistek's system is due only to the
fact that he uses the autonymous mode of speech for his syntax (the
so-called Semantics) (see $ 68).

Apart frorn Grellingls, the rnost important example of a syn-
tactical antinomy is tire one which was already farnous in antiquity,
the antinomy of the liar (for the history of this see Riistow).
Someone says: " I am lying ", or more exactly: " I am lying in this
sentence", in other words: "This sentence is false." If the sen-
tence is true, then it is false; and if it is false, then it is true.

Another antinomy which belongs to the category of the syn-
tactical antinomies is Richard's (see lPrinc. Math.l I, 6r, and
Fraenkel lMengenlehrel p.zt1 ff.). In its original version it is con-
cerned with the decimals definable in a particular word-language.
It can be easily transferred to aprl in the following manner. Let S
be a language whose syntax is formulated in S. In S there are at
most a denumerable number of 3pt which are definable. Therefore
we can correlate univocaliy a natural number with every such 3prl
(for instance, by a lexicographical affangement of the definition-
sentences or, in an arithmetized syntax, simply by the term-
number of the 3pt1). tr-et 'c' be a numerical expression; we will
call the number c a Richardian nurnber if c is the number of a

flpxl, say'P', which does not appertain to the nurnber c, so that
'P(c)' is false (contradictory). Accordingly, the adjective
'Richardian'is a defined lprl, and thus has correlated with it a
certain number, say b. Now b must be either Richardian or not.
If b is Richardian, then, according to the definition, the property
having the number b does not appertain to b; therefore, in this
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case, in contradiction to our assumption, b is not Richardian.
Hence b must be non-Richardian. b must leave tlle definition of
'Richardian' unfulfilled, and therefore must possess the property
having the number b; that is to say, b must be Richardian. This is
a contradiction.

It is characteristic of the syntactical antinomies mentioned that
they opera{e with the concepts 'true' and ,false'. For this reason
we will exiinine these concepts more closely before considering the
syntactical antinomies any further.

$ 6oD. Tnr CoNcrprs 'TnuB' AND , FALsE,

The concepts 'true' and 'false' are usually regarded as the
principal concepts of logic. In the ordinary word-languages, they
are used in such a way that the sentences '6, is tnre' and ,6, is
false' belong to the same language as €,r. This cltstot ary usage of
the ters 'true' and,'false' leails, hoanver, to a contradiction. This
will be shown in connection with the antinomy of the liar. In order
to guard ourselves against false inferences, we will proceed in a
strictly formal manner. Let the syntax of S formulated in S con-
tain three syntactical adjectives, 'tt', 'm', 'S', concerning which
we will make only the following assumptions (V r-f). In these,
we shall write the sentence : " lI1 has the property It " in an abbrevi-
ated form, thus:'!l(![)'. If '!t(Qll)'is interpreted as "![, is a
non-sentence ", '8 (?Ir)' as : " The expression !I, is a sentence, and,
specifically, a true sentence ", and ' B (8Ir)' as . " ?L is a sentence,
and, specifically, a false sentence", then our assumptions V r-3
are in agreement with the ordinary use of language.

V r. Every expression of S has exactly one of tJre three properties
tt, !8, B.

Y z a, Let'A' be any expression whatsoever of S (not : " desig-
nation of an expression"); if lB('A'), then A. [For instance: if
"this tree is high" is true, then this tree is high.l

Y zb. If. A, then !B(:A).
V 3. For any ?Ir, the expression's 'yt (%) ', ' lB (?Ir) ', ' B (8Ir) '

do not possess the property fll (hence, they do possess either !B
or $, according to V r).

From V t and zb it follows that:

$6ob. rnncoNcEprs.TRUE'AND'FALSE' 2rs

From V r and za it follows that:
If not A, then not !B ('A'), and therefore S ('A'), or $t ('.{'). (5)

Now in analogy with the assertion of the liar, it is easy to show
that the investigation of an expression Qt with the text ' $ (8Ir) ' leads
to a contradiction. The fact that an expression is here designated
by a symbol (namely: 'llr'), which itself occurs in itself, easily has

a confusing effect. But we can also establish the contradiction
without this direct reflexive relation; it is not, as is so often be-

lieved, the reflexiveness which constitutes the error upon which

the contradiction depends; the error lies rather in the unrestricted
use of the terms'true'and'false'. Let us examine the two ex-

pressions'8(?IJ' and '!B(!I2)'. Obviously these are expressions,
at worst non-sentences. We are entirely at liberty as to which ex-
pressions we choose to designate by'?Ir' and 'lls'; let us agree
that:

(a) % shall be the expression'lB(?Iz)'; (6) !I, shall be the ex-

Pression ,g(?IJ'. (6)

(Here, as can be seen, no designation of an expression occurs in

the expression itself.)
According to V 3:

Either 8(80IJ') or B(S(!I,) ') .  h)
We first make the assumption: [B(S(!IJ'). From this, in

accordance with Vza, it would follow that: $(!It). This, ac-

cording to (6a) is $ (IB(!Ir)'); from which, according to (4),

would follow: not !B(?IJ. This is, by (66): not !B ( f i(!IJ') '
Our assumption leads to its own opposite and is therefore refuted.

Thence, according to (7), it is true that:

B ( 8(!rJ',).
From this, by (+), follows:

not $(?I).
This, according to (64) is:

not g ( !B(%)') .

Bvv3:
r3 (!B(lI,)') or $ (S([)').

From (ro) and (r t ) :
s (a(%)').

(8)

(E)

(ro)

( t  t )

Gz)If B('A), then not S('A'), and therefore not A. (+)
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Thence, in accordance withY za:

!ts(%).

8(%).
From (8) and (66):

Therefore, in accordance with V r:

not 8(%).

(r3) and (r5) constitute a contradiction.
This contradiction only arises when the predicates 'true' and

'false'referring to sentences in a language S are used in S itself.
On the other hand, it is possible to proceed without incurring any.
contradiction by employing the predicates r true (in Sr)' and 'false
(in S)' in a syntax of S, which is not formulated in S, itself but in
another language Sr. S, can, for instance, be obtained from S, by
the addition of those two predicates as new primitive symbols and
the erection of suitable primitive sentences relating to them, in the
following wayt r. Every sentence of S, is either true or false.
2. No sentence of S, is at the same time both true and false.
3. If, in Sr, G, is a consequence of .ft1, and if all sentences of .ft, are
true, then G, is likewise true. A theory of this kind formulated in
the manner of a syntax would nevertheless not be a genuine syntax.
For truth and fakehood arc not propil ryntactital propqties ; whether
a sentence is true or false cannot generally be seen by its design, that
is to say, by the kinds and serial order of its symbols. [This fact
has usually been overlooked by logicians, because, for the most
part, they have been dealing not with descriptive but only with
logical languages, and in relation to these, certainly, 'true' and
'false' coincide with 'analpic' and 'contradictory', respectively,
and are thus syntactical terms.l

Even though 'true' and'false' do not in general occur in a
proper syntax (that is to say, in a syntax which is limited to the
design-properties of sentences), yet the majority of ordinary sen-
tences which make use of these words can be translated either into
the object-language or into the syntax-language. If 6, is 'A', then
'61 is true'can, for example, be translated by'A'. In logical in-
vestigation, 'true' (and 'false') appears in two different modes of
use. If the truth of the sentence in question follows from the rules
of transformation of the language in question, then 'true' can be
translated by 'valid' (or, more specifically, by 'analytic', 'de-

$6o6. rrre coNcEPTS'TRUE'AND 'FALSE' 2r7

monstrable') and, correspondingly, 'false' by 'contravalid' (or

'contradictory', 'refutable'). 'True' may also refer to indeter-

minate sentences, but in logical investigations this only happens in

the conditional form, as, for example: 'If 61 is true, then 6, is true

(or false, respectively).' A sentence of this kind can be translated

into the syntactical sentence: '62 is a consequence of 6t (or is in-

compatible with Gr, respectively).'

$ 6oc. THr SvNrAcrIcAL AxrINourns

We will now return to the question whether, in the formulation

of the syntax of S in S, contradictions of the kind known as

syntacti.cal antinoruies may not arise if, in the ordinary phrasing

of th"t" antinomies, 'true' and ' false' are replaced by syntactical

terms in the manner indicated above.

property-whether rightly or wrongly-to itself. This has already

been shown in the case of Language II (see $ 35). Now, by means

of a construction of this kind, we will try to restate the antinomy

of the liar. It consists of a sentence which asserts its own false-

hood.
First, let us replace ' false' in this antinomy by ' non-dernon-

strabh' . If we construct a sentence of S, 6r, which asserts of itself

that it is non-demonstrable in S, then we have in 61 an analogue

to the sentence 6 of Language II which has already been dis-

cussed (and to the sentence 61 of Language I). Here no contra-

diction arises. If G1 is true (analytic), then 61 is not false (contra-

dictory), but is only non-demonstrable in S. This is actually the

case (see Theorem 36.2). The properties 'analytic' and 'non-

demonstrable' are not incompatible.
Now let us replace 'false' by'refutable' in the sentence of the

liar. Assume that a sentence, 62, is constructed in S which asserts

that 62 is itself refutable (in S). 62 is then an analogue to the

assertion of the liar. We will now observe whether the contradic-

tion arises in the ordinary way. First let us assume that 6, is

( 'g)

(r+)

(rs)
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actually refutable. Then 6s will be true, and therefore analytic.
On the other hand, however, every refutable sentence is contra-
dictory, and hence not analytic. Therefore the assumption is a
false one and G2 is non-refutable. From this no contradiction

The impossibility of reconstructing the antinomy of the liar
with the help of the terms 'non-demonstrable ' or ,refutable' is due
to the fact that not all analytic sentences are also demonstrable, and
similarly not all contradictory sentences are also refutable. But
what would happen if we were to use in place of ,true' and ,false,

the syntactical terms 'analytic' and ,contradictory,? Like ,true,

and 'false', these two terms constitute a complete classification of
the logical sentences. It is easy to show that we can construct
contradictions if we assume that ,analpic (in S)' and ,contra-

dictory (in S)' are defined in a syntax which is itself formulated in
S. We could then, of course, construct a logical sentence Gs which,
in material interpretation, would mean that 63 was contradictory.
6, would correspond exactly to the assertion of the liar. Since it
would be a logical sentence, 63 would be either analytic or contra-
dictory. Now, if 63 were contradictory, G, would be true, there-
fore analytic, therefore not contradictory. Hence, 6s would have
to be non-contradictory. But then Gs would be false, and there-
fore contradictory-which would be a contradiction.

On the same assumptions it would be possible also to construct
Grelling's antinomy. Let us state the procedure for Language II.
Assuming that a predicate'An'is definable in II in such a way
that 'An(r)' means: "The sNsentence tr is analytic (in II).',
'Heterological' could then be defined as follows: ,Het (r) =

- An (subst [*, 3, str (r)])'. Let'Het (*)'have the series-number b.
Then it is easy to show that, for the sentence , Het (b)', either
assumption-that it is analytical or that it is contradictory-leads
to a contradiction.

We have seen that if 'analpic in S' is definable in S, then S
contains a contradiction; therefore we arrive at the followirrg
result:

$6oc. run srNTAcrIcAL ANTINoMIES ""tg

Theorem 5oc.r. If S is consistent, or, at least, non-contra-
dictory, then' ana$ttic (rn S)' is hnefinable zz S. The same thing
holds for the remaining c-teflns which were defined earlier (in so

far as they do not coincide with d-terms), for instance, 'valid',
'consequence', 'equipollent', etc. But it is not true for every
c-term which does not coincide with a d-term.

If a syntax of a language S, is to contain the term 'analytic
(h S.)' then it must, consequently, be formulated in a language S,

which is richer in modes of expression than Sr. On the other hand,
the d-term 'demonstrable (in St)'can, under certain circumstances,
be defined in 51; whether that is possible or not depends upon the

wealth of modes of expression which is available in St. With

Languages I and II the situation on this point is as follows:

'analytic in I'is not definable in I, but it is definable in II;

'analpic in II' is not definable in II, but is only definable in a still
richer language. 'Demonstrable in I', because it is indefinite, is
not definable in I; but 'demonstrable in II' can be defined in II'
namely, by means of '(l r) [BewSatzII (r, r)]'.

The foregoing reflections follow the general lines of G6del's
treatise. They show also why it is impossible to prove the non'
contradictoriness of S in S. Closely related to Theorem r is the
following theorem (a generalization of Theorem 36.7; see G6del

fUnentscheidbare), p. 196; Gtidel intends to give a proof of this
generalized theorem in a continuation of that treatise).

Tlreorem 6oc.z. If S is consistent, or at least non-contradictory,
thenno proof of the non-contradictoiness or consistency of S can be

formulaud in a syntax which uses only the rneans of expression which
arc aoailable in S,

The investigation of Richard's antinomy (p. zril leads to a
similar conclusion. Assume that in S there is an QIg by means of
rrhich a univocal enumeration of all the 3ptr which are definable
in S might be constructed. This could be effected, for example, by
means of an fu, such that every full expression fur(aptt) was a $.
We will use the symbolism of II and write fut 'num'.

The univocality of the numbering is assumed:

(num(F)=num(G))r(n) (F(x)=G(x)1.  ( r )

With the help of ' num ', ' Ri ' (" Richardian ") could now be clehned ;

Ri(r)=(r)  [ (num(F)=*)o-F(a)] .  (z)
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Shce 'Ri' is a aprr, it has a certain particular number designated
by'num(Ri)'. we assume first that the number of 'Ri' is itself
Richardian: 'Ri[num(Ri)],. Then if we substitute in (z)
'num(Ri) '  fot 'ac ' ,  and ,Ri '  for  .F ' ,  , -Ri [num(Ri) ] '  

easi ly
follows. Since our assumption leads to its opposite, it foll,ows that
it is refuted; and therefore it is proved ttrai

From (r): -Rilnum(Ri)1.

(num (F):num(Ri))r (-Flnum(Ri)l = 
-f,i [num(Ri)]).

From (3), (4): 
(+)

(num (F) =num(Ri))r 
-.Flnum (Ri)]. (S)

From (z):

(fl [ (num (F") = num (Ri) ) o - F inum (Ri)] I c Ri [num (Ri)].

From (5), (6):
(6)

Q\

(r)

Ri[num(Ri)].
The proved sentences (3) and (7) contradict one another; S is

therefore contradictory. Thence follows :
Theorem 6oc.3. If S is consistent, orat least non_contradictory,

then it is not possible to construct in S either an ?Ig or an gu by
means of which a univocal enumeration of the 3prr of S co"ta U"
constructed.-Although the aggregate of the 3prl which are de_
finable in S is a denumerable aggregate, in accordance with this
Theorem an enumeration of them cannot be efiected with the
means available in s itself. [The condition in this Theorem is only
added fbr the purpose of facilitating understanding; if g is in_
consistent, then in S no univ.cal enumeration of a number of
objects is possible at all, since no (non-synonymous) $ are
avaiiable. J

$ 6orl. Eveny Anrrnuerrc rs DEFEcrrvE

$6od. rvenv ARITHMETIc rs DEFEcTIVE zzr

defined in S, for which there is no atut in St having the same course

of values; this is true for every la.rguage S' however rich it may be,
if we take a sufficiently rich language as Sr. We define the 3tu1
'k' in S, in the following way: r. If x is not a term-number of a

Afu' of Sr, ihen k (r) = 0; z. If x is a term-number of a 3fur of S'

let us say ' h', then k (r) = h (*) + r. Then every 3fu1 of Sr deviates

from 'k' for a certain argument (namely, for its own term-number);

and therefore in S, there is no 3fu1 having the same course of
values as 'k'. fn other words: a real number can be given which is
not equal to any real number definable in St (see p. zo6).

Theorem 6od.r. For every language S a real number which

cannot be defi.ned in S can be gizten,
The above definition of 'k' corresponds to the so-called

diagonal method of the Theory of Aggregates. Theorem r corre-
sponds to the well-known theorem of the Theory of Aggregates

which states that the aggregate of the real numbers is a non-
denumerable aggre9ate. (On the concept of the non-denumerable
aggregates see, however, $ 7t d.) On the other hand, the above
line of thought also corresponds to Richard's antinomy.

We will now summarize briefly the results of this investigation
of the syntactical antinomies. Let the syntax of a language S be
formulated in S. The reconstruction of the syntactical antinomies
by means of terms which are defined in S (for instance, in Lan-
guage II, 'non-demonstrable in II 'or'refutable in II ') does not

lead to contradictions; but it opens the way to the proof that
certain sentences are non-demonstrable or irresoluble in S. With

the help of other terms (for instance, 'analytic', 'contradictory',

'consequence', 'correlated number', ' term-number') the recon-

struction of the syntactical antinomies is possible. This leads to the
proof that these terms (of which the definitions have uP to now

only been formulated in words and not within a formalized system)
cannot be defined in S, if S is consistent, or at least non-contra-
dictory. Since terms and sentences of pure syntax are nothing
other than syntactically interpreted terms and sentences of arith-
metic, the investigation of the syntactical antinomies leads to the
conclusion that eoery arithmetic which is to any extent formulated
in any language is necessarily defectioe in two respects.

Theorem 6od.z. For ettery arithmetical systern it is possible to

state: (c) indefinable arithmetical terms and (b) inesoluble arith-
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metical sentences (Gddel lUnnntscheidbaref). trn connection with
(a) see Theorems 6oc.t,3,6od.r. In connection with (D) see
Theorem 6oc.z; further irresoluble sentences analogous to 6 in
Itr and 61 in I (see $ 36) can be constructed.

This defectiveness is not to be understood as rr there were, for
instance, arithmetical terms which could not be formally (i.e. in a
calculus) defined at all, or arithmetical sentences which could not
be resolved at all. For every term which is stated in any un-
ambiguous way in a word-language, there exists a formal defini-
tion in an appropriate language. Every arithmetical sentence G,
which is, for instance, irresoluble in the language S, is yet de-
terminate in Sr; in the first place there exists a richer syntax-
language Sr, within which the proof either that 61 is analytic or
that 61 is contradictory can be stated; and secondly, there exists
an object-language Ss ofwhich Sf is a proper sub-language, such
that 61 is resoluble in Sr. But there exists neither a language in
which all arithmetical terms can be defined nor one in which all
arithmetical sentences are resoluble. [This is the kernel of truth
in the assertion made by Brouwer lSprathef, and, following him,
by Heyting fLogihl, p. 3, that mathematics cannot be completely
formalized.] In other words, everything mathematical can be
formalized, but nathematics cannot be erhawted by oo" systmt; it
requires an infinite series of ever richer languages.

(d) TRANSLATION AND INTERPRETATION

$ 6t. TneNsr,nrroN FRoM Oi,re LANcuecn
INTO AI{OTHER

We call D, a syntactical conehtion between the syntactical ob-
jects (![ or .ft) of one kind and those of another when D, is a many-
one relation by means of which exactfy one object of the second
kind is correlated to every object of the first, and every object of
the second kind to at least one of the first. The !I (or $) which is
correlated to 1I, (or Sr, respectively) by.means of D, is called the
Dr-conelate of l[ (or of $r), and is designated by 'D1pIl' (or
' D, [Sr] '). Herein the following condition is assumed : if !I" has
no direct Dr-correlate but can be subdivided into the expressions
Ar,Ao,...V*, which have such correlates, then Srtll,,] is equal
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to the expression composed of Dt[alt] 'Dr[U;], ' ..Dr[QI-], The

class which contains all and only the D.-correlates of the sen-

tences of .R, is designated by 'Dt[.ftJ'. ,{ccording to t}ris, the

correlates of sentences are also determined by means of a correla-

tion between expressions, and the correlates of sentential classes

by means of a correlation between sentences. [In a formalized

Byntax, D1 can, for instance, be either an 692, a !ptz, an ?[gr, or an'

$u1.] We say that a certain syntactical relation is transformed into

a certain other one by means of Dt if, when the first relation sub-

sists between any two objects, the second subsists between the

Dr-correlates of these objects.
A syntactical correlation, D1, between all sentential classes (or

all sentences, or the expressions of an expressional class ft1, or all

symbols) of S, and those of Sr, is called a transformance of St into

S, in respect of classes (or of sentences' or exPressions, or symbols,

respectively) provided that, by means of D1, the consequence rela-

tion in S, is transformed into the consequence relation in Sr. For

S, it is assumed that no expression of .ftr, but every sentence of St

which does not belong to .ftr, is univocally analyzable into several

expressions of .ft1. Dt is called a transformance of St into S, if Dt is a
transformance of S, into S, of one of the kinds mentioned. ' L-trans'

formance in respect ofclasses (sentences, and so on)' is analogously

defined, the requirement in this case being the maintenance of

the relation 'L .consequence'.

Theorem 6r.r. If D1 is a transformance of Sr into Sr, then D1
is also an L-transformance of S, into Sr.

Theorem 6r.2. If D, is a transformance of S, into S, in respect of

senterces, then by D, the consequence relation between sentences
in S, is transformed into the consequence relation between sen-

tences in Sr. The converse is not universally true.
A transformance of S, into 52 is called reversible when its con-

verse (that is, the relation subsisting in the reverse direction) is a

transformance of 52 into Sr; othenvise irteversible'
Theorem 6r.3. Let D1 be a transformance of S, into Sr; if Dt is

reversible, then D1 is a one-one relation. The converse is not uni-

versally true.

Example of. an ineuercible transformance in respect of sentences:
the transformance given by Lewis fLogicf, P. r78, of his system of
strict implication (without the existential postulate) into the ordinary
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is true. We can, as previously, alter the formulation of the con-
dition thus: for any 'Pr' and 'P2', 'M(P)=M(P)' must always
be a consequence of '(*) (Pt(r)=Pr(*))'. With this as a basis,
we now give the following definitions. ., .

Extensionakty in relation to partial expressions. Let $r, occur in
6r i 6r is called extensional in relation to !pr1 if for any closed
!prr, and any ft1 such that $r, and !pr2 are coextensive in relation

l-tRr--l
to Sr, 61""d grL6;;J are always equipollent in relation to lt1.

Let $u1 occur in 6r i 6r is called extensional in relation to $ut if,
for any closed $u2 and any .ft1 such that Su, and Su2 have the

same course of values in relation to .ftr, 61 
""d 

g, lgltl are equi--Luurl
pollent in relation to .ftr. If G1 is extensional in relation to all the
closed G, !pr, and $u which occur in Gr, 6r is called extensional.
An 69r, to which Sr, Bu, or 6 are suitable as arguments, is called
extensional if every full sentence of 69r with closed arguments is
extensional in relation to every argument. Correspondingly for
every 6fu1 or !pr, to which !pr, $u, or 6 are suitable as arguments:

If every sentence of S is extensional in relation to every closed
partial expression $r (or $u) then S is called ertensionalinrelation
ro pr (or $u, respectively). If S is extensional in relation to partial
sentences, to Sr, and to $u, then S is called extenslonal.

Theorern 66.r. (a) If S is extensional in relation to !pr, then two
closed lpt which are coextensive (absolutely or in relation to Sr)
are always (absolutely or in relation to Sr, respectively) synony-
mous. (6) If S is extensional in relation to $u, then two closed $u
which have the same course of values (absolutely or in relation to
Sr) are always (absolutely or in relation to .ftr, respectively)
SynOnymOUS. | | i

Examples: The languages of Russell and of Hilbert and our own
Languages I and II are extms'ional in relntion to partinl sentences.
That is shown, for instance, by the criterion of Theorem 65.7 c (cf.
.Hilbert fLogihl, p. 6r). The syrnbols of equivalence in these lan-
guages are symbols of proper equivalence and hence, according to
Theorem 65.roD, they are also symbols of proper identity for 6.
The form of the language will be simpler if only one symbol of
identity is used (as in I and II, and in contrast with Russell and
Hilbert), the same for G as for $, 02[ and so on, If from Russell's
language R we construct a new language R', by extending the rules
of formation to admit of undefined pru with 6 as arguments, then

$66. rxrrNsroNAlrry rN RELATToN To nARTIAL ExpREssIoNs 245

R'is no longer necessarily extensional in relation to partial sen-
tences; in order to guarantee extensionality here also, we can pro-
ceed, for example, by admitting 6 = 6 as a sentence, and (in analogy
with PSII zz, see below) stating a new primitive sentence as follows:
' (p = q) c1p = q)' . lt the exSgnded language II' is constructed from
II in the same way, then it is extensional in relation to partial sen-
tences. Here no new primitive sentence is necessary, since we use
the symbol of identity as symbol of equivalence, so that the above
sentence of implication is demonstrable.

Languages I and II are also extensional in general. In II the ex-
tensionality in relation to pr and $u is guaranteed by PSII zz and
z3 (see p. 9z), In the case of the other languages, the question of
extensionality in relation to $r and $u can only be decided after
further stipulations have been made, especially regarding what
undefined 'prb (for n> t) are to be admitted.

The languages of Lewis, Becker, Chwistek, and Heyting are
intensional, for partial sentences as well as for the rest (see $ 67).

$ 62. THB Tnrsrs oF ExrENsroNALrry 5

Wittgenstein (lTractatus], pp. ro2, r4z, r5z) put forward the
thesis that every sentence is " a truth-function of the elementary
sentences" and therefore (in our terminology) extensional in re-
lation to partial sentences. Following Wittgenstein, Russell
(flntrod. lVittg.l, pp. 13 ff.; lPrinc. Math.)Vol. r, znd edition, pp.
xiv and 6SS ff.) adopted the same view with regard to partial
sentences and predicates; as I also did, but from rathera different
standpoint (lAufbau], pp. 59 ff.). In so doing, however, we all
overlooked the fact that there is a multiplicity of possible languages.
Wittgenstein, especially, speaks continually of "the" language.
From the point of view of general syntax, it is evident that the
thesis is incomplete, and must be completed by stating the lan-
guages to which it relates. In any case it does not hold for all
l{rguages, 4s_ the well-known e! rmples of intensional languages
show. The reasons given by Wittgenstein, Russell, and myself, in
the passages cited, argue not for the necessity but merely for the
possibility of an extensional language. For this reason we will now
formulate the tltesis of extensionality in away which is at the same
time more complete and less ambitious, namely: a uniztercal
language of science may be extensional; or, more exactly: for eve-ry
given intensional language Sr, an extensional language" _$a4.gf"!9
constructed such that S, can be translated into Sr. In what follows
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we shdl discuss the most important examples of intensional sen-

tences and demonstrate the possibility of their translation into

sentences of an extensional language.

I-tet us enumerate some of the most important examples of in-
tensional smtences. ' A' and 'B' are abbreviations (not designations)
for sentences, €.g. "It is raining now in Paris", etc, r. Russell
(fPrinc. Math.f;"x,Iol. r, P. 73 and fMath. Phil'f, pp. r87 ff., and
similarly Behmann lLogik], p. z9) gives examples of approximately
the following kind : " Charles says A ", " Charles believes A ", " it is
strange that A ", " A is concerned with Paris ". Incidenally Russell
himself later, influenced by Wittgenstein's opinions, rejected these
examples, and asserted that their intensionality was only ap-
parent (fPinc. Math.f, Vol. r, znd edition, Appendix C). We
prefer to say instead that these sentences are genuinely intensional
but are translatable into extensional ones. z. Intensional sentences
concerning being-contained-in and substitution in relation to ex-
pressions : " (The expression) Prim (g) contains (the expression) 3 " I
" Prim (3) results from Prim (r) by substituting 3 for r ". Sentences
of this kinil (but written in symbols) occur in the languages of
Chwistek and Heping. 3. Intensional sentences of the logic of
modali t ies: "A is possible.";  "A is impossible"; "A is necessary";
" B is a consequence of A " ; " A and B are incompatible ". Sentences
of this kind (in syrnbols) occur in the systems of the logic of modali-
ties constmcted by Lewis, Becker, and others. 4. The following
intensional sentences are akin to those of the logic of modalities:
" Because A, therefore il " I " Although A, nevertheless B "; and the
like. That any sentence 61 of the examples given is intensional in
relation to 'A' and 'B' follows easily from the criterion of Theorem
6S.8a. I f ,  for instance, 'A' is analyt ic and'C' is synthetic, then
' A = C' is a consequence of ' C' ; but the false sentence "A is neces-
sary = C is necessary " is not a consequence of ' C'. These examples
will be discussed in greater detail in what follows.

The above examples appear at first glance to be very different

in kind. But, as a closer examination will show, they agree with

one another in one particular feature, and this feature isthereason.

fg \ti, ilttlttsiona!\: aII these senteilces are qugs"t:syr.ttactical-;g-

Ienceslnd, in particular, they are quasi-syntactical with respect to

those expressions in relation to which they are intensional. With

the establishment of this characteristic , the pos$bility of their trans-

Iation into an extensional Imryuage is at once given, inasmuch,

namely, as every qtasi-syntadical sentence is translntabh into a

correlatioe syntactical sentence. That the syntax of any language

(even an intensional one) can be formulated in an extensional

language is easy to see. For arithmetic can be forrnulated to any
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desired extent in an extensidnal language, and hence an arith-
metized syntax also. {ncidentally this is equally true of a syntax in
axiomatic form.

What we have said holds for all examples of intensional sen-
tences so far known. Since we are ignorant of whether there exist
intensional sentences of quite another kind than those known, we
are also ignorant of whether the methods described, or others, are
applicable to the translation of all possible intensional sentences.
For this reason the theis ol extensionality (although it seems to me
to be a fairly plausible one) is presented here only as a suppoition.

$ 68. INrrNsroNAL SENTENcEs oF THE AuroNyMous

, MoDE oF Sprrcs

Some of the known examples of intensional sentences belong to
the autonymous mode of speech. When translated into an ex-
tensional language, they are transformed into the correlated syn-
tactical sentences. We will first of all examine the converse process,
namely, the construction from an extensional syntactical sentence of
an intensional sentence with an autonytnous expression. By this
means the nature of these intensional sentences will become clear.

Let S, and S, be extensional languages; and let S, contain S,
as a sub-language and the syntax of S, by virtue of Dr. Let ?I, be
an 6, !Bt, or $u of Sr, and 6, (in S) have the form Srr(D, p[r]).
In material interpretation: Dr PIr] is a syntactical designation of
?[ri 6z ascribes to ![, a certain syntactical property expressed by
!Frz. !Frz(?Ir) is in general not a sentence of Sr. Now, out of Sr,
we construct an extended language S, (that is to say, S, is a proper
subJanguage of Ss). The rules of formation are extended as
follows: in Sr, for every !I, which is isogenous with ![, in Sr,
Srr(%) is a sentence, and hence Str(%) also (let this be 61);
further, the rules of transformation are extended as follows: in Sr,
for every ?Is which is isogenous with ?t, in Sr, !pr, (?Is) is equi-
pollent to pr2 (D, PIJ ), and therefore 6, is also equipollent to
!Fr, (D, [Ur] ) (ttris is 6z). Then, according to the criterion given
earlier (p. 238), ![1 is autonymous in 6r. A sentence which is
formulated like 61 is in general intensional in respect of ![r.

Example: Let S, be I. As syntax-language in 52 we will take the
word-language. Let the D1-correlates (the syntactical designations)
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Extmsional sentences
of syntax

designation) of some sentence.

r D. Charles says 'A'.

zD. Charles thinks'A'.

$ 68. lNrrusloN-{L sEN?ENcEs oF THE AUToNyMous MIDE z+g

Now some of the examples of intensional sentences previously
mentioned have the same character as the intensional sentences
constructed in the way here described: their intensionality is due
to the occurrence of an auton5rmous expression. We will cite some
examples of this, at the same time giving the correlated syntactical
sentences. The latter may belong to an extensional language.
[Sentences r D and zD belong to descriptive syntax, 3b, 4i, and.
56 to pure'syntax. The preceding investigations and.definitions
have all been given in relation to pure syntax only; they may,
howeve_r, be correspondingly extended to apply to descriptive
syntax.] To interpret these sentences as belonging to the autony-
mous mode of speech seems to me to be the natural thing, espe-
c.ially in the case of. 4aand 5a. However, if anyone pr"i.o not
to ascribe one of them (say 2a or 3a) to the autonymous mode of
speech, he is at liberty to do so; the sentence in question will then
belong to the material mode of speech. The only essential points
are: (r) these intensional sentences are quasi-syntactical; and
(z) they can (together with all other sentences of the same lan_
guage) be translated into extensional sentences, namely, into the
correlated syntactical sentences.

3a. A has to do with Paris.

4a. Prim(3) contains 3.
5 a. Prim (3) results from

Prim (r) by the substitution
of 3 for r.

3 6. 'Paris' occurs in a sentence
which results from 'A' by
the elimination of defined
symbols.

4b. '3 '  occurs in 'Pr im(3) ' .
56. 'Pr im(3) '  resul ts f rom

'Prim (r) ' by the substitu-
t ion of  '3 '  for  ' r ' .

/

pression itself or, alternatively, a s]'rnbol which is synonymous with
it (and is thus, originally, not a designation but an-abbreviation for
it). As a result of the employrnent of the autonymous mode of
speech, many sentences of Chwistek's semantics are intensional.

syntax of I in I, in Part II). The fact that Chwistek believed himself
forced to abandon the simple rule of types for his semantics and to
return to the branched rule (see $ 6oa), was also, in my opinion,
only a consequence of his use of the autonymous mode of sfeech.

Heyting gives as the rvord-translation of certain s;"mbolic ex-
pressions of his language: "the expression which results from a
when the variable r is replaced wherever it appears by the com-
bination of symbols p " ([Math. r], p. +) and: ,,g does not contain r',
([Math. tl, p. Z). Such formulations, like our examples 4a and 5a,
belong, without any doubt, to the autonymous mode of speech,
But even the sentential calculus of Heyting's system [Logik]contains
intensional sentences; sentential junctions rvhich can be shown to
possess no characteristic are used (see p. zo3). These circumstances
make it natural to suppose not only that the whole system can be
translated by us into a system of syntactical sentences, but also that
this was in a certain sense the author's intention. ,, In a certain
sense" only, because the distinction between the object- and the

fnbnsional sentertces
of the autonymous mode

of speech

Let'A'be an abbreviat ion (not a

r a. Charles says (writes, reads)
A.

za. Charles thinks (asserts, be-
lieves, wonders about) A.
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ra. A
sible.

2a. A. -A is
imposrible.
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$ 6q: INrrwsroNAL SENTENcES oF THE Locrc
OF MoDALITIES

We shall now give some further examples of intensiot al sen-
tences together with their translation into extensional syntactical
sententes. By means ofthis translation the intensional sentences are
shown to be quasi-syntactical. Sentences rato +a. contain teril-s
that are usually known as modalities [,possible', 

,impossible',

'necessary', 'contingent' (in the sense of ,neither necessary nor
impossible')]. Sentences Sa to Za contain terms that are similar
in character to these modalities, and are therefore treated by the
newer systems of the logic of modalities (Lewis, Lukasiewicz,
Becker, and others) together with them. In these systems, the
modal sentences are symbolically formulated in approximately the
same way as our examples rD to 70.1 Examples 8a are intensional
sentences of the ordinary word-language which we add here be-
cause, as the syntactical translation shows, they are akin to the
modal sentences.' A' and' B' are here sentences-i.e. abbreviations
(not designations) of certain sentences (such as synthetic sentences)
either of the word-language or of a symbolic language.

Intensional sentences of the
logic of modalities

Extmional sentences of
syntae

r c. 'A' is not contradictory.

z c.' A. -A' is contradictorv.

is pos- | rD. P(A).

zD. I (A.  -A);
-P(A. -A).

$69. INTENSIoNAL SENTENCES-LoGIC oF IVIoDALITIES 25I

3 c.  'AV -A' is analyt ic.

4c, 'A' is synthetic. ( 'A' is
neither analytic nor contra-
dictory; neither 'A' nor
'-A' is contradictory.)

5c, 'B' is an L-consequence
of 'A ' .

6c. 'A' and 'B' are L-equi-
pollent (i.e. munral L-conse-
quences).

j  c. 'A' and 'B' are L-com-
Patible. ( ' -B' is not an
L-consequence of 'A'.)

8c.  'A ' is  analyt ic, 'B ' is  an
L-consequence of t A', ' B' is
analytic. ('A' is valid, ' B' is
a consequence of 'A',  'B' is
valid.)

Since the terms used in the logic of modalities are somewhat vague
and ambiguous, it is also possible to choose other syntactical terms
for the translations; in z c, for instance, instead of'contradictory'we
may put' contravalid',' L-refutable', or' refutable'. Similarly in the
other cases, instead of the L-c-term we can take the general c-term,
the L-d-term, or the d-term. With regard to 8 c, in the majority of
cases the general c-term (or the P-term) is perhaps more natural as
an interpretation of 8 a than the L-term. The difference between the
so-called logical and the so-called real mod,alities can be represented
in the translation by the difference between L- and general c-terns
(or even P-terms):

3a. Av -A is
necessary.

4a. A is con-
tingent,

5a. A strictly
implies B; B
is a conse-
quence of A.

6a. A and B
are strictly
equivalent.

7a. A and B
are compat-
ible.

8a. Because A, therefore B; A,
hence B.

go. A is logically impossible.
toa. A is really impossible.

3D. N(Av-A);

-P-(Av-A).
4b. -N(A).  -

I (A);
P(A).  P(-A).

50. AcB.

60. A=B.

zD. C(A,B);

-(A < -B).

gc. 'A' is contradictory.
rod1. 'A' is contravalid.
rocr. 'A' is P-contravalid.

The translation of roa depends upon the meaning of 'really im-
possible'. If this term is so meant that it is also to be applied to cases
of logical impossibility, then the translation rocr must be chosen;
otherwise rocr. Analogous translations may be given for the three
other modalities-for ' logically (or " really ", respectively) possible',
' necessary', and' contingent'.

That sentences r4 to roa and rb to 7b are intmsional is easily
seen. lExample: Let 'Q' be an undefined pr6, and'='a symbol
of proper equivalence. Let 6t be'Prim(3)=Q(z)' ;  62 be:
'Prim (3) is necessary' ; and 6s : ' Q (z) is necessary'. Then 6r = Gt
cannot be a consequence of 61 (for 6, is synthetic, 6, analytic, and
Gs contradictory, ald hence 61=€9 is contradictory). Therefore
(by Theorem 6S.Zb) 6z is intensional in relation to 'Prim(3)'.1
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Since the sentences given here are quasi-syntactical, we can
interpret them as sentences either of the autonymous or of the

material mode of speech. In the case of the sentences of $ 68, the
verbal formulations, or the verbal paraphrases given by the

authors, suggest interpretation in the autonymous mode of speech.

On the other hand, in the case of the symbolic sentences r b to 7 b,

it is not cledi which of the two interpretations is intended-in spite
of the fact that paraphrases (of the same kind as sentences r 4 to

7 a), ar'd sometimes even detailed material explanations as well, are
given by the authors. In relation to a particular example, the

decisive question (as formulated in the material mode) is the fol-
lowing: Are ' I (A)' and 'A is impossible' to refer to the sentence

'A', or to that which is designated by 'A'? In the formal mode:
fs "A'is impossible'also to be a sentence? [If so, it must un-
doubtedly be equipollent to 'A is impossible.'] If the a,rswer is in
the affirmative, then ' I (A)' and 'A is impossible' both belong to
the autonymous mode of speech; if in the negative, then they
belong to the mate.rial mode of speech. The authors do, it is true,
say that the sentences of modality are concerned with propositions,
but this assertion would decide the question only if it were quite

clear what was meant by the term 'proposition'. We will discuss
the two possibilities separately.

r. Suppose that by the term 'proposition' the authors mean
what we mean by'sentence'. Then the term'proposition'is a
syntactical term, namely, the designation either of certain physical

objects in descriptive syntax or of certain expressional designs in
pure syntax. Then 'A is impossible' is concerned with the sen-
tence 'A', hence is equipollent to "A' is impossible', and belongs
to the autonytnous mode of speech. In this case the intensionality of

the modal sentences does not depend uPon the fact that they
speak about expressions (in the examples, about sentences, in

other cases, also about,predicate-expressions) but upon the fact
that they do so according to the autonymous and not according
to the syntactical method.

z. Suppose that by a'proposition'the authors mean not a sen-
tence (in our sense) but that which is designated by a sentence.

[For instance, in Lewis's lLogrr], pp. 472fr., the distinction be-

tween 'proposition' and 'sentence' is possibly to be understood
in this way.l We will leave aside the question of what it is that is
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designated by a sentence (some people say thoughts or the content
of thoughts, others, facts or possible facts); it is a question that
easily leads to philosophical pseudo-problems. So we shall simply
say neutrally "that which is designated by a sentence". In this
interpretation, the sentence 'A is impossible' ascribes impossi-
bility not to the sentence 'A'but to the A which is designated by
the sentence. Here the impossibility is not a property of sen-
tenceF. "A'is impossible'is not a sentence; it is therefore a
case not of the autonymous but of the material mode of speech.
'A is impossible' ascribes to the A which is designated by the sen-
tence a quasi-syntactical property, instead of to the sentence
'A' the correlated syntactical property (here 'contradictory').

[In this example. the second interpretation is perhaps the more
nattrral. It is the only possible one in the case of the formulation
'the process (or: state of affairs, condition) A is impossible'; see

$ 79, Examples 33 to 35. On the other hand, we are perhaps more
inclined to relate a sentence about the consequence-relation or
about derivability to sentences rather than to that which is desig-
nated by them, and accordingly to choose the first interpretation.l
We shall see later that, in general, the use of the material mode of
speech, though it is not inadmissible, brings with it the danger
of entanglement in obscurities and pseudo-problems that are
avoided by the application of the formal mode. €o also here, the
systems of the logic of modalities are (on the whole) formally

Forrect. But if they are (in the accompanying text) interpreted in
the second way, that is, in the material mode of speech, then
pseudo-problems easily arise. This may perhaps explain the
strange and, in part, unintelligible questions and considerations
which are to be found in some treatises on the logic of modalities.

C. L Lewis was the first to point out that in Russell's language
fPrinc. Math.] there is no way of expressing the fact that a certain
proposition necessarily holds or that a particular proposition is a
consequence of another. As against this, Russell can rightly main-
diin that, in spite of it, his system is adequate for the construction
both of logic and of mathematics, that in it necessarily valid sen-
tences can be proved and a sentence which follows from another
can be derived from the fonrier.

Although Lewis's contention is correct, it does not exhibit any
lacunawithin Russell's language. The requirement that a language be
capable of expressing necessity, possibility, the consequence-relation,
etc., is in itself juqtifiable; it is fulfilled by us for instance in the case

I
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of our Languages I and II, not by means of anything supplementary
to these languages, but by the formulation of their syntax. On the
other hand, both Lewis and Russell-they are agreed on this point-
look upon the consequence-relation and implication as terms on the
same footing as sentential connections, of which the first is the
narrower. For this reason, Lewis found himself obliged to extend
Russell's language by introducing, in addition to Russell's symbol of
implication 'f ' (so-called material implication; in our terminology:
proper implication), a new symbol' < 'for what is called stict im-
plication (in our terminology: an intensional syrnbol of improper
implication without characteristic). This is intended to express the
oonsequence-relation (or derivability-relation), that is to say, in
Lewis's language,'A< B'is demonstrable if 'B'is a consequence of
'A'. Lewis rightly pointed out that Russell's implication does not
correspofld to this interpretation, and that, moreover, none of the
so-called truth-functions (in our terminology: the extensional sen-
tential junctions). can express the consequence-relation at all. He
therefore believed himself compelled to introduce intensional sen-
tential junctions, namely, those of strict implication and of the
modality-terms. In this way his system of the logic of modalities
arose # an intensional extension of Russell's language. The system
is set forth by Lewis infSuroeyf,pp.2gr ff., following MacColl,'and
later presented in an improved form in lLogicl, pp. r2z ff., profiting
by the researches of Beckqr and others. To Russell's system are added,
as new primitive symbols, syrnbols for 'possible' and 'strictly equi-
valent', and with the help of these, 'impossible', 'necessary', 'strict
implication', 'compatible', etc., are defined. Similar systems have
been constructed by Lewis's pupils-by Parry (lKoll.'[, p. 5), for ex-
ample, and Nelson ([Iarezsional]. Becker (lModalitdtslogik'l),stzrtiu;'g
out from Lewis's fSunteyf , has made some interesting investigations
using the same method. Before this Lukasiewicz had already worked
out so-called many-valued systems of the sentential calculus (see his
fAussagenhalhtill). In fMehrwutige) he interprets the sentences of
the three-valued calculus by a translation into the modal sentences;
these are, as are Lewis's, formulated in accordance with the quasi-
syntactical method,

It is important to note the fundamentally different natwe of im-
plication and the consequcnce-relation. @rialty expsssed: the
consgqggqqa:&!4tioq jg.-e-!g! atioo be@

* not a relation hetween s@ces. [Whether, for example, Russell's
bpinion that it is a relation between propositions is erroneous or
not, depends upon what is to be understood by a "proposition".
If we are going to speak at all of 'that which is designated by a sen-
tence', then implication is a relation between what is so designated ;
but the consequence-relation is not. ] 'A c B '(61fas opposed to

$ 69. rxrn*sroNAr. SENTENcES-Locrc oF MoDALrrrEs z1s

the syntactical sentence "B' is a consequence of 'A" (6nF
means, not something about the sentences 'A' and ' B ', but, with
the help of these sentences and of the junction-symbol ')', some-
thing about the objects to which'A'and'B'refer. Formally ex-
pressed: 'J' is a symbol of the object-language, and 'conse-
quence' a predicate of the syntax-language. Of course, between
the two sentences 61 and 62 there is an important relation (see
Theorem 4.7). 5zcannot, however, be inferred from 6, but only
from the (equally syntactical) sentence '6, is valid (or analytic)'.
The majority of the symbolic languages (for example, Russell's

lPrirc. Math.l) are (after a suitable extension of the rules of in-
ference) logical languages, and therefore contain no indeterminete
sentences. Hence, in these systems, 62 can be inferred from G1.
Th-rs explains why the sentences of implication are in general
erroneously interpreted as sentences about consequence-relations.

[ttris is one of the points which shows clearly how unfortunate it
is that the indeterminate sentences have, for the most part, been
disregarded in logical investigations. ] The relation of. the in-
tensional symbols of implicatioa in the systems of the logic of modali-
ties, for instance that of the symbol of strict implication to 'J' and
to 'consequence', will become clear with the aid of the earlier
example on p. 235; this relation corresponds exactly to that sub-
sisting between ' LImp', ' I*p', and 'consequence'. [We can
ignore here the differences between the intensional implications in
tfie various systems; they correspond to the different definitions
oF the syntactical concept of'consequence'.1 \

Russell's choice of the designation 'implication ' for the sentential
junction with the characteristic TFTT has turned out to be a very
unfortunate one. The words 'to imply' in the EnglisH language
mean the s:rme as 'to contain' or 'to involve'. Whether the choice
of the name was due to a confusion of implication with the con-
eequence-relation, I do not know; but, in any case, this nomen-
clature has been the cause of much confusion in the minds of many,
and it is even possible that it is to blame for the fact that a number of
people, though aware of the difierence between implication and the
consequence-relation, still think that the symbol of implication
ought really to express the consequence-relation, and count it as
a failure on the part of this syrnbol that it does not do so. If we have
retained the term 'implication' in our system, it is, of course, in a
sense-entirely divorced from its original meaningl it serves in the
syntax merely as the designation of sentential junctions of a par-
ticular kind. !\ ,
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$ 7o. Tnr Qunsr-SvlqrAcrlcAl AND THE SYNrecrIcel
Mntnoos.IN THE Loctc oF MoDALITIEs

All the foregoing systems of the logic of modalities (within the

province of modern logic, in symbolic language) have, it seems'

applied th|'quasi-syntactical method. This is not a matter of con-

scious choice'between syntactical and quasi-syntactical methods ;
rather the method applied is held to be the natural one. All in-

tensional sentences of the previously existing systems of the logic

of modalities are, in any case, quasi-syntactical sentences, inde-

pendently of which of the two interpretations earlier discussed is

intended or (by a suitable incorporation in a more comprehensive
language) carried into effect. [Incidentally, it should be noted that

for each of the systems one of the two interpretations can be

arbitrarily chosen and carried out, provided no attention is paid

to the authors' indications regarding interpretation. Accordingly'

it is, in particular, possible to interpret every sentence 6t of the

logic of modalities that is intensional in respect of a partial ex-
pression 8I1, in such a way that l[r is autonymous in G,r.l Eony

intensional rystem of the logic. of modalities (and that even when

synthetic sentences are admitted as arguments) can be translated
into an extensional syntactical language, whereby every intensional

sentence, since it is quasi-syntactical, is translated into the corre-

lated syntactical sentence. In other words: synta* already con-

uins the whole of the logic of modalities, and the construction of

a special intensional logic of modalities is not required.
Whether, for the construction of a logic of modalities, the quasi-

syntactical or the syntactical method is chosen is solely a question

of expedience. We will not here decide the question but will only
state the properties of both methods. The use of the quasi-

syntactical method leads to intensional sentences, while the syn-

tactical method can also be carried into effect in an extensional
language. In a certain sense, the quasi-syntactical method is the
simpler; and it may be that it will prove to be the appropriate one
for the solution of certain problems. It will only be possible to
pronounce judgment on its fruitfulness as a whole when the

method is further developed. Hitherto, if I am not mistaken, it has

in the main only been applied to the domain of the sententid
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calculus which, on account of the resolubility of its sentences, is
quite a simple one (see Parry lKoll.f, pp. r 5 f.). It cannot be said
that the logic of modalities does not necessitate any syntactical
terms and is therefore simpler. For the construction ,of every
calculus, and therefore also of the logic of modalities, a syntax-
language is required in which the statement of the rules of in-
ference and of the primitive sentences is formulate{ (see $ 3l); it
is usual simply to take the word-language for this purpose. Now,
as soon as this syntax-language is obtained, everything that it is
desired to express by the sentences of modality-and, in general,
far more-can be defined and formulated within it. That is the
reason why we have here given preference to the syntactical
method. It is, however, in any. case, a worth-while task to develop
the quasi-syntactical method in general, and its use in the logic of
modalities in particular, and to investigate its possibilities in com-
parison with the syntactical method.

Even if in the construction of a logic of modalities rve wish to use,
not the syntactical but the ordinary method hitherto employed,
the realization that this method is a quasi-syntactical one can help
us to overcome a number of uncertainties. These, for example,
have manifested themselves at various points in the fact that,
wishing to start from evident axioms, logicians have found them-
selves in doubt about the evidence of certain sentences; it has even

, happened that sentences which had previously been individually
\regarded as evident have turned out later to be incompatible. As
soon, however, as it is seen that the concepts of inodality-even
when they are formulated quasi-syntactically-are concerned with
syntactical properties, their relativity is recognized. Th6y must
always be referred to a particular language (which may be other
than that in which they are formulated). In this way the problems
regarding the evident character of. absolute relations between the
modality-concepts disappear.

$ Zt. Is eN INrrNsroNAL Loclc Nncnssenv?

Some logicians take the view that the ordinary logic (for in-
stance, that of Russell) is deficient in some respects and must there-
fore be supplemented by a new logic, which is designated as in-
tensional logic or the logic of meaning (e.g. Lewis, Nelson

r7
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flntmsionalf, Weiss, and J<irgensenlZiele), p. 93). Is this require-
ment justified ? A close examination shows that two different
questions, which should be treated separately, are here involved.

r. Russell's language is an extensional language. It is required
that it be pupplemented by an intensional language for the purpose
of expres{ing the concepts ofmodality (' consequence ', 'necessary',
etc.). We haVe dealt with this question before, and have seen that
'the concepts of modality may also be expressed in an extensional
language, and that their formulation only led to intensional sen-

a logic of meaning is demanded. And, further, it is believed that
this second requirement also will be fulfilled by the construction
of an intensional logic of modalities; thus it often happens that the
designations 'intensional logic' and 'logic of meaning' are used
syhonymously. It is thought, that is, that the concepts of modality,
since they are not dependent merely upon the truth-values of
the arguments, are therefore dependent upon the meaning of. the
arguments. This is often especially emphasized in connection with
the consequence-relation (e.g. Lewis fSuroeyf, p. 328: " Inference
depends upon meaning, logical import, intension "). If all that is
meant by this is merely that, if the meanings of two sentences are
given, the question of whether one is a consequence of the other
or not is also determined, I will not dispute it (although I prefer to
regard the connection from the opposite direction, namely,, the
relations of meaning between the sentences are given by means of

say, as rules which refer only to the form of,the sentences (for the
development of the formal character of logic, see Scholz [Ge-

lgprces because the quasi-syntactical method was used. Nei
/l? ^.r^^' r^--.^^^ -^^-^^--^r 

--,:+L ^--. r^-^:- ^r ^r-*

inary formal logic, a logic of contmt or
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All the efforts of logicians since
formulation of the rules of inference asformalrules, that is to
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schichtel). It is theoretically possible to establish the logical relations
(consequence-relation, compatibility, etc.) between two sentences
written in Chinese without understanding their sense, provided
that the syntax of the Chinese language is given. (In practice this
is only possible in the case of the simpler artificially constructed
languages.) The two requirements (r) and (z), which are usually
blended intoone, are entirely independent of one another. Whether
we wish to speak merely of the forms of the language S, or of the
sense (in some meaning of the word) of the sentences of Sr, in
either case an intensional language may be used; but we can also

treptment. \ow, is it the business of logic to be concerned with the

----sense of sentences at all (no matter whether they are given in ex-
tensional or in inteirsional languages)? To a certain extent, yes;
namely, in so far as the sense and relations of sense permit of being
formally represented. Thus,'in the syntax, we have represented
the formal side of the sense of a sentence by means of the term
'content'; and the formal side of the logical relations between sen-
tences by means of the terms 'consequence', 'compatible', and
the like. All the questions which it is desired to treat in the required
logic of meaning are nothing more than questions of syntax; in the
majority of cases, this is only concealed by the use of the material

.4node of speech (as is demonstrated by many examples in Part V).

Questions about something which is not formally representable,
such as the conceptual content of certain sentences, or the.per-
ceptual content ofcertain expressions, do not belong to logic at all,
but to psychology. All questions in the field of logic can be for-
mally expressed and are then resolved into syntactical questions.
A special logic of meaning is superfluous;'non-formal logic'is a
contrad:ictio in adj ecto. 

rlggj2ii,Sg1g
Sometimes the demand for an intensional logic is made in a third

connection: it is maintained that hitherto logic has only dealt with
the extension of concepts, whereas it should Xlpo deal with the in-
tension of concepts, But, actually, the newer systems of logic (Frege,
as early as.r893, followed by Russell and Hilbert) have gotfarbeyond
the stage of development of the mere logic of extension in this sense.
Frege himself was the first to define in an exact way the old distinc-
tiofi between the intension and the extension of a concept (namely,
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by means of his distinction betrveen a sentential function and its
course of values). One can rather maintain the reverse' that modern
logic, in its latest phase of development, has completely suppressed
extension in favour of intension (cf. the elimination of classes, $ 38).
This misunderstanding has already been cleared up many times (see

-izt 
Carnap fAufbauf, p. 58, Scholz

[Geschichtej, p. 6f); it is always reappearing, however, amongst
philosophers who are not thoroughly acquainted with modern logic
(and amongst psychologists, who, in addition, confuse the logical and
the psychological content of a concept).

(/) RELATIONAL THEORY AND AXIOMATICS

$ 7ta. RrlerroNnl THEoRY

In the theory of relations, the properties of relations are in-
vestigated, particularly the structural properties-that is to
say those which are retained in isomorphic transformance. A
theory ofithis kind is nothing more than the syntax of many-
termed predicates. We have abandoned the usual distinction be-
tween the one-termed predicates and the class-symbols apper-
taining to them, and designate both class and ProPerty by prt
(see $$ 32, 38). Similarly we no longer differentiate the z-termed
predicates fot n> r from the relational symbols which have hitherto
been correlated with them as symbols of extenslon. In this section,
rve shall indicate briefly how the most important terms of the
theory of relations may be incorporated in the general syntax of
the predicates.

With regard to the terms used in the theory of relations (such
as 'symmetrical', 'transitive', 'isomorphip', etc.), it is important
to distinguish betu'een their formulation in the objectJanguage
and their formulation in the syntax-language, By means of this
distinction-the necessity of which is usually disregarded-certain
paradoxes in connection with the question of the multiplicity of
the transfinite cardinal numbers and the possibility of non-
denumerable aggregates are, as we shall see, clarified.

We will call an z-termed predicate homogeneous when, from a
sentence constructed from it and z arguments, another sentence
always arises as a result of any permutation of the arguments. The
majority of the terms of relational 6heory refer to homogeneous
two-termed predicates.

$ 7ra. nrue.rroNAl Tr{EoRy

The relational properties of symmetry, reflexiveness, and so on
are expressed, according to the ordinary method introdrrced by
Russell, by means of predicates of the second level (or, in Russell's
own symbolism, by class symbols of the second level). We will
write the definitions in the following form (employing the sym-
bolism of Language.Il, but leaving open the question as to whether
the expressions of the zero level are numerical expressions or
designations of objects) :

(Non-emptiness):* Erf(F)=(!lr)(lyXF.(",y))

(Emptiness) : Leer (F) = 
- Erf (F)

(Symmetry):

Sym(F)= [nrr1r;.1r;1i(F(t, i)F(y,"))] ( l)
(Asymmetry) : As (F) = (r) (y) (F (x,y)t - F (y, x)) (+)
(Reflexiveness):

Refl (F) = 
[Erf (fl . (r) ( I ((F (x, ySv F (y, r))t F (r, r)) ] (s)

(Total reflexiveness):

Reflex (F) = 
[Erf (r). (r) (r(r, r))]

(Irreflexiveness): Irr(F)=(r) (-F(r,*))

(Transilrvity): I
Trans(F)= [f r)(f y)(f { (F(x,y).F(y,r)).

(r)(y)(a)((.r '(r,y).F(y,z))cr(*,a))l  (8)
(Intransitivity) :

Intr (F) = (r) ( y) (z) l(F (x, y). F (y, z))c - F (x, z)'l (S)

We have altered the usual forms of the definitions (see Russell
lPrinc. Math.l; Carnap [Logistik]) by introducing in the definiens
of (f) ,  (S), (6), and (8) an existential sentence or 'Erf(F) 'as a
conjunction-term. According to the definitions hitherto given,
transitivity and intransitivity do not exclude one another; and simi-
larly, neither do symmetry and asymmetry, reflexiveness and irre-
flexiveness. If, for instance, a relation has no intermediary term
(that is to say, no term which occurs in one pair of the relation as
second term, and in another pair as first term) then it is simul-
taneously both transitive and intransitive (because the implicans in
the definiens of (9) is always false); end for the same reason a null
relation is at the same time transitive, intransitive, symmetrical,
asymmetrical, reflexive and irreflexive. On this account we intro-
duce conditions which require for symmetrical, reflexive, and transi-

z6t
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* Efillltheit.


