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AUTHOIT'S PREFACE

he Cambridge Colloquium Lectut'es on Anulysis Situs were
'nded. as an introduction to the problem of discovering the
mensional rnanifolds and cltaractelizing them by means 0f
i.riants. Fol the l)resent publicatiou the material of the
ures has been thoroughly levised and is preseuted in
rlore fol'mal wity. It thus constitutes sornethitrg like
,'stematic treatise ott t,he eletttents of AunlS'sis Situs. 'l'he
Lor does not, hotvever, imagine that it is in ntty sense
rfinitive treatment. Fol the snbject is still in such a state

the best rvelcome rvhich citn be offered to any com-
rensive treatment is to rvish it t speedy obsolescence.
he definitiou of a martifold rvhich ltas been used is that
r:h proceeds from the consideration of it generalized poly-
r'on cqusisting of n-dimensiottal cells. The lelations anong
cells are described by means of matrices of integers and the
rerties of the nranifolds are obtained by opet'atiolrs rvith the
rices. The most important of these matriees rvere iutro-
rd by H. Poincar€ to rvhom Ne owe most of our knorvledgc
-dimensional manifolds* for the cases in rvhich u)2, lStrt
also founrl convenicnt to employ celtain more elementtr'.1'

rices of incitlence whose elements are redueed modulo 2,
from rvhich the Poincard natrices can be..derived.

he operations on the matrices lead to cornbinbtorial results
ch are independent of the palticular rvr.y irr rvhich a mani-
is divided into cells and thetefore leatl to theolems of

lroincar€'g rvork is containetl irr the followingJfourmemoirs: Arrnlysis
,, Journnl de l'6cole Potytechrrique, 2d Ser., Vol. 1 (1895); Cornpldnrent
Irulysis Situr, Rerrdir:olrti del Circolo lltaternntico rli I'nlorlro, Vol. t3
t); Second Compl€rnent. Proceediugs of the Lontlon Mathematical
,ty, Yol.32 (1900); Cinqui0rne Conrpldrnent, llcndiconti, Vol. l8 (1904).
third onil fourth Oonrplements (leal rvith npplicatious to Algebrnic
retry, into rvhich we do not go..
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PREFACE. vii

Analysis Situs. The proof that this is so is based on an
article by J.W.Alexander in the Transactions of the American
llathematical Society, Yol. 16 (1915), p. 148. The eontinuons
transformations and the singularities (in the rvay of over-
Iapping, etc.) which are allorved in this proof are completel.v
general, so that we are able to avoid the difficulties, foreigrt
to Analysis Situs, which beset those treatments of the subjeet
'n'hich restriet attentiott to analytic tt'itnsfot'mations or sitt-
gulu'ities.

It rvill l-re seen that, aside frortr this one questiott rvhich
has to be denlt rvith in older to give significance to the com-
binatorial treatmcnt, rve leave ottt of cottsiderttion all tlte
n'ork that has been tlone ou the point-set problems of Ann-
lJ'sis Situs tnd on its foundation in terms of axioms or
definitions ot,her than t,hose act,ttirlly used in the text. \Ye
have also been obligetl by l:rck of spaee to leat'e oqt all
reference to the applications. \\'e ltirve ttot cven given
l tlefinition of tn t-cell b.y menns of t set of cqnttions antl
inequalities, ol the tliscnssion of orientation by means of tlte
signs of detet'minants. ' l ' ltese at'e to be found itl vet'y readable
forrn in Poirteard's first faper', rvhere they are given ls the
basis of his u'ork. 1'hey bekrng propelil', horvever', to thtl
applications of thc subject. Iror in treat'ly all ctscs lvhen
Poirrcurd (or anyone elsc) has pt'oved t theot'em of Annl-vsis
Situs, he ltas been obligeil to set rtp ir nttrehiner.t' rvlticlt is
cquivalent to t set of ntirtt'ices.

No attempt has beett ntade to give l eotnplete aecottnt ofl
the history and literntrtt'e of tlte subject. ' l ' ltese are covet'ed
for the pcliod up to 1{)0? by the articlc ott Anitl.ysis Sittts
by Dehn rurd }pegnrd in the Encyklopiidie (\rol. IIIr, p.153)r
and the molc intlloltirnt rvorks subsequent to that date tt'hich
bear on our pait of the subject are t'eferred to in Chap. \'.
I take pleasule in irckttowledging my indebtedness to Professot'
.I-W. Alexandct' wlto ltas t'eird tlte ntatrusct'ipt :rttd m:tdc'mltty
valuable suggestions, ltnd also to Dr'. Philip Flanklin rvho has
helpecl s'ith the mannsct'ipt, the drarvings, nnd the pt'oof-slteets.

PntNcgrox. l lev, 1921.
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CHAPTER I

LINEAB GRAPHS

Fundamental Definitions

1. trVe shall presuppose a knowledge of some of the elementary
properties of the real Euclidean space of z dimensions (n S 3
for the first two chapters). In such a space, the points collinear
rvith and betu'een two distinct points consf,itute a segment or
one-dimensional simplez rvhose enls or ,*erticu are the given
points. CIIre ends are-n ot*re&K!g{qs_-11sbj$" otjb-Segnent.
For obvious reasons of symmetry, u single poiht will be
referred to as a U-dintensional sinr1tlcr,

2. Consider any sct of objects in (l-l) corresponclence*
rvith the points of a segment and its trvo ends. The objects
corresponding to thc points of the segment constitute r o?tc-
dimrnsional cell or 1-ccl/ and those corresponding to tlrc ends
constitute tlrc ends or boundary of the l-cell. h like- mrnner
a single object nray be rcfeu.ed to as a 0-cel/.

In the cases which are usually consider,ed the objects tvhich
constitute a cell and its boundary flre points df r /r-space
and the correspondence rvhich defines the cell is continuous.
Consequently a 1-cell is an arc of curve joining trvo distinet
points. In the genclal case. horvever, it would be meauingless
to say that the correspondence tvas continuous, bccause con-
tinuity implies previously determined or.der relations, and
here the ordernrelations of a cell are deter.mined by means
of the deflning correspondence.

ANAIJYSIS SITUS.

as a transformation of the cell rrnd its boundary which if it

carries a set [X] to a set [X'] earries'every limit point of [Xl

to a linrit point of [X'].
3. A zcr'o-rhimensiortttl complu is il set of distiuct 0-eells, finite

in nrrmber. A,one-dimetusional comptlaror alinear graplt,is a zero-

dimensional complex together.rvith a finite number of l-cells

bounded by pairs of its O-cells, such that no tlo of the l-cells

have a point in connon and each 0-cell is an end of at least

one l-cell. Let trs denote the number of 0-cells by as an'l

the number of l-cells by t,. Thc O-cells are sometimes called

uertiees and thc 1-eells r.'tlges.

The objects rvhich constitute a cell
always. be referred to as "points" in

and its bountlary wili
the follorving pages.

* By (l-l) correspolrdence lve metrn c correspondence rvhiclr is ote-
to-one reciprocal; i. e., n (l-l) correspondence between tryo sets [l] and
[B] is such thnt ench .d corresponds to oue antl only ono,l} and each B
ie thc correspondent of one and only one ,4.
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For example, the vertices and edges of a tetrahedron (Fig.1)

constitute a linear graph for which Es : I otld 'cv, : $.
A lineai grdph is not necessarily assumed to lie in any
space, being defined in a purely abstract way. It is obvious,
however, that if cro points be chosen arbitrarily in I Euclidean
three-space they can be joined by pairs in any manner u'ltnt-
ever by a, non-int'ersecting simple arcs. Tlterefore, any linear
graph may be thought of as situate{l irr a Euclidean thrce-space.

For some purposes it is desirable to use the tetm one-
dimensional complex to denote a more general set of 1-cells
rnd 0-cells than that described above. 'For cxample, a l-cell
and its two ends form a one-dimensional eomplex accordittg
to the definition above, but a l-cell by itself or a l-cell and
one of its ends do not, In the follolving pagcs rvc. shirll
occasionally refer to an arbitrary subset of the l-cells and
0-cells of a linear graph as a generaiizecl one-clinwttsionaleomltiee'.

4. A transformation -F of a set of points [X] of a contplex Ci
into a set of points [X'] of the same or another eomplex is
said to be conthttcorrs if and only if it is continuous in tlte
sense of $ 2 on each complex composed of a l.cell of C'r
and its entls (i. e.j if the transformittion effected by Ir' on
those X's which are on such a l-cell and its ends is con-
tinuous). A (l-l) continuous transformation of a complex
into itself or another complex is called, following Poincart!,
a homeomor'rytltism, The inverse transformation is easil.v proved

to be continuous. Trvo complexes relttbd by a homeomorphisnt
irse said to be lrcntcomorptlic.

The set of all homeomorphisms by rvhich a linear grlph

Order Relations on Curves

5. By Ln open awue is meant the set of all points of

a complex composed of a l-cell and its two ends. By

a dosed antse is meant the set of all points of a couiplex Cr
cousisting of two distinct 0-cells al, aland two t-cells al, af,,
each of which has af antt a! as ends but which have nb
common points (FiS.2). The most elementary theorems about
curves are those which codify the order relations. They
may be stated (without proof) as follorvs: .'

l-cells al and a| by the 0-cell a$.

ANAIJYSIS SITUS. tChop. I

.Fro. 2.

A 0-cell is said to be incident with a l-cell if and only
if it is an end of the l-cell; and under the same conditions
the l-cell is said to be incideht rvith the O-cell. It follows
directly from the theorem on separrrtion in the paragraph
above that n distinct points of the l-cell at' d.etermine
n * 1 l-cells such that the ra points (or 0-cells) may be
denoted Uy Al,  2,8,. . . ,  b|  and the n!t  l -cel ls rry Z, l ,  Al ,  . . . ,b!o+,
in sueh a way that each cell is incident lvith the cell which
directly precedes or directly follorvs it in the sequence
ol, Dl, gl, pl, . . ., Qo^, brn+t a3. ; ,

It. b9, bg, . . ., b!, are n distinct poinrs of a clossd curve,
the remaining points of the burve constitute n l-cells 6l
( f  :  1 ,2,  . . . ,  n),  no trvo of rvhich have a point in common,
such that each D3 is incident with just two of them. ,'.1I 

"
6. A little reflection rvill convince the reader that many

of the theorems about functions of one real variable and
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about linear sets of points belong to one-dimensional Analysis

Situs. As an example we may cite ' the theorem that any

nowhere dense perfect set of points on a closed curve can

be transformed into any other sueh set by a (1-l) continuous

transformation of the curve. The Heine-Borel theorem is an-

other case in point.
t '

(Ihe ttt.o..nrs of Analysis Sitds may be divided somewhat

roughly into trvo classes, those dealing essentially rvith continuity

considerations (of lvhich the theorem ott pelfect sets of points

cited above may serue as an illustration), 'and those having an

essentially combinatorial character) tt is the theorems of the

latter class rvhich will occupy most of our attention in the follorv-

ing pagei, though we shall continually make use of tlteorcms

of the former class without proving them.

Singular ComPlexes

7. Let Ir' be a correspondence betrveen a 0'dimensional com-
plex Ci, rnd a set of points [P] of nny complex C(for the presentt

O is 0- or l-dimensional) in rvhich eaclt point of Ce corresponds
to 

*a 
single P and each P is the corresltottdent of one or morc

points of Cq. The object obtained by associating nny point X
of Cq rvith the point ,P rvhich is its image under .F rvill be denoted
by -I7(X) andpullcd a point onC; it is slitl to coincitle rvith P

and P to coincirle rvith it. The set of all points Z(X) on C

is cal led a 0-dimensional complex on C. I f  nny P is-the

correspontlent of more than one point X of Cs, P is called
n singular Ttoint o;nd, the complex on C is said to besingrular,

8. Lpt G be a generalized one-ditnensiottal complex antl

Iet -F be 6 continuous corl'espondence betrveett C1 antl a set

of points [4 of a complex C, in rvhich errch point of C"

corresponds to a single P and each .P is the corresltondent
of at least one poir't of G. The object obtaincd by assoeirting
any point X of C, rvith the point P rvhich is its inrage trntler
tlris collcspondence rvill be called a ytoint on C and is uniqtrcly
denotetl by thc functional notation -F(X); it is said to coittt:ide
rvitlr P anrl P is saitl to cobrcicle rvith it. The point .F(Xr)

ANAI,YSIS SITI'S. lChap. I

is calleil a lipit point of the points F (X) if & is a limit
point of the points X. The set of all points -F(X) on C is
in a (1-1) continuous correspondence rvith the points of Q
and thus constitutes a one-dimensional complex Ci identical
in structure rvith C1. The one-dimensional complex Ci is
said to be on C. If any of the points P is the con'espondent
rrnder -P of more than one point of Cr, Ci is called a singular
complm on C and, the point P in questioi a sfngular point.
If the correspottdence.Fis (l-l), Ci is said tobenon-singttlu.t'.

It is to be emphasized that in the definitions ubove .t' is a
perfectly generirl continuotts function. Thus, fol example, all
the points of a l-cell of Cr may be imaged on a single point
of. C. In the rest of this chapter wg shall be referring to
non-singulat conrplexes more often than to singular ones.
\\'e shall therefore undet'stand that a complex is non-singular
runless the opposite is stated. I

9. Let P be rrnl' point of a generalized one-dimensional
complex Q. If P is a poiut of a l-cell of Ct let Qt and Qg
be two points of this l-cell such that P is betn'een them.
If  P is r  vertex, let  Q1, Qr, . . . ,  Q; be a set of  points,  one
on each l-cell of rvhich P is an end. The set of points com.
posed of P and of all points b'etween P and the points Q1,
(J:, .. ', Q; is ealled a neighltoyltood of. P.

A generalized one-dirnensional complex Ci rvhich is on Ci
is sirid to couer C, in case there is at least one point of C'r' on
each point of Ci and there exists for'every point of 6'i a
ueighborhood rvhich is a non-singular complex on C1. fn ease
the number of points of Ci rvhich coincide rvith a given point
rrf Q is firite and equal to ra for ever;v point of Cr, Ci is
said to couer C1 n, times.

The only connected complex which can cover a l-cell is a
l-cell, or a subdivision of a l-cell such as is described in $ 5,
and it can cover it only once. A closed au'ue, on the othet'
Itand, r-'az be couet'etl any rutm,ber of tintcs by anotlm' closed cu.rue.

Th6 truth of the latter statement may be seen very simply
as follorvs. Let, Q and Ci be trvo circlcs in a Euclidean plane.
I)enote any point on C, by l coordinrte 0(0< 0 {2n), ttnrl



any point on Ci by 0'(0< 0' { 2r'). Let eaeh point,
of Ct correspontl to the n points

, '  :  - l ; ,  o '  :  #-,  . . . ,  u '  --  ln-!)o. ,  Q' :  Q,

of, Ci. In eaSe n:2, for example, a pair of opposite points
of 6'i eolresponds to a single point of Q.

The Simplest Invariants

10. One of the first objects of Aualysis Situs is to find the
rrumerical invariants of complexes under the group of homeo-
nrorphisms. B-v an invariant under: this gl'oup we me&n fl
tuumber 1(C) determined b.y a complex C in such a rviry thrt
if C'be any complex homeomorphiclvith (.'. the number.r(C')
determined in the same way for C' is the same as.I(C).

11. Starting rvith anl' point 0 of a cornplcx (i consider all
points of Cr rvhich ean be joined to this one by open curyes,
singular or not,* o.n Ct. This set of points u'il l contain all
points of a eertain set of 0-cells and l-cells of 6i (a sub-
conplex of Q) rvhich we rnay call C'i. Since auy trvo points
of Cr' can be joined to O by open curves, they can be joined
to each other b.v an open curve. Hence the same set of points
is determined if any other lroint of L'r' replaee 0 in the
rlefirrition of. Ct'.

Since G is composed of t finite uunrbel of O-cclls antl
1-cells rltogether', it is composed of a finite uurnber of sub-
eomplexes defined in the same lv,rJ' that Cf is defined in the
palagraph above. 'I 'he number of thcse sub-conrplexes eontained
in Ci is obviously an invariant in the sense defincd in $ 10.
for if two cornplexes C, and Ci'lre homeonrorphic, auy curvc
on Cr. corlesponds to a curve on 6Y. Tlis ntnnbet' slt.all be
rlenoteclby Ii6, If Eo : 1, Ci is saitt to be connectctl.

+ No generality is gainetl by allowing the curves to bo singular, but
tlre argument is slightly ensier, and more in the spirit of its seneralizntions
to ro dimensions.

r
ilr
I
! '
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i, L2. Let us denote the number of 0-cells in a complex C,
t,hy oo and tbe number of l-cells by. or. Th.enumbr ao-trt
' is an inuqriant.

To prove this, Iet us ffrst observe tha.C if G be morlified
by introtlucing any point of one of its l-cells as a O-cell and
thereby separating the l-cell into two l-cells, the number
&o-e.r is unchanged. For ae is changed to no41 nnd a,
is changed to rc1 { l.

Norv consider trvo linear graphs Cr and Cr'betrveen rvhich
there is a (l-1) continuous correspondence -ll. Suppose that
Ct has cro 0-eells and a, l-cells and Ci has al O-cells and
ai l-cells. Each O-cell of Cr rvhich is an end of only one
l-cell rvill correspond irnder .F to a 0-cell of C/ having the
same property; otherrvise -F could not be continuous. In
like manner, each O-ccll of Cr which is an end of more than
trvo l-cells lvill correspond to a O-cell of Cr' which is an end
of an equal number of 1-cclls. For the same l'easonr,, o O-cell
of CY rvhich is an end of only one, ol' of more than trvo,
l-cells is the cortespondent of a like O-eell of Cr,

A eet'tain numbel of 0-cells of C" rvhich are ends of trvo
l-cells each may correspond to points of C( rvhich are not
yeltices. Suppose there trrc /c such O-cells of Cr rrnd therc-
fore /r corresponding points of Ci. As explained above, any
one of tlrese points of 6{ may be iutroduced as a vertex,
theleby changing CI into a complex rvith one nrore O-cell
and one more l-cell. Repeating this step /c times Ci is
clranged into a cornplex CY'having a'(,llc 0-cclls and ai*/c
l-cells. The eorrespondenee ll rvill carr.y every vertex of Cr
into r vertex of. (;i'.

Certain of the vertices of. C{', horvever, may not be the
correspondents under -F of vertices of C,. Suppose thele are
n such vertices of Ci'. By precisely the reasoning used in
thc last paragraph the points of Q u'hich correspond to these n
vertices of C/'mry bc introduced as veltices of 6'r, converting C'1
into a complex Ci having aoln 0-cel ls and ar*n l -cel ls.

The complexesClL and C, have been defined so that under
the (1-1) correspondeuce -F each vertex of G corresponds

T,Tl
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to a vertex of. Cl' and each l-cell of d, to a l-cell of C/'.
IIence

a,o*n :  a 'o*h and e.r*n :  el*k,

from which it follows that

dO-dt :  e[-ei .

13. The invariang number @o- dt is ealled the charar:tristic*
of the linear graph. The number dr-do*no is called the
cydomalic numbett and denoted by p. In the case of a
connected complex

P: er-ao-F1.

The two invariants, -I& and oh- ott are evidently not
sufficient to charactefize a linear graph completely. There
is a rather elaborate theory of linear graphsf in existence
rvhich we shall not attempt to cover. Insteact rve shall go
into detail on questions rvhich cluster around the trvo in-
variants already found, because this part of the theory is
the basis of important generalizations to zl dimensions.

Symbols for Sets of Cells

14. Let us denote the 0-cells of a one-dimensional complex
G by nl ,  a3, . . . ,  af l "  and thc l -cel ls by al , ,n!r , . . . ,oL, .

Any sei of 0-cells of C, may be denotcd by a symbol (ar,
ret ....t r,ro) in which ri : I if al is in the set and rt : 0
if ai is not in the set. Thus, for example, the pair of points
o?, o2 in Fig. 1 is denoted by (1,0,0, l ) .  The total  number
of symbols (rr ,  rr , . . . ,  xoo) is 2"0. Hence the total  number
of sets of O-cells, barriug the 0-set, is 2"0-1. The symbol
for a nul l -set,  (0,  0, . , . ,0) wi l l  be referred to a,s zero and
denoted by 0.

r Cf. W. Dyck, trIath. Ann., AoL 32, p. 4b?.
f The term is due to J. B. Listing, Census riiumliche Konrplexe, Giittingen,

1862. But, the significance of this constnnt hnd been cleorly brought out
by G, Kirchholl in the paper referred to in g 36 belorv.

I Cf. Dchn-Heegnrnl, Encyklopedie, III, AB, 3, pp. lt'2-178.

ANALYSIS SITTIS. fChap. I

, Tbe marks 0 ond I rvhich appear in the symbols just de-
, fuerl, may profftebly be regarded es residues, modulo 2, i. e.,
as s]'rnbols which mey be combined algebraically according
to the rules
Af 0:1 f  1:0,0* 1: t  f0:1,0x0:0x1: lx0:0r 1 x l :1.

Under this convention the arzr (mod 2) of two symbols, or
of the tl'o sets of points which correspond to the symbols
( r r ,  ar ,  . . . ,  xno):  X and ( ! l r ,  yr ,  . . . ,  ! /oo) -  i ' ,  may be
def ined as (rrr  *  ! l t ;  ez*! l t ,  . . . ,  rno*yoo) :  X+Y. Geo-
metrically, X+ I'is the set of all points rvhich arc in Xor
in I 'but not in both.*

Fot 'example,  i f  X:  (1,0,0,  1)  and I ' -  (0,  1,0,  1)
,Y+ :  (1,  1,0,0);  i .  e. ,  X represeuts a! and a!,  I ' repre-
sents a$ aud af , and X* Y replesents a! and af . Since a!
irppears in both X and I', it is suppressed in forming the
sum, modulo 2.

This type of addition has the obvious property that if nvo
scts contlin eaeh an even number of O-cells, the sum (mod. 2)
contains fln eyen ntrmber of 0-cclls.

15. An.r' set, 8, of l-eells in 6', may be denoted by a
synrbol (rrrr" , . - . . ,  r ' . , , )  in rvhich r i  :  1 i f  al  is in t l re set
artd s; : 0 if al is not in the set. The l-cells in the set
may bc thougbt of as labelled rvith I's. und those not in the
set as labelled rvith 0's. The s-vmbol is ulso regarded as
lepresenting the one-dimensional complex composed of the
l.cells of I and the 0-cells rvhich bour,d them. Thus, for
example, in Fig. I r,ne bonndaries of trvo of the f:rces are
(1,  0,  1,  0,  1,  0)  aud (1,  1,  0,  0,  0,  1) .

The sum (mod.2) of  t rvo s.ymbols (*r , r r , . . . , : /o,)  is  def incd
in tlre same lvay a$ for the case of symbols representiug
0-cells. Correspondingl.v if Ci and C'i' alc one-dimensional
complexes erch of rvhich is t sub-eornplex of t given one-
dimensional eornplex C1, the mnt

+ In other wortls,..X + I' is the difrerence betlveen the logical surn and
rhe logical proiluct of the trvo sets of points. In terms of the logicnl
operr.iions, if S nnd S' are the given sets, this one is 5 * S' - ,SS'.

rJ
$

I
!

I
i

,;
e
l!(
: l

i
g

ii
ii
't

' I !i
I
I
fi
I

ft
, t
i fj ,

I,1
tl

il.
tl
li



LINEAR GRAPHS.

cl+ ci' (mod. 2)

is defined as the one-dimensional complex obtained by sup-
pressing all l-cells common to Ci and Ci' and rctaining all
l-cells rvhich appear only in Cl or il C't'. For example, itr
Fig. 1, the sum of the two curves represented by (1, 0, 1,
0,  1,0) and (1,  1,0,0.0,  l )  is  (0,  1,  1,0,  l ,  1)  which
lepresents the curve, eomposed of a..1, ctf,, nrn, a,l nnd their'
ends.

The Matrices .116 and I{

16. It has been seen in $ 11 that any one-ditnettsional
complex falls.into 1Js sub-complexes each of rvhich is con-
uected. Let us denote these sub-complexes by Cl, C?, . -., C!' ,
rrnd let the notation be assigned in such :r wftJ" thrt
o ')  Q :  1, .2,  . , . , ru1) are thc 0-ccl ls of  Cl,  al  ( i  :  m1 f  1,  . . . .  nre)
those of Ci, antl so on.

With this choice of notatiott, the sets of verticcs of Cl.
tli,' , C',"0, respectivel.l'. ilre representetl by the s;'mbols
(t.:1, t2, .... rno) rvhich eonstitute the rorvs of the follon'ing
matrix.

ai i ,  ( i - :  1,2, .  .  . ,  
: )  and the l -cel ls Ay aj ,  Qi :  t ,  2, . ' . . ,  e1),

let the element of the ith row and the-7th column of the
natrix le I if a! is inciilent rvith art and- tet it le O if ,fi;
not incident with ar|.

For example, the table for the linear graph of Fig. 1 formed
by the vertices and edges of a tetrahedron is as follows:

il 12 ANAIJYSIS SITUS.

lni al a! a!
000

101

011

110

t0hap. I

i
l .

I
4__4,
11
0t
r0
00

Fol most purposes it is sufficient to limit tttention to
conneetetl eomplexes. fn such cirses Ro : 1. antl /dr consists
of one row all of u'hose elements irre 1.

1?. By the definition in $ 5 n O-cell is incident rvith n

'l-cell if it is one of the ends of the l-cell, and ttnder the
same conditions the l-cell is incident rvith the O-cell. Tlte
incidence relations betrveen the O-cells and l-cells may be
represented in a table or matrix of as rotYs attd ar columns
as follows: The .0-cells of Cr having been denoted bt'

,rlt 1122- lt\ ao - rltlto -r

In the case of the compler used in $ b to define a simple
closed curve the incidence matrix is

l l '  1 l l
l l  I  I  l l '

We shall denote the element of the ith row antl 7th eolumn
of the matrix of incidence relations between the 0-cells and
l-cells by tt,\ and, the matrix itself by

ll ,tli ,) : tt r.
The ith rotv of .t/, is the symbol hor the set of all l-cells
incident rvith a! and the 7th eolumn is the symbol for the
set of trvo O-cells incidcnt rvith al.

The condition rvhieh rve have i'mposed on the graph, that
both ends of every l-cell shall l-re tmong the a6 O_cells,
inrplies that every column of the matrix eontains exactlv
tn'o I's. Conversely, any matrix rvhose elements are Ot
and I's and *'hich is such that each column contains exactr_v
tlo 1's and each rorv contains nt least one I, can be regarded
as the ineidence matrix of a linear. grtph. For to obtain
sueh a graph it is only nece.ssary to take ao points in a
3-space, dencte them arbitlarily by al, a?rr..., n?,o, and join
the pairs rvhich correspond to I's in the same column succes-
sively by arcs not meetiug the arcs previously constructed.

|j
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This eonstruction also makes it evident that
(1-1) continuous eorespondenee .between any
corresponding to the same matrix I/r.

ANALYSIS SITUS. tClnp. I

rne not zero in this symbol appear in difrerent equitions;
tnd, in general, any set of vertices which is not a set of
bounding 0-circuits will contain an odd number of vertices
in some conneeted sub-complex of Ct, and hence its symbol
rvill fail to satisfy these equations. Hence the set of alt
soltttions af (n) is tlrc set of alt syntbols Jbr sets of bmmd,ittu
0-circuits.

Since no tn'o of these equations have a variable in cornrnolr,
they are linearly independent. Henee ull sohdions of (II)
rre linearly depuulent (motl. 2) on a set of au- Ilt, Iinearlry
i nie1renclenl soh dion"g.

^20. 
Denoting the eonnected sub-compiexes of q by 6i1.

( , : : , . . - ,  Cl&'  as in $ tO let  the notat ion be so assign.d thot
ulr . ._. ,  a, f , ,  are the l -ccl ls inCf;  ( ( f ,or . j t , . . . ,aL,  the l -cel ls

irr (i2; and so on. The matrix /d then must take the fornr

l3

there is a
two graphs

14

Z er o - dimenslonal Circuits

18. A pair of O-cells is called a 0-dimmsional eirait or
a 0-ciradt or a 0-climensional nmnifolcl. Any even number
of O-cells is a set of 0-circuits and the sum (mod. 2) of any
number of O-circuits is u s'et of 0-circuits.

If trvo 0-cells are the ends of an open curve on Cr (cf. $ 5)
they are said to bqmd the open curve aud to lrc .cmntectecl
by it. Snch a pair of O-cells is called n lmtnclirut 0-circuit.
For example, in Fig. I, a! and al bound the curve a| and
also bonnd the curve alala!.

'19. In the symbol (rr, sr, . . ., too) for rr bounding 0-cireuit
all the r's are 0 except tlo rvhich correspond to a pail of
vertices belonging to one of the connected eomplexes into
rvhich Q falls according to $ 11. This symbol must there-
fore satisfy the follorving equations.

( I Io)

xJ1 *a ' r*  . . .  *rc, , , ,  -  0,

?,nrr- t - r  + " '  *  t^ ,  0,

r^no.-r1l*  . . .  *snn -  0, '

in rvhich the variables are redueed modulo 2, as explained
in $ t+. The matrix of these equations is .I/0.

Since the s;lmbol for any set of bounding 0-circuits is the
sum (nrod. 2) of the symbols for the 0-circuits of the set, it
follou's that any such symbol satisfies the equations (I/o).
This is also evident because in the symbol for any set of
botiuding O-circuits an even number of the c's in each of these
equations must be 1. Henee any such symbol satisfies (//o).
On the other haud, the symbol for a non-bountling 0-circuit
rvill not satisf-v the equations (I/o) because the tlo c's which

rvhere all the non-zero elements are to be found in the
matriees I, II, III, etc., and I is the matrix of CI,II of Cie,
ete. This is evident because no element of one of the com-
plexes Ci is incident rvith any element of any of thc others.

There are trvo non-zero elemcnts in each column of. IIr.
Henee if rve add the rows con.esponding to any of thr.
blocks f, If, etc. the sum is zero (mod.2). in every colnmn.
Henee the rorvs of .I/, are connected by /?o lincar relations.

Any lineal combination (mod. 2) of the rows of II, corre-
sponds to adding a certain number of them together. If this
glve zeros in all the columns it rvould mean that there rverc
two or no l's in eaeh column of the matrix formed by the
given rorvs, and this would mean that any l-cell incident
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with one of the 0-cells corresponding to these rorvs rvould
.also be incitlent with another such 0-cell. These 0-cells and

the l-cells incident rvith them rvould therefore form a sub-

complex of Cr which rvas not conneeted rvith any of the

..moiniog 0-cells lntl l'cells of Ci. Hence it would eonsist

of one o. *oru of the eomplexes Ci Q : 1, 2, " ', 'I?o) lntl

the linear relations rvith which u'e started rvould be dependettt

on the B6 relrrtions already founcl. Hence there are exaetly

,/?s linearly independent' l inear relations among the rolvs

of. It, so that if 91 is the r:rnk of IIt,

Qt :  ( l t t -  1 iu '

It follolvs that there is t set of ao- J?u eolumns of I[ ttpott

which all columns are linearly dependent' Sinee every column

of /1, is a solution of (I/u) and since all solutions of (//s) :rre

linearly dependent 0r .ro- 1lo lineal'ly indepentlent soltttions,

all solutions of (//o) are linearly dependent on colttmns of' l l ' '

In other words any botuttling O'cirarit is llte son' of some of tlu:

}-cirudts ultich bottncl tlrc t'cells all, "', dto,'

Al inear ly inr lependentsetofsolut iousof i rsetof l incat.
equations upon rvhich all other solutions are linearly dependent

is callerl t com\tlete sel of solutions. Thus & set of 91 litteartrl '

independent.ol . . 'nsof/ I ' formsacompletesetofsol t r t iot ts
of( / /o) .Thecon.esponcl ingsctof0-circrr i ts isalsoea] led
x contltlcte set.

21. If. l?0 : I the cornplex Ci is connected antl all its

0.c i rcui tsat 'ebott t td i t rgandexpressi l . r le l inerrr ly(mod.2) i t r
terms of do-l of thc 0-circuits rvhich bound l'cclls'

In casetlu )1, t0-circuit obtained by takirrg trvo points, one

fronr each of  a pair  of  the sub-conplexcs Ci( ' i :1,2,"  ' '  { l ' )
is a non-bounding O-circuit' u'hile one obtaitted by ttking

'trvo points from the same eomplex (' '; is bounding'

If /?o:2 any tu'o 0-cells are both in C'f' or both in Cir'

or one in Crl and the other in Cf' A pair of the last type

forms tr non-iounding 0_circuit and all non-bounding 0-circuits

are of this type. If, aonal, is a 0-circttit of the ltst type any

ANALYSIS SITUS. t0hap. I

other non-bountling O-cireuit alaI^ is such that one of its
points, say di, is in the same eonuected complex with a! and
the other with a[. Hence aorao^ is the sum (mod. 2) of. aorafl
and the two bounding O-circuits aona,o, and. afralr. Henee any

i non-bounding O-circuit is obtainable by adding bounding
; O-circuits to a fixed non-bounding O-circuit.

, By a repetition of this reasoning one finds in the general
r cose that -Ilo - I is tlrc nrnnba' of non-bou,nding U-ciratits
: u:hich mtwt be adjoined, to tlrc bountling onu in order to lmuc
' a set iit ta'nts of ultich all the \-ciradls arc lincarhl eupn essible
, (nrocl. 2). These 1?0 - I non-bounding O-circuits can obviously

be ehosento consist  of  the pairs of 0-cel ls,  al ,  u!  ( i : .  mrl l ,
nt211,. . . .  rnao-1 f  1) .

One-dimensional Circuits

22. A conneeted linear graph eneh vertex of which is an
end of trvo'and onll' tl'o l-cells is called a one-dimmsional
ciradt or a l-cit'cttit. By the theorems of $ 5 any closed
curve is decomposed by any finite set of points on it into
a l-circuit. Conversely, it is easy to see that the set of all
points on a l-circuit is a sirnple closed curve. It is obvious,
fulther, tlrat nny linear graph, such that each vertex is an
end of trvo and only tl 'o 1-cells is either a l-circuit or a set of
l-circnits no t$'o of u'hich lrave a point in common.

Consider a linear gnrph Q such that each vcltex is an
end of an even number of edges. Let us trace a path on
C1 starting at a 0-cell and not covering any 1-cell more than
onee. As a result of the hypothesis, n:e must eventually
reach some 0-cell for the second time, hence have traced
a l-circuit. \\re remove this l-circuit and replace the necessary
O-cells. Since the resulting complex has the property originally
assumed for Cr, it follorvs that rve can repeat the process
till there is nothing left. Hence Cr consists of a number of
l-circuiis rvhich have only a finite number of 0-cells in common.

It is obvious that a linear graph composed of a number of
closed curves having only a finite number of points in common
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has an even number of l-cells incitlent with each veltex. Henee
& necessary and affient condition that Cr consist of a number
of l-riradts lmu'ing only }-cells 'in eorwnon is tltat eaclt' 0-eell' of

Cr be inciclent uitlt. an, euen nzr.mba' of l-cells. A set of l-circuits
having only O-cells in common rvill be referred to briefl.t' as

a set of l-cireuits.
23. The snm of the s;'mbols (r, , *r, . . . , xoo) for the O-circuits

' rvhich bound the l -cel ls of  a l -c ircui t  is (0,0,- . ' ,0) becluse
each 0-cell appears in t'wo'and otrly two of these 0-circuits.
Hence u,m1 l.r:irutit ot' set of l'ciraits d,etermines a lirtear
relation, tnodulo 2, among tlrc bountlirul 0'riratits.

Conversely, any lineut' relct'tir.ttt Artlonq tlrc O-cit'r:trits u'hich
hou,tttl L-cells of o, eontqtler cleterntines a l'circuit or set. of
7-ciratits. Fol if the sum of a set of 0-circuits reduces to
(0, 0,  . . ' ,  0) cach 0-cel l  must ett ter i t t  an even nttmbet '  of
O-circuits, i. e., as an end of an even ttumber of t-cells.

24. Let us n0w inquile under n'ltat circuntstances it s.r'ntbol
(nr,  rr ,  - . . ,  cor) for a one-dimensional eomplex cott tained
in C, rvill replesent a l-circuit or a systenr of l-eircttits.

Considel the sum
rtre:r* rllrrri . . . -F rllo,uo,

where the coeffieients 7|r. ale tlte elements of the ith rorv
of IIr. Each term fra, of this sum is 0 if arr. is not in the
set of l -eel ls represented by ( t t t  t )zt . . . ,  to,)  because in
this case %:0i it is also zero if arr is not incident rvith

a! because lli : 0 iu tltis ease. 'l'he term ,llini : 1 if arl is
incident rvitli a! and in the set t'epresentetl by (rt , tr, "'Tn,)
becattse in this case 7,1, : I and ,j: l. Hence tltcre are
as nlally 116n-zero terms in tlte sttm ls tltct'c at'e 1-eells
reptesented lry (rr r rzt . : ., x;a,) which are incident rvith a!.
H-cnce by $ 22 the required condition is that the nttmber of
non-zero terms in the sum must be even. In other rvot'ds
if the r's and q]r.'s ale reducetl modulo 2 as explainetl in

5s 14 rve must have

ANALYSIS SITUS. [Chrp. I

if and only if (rr, or,..,, r:or) represents o l-cireuit or set
of l-eircnits. The matr.ix of this set of equations (or cou-
gruences, nod. 2) is IIt.

25, It the rank of the matrix II, of. the equations (I7o)
be gr the theory of linear homogeneous equations (congmences,
mod. 2) tells us that there is ir set of a1-g, linearl.v
independent solutions of (I/r) upon n'hich'all other solutions
are linearly dependent. This metns geometrieally t,\trt thet'e
eilsl.s n set of ar-Qt l-rirutils or syslenn o.f' 7-citctti,tsf,nnn
rrliclt, al.l otltcrs can be olttuinul by rey:ated ayrytlicalions of'
the operation oJ' atltlino (tnol.2'1 tlescri.lrcd in $ t+. \\'e shtll
call this a complete s'rl of l-cilcuits or. s1'stems of l-circuits.

Since qr1 =: .to- /ti, (S 20), thc nunrber. of solntions of (/I,)
in n qompletc set is

lt. =--: trl - a,, f ,1,'6.

rvhere p is the cyclomirtic nuurber defined in $ ta. For the
sake of uniformity n'ith a notation used later. on rve shall
irlso denote 1 br' .l?1 - I . 'l'hus s'e hirve

f lo- dt :-  I  +,h', ,  - , /r t1 .

Trees
26. A connected linear gt'opil rvhich contains no l-circuits

is called a h'ee. As a corolliuy of the lost section it follows
that a lineat' rlraph is a. set oJ'Ilu trees il' nntl ctnQl if p :0.

Any connected linear grrph C', cnrr be l,edrreed to rr trtle
by removing 1, ploperl;' t:hoserr l-cells. l 'or let a.l,(p:= ir,
ir, . . ., k,) be a set of t-cells 'rvhose bountlar.ies form il
conrplete set of O-circuits ($ 20). llhe remainihg l-cells of
C', are p in number. irnd rvill bc tlcrrotcd b5, arn(p: jt, jt,
..., j,,). If these 1 l-cells rle removed fr.orrr 'Ci 

the linear
grnph 7', rvhieh lenrains is t:ulrut:cted becnuse evcly boundirrg
0-circuit of (i is lineally expressible in telms of the boundalies
of t l rc l -cel ls n] , (u -  ' i r ,  i t , . . . ,  is , )  of  ?r  r rnd hence an.y
tlo 0-cells of L', rtre joined by a curve composed of l-cells
of 7r . Dnt sincc the c.t'clomntic nnrnber. of (i is lt, .=. t.t- ao-f l,

l817

dt

)di ' i  
:  o

j '=r
U\) ( t  :  1,  2, . . . ,  no)
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the removal of. p' l.-cells reduces it to 0 and henee reduces Q
to a tree. In like manner, if Cr is a linear graph for which

-F1, > l, it ean be reduced to no trees by removing

lo: dr-ao*ft0 properly chosen l-cells.
27. There is at Ieast one 1-circuit of Ct which coutains

tlre l-eell aj,, for otherwise G rvould be separated into two

eomplexes by removing this l-cell. Call such a l-eireuit Crr.
In the complex obtained by removing aj. from C, there is,

for the same renson, t l-circuit Cf rvhiclt contains r{. , and so

on. l l lhus t l rere is t  sei  of  l -c ircui ts Cl,  ( i , . . . ,  Cl 'such that
Czr '(p:7,2, . . . ,  r )  eontain* , t i .  These l-c ircui ts rrre l inearl5 '

independent because Cf-l contains a l-cell, aj;-,, rvhich does

rrot alrpear in any of the cilcuits C(, C(-' , .. . , L'! anrl thcrefore
cannot be l inearly dependent on them. Hence Cl,Ci, . . . ,Ci
constitute a complete set of l-circuits. This sharpens the
theolem of $ 25 a little in that it establishes that there is
a complete set of solutions of (/d) each of rvhich represents
a single l-circuit.

Geometric Interpretation of Matrix Products

28. Aecording to the definition of multiplieation of matrices,

if and only if
in'ii l . i l birttl : ',)ctkll

f orit,y, : cit:t
j : r

f beirrg the number of columns in lla'.111 and the nttmber of
rows in l lDrr, l l .

Hence* the equations (I/o)
matrix eqnation,

of $ 19 are equivalent to the

0

:

l0
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in which the matrix on the right has orie column containing
/lo zeros.

Since each column of the matrix 11, is the symbol (ab defined
in $ 14) for a bouniling O-circuit, (i. e., the ;ith eolumn is the
symbol for the 0-circuit rvhich bounds al) any colurnn of Id
is a solution (rr, &zt..,tzoo) of the sei of equations (zo).
B"v the remark above rve may express this result in the form,

rvhere 0 is the symbol
are zero.

IIs. II1 : Q,

for a matrix all of rvhose elenents

29. By the boundary of a one-dimensional complex is meant
the set of 0-cells each of which is incident with an odd number
of l-cells of the complex. So, for example, a l-circuit is
a linear graph rvhich has no boundary.

Frorn the definition ($ la) of addition (mod.Z) of sets of
points it is elear that thc sum of the boundaries of two 1-cells
is the boundary of the complex consisting of the ttvo l-eells
and theil ends. Ry repeated application of this reasoning rve
prove that the boundary of any one-dimensional cornplex is
an even number of 0-cclls, i. e., ,a number of 0-circuits.

Norv consider a one-dirnensional complex Ci represented by
tlre symbol (rr, rt, ..., to,) for its l-cells. Accolding to the
reasoning in $ 24 each term of

,r t l r rr*  n!r4* . .  .  * t t ln,ro,

is 1 or 0 according as the coriesponrling l-cell is or is not
both in Ci and incident rvith a!. Hence this expression is
I or 0 (mod.2) according as a! is ol is not a boundary point
of. Cl. Henee if rve set

r f i r r r*r t ! " r r* . . .  *r1",*o,  :  yo ( i  :  1,2, . - . ,  ao)

the symbol (yr, yr, ..., !oo) thus determined represents the set
of points n'hich bounds Ci.

Recalling the rule for multiplying matrices, \ve see that
tlfs rcsult may be stated as follorvs:
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for the boundaries of the l-cells represented by the first
0, columns of Br. Hence the first qr columns of the produet
Hr.R, al'e the same as the last gr columns of Bo. The
remaining columns of. Hr.Bt must be composed entirely of
zeros since the remaining columus of B, represent l-circuits.
Hence
(r)
'tt'herc

HT: 00 l0

00

is a matrix of rre rorrs &nd a, columns of rvhich all elements
are 0's exeept the first 91 elements of the main diagonal,
and ,4e is a natrix of ae rorvs &Dd ao eolumns rvhose first
?r: rlo--Ro columns are identical rvith the last Qr eolumns
of .86 and whose last -Ro columns are identieal rvith the tirst
.Re colurnns of Bu, Since the determinant of J?u is 1, thc
detelminant of ,4u is l. Henee (1) rna5' be rvritten

(2) A,, ' '  .Hr.  I \  :  g i ' .

From the point of vierv of the algebra of matr.ices (mod.2)
the determination of the tu'o matlices .d.o I and IJr is the
solution of the problem of lerlucing .EI, to its normal or
unitary form, di'. Geometr.icall5' (cf. 

"s 
B0) these matriees

may be legardetl as summalizing the theory of circuits iu
a linear graph. It rvill be founrl that this geometrical
significance of the reduction of 11, to its uormal form generalizes
to n dimensions. For the sake of completeness we shall
also cany out the analogous retluction of .Elr.

32. From $ 28 and thc definition of ,1J,, it is clear that

t! 9n-trl

!

lii
I

Hr.

Ut

,:

Uaofro,

if and
bounds

only if (yr, yr, ..., lJoo) denotes the set of points which

the eomplex dengted by ("r  : r . l t  "  ' ,  tn,) '

Reduction of Ho and .FIr to Normal Form

30. Let ns define trvo matrices l?o and 'Br as follorvs:

trees of $ 26.
B, is ,r, matt'ix of rr, t'olvs nnd cr, colnmtts rlf rvhich the

first g, columns irre.tlte symbols fot' ar1 ( j : i, i", "'., in,l,

and thc litst ar-qr, colttmtts irt'e tltc s.vinbols for tlre 1-circuits

(t, ci, ..., ci ' .
The dcterrninauts 0f these trvo miltt ' ices nre evidently I

are linear.l5, depentlent ftnod.2) upon the O-circnits t'ept'esented

byi ts lastq.eolr tnt t ts l (2)al l t ton.bt t t tndi t lg0-circt t i tsale
linearly rspendent on its last co-l eolumns; (3) all sets of

0-cells ale linearly dependent on rrll its colttmns'

The miririx B, has the properties: (l) tl l l-circrtits are

linearly dependent upon tlte 1-circuits rept'esented by its last

1, columns and (2) all sets of l-cclls nre lirtellly dependent

on all its colttmns.
31. Flom $ 29 antl the definition of 81 it is clclr that

tlre first g, coltrmns of the pt'oduct IIt '81 mttst be the syrnbols

Hr. Br : Ao.IIl,

l0 00
0 l  0 0 . . .

t l
.r.

i
'1

i
t.1
1
ti:l

{
I
l

I
1

i
I
I,l
i
In
I
;
I
]i
t
I'ri

I

li
ti
tl
II
ttr

; ;
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1 I  1 . . .  1
0r0 0
0 0 1 . . .  0

( l )  H0.Bo :

000 10 0

the right-hand member of this equation being a matrix of

.Ro rows tntl cro colutnns. Each of the first &r columns of

this mrrtrix contains I 1 fol each of the complexes Ci

(l : 1 , 2, ..., lfr) rvhich contains n O-eell of the set

leplesentetl by the corresponrling columns of -IJo. The last

ttr_ llo columtts contain nothing but 0's because the last

ao--ZJx columns of .IJ. rept'esent bouuding 0-circuits. This

equation tna.r' itlso be n'ritten itt tlte foI'm

Hr.Bu -" -1. Hi;'

in rvhich I is a s(luilt.e mittrix 0f ,ffe coltrntns identical rvitlt

the first ./Ju columns of I/o'1lo :llld I/i is rr matlix of 1Je rorvs

rnd rru columns all elements of rvhich are 0 exeept thc

,/Jq elcments of the nritin dingottal, rvhich are all I .

The deternrittant of tlte mirtt'ix J is unity antl ,4. tltet'efore

hirs ir utriqne iuverse l-1 . Hent:e (2) becomes

(3) A-1 . Ho. l), -='' Yi' .

'I'lrus .rl-r rurtl 3r, rre a pair. of matr.ices.by nteitns of rvhich

l/6 is tratrsfotmed to the llormal folrn HJ.

Oriented Cells

33. We tnt'n trorv to the ttotion of "ot'ietrtatiolt" 0r ttsense

of descriptiofi" of u complex. The delinitions adopted rvill

doubtless seem vel'\ ' rlrtificial. but this is bound to be the

case in clefining irny ideir so intuitionall.t' elemental ns that of
tt sense."

A O-cell associated rvith the numbet'f I or - I shall be

called an orienterl' O'ull ot oriented, point.* In the first case

;r" 
",",lyti, -ppl,;t# 

tl" 
""tb.t 

t];;ttti"fi t"ttr' o poittii'
usullly deterrninetl b5' tbe sign df a functionnl determinont'

23

0
0
o

0l l

:

(2)

r -_'.

,ri i
i l

I

,,lj

l ! l

itl
iil
l i i
l t l
l | |
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the oriented O-cell is saiil to be positiuely oriented and in the
seconal ease it is said to be. negatiuely oriattecl; the two
oriented points are called negatiaes of eaeh other. A set of
oriented 0-cells is called trn orietttetl \-climensional compler.

A pair of orieiltetl 0-cells, formed by associrrting one point
of a 0-circuit rvith -l I and the other rvith - I shall be
called an orimted O-ciradt or nn oriented j-dinrctzsional mati-
fold. It a O-circuit is bounding, ony or.iented O-circuit forrnetl
from it is also snid to be boutding.

34. The ends oo' o?, of a l-cell cr rvheu rssoeiated circh
tvith * I detelnrine tn'o oliented 0-cells n,hich may be calletl
o! and o! respectively. ' lhercforc the ends of rul tletennirre
trvo orictttcd O-t:ircttits, ttitmely ul,, -o! rrlrd -uo' o,), 1l'1c
object forrncd by associtting at rvith cither.of thcse 0-cir.errits
is callcd ern orientctl 7-ccll.

The oliented l-cell ot folmed by tssociirting r.rt n'ith otl,-tl
is sr'tid to be positir:ely relatetl to of and -o$ and nequtiu:lu
relatei to -of antl o$. An olierrtett 0-ccll is said to be
positively or negttively lelrrted to an or.iented 1-cell aeeoltlirrg
as the l-cell is positively ol negativcly relatcd to it.

Tlre point af is callctl t\e termi'itctl poittt arrd nll the initirtl
ltoint of the oricntetl l-cell or t'o;'rned by tssoeiating ot rvith
o'1,, - ofl. In diirgrarns it is corrvenient to denote an or.iented.
l-cell by rnarking it rvith rn il l 'row pointing from the initirrl
point to the ternrinal point.

In the ft-rllou'irrg seetions rve shall denote tlre oriented O-cclls
obtained by rrssoci l t i r rg each of the 0-ccl ls uu, r t ! ,  . . . ,  u! ,o of
a eomplex Ci  wi th *1,  by o '1,6?,, . . . ,  o! ,"  respect ivel l ' .
\\ 'e shall also denote an arbitrary one of the trvo oriented
l-cel ls rvhich ean beforrnedfrom a] ( i  :  1,2, . . . ,  ur)  b!
ol. Any set of oriented l-cells rvill be called au oriented
one-tlintuzsionul conrytler. 'lhus any linear grirph can be eon-
verted into an oriented complex in 2"' rvays.

35. The cells of a l-circuit, rvhen oriented by the process
described abo'le, give rise to a seqnenee of oricnted O-cells
itnd 1-cells,

I

1

I
1



-

if r'1 tlenote the rrtnk of lir,
,d

?'r - 8r - 4r,- Jl t ' '

40. The fot'm of the ntirtrices L', and Z'' has been limited

somewhat by the convention that dro, 6f;, "'t oi" denote 0'cells
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The rest of the discussion on this slightly mgre general
founrlation does not difrer in essentials from that already given.

Oriented r-Circuits

41. Every oriented 1-circuit eorresponds to a linear relation
among the oriented 0-cireuits rvhich bound the oriented l-cells
of rvhich it is eomposed, for if a given or{ented 0-cell is

ively related to oue sueh oriented 1-cell, its negirtive is,
b;'the ternrs of the dclinition, positively lelatcd to anoilrer
oriented l-cell of the oriented l-circuit. Conversely any linenr.
relrrtion 0mong the bounding 0-circuits determines an oriented
l-cilcuit or set of olicnted l-circuits. All this is analogous
to S 23. Taken rvith ts 39 it establishes that flre number. of
lincrrrl.l ' independeut linear relttions among bounding oriented
O-circuits is the silnle as irn)oltg bonnding 0-eircuits l 'hen
redrtced modulo 2.

f2. Any set of oriented l-cells of a complcx (:, may be
delroted by (r t ,  a '2t . . . ,  ar. , )  where :r : r :  I  i f  or l  is in t1e set,

: - 1 it - o| is in the sct, and ri: 0 if neither orr not
-o,1 is in it. A necessary aucl suflicient eoudition that sur:h
a s.r'mbol represent an oliented l-eircuit or set of orientetl
l.circuits is that it satisf.v the system of equations,

o,

Atir : t : r :  
O (r . :1,2, . . . ,  t to i ) ,

he matrix of rvhich is Z', . For in this set, the equatiorr.

l )  , l r r r* l r r r* , . .*r lo,ru, :  O

nds to the oriented 0-cell or0. A telm e ,\,t, of the left
is zero i f  al :0 or i f  x j :O, that i i ,  i f  oo1 is not

end of orr or if the set of orientcd l-cells does not eon-
tor l .  Tht term elrr , is  +I  i f  e]r .andz,areof thesame

n, that is if the set of oricnted l-cells contains of anrl the
ter is positively related to of or. if it contains "- dj and
drl is positively relatetl to or0; hence there are as many { t
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Forexample' thevert icesandedgesoft l retetralret l ronirr
Fig. 1 rvhen orientetl as indicateil by the anows constitute

an orientetl complex represeutetl by the fbllorving matrix:

t! E7-101

meal)s
(1)

00
- l  0

0 -r
11

0- l

10ll
t
I
i' t
n
lr
il
i
I
t. t
il
ll

I i1: I

0
- l

0

3g. Each column of the matrix z, is the symbol ($ 3?)

for a bountling oriented 0-circuit and henee is a solution of

the set of equations (z'o). In the nototion of mat'rices' this

86.f i1:  Q.

ts in the left member. of (l) as there arc orienterl l-cells
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in the set (cr 1 frs', . .., ro,) which are positiyely related to or9.
In like manner there are as many - 1 terms as there are
orientetl l-cells in the set which are negatively related to oo0.
Hence the leftJmncl memba' of (l) is the difa.ence between
tlrc ntmtba' of orimted 7-cclls in tlrc set which are ltositiacly
rcluted to ol ancl tlte nuntber uhieh are negutircly related to o!.
Hence an oriented l-circuit satisfies the equations (E1), and
any solution of (f,) of the kind in question must represent
an oriented l-circuit or a set of oriented l-circuits.

Sinee the number of valiables ar; in the equations (r,) is 
",

and the rank of the matrix of coefficients is ae--Zlo (cf. $ 39)
the number of solutions irr a set on which all others are
linearly dependent is 1n n'here

l t  :  dr-  au!  I lo.

Such a set is obviously obtained by eonvertirrg the p 1-circuits
of $ 27 into or iented l-c i tcui ts.  The synrbols (rr ,  *r , . . . ,  ro,)
for these 1-circuits are linearl5' independent solutions of (fr)
in rvhich the r's are 0 or * 1.

It is obvious that the eqnations (2,) have solutions in rvhich
the r's are integers tlifferent from 0 and -f 1. In order to
interpret these solutions lve shall return to the notion of
t singular eomplex on Ci ($ 8).

Symbols for Oriented Complexes

43. If a 0-cell a' on Cr (in the sense of $ 7) is associated
rvith * 1 or - I the resulting oricnted 0-cell 70 is said to
be on Cr, and if a0 coincides rvith a O-cell a! of C' o0 is
said to rcindide rvith ono or - of irccording as 70 is positively
or negatively orientecl.

Let Ci be any linear graph on Ci such that each l-cell
of Ci covers a l-cell of Q just oncer (cf. $ 9). If the cells
of both complexes are oriented, an oriented l-cell ol, of. C",
'rvill be saitl to coincid,e rvith an orierlted l-cell o[ 

'of 
C, if.

and only i f  (1) each poir t  of  o|  coincides rvi th a point.of
o,| and (2) each oliented O-cell of'Ci is positivcly or negativel5'
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, related to o] according as it eoincides rvith an oriented O-cell
of Q which is positively or negatively related to ol.

14, A symbol (rr, rr, ..., uo,) in rvhich the e's are'positivo
'0r negative integers or 0 rvill be taken to represent a set
of oriented i-cells (i : 0 or t) on (\ in rvhich (1) if
r i ( i  :7,2,. . . ,  &) is posi t ive thele are ai  or ientet l  i -cel ls

of r complex is called an oriattetl l-dimensional r:om2tlen
I sinqricn' ot'ietttcd conrple-t: is tlefined in similar lnfl,nner. A
singulal oliented complcx l'hose cells coineide rvith cells of
C',  determines a symbol (r1, : t2, . . . ,  r r , , ) .  Cotrversely,  an.v
such symbol determines at least one orientcd eomplex having
that symbol for its oriented l-cells. This complex ean in
general be constructed in a vlriety of n'ays, tlepending orr
hol u'e join the l-cells by 0-cells.

In cme the nnmbers r j ( j  :7,2,  . . . ,  u i i  z .  - . -  0,  l ) ,  have
t common faetor different, from unity, i. e.. in case

( r r ,  r . , ,  . . . ,  e. :u,)  - :  ( r -1r l  ,  Z2r l ,  , . . .  zn,d),

any or ierr ted complex t 'hose syurbol is (e1, z:2r. . . ,  z4) is said
to be coueretl d times by a comlller lvith symbol (rr, r", .. ., fro)
formed by olienting the cells of a complex eovering (zr,,zr, ..,, ?n,)
r/ times in the sense of $ 9.

45. I f  ( . r1,  x2,  - . , .  rn,)  and (yr ,  !h, ' . . ,  /* , )  a le symbols for .
t lo sets of or iented i-cel ls ( i :0,1),  the syml_rol  (rr*yr,
rz*!/zt "', a:n,*!Jo,) is called the sum of the trvo symbols
and the set of olieutecl i-cells rvhich it represents is ealled
lhe son of the two sets of oriented i-cells.

(iiven trvo (singnlar) oriented complexes, any or.iented eonr-
plex whose s.r'mbol is the sum of the symbols of the given
complexes is called L &otz of those complexes.

For example, in Fig. I the oriented l-cilcuit composed of
,4,6l ,otmay be denoted by (0,0,0,  l ,  1,  t )  and the or iented
I-ci lcrr i t  composerl  of  of , , , \ ,  -of ,  may be denoted by (0, 1,

fi
}
t;
H
fi
it
j

!l

$
f

H
$
f,
I
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-1,  1,0,0).  Their  sum is (0,  1,  -1,  2r l , l ) .  I f  each of
o;1, ol and -o| be replaeerl by its negative the sum beeomes
(0, -1,  1,0, 1,1).  In the f i rst  c irse the st tm deterrnines
:r pair of orientetl l-eircuits, ol appearing onee in eaeh; itt
the seeond case the sum dctctmines a single oriented 1-eircnit.

ft cirn be pt'oved by arr nrgument analogotts to that nsed
in $ 22 that an.r' solution of the equittions (Zr) represettts a
set of orienterl 1-circttits, ttt 'o ot'e ntorc of n'hich tn:ty have
:r given oriented 1-cell in colllmoll.

46. By tlrc lrctntduly of lttt rtriented l-ccll is neant the
pair of orienterl points n'hiclt are positively lellted to it.
Ily the botntrlury of tttty oriented one-tlimcttsiottal complc'x
is meiurt  the stun of the bottndrr ier of  the ol iet l tcd l -cel ls
composing i t .

Frorn this tlefinition it follorvs directll ' that rtn ot'ictttt 't l
l-circuit has no bountlitty and tltat fln)'sct of oricntetl l-cells
rvithout u bouudary may Lre legat'ded as u set of l-cilcttits'

I f  ( r1,  x2t - . . t . r . t , )  is the symbol for a single or iented 1-cel l .
it is obvious frorn the reasoning usetl it, $ 42 thtt (!lr, yz. . . ';!J,,^)
is the symbol fol its bounditly if and oul.v if

But the most genel'al symbol (rr, rr,.", ro,) in rvhich the
z's are integers or zero can be expressed as & sum of symbols
for orient€d 1-cells. and by the algebrnic properties of matrices.

It

I2

ANALYSIS SITUS, tOhap. I

Hence in the general case. (J/ry !!2t..., /oo) is the symbol for
the boundaly of (o1, t2r...: r.,,) if and only if (1) is satisfied.

Normal Form for lir
47. All eolumns, cxcept the fir.st one, of the matrix 1le

which appeared ($ 39) in the reduction of .EIo to normal form
are symbols for' O-circuits. Hence by changing one of the
I's in each eolumn after tho fir.st column to ---1, Bu is
convelted irrto a mttlix, Do, of s'hich the first colrrnrn re-
presents the oliented 0-cell o,0, the next ,Iio-1 colurnns re-
lrlesent linearly irrdeperrdent rron-bouuding oliented O-cilcuits,
irnd the last au -,/is columus r.el)rcsent liuearly indcpeudent
bounding oriented O-circuits. The pr.oduct Eo.Do is clearly
obtained from f/u.- I i6 b; 'changing one I  to - l  in each
column flonr the second to the ,Zioth. Hence

(l)  Eo.J),)  -  ( ' , .E, i" ,

rvhere ZJ is thc sanrc as IfJ arrd C is obtainetl frorn .4
trl- changing onc I into - I in each column except the first.
l 'he detenninant of C is -* 1 . Hcnce thcre exists a matrix C-r
rihose elements are integers and (l) ean be rvritten in the
form
(e)

The leduction of Eu to normal form, therefore, is completely
p;u'allel to the con'esponding reduction of Ir'o.

Matrices of Integers
48. The leduction of /i to norrnal form can be obtained

directly flom the gcneral theor.y of nratrices rvhose elements
ale integers.* The fuudamental theor.em of this theory is
tlrat for any matrix Ii of u, rorvs alrd a, columns rvhose
elements are integers thcre exist trvo sqnare matrices C and

* The pnrt of this theorv rvhich is rreedetl  for our purposes is the
strtrject of au expository nrticle (Appendix II) b-r p. Franklin nnil the
ati tbor in the Annnls of l lnthernatics, Vol.28 ( lg2l),  pp. l-1b.

,;" ii
( r ) C-' . Eo. I)r' - J;;v ,

ot * x't

:th* s;:!

r i l/ ' l l
,l I
. i l

frn,

(2) Iit '

*",+ rk, .J'flr

* Et '
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@r rows respectively, each of deterninant

C.E,D - I ; ' (

u'here .Ei is n matrix of crt rows and c, columns

l l  d,
i l -

ll o
l l :

f , l .  -
0

in rvhich dt is the highest common factor of all the elements
of E, dtds the H.C.F. of al l  the t lo-rowed deterninantswhich
can be found b-v removing rows and columns from Z, and
finally, d, dt ,.. tl, the H. C. F. of all the r'-rorved determinants
rvhich can be formed from .6. The number dt is the H. C. F. of
all thc numbers d1 tl2 ds .. - tlr, d,e is the FI. C. F. of r/2, r[, .. ', d,, etc.

Tlre numbet 's i l r ,  dt ,  . . . ,  d, .  arc ci t l led t .he i tn:nr iqnt f tctot 's.
trl the elentttttary diuisors of the matrix E. They arc in-
yariants in the sense that if l? is nrultiplied on tlte lcft by
r squtre mrtrix of rr, r'orvs and detetrninant -l- I and on tlre
right by any square matrix of a, r'ols and detertninrrnt -l-- 1.
the resulting matrix rvill be such thrt thc II. C. F. of all the
/c-rolvcd detcrrninants l'hiclt can bc fot'nted from it is
d1 . , ly .  .  .  . t  ( l r  ( / r  :  I  ,2,  . . ' ,  t ' \ .

If all elcments be reduced modulo 2, Z leduccs to a matrix 1/
al l  of  rvhoge elernents are 0 or 1. The cquat ion ( l )  rcduccs
to an equat ion l ike (2) of  $ 31. The rank of I i  d i lTels f lom
the lank of /1 by the number of rl 's rvhich contlin 2 as a fnctot'.

Normal Form for Il,

49. Supposc n'e apply the theoly just dcscribed to the
leduction to nornral form of the matrix /?r . tvitlt tlte redttction
represented by the equation

0
0

0

00

00
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(1) Co' .Er.Dr:  El ;

From this we get the follorving result:
plete set of sets of l-circuits, that is,
rrbitrary set of 1-circuits is a linear
integral coefficients, of its members. To
obtnin from (l) the relation,

I iL . DL : Co. El'.

Sinee the last a1 -r., columns of Zf are eomposed of zeros,
the last dt-r.t columns of D, represent sets of l_circuits,
rvhich must be independent, sincc the tleterminant of ,I), is
not zero. Since the determinant of .D1 is actually -f I , tlr
rrbitlary set of 1-circuits must be uniquely expressible as
r linear combination, rvith integral coefficients, of the com_
lrlexes represented by the eolumns of Dt. If this lirreirr
combination actually involved any of the firct r., colurnns.
the combiuation of the latter. columns in question must
leplesent a set of  l -c ircui ts,  lnd also be independent of t l re
l tst  ar-r i  columns, as al l  the t :olumns of D, are l incar. l .v
indcpendent. Hence the eqrratiorrs (li ) rvould hirve nrore
than rc, - r, l inearl.y independenf solrrtions, *'hich rve knorv
is not the case. Therefore the ljncrr conbi'ation in qnestiorr
cunnot involve any of the first ri columns, irnd rve conclude
thlt the last c, -r., colnmns represent ir complete set of
srrts of 1-circuits.

50. \Ve shall norv ontli 'e a proof of the fact thirt tlr.
invariant factors of Er are irll * t . Suppose l certairr
irrvariant factor, say the 7th, lrad a vllrre gleater. than l.
s;r-1' d. Then from (2) it follorvs that thc 7th colurnn of e
r ould replcsent a set of O-circuits rvhieh, taken d times,
rould bound a 1-dimensionrl  contplex lepresented by the 7th
c,rlumrr of. D1. \\'hen rvc go into the subject rnore tleeply,
in the gencral cirse (Chap. I\r. S B0), rve shall prove t1,*t
ttttder these conditions the set of O-ci.cuits in question corrld
not bound l'hen taken :r smaller positir.c uuntber of tintcs
t i tan d. I lut  i t  is not di f f icul t  to prove that i f  n set of

I

[Chap. I

There exists a con-
one sueh that an
combination, with

prove this, rve first

/r)

I

]I

i
I

l

I
I
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0-circuits bounds when taken rJ times, d positive, then it

also bounds when taken once. Hence the existence of the

invariant factor cl rvould lcad us to a contradiction; and it

follows that all the invariant factors of l9r are 1.

51. In view of the general theory it is seen that the

matrix tr1 fol a linear graph is characterized by the fact

tlrat ells inttrrinnt fa<:tors are all * l. On this aceount the

theory of the matrix l?, is esseltially the same as that of 'Efr '
When we come to the generalizations to tu'o antl more

tlimensions, the invariant factors of the matrix rvill no longer

have this simple propcrty and the invariant factors rvill turn

out to be important Anal.t'sis Sittts invariattts.

CIIASTER II

TWO.DIUENSIONAL . COilPLEXES AND UANItr'OLDS

Fundamental Definltions

1. In a Iluclidean space three non-collinear points and
the segments which join them by pairs constitute the boundary
of a finite region in the plane of the three points. This region
is called a triangular region or hao-dinretwio,nal sintplee and,
the three given points are called its uerticu. The points of
tlte boundirr"\' are not regarded as points of t1e region.

Consider any set of objects in (1-l) corlespondelrce with
the points of a trvo-dimensional simplex and its boundary.
The objects conesponding to the points of the sinplex con-
stitute n'lrat is callcd & tuo-d.imensional cell or 2-ccll, and.
those comesponding to the boulrdary of the simplex what is
callcd the bountlary of the 2-cell.

The objects rvhich constitute a cell nnd its boundary will
hereafter be referred to as "poirrts," and the remirrks in $ 2,
Chrrp. I, with regard to order relations are carried over with-
out change to the trvo-dimensional casc. 'l 'he boundary of
a 2-cell obviously satisfies the definition given in Chap. I of
a closed curve.

2. A. two-d,i.mensional compler may be defined as & one-
dimensional complex C1 together rvith a number, dst of
Z-cells rvhose boundaries are l-circuits of the one-dinrensional
cornplex, such tlrat each l-cell is on the t'oundary of at least
one 2-cell and no 2-cell has a point in common rvith another
-cell or rvith Q. The order relations of the pbints of the
undary of each Z-cell must coincide rvith the older relations
termined among these points as points of the l-circuit of
one-dimensional complex rvhich coincides lvith the boundary.

re the footnote to $ 2, Chap. III.)
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The surface of a tetrahedron (cf. Fig. 1) is a simple example
of a two-dimensional complex. Any polyhedron or combination
of polyhedra, in a Euclidean space will furnish a more com-
plicated example.

An arbitrary subset of the 0-cells, l-cells, and 2-cells of
a trvo-dimensional complex will be oecasionally referred to as
a generalizecl two-dimensional compl,er.

3. The definitions of limit point and eontinttotts trans-
formation given in Chap. I may be generalized directly to
trvo-dimensional complexes and rve take them for granted
rvithout furthel tliscussion. As in $ 4, Chap.f, ttt 'o complcxes
nre said to be lwneomorpltic if there cxists a (l-1) con-
tinuons correspondence betn'een them; and any such corre-
spondence is calletl t homeonrorlthism.- The trvo cotnplexes
will in general be defirred in quite different rvays so that
the numbers do, ar,.!e ore diffcrent; but if the tn'o com-

Jrlexes are homeomorphic there is a (l-1) continuous eorre-
spondence betrveen them as sets of points.

Any proposition abottt a eomplex or set of complexes rvhich
is unaltered under the group of all homeomorpltisnts of these
complexes is called a'proposition of. trco-dimetuvional Analysis
,9elrrs.

Matrices of Incidence

4. The 0-cells and l-cells on the boundary of a Z-cell are
srid to be inctdent with the 2-cell and the Z-cell to be
incident rvith the 0-cells and l-cells of its boundtrry. The
ineidence relations betrveen the l-cells and 2-cells of a trvo-
dimensional complex Cg may be indicated by a table or
mrtrix analgsous to that dcscribed in $ tZ, Chap. I. The
Z-cel ls,  a,  i r r  nnmber, shal l  be denoter l  by n?, a?r,  . . . ,  at*" .

'fhe matlix Hr:.llr1i. j l rvtiich deseribes the incidence relations
betrvecn the l-cells and 2-cells is sttch thr.t t1!,: 0 if al is
not incident rvith al and, q?r: I if a,1 is incident rvith ar?.

'In the cirse of the tetrahedron in Fig. l, let us denote t[re
2-cells opposite the vertices aor, al, a$, a! by ai, a?r, al, al
respectively. llhe table of ineidence relations becomes

oLlr
ol l r
aill
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a! a| al

ol l0

al l0

"ii o

110
010
100
00r
101
011

fOhap. lI

5. Since each column of rtlr contains cr, elements it ma.y
be regarded as a symbol(q,xe,. . . , ro,)  in the sense of $ 15,
Chap.I for a set of l-eells. The 7th column of ff3 is, in
fact. the symbol for the l-cells on the boundary of the
2-cell nj. It is therefole the symbol for a l-circuit. Henee
tlte cohtmns of H2 are sol,u,tions oJ' tlte eqzmtions (H). That
is to say

( l

7. ,nl. n?.
f---1 'tt ',;

or'. in terms of the

I

( l  )

where 0 stunds
It should be

in $ 28. Chap. I

-  0 ( ' i  :  I  :  , . ' t  &us h:1,  . . . ,  ( rc)

multiplicrtion of matrices,

H;'  I f2 :  Q,

for the matrix all of rvhose elements itre zero.
recallcd here that rve have already proved
that

Ho'H1 :  Q'

The ranks of the matrices.EI6, Hr, He, computed modulo 2,
ril l be denoted by qo, Q11 Qs r'€spectively.

6. From the point of view of Analysis Situs a trvo-dimeusional
eomplex is fnlly desclibed by the three matrices Hy,H1,H2
for there is no difliculty in proving that if trvo trvo-dimensional
complexes havc the same matrices there is a (t-t) con-
tiuunns correspondence betrveen thenr. Our definitions are
such thut the boundaly of every l-cell is a pail of distinct
points and the [roundar'5' of every Z-cell a non-singular.curve.
Hence a figure composed of a l-cell incident u'ith a 0-cell
or a Z-cell is in (1 -1) continuous correspondence n'ith tny
othcr such figure.
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-l) correEpondence with tto ilterior and boutrd-
lDgle which defrnes r 2-cell snd ils bouDdllv
, system ot l.colls in t,ho 2-cell which are thi
ts ol tho stroight l-colls in the lnt€rior of the
I regaldiDg this system of l-cells t8 llte ttraiaht
eflning tllo dierar.e betrveetr any tso points'of
d its botlndory os the distuce betwe€n the cou.c-
) points of tho interior of the taiangle, we call

ll .' ri ar, its en.s ror each l\:T..*i:-"fiX::,$"".;lT:l$ltrJT""fr,::
opcd, hoveyer, ltre not invariant under the giup
phisms, dnd tle corresponding theorcm$ are not
Aulysis Situs. !'or pu?oses of Analysis Situs
I interest het! ir sinply that there oxists o systenr
hich ore in (1-l) continuous coricspondencc
Light l-cells of the interior of a tritrngle of thc

Subdlvisi rne.

?. ,Ihc Dl.ope!.ties of r tvo circlee in o Euclidean sn€, it is o simDle
tlined by;tudying ihe conx , tiem anil their interion iD (l-l) continuous
nntlices do, tra!, ,re in conD( 9e in such o \yny that the coElqrondcnce thu*
ties of tle 2_cell. Th€ latl )n the circles is ony pre06signed homeonoryhisnr.

definitior ir $ 1, depcnil on I t if deffDitions of distance ar€ l$slgncd arbitraril]'
. pllne ntrl, in lorticular., or l-cells of any compkk q, definitions of distancc

Th" th"o* of polygons cr ess ctrn the[ be csaigned to the 2-cclls and thcir
incidence mirtrices. For. consider. a set ot ra stl ' iugnt l lnes I uounaitrles ln slleh iI \vay tlrat the disttnees thus assigned tlong

iu ir. Enclidean pla,ne. They separate it into ir numbel'rrr of tthe l 'cells agree with thdse previousl.y assigned. If a Z-ccll

planar convex I'egions irnd intel'sect in a ntrmbcl do of poillts

ivliclr divide t1e liles into a numbel' nr of linear convex

r'cgions. ilhe ao l)0il)ts cftl) be treatctl tls 0-cells' the at lineat'

corivcx regfons a.s l -cells and thc a, plattnr conYex rcgions

as2-cel ls.Anypol l 'gonis i t l -e i r 'c t t i t , i tndt}ret l retrryof
linear depcrttlettee as developed itr ottr first chapter c:rn be 

lt*i:tlg
rrpplied to ttre proof of thc funtlamcntal theorenrs ott loly- l,^,].t-:Y noints l,1nd 

B of thc boundary of t 2-cell at are

gon*. For the details of this tleoly, l'hich belongs to affine 
l::l:l,:t 1 :::itqlt 1-::l li lonllstils 

of. points of 
^ae,. 

the

leouret'y r.6er than to Analysis Situs, the reader is referred 
JITiil]i|,n,oint1 

of ar con-stitutt-rtl9 Z-cells each of which

io Ctrapters II and IX of the second vohune of Veblen antl l:l 
u:t"u..u bt 

"), 4,,8 
and one of tlie trvo l-cells into which

young's projective Geometry. l tnc 
b0undar} 'of a' is divit lerl  by.4 and,/1.
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If the bountlaries of two 2-cells al anrl a! have a l-cell ar'and
its ends in common, and the Z-cells and their boundaries have
no other common points, then a1, af anrl a! constitute'a 2-cell.

If there is a (1-l) continuous correspondence F' betweerr
the boundaries of two Z-cells a! and al, there exists a (1-l)
continuous correspondence .F' between the interior and borurdary
of al antl the interior and boundary of. alz n'hich efrects the
correspondence i?' between the boundalies.

A point of a 2-cell can be joined to a set of points J,,
As, . . . ,A, ,of  i ts  Lroundarybya set of  l -cel ls al ,a ' ! . , . . . ,a\ ,

' which are in the Z-cell and have no points in common. The 2-cell
is thus decomposetl into z 2-cells a'1, ai,..., ai, such that thn
sum of their boundaries (mod. 2) is the boundary of at antl
such thrrt the incidence relations between them and al, a!r,..., a,t
irre the same os the incidence relations betn'cen the 0-cells
and l-cells of a l-circuit.

Conversely,  i f .  a l ,  a|r , . . . ,  a l ,  and ai ,  a?2,. . . ,  ai  are l -cel ls
and 2-cells all incident rvith thc same point cro and also in-
cident rvith one another in such a way that the incidenee

' relutions betu'een the 1-cells and 2-cells are the same as
those betrveen the 0-cells aud l-cells of a 1-circuit, and

, al ,  a!r ,  . . - ,  a! ,are the only l -cel ls that the boundaries of nn1'
trvo of the 2-cel ls a!,  a| , . . , ,  a?, have in common, then the
point a0 anrl  the points of.  a! ,  a.r , , . . . ,  a l  and ai ,  ai ,  - . - ,  a:
constitute a Z-cell as which is boundcd by the surn (mod. ?)
rr f  the boundaries of the Z-cel ls a!,  ni , . . . ,  a?,.

10. The first of the theorems in the last section is a specirrl
case of thc theot'em thrrt any l-cell rvhich is in a Z-cell and
joins trvo poiqps of its boundary decomposes the 2-cell into
two 2-cells. This more general theorem dcpends on tlte
theorem of Jordan, that any Simple closerl cttrve in a Euclidean
plane separates the plane into two regions, the interior and
the exterior; and also on the theorem of Schoenflies thrtt
the interior of a simple closed curve is a 2-cell of rvhich the
cnrve is the boundary.

We shall not need to use these more general forms of the
separation theorems because we need, in general, merely tlte
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of curves which separate eells, and this is provided
in the theorems of the last section. ln connection with

e Jordan theorem, reference may be made to the proof by
\V. Alexander, Annals of llluthematics, Yol. 2l (1920), p. 180.

Maps

11. \\'/ith the aid of the theorerns on separation a Z-cell
may be srrbdivided into fulther 2-eells as follorvs: Let

y trvo points af and a9 of the boundnrl' of the 2-cell be
irred by a straight l-cell al consisting entirely of lroints of

2-cell. The 2-cell is thus separated into tu,o Z-cells ai
d o3. The boundary of oe is likervise separated into tu'o

-cells al, and a] rvhiclt have ol and al as ends. 'l'he 0-cells.
-cells and Z-cells into rvhich ar is thus subdivided constitutt'
?-dirnensionirl eomplex (.'e rvhose nrttriccs are

r l
1 l t l l l ,  H:-

e nnrnbels (rs. &y7 a. fot' C'g are respectivel.\' 2, 3, 2, so that

6rt-d;  *a:  :  1, .

This sul-rdivision of ae nray be continued by trvo processes:

) introducing a point of a l-cell rs il new 0-cell and
joining trvo 0-cells of the boundlr'.r'of a 2-cell by a l-cell

rnposed entilely of points of the 2-cell. 'Ihc fir'st process
s the numbers of O-cells rrnd l-cells each by 1. 'I 'hc
process increases the nunbels of l-cclls and Z-cells

h by 1. Hence any nurnber of lcpetitions of the tn'o
ocesses leave the nrttnbel do-drf ar invali irnt.
Any trvo-dirnensional eonrplex obtainable fronr ir Z-cell b5'
bdivisiorr of the kind dcscribetl al-rove is called tr simply
rzecterl ma1tl and it can easil5' be proved that any two-

sional complex rvhich is homeonrorphic rvith the interiol
iI boundar.t' of n 2-cell is a sirnply courrectcd urap.
The numbcr Go- dr f rrr determined by any complex Q
t' ing ao O-cells, at 1-cells and a" 2-cr' l ls is called tltc drnracta'-

" ' : l l  I
i i  r

1
i i  0

1,,
lr
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,istic of. Cz. Thus we have proved thttt the eh.aractristie o1'
a simTtly conne.eted ma,p is |.

12. There ale a number of interesting theorems about simply
c'onneeted maps which must be omitted here because they
are of too special a nature. Many of them are related to
the four eolor problem,: is it possible to color the cells of a simply
connected nrap with four colors in such a way that no two
Z-cells rvhich ale incitlent with the same l-cell are eolored
alike? This problem is stil l unsolved, in spite of numerous
attempts. In rdditiori to the references iu the Encyclopli,dic.
Vol.  I I I r ,  p. I77, the fol lorving references may be ci ted: I l i rk-
hoff, 'I 'he reducibility of maps, Anterican Journal of llatlre-
matics, Vol. 35, p. 115; Veblen, Annals of l\fathematics,
Vol. 14 (1912), p. 86; and an article by P. Franklin in thtr
American .Tournirl, Vol. 44 (1922), pp.225-236.

Regular Subdivision

13. It rvill often be found convcnient to lvork u'ith eom'
plexes rvhose 2-cells are each incident tvith tln'ee 0-cells antl
tlrree 1-cells. Such Z-cells rvill be called' tr'iangles and a com-
plex subdivided into triitngles rvill be said to be triuttgulatecl.
Any complex Q miry be tritngulirted by the follorvirrg pl'ocess
n'lriclr is called t requlcu' rltbtlirision.

Let Pi(k:1,2, . . . ,  .yg) be an arbi t r t ry point  of  the Z-cel l
u7,,  Pj  ( i  :  7,2, ." ,  a,)  at t  nlbi t rary point of  the l -cel l
n j  and p!  U = L,2, . . . ,  ao) ai tot l ter  nalne for t l tc  O-cel l  a l .
Tlre points I ' ; ( i :0,1,2; i ' :1,2, ' . ' ;  r r , )  a l 'c  to be the
vcltices of the coruplex C!.

Each 7'r!* scparirtcs thc oJl on n'hich it lics into trvo l-cells.
The l-cellJ'so clefined are to be among the l-cells of C!. The
lemaining l-cells of. Ct'ale obtninetl by joining eaclt P1,2 to
each of the points 1{ tntl /'rl of ttre bottttditty of ai, by I
strnight l-cell in ai. Etch 2-ccll ai is thtts decomposed ittto
ir set of 2-cells eaclt of tvhich is bounded by three of thc
l-cells of C'g, one on the boundary of af, and ttt'o interior

Lo a?.. The 2-cells thus obtained are the Z-cells of G.

43

The complex G is called a regular subd,iuision of Cl and is
also called a regatrar comqtlet:. No two 0-cells of @ are
joined by more than one l-cell of Cs. Moreover no l-cell
of G joins two points Pl, 1,l, which have equal superscripts.
[Ience any l-cell of d, tnny be denoterl ny pid ivith ici.

ANALYSIS SITUS. tOhap. Jt

!'ro. B.

)io three O-cells of Ce are vertices of nrore than one Z-cell
of 6'2, and furthermore one of the three vertices incident
rvith any g-cell is a pf, one is a p;1, and one is a pr3. Hence
nn-r' 2-cell of C'g may be denoted by pi pi p;.

14. Ariy vertex of C, together rvith the l-cells and 2-cells
wlrich are incident rvith it is callerl a triangle slar, and the
vertex is called the center of the tr.iangle star. Any point

ll of Cz may be taken as the center of a trirrngle star of 0r.
For if P is on a l-cell a] ofCritcan be chosen as the corre-

,-1.-:,u-',-'-n,_--:ffi_----
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sponding Pf anil if it is on a 2-cell a! it can be chosen as
the eorresponding Pf. The set of all triangle stars of a given
regular complex is sueh that each point of the complex is in
rt least one of them.

If Cr is itself regular any two verticm of Q which are
rvithin or on the boundary of a triangle star of C, are joincd
by a l -cel l  of  G,

15. The method of regular subdivision is nseful in continuitl
argumeuts where it is desirable to subdivide a given eomplex
into "arbitrarily small" cells. Let a complex C, in rvhich
a definition of stlaight lines and of distirnce has been intro-
duced as described in $ 8, be subjected to a legular subdivision
into a complcx Czt and let Czr be regularly subdividerl into C3:,
and so on, thns detelmining a sequence of complexes C'r.
Ci , . . . ,  Clr ' , . . . ,  eaeh of  rvhich is a regular subdiv is ion of
the one preeetling it. Let us require irlso that erch neu'
0-cell introduced in a l-cell in the pl'ocess of subdivisiorr
shrrll be the mid-point of the 1-cell, that each point intelior to
a triangular' 2-cell (the point Pi, of $ 13) shall be the centel
of gravity (intersectiou point of the medians) of the triirngle.
and that the l-cells introduced shall be stmight. \Vith these
conventions, it is evident that, for every numbcr d > 0 therc
exists a number -1y'4 such that if n) N6 ever.\' l-cell itt
Ci is of Icngth less than d.

16. The relationship betleen G and G mrty be stated as
follorvs: (1) each Z-cell a2*of Cr is composed of ]' i, antl all
the I -cells pl p7, or Pl P'r anrl all Z-cclls I'? t'l f i,? t l r,7,, of L',j rh,

incident u'ith ?i; (2) errch l-cell aj of G is composetl o1'
Prl and the tu'o l-cells pi pi of L', incioent rvith /' j; and (3)
each 0-cpll al of Cs is the vertex P'l of L'r.

Hence the complex C'e may be converted into C'g by a series
of steps of tu 'o sorts; ' ( l )  combine trvo 2-cel ls tvhose bonnd-
aries have one and only one l-cell irr common into a nel'
Z-cell, suppressing the eommon 1-cell and (2) combine trvo
l-cells both incident with a 0-cell rvhich is not incident rvith
nny other l-ccll into iI new 1-eell, suppressing the comnort
0-cell.
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The first type of step requires that the matrix IIr of G be

rroilified by adding the columrt representiug one of the two

2-cells to the one representing thc other, removing the co-

Iumn representing the first of the two 2-cells, and also re-

moying the rorv eorresponding to the 1-eell rvhich is suppressed.
e row u'hich is removed coutaiued only two l's before

the two columns n'ere atlded, because the l-cell to which it
corresponds is incident rvith only trvo 2-cells. After the one
column is added to the other this rorv contains only one 1
and this 1 is coutmon to the rorv and column letnoved.
Hence the first type of step has the effect of reducing the
nnk of H2 by l,

It also has the eltect of renoving the column of rllr cor-
responding to the l-cell suppressed. This l-cell is on the
boundrrry of a 2-cell. Hence the O-circuit represented by
the column removed is linearly dependent on the columns
corresponding to the other l-cells of the boundary of this
2-cell. Hence the removal of this column leaves the rank
of IIt unaltered.

The first t"r'pe of step thus changes 91 and g1 into Qr - |
tud gr rcspectively. It obviously changes dor ar, flnd ae
into rru, ar - 1 and rrr-1 respectivel5'. A similar argument
shorvs thirt the second type <.rf step changes 92 and qr into

.a,, and Qr - 1 respcctively and also changes dot 0.1, ar into
ao-1, dr-L, rnd nu respect ivelv.  Hctrce t l te numbers

au- a,  {  a2

; :_: : -n '
are the same for C'g as fol' C'r. This is a special case of
the more general theolem, to bc proved later, that these
numbers are invariants of Cg under the group of all homeo-
nrorphisms.

Manifolds and z-Circuits

l?. By thc boundary of a Z-dimensional complex Ce is
meant the one-dimensional cornplex containing each 1-cell of
C: u'hich is incidcnt ryith an odd number of Z-cells of. Cz.
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Ry a 2-di,mensional cirntit or a ?-ei.ranil is meant a Z-di-
mensional complex Q rvithout n, boundary such that any
Z-dimensional compler whose 2-cells are.a subset of the
Z-cells of Ce hns a boundary. Thns any 2-dimensional eomplex
in rvhich each l-cell is incident with an even nnmber of Z-cells
is evidently a Z-circuit or a set of 2-circuits having only
0-cells and l-cells in common.

A 2-dimensional complex eontaining no Z-circuits is callctl
a 2-dimeusional /r'ee.

18. By a neiglfiorltoorl of a point I' of. a complex C2 is
meant uny set B of O-cells, l-cells and Z-cells composed of
points of 6'e and such that any set of points of Ce having
P as a limit point contains points on the cells of ^9. Thus
rny triangle star of a legular complex is a neighborhood of
its center. Since (cf. $ t+) any point of ,a complex f,, etn
be made a vertex of a rcgular subdivision of Q. the process
of regular subdivision gives an explicit mothorl of finding t
neighbolhood of any point of Cr.

f9. If Ci is a 2-circuit of rvhich every point has a neighbor-
hood rvhich is a 2-cell, then the set of nll points on C, is called
t closetl huo-rl,imu#ional tnurziifold..* If C'g is t legulrr sub-
division of a 2-circuit Ce theu it is evident that 0e defines
a manifold if and only if it is true that for erch vertex -I'
of G the incidence relations betrveen the 1-cells anrl 2-cells
of C2 rvhich are incideut l'ith P ale the snne as those
betrveen the O-cells and 1-cells of a l-eircuit.

A set of points obtainable from a closed trvo-dimensionrl
manifold by rernoving a finite number of 2-cclls no tl 'o of
which have an interior or boundary poiut in common is called
nn open t1go-dimensional nzanifold,. In the lest of this ehtptcr
the term manifold rvill mean "closed manifold" rrnless the
opposite is specified.

20. The simplest example of a two-dimensional manifold

I We use this term rather than "surface" in or<ler to have a terminologS'
which may be used rvithout confusion in Algebraic Geometry. In the
latter science the real and complex points of a surfnce consti tute r four-
dimensiounl rnanifold.
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is one determind by a complex consisting of two O-cells, two
l-cells and two Z-cells, each 0-eell being incident with both
l-cells and each l-cell rvith both Z-cells. Thus the matrices
defining the manifold are

Hs := il\ I ,,
l  r  1 l lH1 :  u,  :  i ' i  ; j i .

Such a manifold
easily seen to
tetrahedron.

21. A simple example of an open manifold, Ms, is obtained
flom a rectangle ABCD {Fig. a) by setting up a l-l con-
tinuous correspondence lf between the l-cells AB xnd CD
and their ends in such a way that .24. corresponds to D and B
rolresponds to C, and then regarding the pairs of points

Frc.4.

whieh conespond under -F each as ir single point of .&/r.
This open mtnifold is called a" hile or a" cylintl'rical surfaw,
That it satisfies the defiuition of an open manifold is easily
proved by tlividing the rcctangle into 2-cells by a 1-cell
joining a point -P of the side :{D to a point Q of the side BC.
it is bounded by the trvo cul'l/es formed from the l-cells
,{D aud .IiC rcspectively.

Let a (1-1) continuous,eorresllondence .Zlr be set up betrveen
the l-cells rlD and /JC and their ends in such a way that,4.
con'esponds to B, P to Q, and D to C. A closed manifold ?is
dcfined by legarding as single points of T erch pair of
I'rints rvhich correspond either under .F or under -Ft. The
forrr points A, B, CI, D thus coalesce to one point of ?. This
mrnifold is callcd an ancltor rinrt or torzn.

22. If. a correspondence G betrveen the l-cells AB md CD
attd their ends is set up in such a ll 'ay that ,4. coyresponds to (/

is calletl a hao-dimmsional sgitte. It is
be homeomorphic with the surface of a
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and B to D, an open manifold M is obtainetl by regalding each
pair of points rvhich correspond under G as a single point of.l/.

This open manifold is called the Miibhts bantl.a' A model is most

simply constl'ucted by taking a rectangle, giving it rr half-twist

nnd bringing opposite eclges togcther'. Tlrtts the t'ectangle irr

_Fig. 4 represents a lll0bius band (F ig. 5) if $'e regrrd as identicnl

Fro. 5.

the two vertices lrrbelletl o!, the trvo edges lrrbelled al and

the two vertices a!. If the rectangle be divided into trvtr

2-cells by the l-cell a| joining tltc trvo points nll and al rve

obtain the follorving mirtrices I'hich describe the ][0bius band.

Hs': \ t l  I 1

IIt :

/l

,  Ht:

23. The trI0bius'band is bounded by the l-cilcuit (0, 0'

I , 1, 1, 1). If a 2-cell be intloduced rvhich is bountletl

by this l-circuit a complex is obtained rvhose ntatt'ices 'EI,'
and I/r are the same as llo and II1 f'or the }[0bius band'

s'hile _
* Cf, A. F. Mdbius, Gesammelte \Verke, Vol' 2, png:s 484 nnd 519'

,  l i l
I  I  l r
1Oi l
o 111 '
t  o i '
0l l l

101001
100110
010011
011100

(3 al
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is easy to prove that a sphere with one handle is an anchor
ring.

26. It one of the anchor rings ?{ in the last section is
replaced by a projective plane, the Z-circnit M, is easily
seen to define a manifold. We shall refcr to this as a ozc-
sidecl ntanifold, of the first hind, of 17mus ?-1, or of con-
nectivity 21t. It is easy to verify that a projective plano
is a one-sided manifold of the first kind of genus zero.

If trvo of the manifolds Ti ue plojective planes arrd the
l'est are anehor rings the Z-circuit r'11, again defines a mani-
fold. This is called a one-sidecl manifold of the second kirul
of ylemts p-2, or of connectirity 27t-1.

In this section and the last one the terms connectivity
irnd genus are used in such a rvay that

. IJ ' - l  :2p*k

rvhere ,Br is the connectivity, 2r is the genus, and /c : 0
for an orientable manifold, k :, I for an one-sided manifold
of the lirst kind, and h '.-, ! fsp' rn one-sided manifold of
the second kind.

2?. The fnndrrmental ploblem of trvo-dimensional Analysis
Situs is that of classifying all two-dimensional manifolds.
The solution of this problem is found b1' proving: (t) ttrrt
for every manifold there is an integcr ,lJr, the connectivit.v
(cf. .s 29), rvhicl is an invariant under the group of all
homeomorphisms; (2) that tlrere is an invaliant property,
that of "orientableness"l and (3) that any trvo manifolds
wltieh have the same connectivity and are both orientrble
or both Bott-olientable are homeomorphic. From this it rvill
follorv that thc examples given in $$ 25 anrl 26 include all
two-dimensional manifolds.

The proof of the propositions (1) and (2) rvill be given irr
eonsiderable detail in the following pages because it is the
basis of important generalizations to z-dimensions. The thiltl
proposition is covered more summarily because methods of
proving it are rvell knorvn and there is no possibility of
generalizing it directly to n-dimensions. There is no knou'lr

5t
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system of invariants or invariant properties of z-ilimensional

manifolds rvhich rvill characterize u manifoltl completely even

in the three-dimensional case.

The Connectivity Rt

28. The boundary of any of the 2-cells a! rvhich enter into
definition of a complex Ce is given by one of the co-

mns of the matrix fifg. The boundary of the complex de-

termined by trvo of these 2-cells is cvidently the sum (nod. 2)

the boundaries of the Z-cells, tnd therefore is a l-circuit
set of l-circuits composed of cclls a! and aj of.6. B.v

repetitiou of tltese considct'ttions it follorvs that tlte bottn-

ry of any two-dimensional contplex composed of cells of

1'. is a I -circuit or set of 1-cilcuits rvhich is the sunl
(nrort. 2) of the boundaries of the 2-cells of the complex.

Hente a symbol (rr, rr, ..., no,) fot' suclt a boundar.r' is

rl5' dependent (mod. 2) on the colttmns of. He.
] [oreover i f  any symbol (*r ,  rr , . - . ,  to,)  is l inearly ex-

le in telms of the colttmns of I4 this expression dr:-

tennines a set of 2-cells of G such that the symbol for thc
of their  boundaries is (rr ,  ?t , . - . ,  ro,) .  Hetce n ne-

and nqffi.cient contlilion tlmt a set of l'cit'cttits com'
vtl of cells of C2 shall bou,nd u compler contltosed of cells

oJ' C, is thu,t its syntbol slmll be linearl;y dcpcndmt on the
coluntns of Hz.

29. By $ 25, Chap. I the number of solutions of the
equations (I1t) in a complete set is a,-9,. So this is the

mber of l-circuits in ir eomplete set. If ge is the rank of

:, the l-eircuits rvhich bound complexes composed of cells

G are all l inearly dependent on 92 sttch l-circuits. Hence
complete set of solutions of (Ht) is obtained by adjoining

synrbols for ar-Qr-Ce l-circuits or sets of l-circuits
ge linearly independent columns of Hr. Let tts set

)  nr- l  :  ar-Qr-Qg.

Hence there exist 1?1 - I l-cilcuits or sets of l-circuits
Cl, Cl, ..., Cf,-r such that every l-circuit composed of

t-

l:

I
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l-cells of G is linearly dependent (mod.2) on these and on
the boundaries of 2-cells of Cr.

It can be so arrangerl that each of Cl, C|, . . ., Cf'-t i*
a single l-circuit. Fol if Cf represents more than one
l-circuit it is the sum (mod. 2) of these l-circuits and at
least one of these must be l ineal ly independent of.  C?,. . . ,
Cln'-t and the bounding circnits, for otherrvise Cl rvould it-
self be linearly dependent on them. Let Cl be replaced b.y
this nou-l-rounding 1-circuit. In Iike mallnel', there is at lerrst
one one among thc l-circuits rcprcsented by Ci tvhich is
linearly indepeudent of Cr1,, C|, .'-, C'r't '-t ancl thc bounding
l-circuits, for otltet'u'ise Cr" rvould bc lincarly dependcnt otr
them. I'et Ci be replaced by this l-circuit and let a similar
tteatment be applierl to Cl, antl so ou. A set of l-cilcttits
thus deterrnined is callcd a com1il.eta set oJ' non-botntclinrl
l-riranits. It has the ploperties: (l) There is no two-dimen-
sional complex composed of cells of C, rvhich is bounded bl
these l-circuits or an.y subset of them. (2) If Ci is ln.v
l-circuit composed of cells of Cs therc is a tu'o-dimensional
conrplex composed of cells of Cg rvhiclt is bouttded either by
C, alone or:  by Ct and some of the c i rcui ts Oi ( i :1,2,
. . . ,  1?t-1).  The nuntber,  ,2f i ,  is cal led t l te connect iui ty <tf
the complex Q, or, rvhen it is ttecessary to distinguish it
from the other connectivities -Iil rvhich are defined later, the
lineur connecti'uity.

30. Now suppose that G consists of a singlc 2-circuit. In this
case the sum (modulo 2) of the 1-circrrits bounding the Z-eellrr
is (0, 0, . .., 0). This constitntes one linear reltrtion among
the colnmns of I/e. There cannot Llc morc tlritn one such
relation, f&' tms rvoultl irnpl.y that it subset of the Z-cells
satisfied the definition of'a 2-circuit. Hence the rank of lr', is
cco -- l. Thns rve have

-1.

irnd fronr g 20, Chap. I rve have

ANALYSIS SITUS. tChsp. lI

But since any 2-circuit is connected, .Bo - l. Henee on com-
uining (2) and (3) with (1) of $ 29 rve obtain

oto-ccr*.r* :3-R,

is one of the generalizations of Euler's well-known
formula for a polyherlron.

31. Since a trvo-tlimensional closed manifokl is the set of
points on a particnlal kind of 2-circuit the formula (4,1 of
$ 30, gives the relation betrveen the connectivity .l?1 and the
characteristic of any ttvo-dimensional complex defining a closed
manifold. fn,the case of an open manifold, ,41s, according
to $ 19, the boundary consists of a number of cnrves. Call
this number .B1 . Of these curves, Br-l are linearly in-

endent beeause otherrvise the;'woultl be the boundary of
ir nrarrifold contained in XIr, eontrary to definition. As in
$ 29, a complete set of l-circuits in the complex C, defining
J/e rnay be talien to consist of g, bonnding l-cilcuits and
/ir - 1 non-bounding 1-cireuits; and of the latter', .8, - I may
be taken to be circuits of the boundary of .,'11r. Hence if
./r'1 --81 : Ii l- 1. the non-bounding circnits in thc conpletc

, comprise B, - I from the boundary and ,lJ, - I others.
If (! be modified by intloducing 81 2-cells each bounded

(2)

by one of the B, l-circuits of the boundaqv, C, becomes a
2-circuit Ci of "r* Br 2-cells, rr, l-cells, and no 0-cells in
uhich 111 -1 of the non-bounding circuits of C! hrrve becomc
bounding circuits. Hence Lj has t,he eonnectivity IJ1 . Hcnce

an-dr*ae* I \  -  3-8, ,

&o- ott f  cr,  =- 3 - I IL- IJI

:2- I t r

is the formula for the characteristic of a complex
an open manifold of trvo dimensions, The same

rmula holds for lny connected two-dimensional tree, as

(3) Qr :  d lo- I lu.
nl lows from (1) and (3) and the fact  that  qr*:  d2.
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Singular Complexes

32. The cells a!, a;1, a|, which enter into the definition of a

complex are all nod-singular and their boundaries ore also

non-singular. This restrietion was necessary in ortler to

obtain the theorem of $ 6 that the matrices Hn,Hr'.EIs fully
' tletelmine the complex. In many applications, horvever, it is

desirable to drop the restriction that the boundaries of the

eells refert'ed to in the mrrtrices //i shall be non-singular.

llhe results of the theory of mattices cau in general be

tpplietl rvhenever it is possible to subdivide the cells having

singular boundlries by means of a finite number of 0-cells

rnd l-cells in such a way ls to obtain a complex of non-

singular cells uith non-singular bottndaries.
l'or example, in $ 2l the attcltor t' ing rvas defined as

consisting of one O-cell, rept'esented by the four vertices of

thc rcctitngle, two 1-cells t'epresented by its pairs of oppositc

lrrlges, and one Z-cell. The mirtrices of incidence relations

of these cells are

Hr ,=- l lo o l l  ,  Ht :  i lS l
:0,  Qs :0,  do :  l ,  dr : .  l ,  ,  e" . . ,= l ,

:  3-(rro -%*or)  :  3

:  cq- 8r-0s*1.

If the lectangle is subdivided into tri:urgles so that o non-

singular complex is obtained it rvill be found that the stme

value for Br rvill be obtained from the non-singular eomplex

as flom t[e singulirr one.
33. The notion of a singular complex on a one'dimensiottal

complex, as defined in $'8, Chnp. I, can be generalized directl.t '

to tlo dimensions as follorvs:
I'et, Cz be a trvo-dimensiontrl eomplex, C' a geueralized

".*lt-.,.1Y_.:rj:":_._l"odimensions*,_TuO1_1t*:pond*t*
n The ilefinition nray be extended so that C, is of nny number of

dirncnsious.

55
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iu rvhich each point of C' eorresponds to one point of a set
of points [P] of (-', while each P is the correspondent of
6ne or more points of C. If C' is of one or two dimensions
l'e require .F to be eontinuous. Under these conditions, any'
point X of L" associatetl with thc P to which it corresponds
rrnder -F is called a point ott, Ct1 it is r.eferred as the imaqe
of , I  under I 'and is uniquely denoted by /(X);  i t  is st id
trt t:oincide rvith -if' and P is strid to coirzciclc tvith it. 'l'hc
point ,F(-Y') is called l l imit point of the points /"(I)
if Xr is rr linrit point of the points X. 'Ihe set of all
points -F (X) s1l f, is-in a (t-t) eontinuous correspondencc
rdth the points of (t' iud thus coustitutes a complex C"'
identical in stnrcture with C'. The complex C" is said to
ltc on, C2. If an;' of the lloints ,P is the con'espondent
rrrrder -F of mole than one point of C', ("'is called t sinylulnr
onpler om Ct and the pointP in question is ealled t sinqular
ltoint. If .Zr is (f -1), C"'is said to be raoz-sinqtlar'. A eell
of ("'is said to coitu:ide u;ith tt cell of /.', if and only if tlre
lu'o cells are in (l-l) continuous con.espondence. under. ,1.'.

In case (."' is trvo-dilnensional and such that there is rrt
st one point of C" on elch point of (ie arrtl if, fnr.thermolt.

exists fol every point of a" l ncighbolhood rvhich is
non-singulnl  cornplex on Cg, thbn C" is said Lo un,u'( , '2,
ease the numbel of points of C" orr each point of 6', is

nite and equal to D, ()" is said to couer' ( ' , n. Linrr:s
cf, S 9. Chap. I).
l)4. Any 2-circuit rvhich is not a ruarrifold carr be r.egar.ded
a singular manifold. For let Cr be an arbitrary Z-circuit.

)reh of its edges, a], is incident tvith an even nurnber'.
rri of 2-cells. lfhcse 2-cells mtry be groupetl arbitrarily in
pairs no trvo of rvhich ha'r'e a Z-cell in coutrnon; Iet these
called thc pah's o.l' ,2-cells associqtecl uith nl, Let C; be

2-circuit on /'1 such that (1) therc is one aurl but one
I of. Ci coirrcidirrg rvith each 2-ccll of Cr, (2) thele ale

l-cells of O6 coinciding rvith each l-cell a,f, of Cs, eaclr
the rh l-cells bcing incident rvith a pair of 2-cells of C'i
ich coincidc n'ith one of the pairs of Z-cells associated

{ l
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with arr, aurl (3) there is one 0-cell of Ci coincident- rvith

each 0-cell a! of. Cy this O-cell being incident rvith nll the

l-cells of Ci whic-h coincide rvith l-cells of Cz incident

rvith a!. Thus 6'i has two Z-cells incident rvith each of its

l-cells.
The incitlence rehtions of the 1-cells and 2-cells of ci rvhich

irre incident rvith t vertex a! of. (:i are the same as those

of the 0-cells and l-cells of a linear graph and since there

rlre just trvo 2-eells incident rvith each 1-cell this linear graplr

consists of a number.of 1-circuits having no points itr comtnott,

Let any set of l-cells and 2-cells of c,j rvhiclt itt 'c incidettt

with o9 and n'hose incidcnce relations n'ith otte irnother irt'e

tlrose bf a l-circuit be called a qrote associtdecl tuith u').

Let C.j'be a 2-circuit on CJ such that (l) tltele is one ltrd

but one zi-cell (i : l, 2) of- C'!' coinciding rvith each i-cell

of Ci, (2) the incidence lelirtions betrveen the l-cells attd

2_cells of (!, are the same as those betrveen the cells of (id

r:omplex C'J' is ir trvo-dintensionrl nlanifoltl, b.r' $ 19, and

Ci ' is a singulrrr complex on G. Hence Ci ml.y be obtainerl

by coalescing a cct'ttin numbet' of I -cells and 0-cells of

l manifold.

Bounding and Non-bounding r-Circuits

35. Having tlefined l'hat is meant by safing thtt a cottt-

on, a2 uhich is bountled bY K1/
In spite of the generrtlity of the complex 'lr'r, and beeause

of the generality of .I(r, this problem is fl'ee fi'om many of

the tlifficulties inherent in sttch point-set theot'ents as those

ANAIJYSIS SITUS. tChoD. Il

of Schoenllies ond Jordan. This rvill be illustrated by the
simple ease considered in the next section

36. Any closed curve, singulor or not. rvhich is on a Z-cell a2
and its boundary but does not pass through every point of a?
is the boundary of a Z-cell on a!. Let c be the given curve
rrnd 0 a point of a! not orr r. Let OX be the straight
t-eel l  jo inirrg O to r  var iaLr le l roint  X of.c.  Let O'bc
n point intelior to a triairgle I of a Euclidean plane and let
f' be a valirblc point of the boundnr,v 0f this triaugle. Let
y ' 'be t  cont inuous ( l - l )  colrespondence bet leen the set of
poirrts [,\ 'J nnd the set of points [,I1. If rvc let errch point
u1 () 'X'r :orrespond to the point of  / l l f  rvhich divides i t  in
the same ratio. ir continuous correspoutlence .Il' is definecl
in rvhich each point of the inter.ior tnd boundary of the
triangle I corlesponrls to one point of ae. By $ 1 there is thus
defined r 2-cell (iu genelal. singular) tvhich is bounderl by c.

It is uot essential thrt // shall not coincide rvith a point
of t:, for in case X coirrcides tvith O the intelval r' lX rnay

taken to be rr singulal' one coirrcidiug rvith 1.t. Hencc
n'e haye rvithout restrictions the theorcm thirt anv closetl

e ou ir 2-cell u is the boundtrv of a 2-cell on a.
The theorenl lnay bo gener.alized slightly as follorvs: rbry
'e c on u. triangle star atul ils lmnulu,qy ($ la) z's tlrc borndary

n 2-cell on the triattgle star. The Z-cell is constmcted as
bove. taking the eenter. of the trilngle stirr. as 0.

Congruences and Homologies, Modulo z
3?. Before going on to the solution of the pr.oblem stated
$ 35, let rrs introduce n notation rvhich is adapted from

of Poincar'6. We shall say thnt I complex Qu Qz : l, 2)
congntetrt (motl.2) t,o n set of (z- l)-circuits C,-r if and

if C,,-r is the boundary of (!,,. This is rcpresented b1'
notatiorr

(- ' ' , ,  
-  

( ' r- ,  ( fnOd. 2).

ease Ch-r frrils to exist, so that C'n is a set of n-circuits, Co
said to be rcn11ntent to ,zero (m.od,.2) and (1) is replaced by

i

ril,

1i

l i

l l

1i.

i l

I

t i i i, ]

l , l{
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- 

0 (moi l .2).

31 8o-tEl

(2)

Expressions of the form (l) and (2) are called congruencps
(mod^ 2), They have been defined thus far only for 4 : I
and z : 2r but these definitions rvill apply fol all valuer
of z as soon as the terms complex, n-circuit, and boundary ol
lun n-dimensional complex have been defined for all values of a.

Both in the one- and two-dimensional eases it is evident
that when trvo complexes are added (mod. 2) the bouudan
of the sum is the sum (mod. 2) of the boundaries. Hencr,
the sum (mod. 2) of the left-hand membcrs of two congru€nces
is congruent to the sum (mod. 2) of the right-hand rnenrbels,
Ot', more generally, any linear contbiruttiort, (ntotl P) oif a tnniltrr
of ualirl con(lrltances (mocl. 2l qf tlrc snnn tlimensionality is n. uuli,l
cong?'uence (m,ocl. 2),

38. With respect to tr contplex C a contplex Q, 1 is srirl
to be lrcmologotts to zero (nrod. 2) if and only if it is tlrr,
riglrt-hand membel of a congrnence such as (l) iu rvhich 4,
l'epresents t complex ou C. This relation is indit:nted bv

Cn-t- 0 (mod. 2).

Cb-0 (mod.2)

means that Cb represents a set of O-t:ircuits n'hieh bountl
a one-dimensional complex on (.! and

C'-0 (mod.2)

means thatC.1 represents a set of l-circuits on C'rvhieh bonnd a
two-dimensional complex on (,'. 'Ihus in evcry case, (.3) implies

(4) Cn-1 
-  

0 (mod.2),

but (4) d&s not imply (3).
From the corresponding propositiou in the last section it

follou's at once that utty linear coniination (ntod. ,'!) of a sel
of ualid, lrcntologies (nrctl. 2) is a rnl'id, lrcntolooy (tnocl. 2).
A homology,
(5) Co-t IC, l- t -  0 (mod.2),
is also written
(6) au-r- C,!,-r (mod. 2).

(3)
Thus

' l

;

1
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Those of the triangle start of Cr rvhose centers are vertices

of Cr have the property thtrt any point of Ci is either interior

to one sueh triangle star or on the boundaries of 2-eells

from two or more such triangle stars. Let tts designate as

ft cort'xpolxdarce A &ny correspondence of the vertices of li

rvith those of C, by rvhich each vertex of ii rvhich is interior

to a triangle stal of Z-, having a vertex of C'g-as eenter'

correspontls to this center, and each vertex of /( s'hich is

on the boundary of trvo or more such tritngkl stars cort'esponds

to the centel of one of thent.+ 'I'ltus a eorrespondetrce 'l
determines a rtnique vertex of C: for eitclt vertex of- K.

'Ihis constrttction is sttclt thltt any triangle star of C! rvhich

contains il vertex of -K has the 0-cell of C2 to rvhich this

vertex corresponds on its intclior or bounditty' Iloreovel'

irny tlo vertices of .I( rvhich ilrc ends of the sitnte l-cell

of 7 coincide l' ith points of tlte same triangle stnt' of d', anrl

hence con'espond to points of C! of the interior or boutldarl

of this tliangle sttr. Hence they correspond eithet'to the sirme

vertex of (.'g or to the trvo ends of rr l-cell of C" ([:f..s l+t.

fn cnse -I( is two-ttimensionitl it follorvs sinrilarl.y tltat tn1'

thlee vertices of K incident rvith tltc sirmc Z-cell of 7( eot't 'espontl

t0 one or more vertices of il single 2-cell of L!.

41. Let the O-cells, l-cells and Z-cells of (', be denotetl

by cf , c!, "', clloi cl,clr," '. ,lr,i rtttd r:1, ,tr, "', r;r," rcspectivcll ':

irrrd those ot ir uy ltl, ti, . . ., il),,; l;!, l,!, . . ., li,; I,i, Ii,' ", t,p,

respectively. Having lixed on a correspontlence r[ betrveen

the vertices of l( and those of C!, Ict each 0-cell ftl be

joineil by a straight l-cell t'l to ttre corresponding 't'ertcr

of i ', in ccse /r9 does not coincide rvith its correspondent; tnd

if /rl ' does coincide with its con'espondent let it be joined ttt

its cort'espondent by a singulat' l-cell Zrl coinciding lvith it

The trvo ends of a l-cell IcI ate thus joined by tlo l-cclls
Dl anO Z,i either to the same t'ertex of C'g or to the tu'o encs

61

* This is essentially the same as requiring (with Alexauder, in the papct

citetl in our preftce) that each vertex of ff shnll correspontl to the neorest

vertex of C1, ol to one of the neerest if there &re more than one'
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liuearly dependent on the columns of. Hz. If, therefore, n'e
can proye that Ri cannot bound gny complex on Cr unless it
bounds one qomposetl'of cells of G, it u'il l follow tltat (3) is
sat isf iet l  i f  and only i f  (q,  f r21.. . ,  no,)  is l inearly dependent
on the columns of H2, This we proceed to do, thus eotn-
pleting the solution of tbe problem stated in $ 35.

44. Let us return to the notations of $$  0 rtnd 4l and

suppose that K is a tlo-dimensional contplex Ii1. The three
f-celts lt!,li,kl of h incident l'ith a Z-cell l,:j, of K,r hrrvc
been seen to d.etermine tltree Z-cells tt'i, ti, tii. These 2'cells
are incident by pairs t' ith the l-cclls joining the thlee vertit:es
of. li ln to their correspondents under the correspondence l.
The vertices of C! to which the vertices of /rf con'espond
ale cither the three vertices of a 2-cell fi ot A, or tlte tlo

enrls of a l-cell of Ci ol rl single O'cell of C!. In tlre lirst
cirsc tlrc Z-cells, ti,, bI,\fi,l i and g arc the 2-cells of l
sphele; in the secontl and thild cases the 2-cells L'],,l,i, L',,

nnd ll? are the 2-cells of a spltere. Let tlte sphere rvhich

is thus in every ctse detet'mined by /,'r2, be denotetl by Sf.
A 2-cell tr? is in rrn odd number of these spltet'es if rrntl

only if it is incident rvith a l-cell /rl of thc bortnrlaty of /rr.

Hencc the result of ntltling the spheres 8,J' to ,(, (rnod. 2)

is either zero or a complex Jfi the Z-cells of rvhich at'e eithet'
2-cells of C', or' Z-cells D'i detcrrnined by the l-cells of the

boundary of Kz. fn particular, if. I{2 is a 2-circttit, either /re

is the sum (ntod. 2) of the spheres 8l' or /ij is e,omposetl

entirely of cells of C'g.
45. If -I{s hts it boundat'Y, so that

(4) "l I iy 
-  

f t ,  (mod.2),

the result of the last section is that by addiug a number of

c0ngruences,
(5) S!r ' - :  0 (mod.2),

to (a) rve obtain a congruence'

(6) K!2 
-  

Kr (mod.2),
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such that all 2.cells of Ki are either 2-eells of Cz or Z-cells
ll? determinetl by the boundary Kt of. Kl. The complex B!'
composed of the latter' 2-cells and their boundaries is such that

(?) Bi : Kr* Ki' (mod. 2)

rvhere -Ki' is composed of 0-cells and l-cells of C's. On
adding (6) and (7) rve obtain a eongruence

(S) Ki+ BL' : K'r' (mod. 2)

in wich the left-hand member represents a complex composed
only of cells of C!.

46. It is norv easy to obtain the result required at the
eld of $ 43, namely that if a set of I -circuits -I(i is com-
posed of eells of Ce, then

I( i -g (rnod.2)

implies that -h i is the bountlary of a eonrplex composed of
cells of Ce. Taking a complex bounded by Ki, rve subdivide
it as above, prelirninary to setting up a correspondenee ,4.,
rrnrl denote by ,K, the corresponding subdivision of. Ki. Thus
rre have a congmence like (a) of the last section, consequently
one like (8) derivcd from it. But in this case the 1(i' con-
structed in the last seetion is' easily seen to be identical
ri'ith -Ki. Hence (8) states tlr,at l(i is the boundary of a
lomplex composed of cells of C'g.

Invariance of R,
47. An immmediate corollary of rvlrat has just been proved

is that the l-circuits Cl, Ci, ..., Cl'-'of a complete set ($ 29)
of non-bounding l-circuits of Cs rrre not connected by any
homology of the folm

( r )  c: ,+c: ,+. . .+ci*-0 (mod.2)

in which the superscripts are distinct integers less than ,t?1.
lloreover if .Iir is any l-circuit on G it satisfies a homology
of the form
(2) Kr-Cr,+4+.. . ICr,  (mod.2)

l i,

1i

t1

I
{
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in which the terms of the
l-circuits of the comPlete set.

righhbantl mqmber rePresent
For by $ 42

(nod.2)(3) Kt- K

in which Ki is zero or a set of l'circuits composed of cells

of .C-s,anttby$2gKi ishornologoustoacombinat ionof

(4) 4- Cr '*  Cr '*  . . '  *  L i r '  (mot l .  2) ,

hand member of
f i r - l  :  c t r -  Qr-Qs

itnd the cells of eaeh are non-singulrr on the other'
D
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It shoulil perhaps be remarked that the relation between
.['e and C, may be quite complex in spite of the fact that
each cell of l(r is non-singular 0n Cr and, c*ice c*ersa. For any
l-cell of ,Tr may intersect any number of l-cells of G in an
infinite set of points, and any p-cell of /f, may have an in_
finite set of regions in common rvith any 2-cell of. C2.

Invariance of the z-Circuit
50. ff rli, rrnd C, are related as described in the last section.

K2 is a Z-circuit i.f antl onty if Ce is n 2-siratit. Since the
relation between 6'g and .Ife is reciprocal this theorem rvill be
established if rr'e prove that if jrrg is a 2-circuit then G is one.
Also it is evident that (.'g or ,Irle is a 2-cilcuit if and only if a
regular subdivision of it is n 2-eircuit. Hcnce rve replace e
by its regular snbrlivision 

-5 

as in $ a0 and construct the
spheres 8/ as in $ +c. By $  a the result of adding the
splreres SI to X, (motl. 2) is either zcl.o or a sct of 2-circuits
composed of cells of. Ce. If it rvere zero the 2-circrrit _Ir.,
ru'ould be the sum (mod. 2) of the spheres d/'. But this is
irnpossible, as shown by the follorving theorem.

bl, Tlrcrc is rzo set of 2-circtdts Ii!. orz a 2-ciratit C2 &rclt
llnt (I) ifor each Z-ciradt I(i ttu're is a 2-ccll of Cs an rcIiclt
tlrcre is no poittt of KJ antl (2) tlte stutt (ntod.2) of tIrc Z-
,'iraits lii is Cr.

To prove .this theorem, we suppose that there is a set of
2-circuits Xj having the property it). w. let these 2-circuits
take the pla_ce of /i in $ 40, make the regular subdivision
of Ce into Ce and lil into -I?j, construct a correspondence,[
and obtain a set of spheres ,9j' (tvhich, of course, must not
be confused rvith thosc in $ b0). When the spheres having
2-cells in common rvith one of the 2-circuits /(j' ar.e atlded
to this Xi tne lesult is either zero or a non-singular set of
2-circuits composed of cells of C!. But since C, is a Z-circuit
the only 2-circuit composed of its cells is G itsett. Since
there is one 2-cell of Q rvhich contains no point of Ki it
follorvs thaC the sum of Ki and the spheres gJ, determinetl
by its 2-cells is zero.
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Obviously if each gf t\Yo 2-circuits is sueh that the sunr
(rnoil. 2) of it antl the spheres 8f tletermined by its 2-cells

is zelo the same is tnte of the sum (mod.Z) $. the tl',,

2-circuits. Eenee the sum of all the 2-circuits /{i has this
ploperty. On the other hand the 2-circnit C! is sttch thtt

the sum of it and the spheres BJ' determincd by its Z-celli

is C, itself. Hence the 2-circuits Ifi do ttot hlve tltt

tlt:'1L[?];g 
ure 2-circuit & antr the spheres B/ or S,,,ri

take the plaee of the Z-circuit (! tnd thc ?-circuits K'j or

$ 51 it follorvs fi'om the tlteot'em of $ 51 that ,I(e is not tlrt

sum (motl. 2) of the spheres ̂S/'. Hencc thc sttm (mod. 2r

of ,Ii, antl tlte splteres 8/' is a set of 2-circuits cottlposcrl ol

cells of C1. fVe shall prove that thcse 2-circuits constitute (-i

If theS' did no_t, let them be denoted by C'J, lc-t cj be otte ot

thc 2-cells of Ct rvhich is not onC'|, and lct /(, be t'egrtlnr')r

s*Lrdividel iuto a com,lcx /i.j rvlich has tt least ottc Z-ccll

rvhich is intelior to cl.
The conplex C.j is" composed of lron-sigular cclls on '/r',

irnd hence Cli antl , -I(j can t'cplace Ks and C'e respectively irr

the constructiou used in $ 50 for the sphet'es ,9/'. 'I'ltns t st't

of spheres can be found tvhich rvhen addcd to a regttlu srtb-

rlivision of C'J give a set of Z-cilcuits Ci' composcd of cclls

of a regular subdivision of. Ii ' i, It follou's from $ 51 that tl

is not nn.uonr. Since lG and its regular subdivisions i' 't

2-circnits, C'l ' mnst be identical rvith the regular strbdivisiol

of K!. This is not possible nnless there is a poiut of Ci orr

cach Z-cell of. Ki. But this implies thti thele is it ' point

of Ci on cf , contt"ary to the hypothcsis that ci is ttot a ccll

of Ci. &ltnce Ci coincides rvitlt 6'e, as we rvished to proyt"

Norv by ret'ersing the l'hole pl'occrss we call shot' tltlt

any one of the 2-circirits that compose 6'J rvill yicld a sttlt-

division of the 2-circuit -rKr. Ilence therc can bc only ont"

and the proof of the theorem of $ 50 is complete'

53. It is an obvious corollary of this theorem that tlte

property of a tu'o-dimensional contplex, of beirrg a Z-cilcrtit'

is an Analysis Situs invariant. For if G and G: are tn'tt
5r

$r
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complexes which are homeomorphie, the homeomorphism defines
r non-singular complex K, on G such that each cell of Ks
is the image of a cell of G2. By definition, 1{g is a 2-circuit
if and only if O; is a Z-circuit, antl by the theorem of $ b0
(s is a Z-circuit if and only if C3 is a Z-circuit.

It is an obvious corollary of this result that the property
of a complex, that it defines a manifold, is also an Analysis
Situs invariant. In other words, any eomplex into which
l manifold can be subdivided, satisfies the contlitions laid
dorvn in $ 19.

Matrices of Orientation
c4. Let us now conyert the l-dimensional complex eom-

poserl of the 0-cells and l-cells of Ce into an oriented one-
dimensional complex in the fashion described in $$ BB to a0
of Chap. I. The oriented 0-cells are

the l-cells are

o!, o!,.  .  . ,  dj",

o!, o], . . .. o1,,,

rrnd the relations betryeen them nre given by the matrices
l'0, Z, satisfying the relation

Eo,Et 4 0.

Each of the columns of flg is the symbol for a l-cireuit
rvhich, according to $ 35. Chap. l, determines trvo oriented
l-circuits. The symbol for either of these oriented l-circuits
miiy be obtained from the corresponding column of .EI, by

ng some of the I 's to -1's.  Hence by changing
me of the I's in I/, to -1's there is determined ir matrix

n, -  l lc i , l l  ( i :  1,2, . . . ,  r r r ;  i  :  7,2, . . . ,  o")

h column of which represents an oriented 1-circuit and

$ 42, Chap. l .therefore a solution of the equations (d),

E1.E2 :  Q,



0 - l  1 0
1 0 -1 0

-r  1 0 0
1 0 0-1
0 I  0-1
0 0 1- l

o I  l i

E1 :

TI 6.I-66I TWO.DIMENSIONAL COMPI,EXES.

As an example, a natrix Dg for the tetrahedron in Fig.l,
page 2, is (cf. Irr in $  )

E-

A further example is
for which (cf.$$ 22, 23)

furnished by the projective Plane.

Bt-

Note that the rank of Eg for the tetrahedron is 3, 0r dg-l'

and for the projective plane is 3, or ar.

55. Let us denofe the ranks of Eo, Er, E, by r'e, ri, r',

respectively. We have seen that

To :  Ro: Qor
fr :Qr

and that in ease ('r is a 2-circuit,

( r  - -  ' lg-1 '

It is impossible that re should be less than crr - 1 beeause

this rvould imply a linear relation involving at most as-l

columns, with lelatively prime coefficients, and hence on

reducing modulo 2, that. the same statement 'was tnte of thc

columns of H2, contrar.v to $ 30. Hence there remnin two

possibilities
Ty::  6r-1

and
l't : Otl

for any 6! which is a Z-circuit. The examples in the last

section sho'lv that both possibilities can be realized.
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56. A 2-circuit C, such that rg - as-l has the property
that if the boundaries of its 2-cells are converted into orientetl
t-circuits in any rvay, they rvill satisfy a Iinear relation rvith
integral coefficients. For the columns of Es represent a set
of oriented l-circuits, one bounding each Z-eell, and since
t.:: ur-t they :rre subject to one linear relation,

( l )  \e* Drcs* . . .  *  Do,co, :  0

in tvhich. the c's represent the columns of ,E's anal the D's are
positive or negative integers or zero. If the coefficients are
tlil'ided by their highest common faetor, and then red.uced
nrodulo 2, this relation must state that the sum of the columns
rrf .Ele is zero. Hence the relttion must involve all columns
lf Zl .

In case C', has the propertl' that each l-cell is incident
l'ith two and only tlo Z-cells (for example, if it is a manifold),
if rtn oriented l-eell o; is to eaneel out, the tl'o or.iented
l-circuits formed fi'our the boundar.ies of the 2-cells incident
l' ith a,l mnst appeu.in (l) with numer,ically eqnal coefficients.
It follorvs that the coefficients of (1) arc nurncrically cqnal
lnd therefole that l.ry lernoving il conmoll factor (1) can be
l'duced to a forrn in 'rvhich Dl - ,:L I .

l{ence by multiplying some of thc columns by - l, Zl, crn
be rcdueed to a form in rvhich the sum of thc colnmns is
zero. The eolumns of /:', then lellr,esent a set of oriented
l-cilcuits such that if ol is rny oriented l-cell folmetl flom
r l-ccll of Ce, onc of these l-circuits eontains o1 and anothel.
onc contrins -or. Consequently if a! has the pr.operty
that each of its l-cells is incident l.ith trvo and ouly trvo
?-cells, the boundaries of its Z-cclls can be conyerted into
ot'iented l-circuits iu such a way thrrt their sum is zero.

Orientable Circuits

5?. The theorem of the last section is that if 4 : es - I
for a 2-circuit Ce, the bounrlaries of thc 2-cells of C, can be
cont'erted into oriented l-circuits in such a way that they
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setisfy a linear relation. lf rt - cr, the bountlaries of the

Z-cells evidently eannot be thus oriented. In the first case

C'g is said to be two'sitled ot oricntable antl in the second case

to be onc-sided, or non'orimtable. A manifold is said to be

orientable or non-ot'icrttable aecotding as the complex defining

it is or is not orientable. This extension of the term is

justifietl by the theorems of $$ 58-60 belon" ilecording to rvhieh

the complexes delining a given manifold .rll: ale all orientable

ol all non-olientable.
This tlefinition is equivalent to the one given in 1865 b1'

A. F. I\Iobius, Uber dic Bestimmung tles Inhaltes cines Pol1"

iiders, Werke. Vol. 2, 1t. 475 see also p. 519. The term

"orientablc" rvas srtggested by J. \\r. Alexrtndet' as preferable

to ,,trvo-sidecl" because the latter term eonnotes the separatiotr

of a three-dimensional manifoltl ittto trvo parts, the tlo "sides,''

by the trvo-dimensionnl nranifold. rvhereas the propelty rvhich

1ve are derrling l'ith is att interttal propet't't' of the tlt'o-

tlimensional manif old. *

The intuitional significance of oliental-rleuess is perhnps best

grasped b.r' expelinrents rvith the rvell-kno$'n lltibitts papcr'

*tlip tlescribed in the article referretl to above' ' l ' ltese ex-

periments catt also be used to verifv tlte theorems on tlc-

formation and on the indicatlix in Chap. \r.

58. Suppose thitt a 2'cell ui of a cortlplex C'r, the cells of

l'hich have been olientcd in the rnitnller desc:r'ibcd above, is

seprrtted into trvo Z-cclls by ir l-eell n1. 'I 'hc trvo nerv 2-cells

ale boundcd b5' trvo 1-circuits Nhich have a' in comntott,

It is easily seen thtt if ot is cithel of the orietttctl l-cells

fotnrcd fL0m rlr, t$'o oriented l-circtrits ciltt be folnred from tlx'
-l 

On the refttion betweerr orientableness antl trvo-sideduess' see Ii. Stci'

n useful col lect ion of references.

Y"
I
I
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bounilaries of the trvo new 2-cells in such & wa,y that one
of them contains or and the other contains - or. Hence the
sum of these oriented l-circuits is one of the two oriented
l-circuits which can be formed from the boundary of a!.

fhe complex Ce is converted into a new complex CL by
intoducing the new l-cell ar and subdividing a!. The matrix E"
of Ci has one row and one column more thiu the matrix .8,
of Cr, and by the paragraph above can be eonverted into the
matrix fi for Q by adding the two columns corresponding to
the trvo new 2-cells and striking out the row corresponding
to at. These operations evidently reduce the rank by 1.
IIence the rank of E, f.or Ci is equal to the number of 2-cells
of. Cz if. and only if the rank of /:! for Ce is cqual to the
number of 2-cells of Cr.

Since a regular subdivision of Cg can be efrected by the
two operations of introducing nerv O-cells on the 1-cells of Ce
rnd separating the Z-cells into new Z-cells by 1-cells, it follows
from the theorenr just proved that any regular subdivision of
/'. is such that

re -  at- l

if and only if f.', has this property.
59. If C, is a 2-circuit and G, is apy 2-eircuit homeomorphic

rlith G, let K, be the Z-circuit on C'e l'hose cells are respect_
ivcly homeomorphic rvith the cells of Ge. As in $ b0 G and _rt,
mry be regularly subdivided into C', and IG and r set of
spheres ^9/ constructerl such that the sum (mod.2) of & antl
the 2-circuits defining these spheres is Cr. For each Z_cell
L'1, of K2 there is one antl only one sphere Ef rvhich has /cf as
one of its 2-cells.

If -K: is such that r2: uz_ l, K-, has the same property,
lhat is to say, some linear combination of the oriented boun-
daries of its Z-cclls surns to zero. Erch of the spheres gf
obviously has this property also. The set of oriented.
l-circuits 'w'hich can be formed from the bountlaries of thc
2-cells of .Ks and of the spheres Sfl is therefore subject to one
linear relation involving the oriented l-circuits of ,(, anO

l
l '

I
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one onalogous linear relation for each of the spheres gl'. sinee

.o.n Sf ias just one 2-cell in common w:th Ke' the linear

r.f"tion. comespontling to the spheres 8f can be multiplied

lV inr.g.t. antt aAdeO to the linear relation correspondins

to r<, in such a way that all terms involving oriented 1'

circuits of K, cancel oot, thot giving a linear relation' 'I?' amons

oriented l-cireuits bounding i-cells of the spheres 8/' rvhielr

does not involve any oriented l-circuit bounding t Z'ccll of 'I('

Amongthe2-cel lsof thespheresSJ'alsthe2-cel lsDieaelr
tletermirietl as explained in $+i by a l-ccll tc\of IL' Each sucl:

2-cell is in the spheres ,Sf corresponding to the Z-cclls of /i'

in.iA.nt lvith the /rl in question, and no others' Sittcc th''

oriented circuits bounding Z'cells of /6 whiclt are incidenl

*uiti,lrl rvere cancelled out i' for.mi'g Il, t'e oriented 1-circtri'

formed from the boundary of b? is also cattcelled ottt' Hene

,I? contains none of the orientetl t-circuits formed from thu

boundaries of the Z-cells t'?. Hence IJ can only contlirr

oriented 1-circuits formed from the bountlaries of 2-cells

of Cr. It nust contain some of these, fol othcrrvise elcl

;-.;ll'oicL $'out.o be in an even number of sphercs 'Si' 
anrl

hence the sum 0noa.2) of these spheres 'S'j ' and tlte con'

plex K, would be zero contrary to $ 5l'

Hence the set of orienteil l-circttits forrned from th'

boundaries of the 2-cells of G is subject to one linear con'

;i,t.* Hence by $ 55 r, -- nr-r for G' Ilencc by $ 5'

d4
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with p' handles on observing that the particurar complexes
used in defining these manifords are orientabre. rn nte
nr,nner' the manifolds definetl in $ 26 are non-orientable.

Normal Forms for Manifolds

chirracterize it completery from the point of vierv of Anar.ysis
si tus.

62. By rvay of establishing this theorem we srrail outrine
a rnethod of reducing any ntanifold to a normal fornr. Let

I

ined b-v the l-cells al_.

I

ti i]. The graph U1 has the propertv that none of its 1_circuits
sets of l-cilcuits bounds. l.or jf,h, rvere a bounding set
l-circuits composctl of cells of. (Jr, then G woulO be

rst one plrir ar?, a], such thnt aj rvoultl be in one of the
rts in question and ar?,, 'woultl -bc in the other.. Hence

rated by Il into tn'o parts, each boundetl,by lfr. In
nc sequencc of  cel ls a|  ( i :  1,2, . , . ,  ar)  there must be at
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the l-cell aj must be on the common boundary of the two

narts. nameiv Kr, hence on tlr . But this would eontrodietnarts. v Kr, hence on tlr . But this would eontrodiet

r l
, l l

ii

Y-

CEAPTER III

CO!(PLEXES AI{D UANII'OLDS.OF a DIMENSIONS

Fundamental Definitlons

1. fn a Euclidean three-space, four non-coplanar points
together with the one- and two-dimensional simplexes ($ l,
Chap. I and $ 1, Chap. II) of rvhich they are vertices constitute
the boundary of a finite region, called a tlree-dimmsional sinr-
ltler o,* telrahcdral rcgion, of rvhich the four given points are
called the ,*erticec. The points of the boundary are not
legarded as points of the simplex.

A set of  n* l  points,  not al l  in the same (rz- l )  space,
together with the one-, t$'o-, ..., (tt-l)-dimensional sim-
plexes of vhich they are vertiees constitute the lloundary of
ir finite region in the ?r-space containing the z*1 points.
Tlris region is called an n-climensional, sirnTtlm and the n f I
given points are called its vertices. The points of the boun-
rlary are not regard.ed as points 6t tt e simplex.

Consider any set of objccts in (l-l) correspondcrrce rvith the
points of an n-dimensional simplex (n )0) and its boundary.
The objects corresponding to the points of the simplex con-
stitute rvhat is calletl an n-tlinzcnsional cell or n-cell, and those
corresponding to the boundary of the simplex rvhat is called
l\e boundary of the cell.

The remarks of $ 2, Chap. I are nou' to be applied without
change to the n-dimensional case.

2. An z-dimensional eomplex is defined by the follorving
re cursive statenents:

An n-dimenstonal comytler C',, consists of an (rz-l)-ilimen-
sional complex Cu-r together rvith a number, u,, of a-cells
tt'hose bouudaries are circuits of C,,-1, such that no ra-cell has
a point in common rvith another n-eell or rvith C._r and suclr

76
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the l-cell a] must be on the common boundary of the two
parts, namely l(t, hence on tlr . But this would eontradiet
the definition of Ur as a linear gtaph containing none of the
l-cel ls nj  ( i  :1,2, . . . ,  ar- l ) .  Consequent lv I / t  has the
property stated above.

64. The result of the last section may be stated in the
follorving form: Any elosed manifold.rl1g cnn be set into eon.
tinuous correspondence rvith the points of a cont ex polygon
of.2(au*Rr-Z) edges in a Eucl idean plane in sueh t  tvnl
that (1) each interior point of the polygon cort'esponds to
lnd is the correspondent of one point of the rnanifold; (2) eacl
intelior point of an edge of the polygon tletermines nn interiol
point of another edge such thrt these trvo points of thc
polygon corresponrl to one point of the nrtnifold, itnd this
poiut of the manifold corresponds only to tltesc trvo points
of the polygon; (3) each vertex of the polygon determittes
a set of vertices of the polygon all of l 'hiclt corresltottd ttr
t single point of the manifoltl, rnd this point of the manifold
eon'csponds to thcsc vertices antl tltese onl5'.

65. By a series of transforntttions on this polygotr which
involve cutting it by'l-cells trtnning from one vet'tex to att-
other and piccing it togcthel itlottg cottcsponding edges, it
cnn be chrrnged into a poll'gon of 2(-flr-l) sides tll of rvlto"str
vertices eon'espond to tr single 0-cell of r)Ie. This pol-r'gorr
in tuln can be transformed iltto otte of threc not'ntal fot'ltts.
If the polygon rcduces to thc first of tltese folms the tnirnifoltl
is a sphelelvi th 2 handlcs; i f  thc polygon takes the secont l
form, the rnanifold is a one-sided nrrrnifold of thc lirst kindr
rrn<l if the pol-r'gon takes the third form, the manifold is
a one-sidedamanifold of tJre second kind. Tltus, every closctl
manifold r'l[s is of one of tlre three types deseribed in $$ 25
and 26.

A proof of this theorem rvhich follorvs the line of atgttment
outlinerl above is to be found in a paper by H. It. Brahanl
in the Annals of llathematics (2), Vol. 23 (1921), pp. 144-68.

tc
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CEAPTER III

COIPLEES AND UANTFOLDS. OF a DIMENSTONS

Fundamental Definitlons

1. In a Euclidean three-space, four non-coplanar points
together with the one- ancl two-dimensional simplexes ($ l,
Chap. I and $ 1, Chap. II) of which they are vertiees constitute
the boundary of a finite region, called a three-d,imensional sim-
ltlm or tetrahedral region, of which the four given points are
called the uerticec, The points of the bounrlary are not
regarded as points of the simplex.

A set of  nf  I  points,  not al l  in the same (n_1) space,
together with the one-,  t lo-,  . . . ,  (n- l )-dimensional s im-

corresponding to the boundary of the simplex what is called
t\e bountlary of tlze cell.

. The remarks of $ 2, Chap. f are now to be applietl without
change to the m-dimensional case.

2. An ra-dimensional eomplex is defined by flre follorving
reeursive statements:

.\n n-dimansional comytler C, consists of an (n-l)_tlimen-
sional compl€x Cr_r together rvith a number, u,,, of a_cells
tt'hose bouldaries are circuits of C,,_1, such that no n-cell has
r point in common rvith another z-cell or rvith C,_r and suelr
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thateach(z-l)-cell ofCo-tis on the boundary of at least
one n-cell. The order relations of the points of the bountlary
of each n-cell coincide with the order relations among these
points regardetl as belonging to the (z - lFdimensional cir-
cuit.t' The (z - lcFcells (lc : 1, 2, . - ., n) on the boundar,v
of an a-cell of C" are said to be incidml rvith it and it is
said to be inci.clmt rvith them.

An n-dimansional ciranit or n-ciranit or generalized n'dimen-
sional polyhedron is an n-dimeusional complex C, such that
(1) each (z - l)-cell of C" is incident lvith an even nttmber
of n-cells and (2) no subset of the cells rvhich constitute C,
satisfles (1).

The ttefinition of homeonrorpiism and the remarks in $ 3,
Ohap.II generalize directly to n dimensions. In particular, atry
tlrcorem about an n-dimmsiartal complcn ulich remains aalitl if
tlrc compler is sttbiected, to any (l-l) conlirutous transformatiott
is cr, tlrcu'enz of Analysis Situs.

An arbitrary subset of the cells of an n-dimensional com'
plex is sometimes referred to as a genualizcd n-dimmsiona.l
compler, provided 'it contains at least one n-cell.

3. The definition of a singtlar or non-singular generalized

conplex Crc on n complex C,, is a direct generalizrrtion of that
given in $ 33, Chap. II. It is obtainetl from the definition in

Chap.II by substituting Cnfor C', C, for C, and naking corre-

sponding substitutions rvherever the dimcnsionality of cells or

complexes is mentioned. The number /c ntay be grenter than,

equal to, or less than m.
It is important to notiee that in the fundamental definitions

+ This ftntement can also be put in the follorving form3 Suppose thot on

i-cell a'oppe:rrs on the boundaries of two (i * &)'cells, at+t nnd al+t. Then

a1+*ond al+*and their bouninries are, by definition, in (f-l) correspondences

f, antl ?, rvith two (i*lt).dirnensional simplexes, lr and c ond tbeir boun'

tlories. In the correspondence ?r ar eonesponds to an i-dimensionnl cell I'

of the boundary of D rvhile in ttre conespontlence Tt it correspolrtls to on

i-tlimensional cell cr of the boundary of c. The resultnnt of the corrc'

spontlences efrected by ?,-t and ?: on Dt ontl at respectively is I corre'

sponclence in rvhich D' correspontls to cr. This con'espontlutce nnnt bt

eontinuous.
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in the two sections above all the cells and the circuits boun-
ding them are non-singular. This insures thot the represen-
tation by mntrices given below shall be unique. It does not,
however, exclnde the possibility of extending the use of the
matrices to cases where, as in $ 32, Chap. II, the cells have
singular bonndaries. But in proving our genel.al theorems
tre stick to the casc of non-singular cells rvith non-singular
boundrries.

Matrices of Incidence

4. Let uy(k : 0, I , . . ., n) denote the number of lc-cells
iu t complex C,,. The /c-cells themselves may be denotetl by
atf , a!, . .., a'&; The incidenee rclations betrveen the (/c- l)-
cells and thc /c-cells llre reprcsented by a rnatrix

lln';tl1 -- Y,, ( / r :  1 ,2,  . . . ,  n)

in rvhich ,.fr: t i,f a!-.t is incident vith aji utd.r1!r:0 if af-r
is not ineident rvith aji. The matrix //r.'[as ai, rol's and
/.d columns.

An n-dimensional complex is completely described by the
set of matrices,

I I t ,  i l t ,  . ' . , ,  I Iu,

for, as can be shorvn by an obvibus argument (cf. $ 6, Chap. II)
any trvo complexes having the same set of matrices are in
(l-l) continnous correspondenee.

The elements of the matrices are combined as integers
leduced modulo 2, just as in Chap. I. The ranks of the matrices
atc denoted by er, Qgr ...r g,, r.cspectively.

B-v the general theory of such matrices, there exists for
tach /f' a pail of square matlices An-r, IJt, of ap-1 ilnd n7,
r'ows respectively, each having its determinant equal to l,
such that

A;:r. IIh. Rv : rlf ,

n'here Z/ is a matrix of ay-lrorvs and dr, columns in which
the first erc elemeltts of the main diagonal are unity anrl all
tlte rest of the elements are zero. Thus the theory of the

i l
i l
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n-tlimensional compler will involve the matrices fh, Al--t, Bi,
i l f ,Q:1,2, . , . ,n\ .

5. Special cases to illustrate the incidence matriees arr
easily constructed. For example the matrices for a complex
obtaincd by subdividing o projective 3-space into cells are
given in Chap. IX, Vol. II of the Veblen and Young projectir.c
Geometry. The follorving definition gives another example.

By an n-dimensional spthere or t sitnple cktsetl manifoltl o1'
tt dimensiorts is meant the set of lloints on a complex whose
matrices of incidcnce ale

rr, - rr, -... : rt, : lll I il
The ra-dimensional sphere is easily seen to be homeomorphi,:
rvith the boundary of an (n f 1)-eell. Since it hirs tn'o 0-cells,
trvo 1-cells, ..., tlo n-eells, its t:lnr.acteristie,

&s- ot l t  or- . . .  + (-  l ) ' ,  ou,

is 0 if z is odd and 2 if n is even.
6. Any set of the /c-cells, af, u!, ..., ati,r, and also the

/c-dimensionrrl complex eonsisting of a set of /,-eells and their
bottndaries, may be denoted by a synrbol (rr ,  re, . . . ,  ro^),  in
rvhich tr :  I  i f  af  is in the set and r i :0 i f  ato. is not i r r
the set.

These symbols can be added (mod. 2) by precisely the ruk'
givcrr in $$ t4 autl 15, Chap. I, for the 0- and l-dimensionrl
cases. Corresponding to this l 'e have a rule fol the rrtlditiorr
of trvo /c-dinrensional eomplexes consisting each of a set ot
/c-cells and their boundaries. The srrrl, modulo 2, of trvo rr-
dimenstonal complexes C,l and Cl,' each of rvhich is a sub-
complex of a given.complex Cu, is the conrplex detenninerl
by the set of all /r-cells in Ci or C',1' but not in l,roth C,l rntl
Cii; it is denoted by C,i * Ci' (mod. 2). It has the obvious
property that if Cl and Ci,' are n-circrrits, C,',*Ci,' (mod.2)
is also an z-cilcuit ol a set of n-circuits.

?. The boundary of a /c-dinrensional conplex 6'r is the (/c-l!
dimensional complex eonsisting of the (/r - 1)-cells of tht'
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complex G which are ineident each with an otltl number of
[-cells of Cr, and the bountlaries of these (k - l)-cells. Thus
r &-dimensional complex is a set of lc-circuits if anil only if
it has no boundarY.

By precisely the same re&soning as that used in the 0-
antl l-dimensional cases (cf. $ 28, Chap. II) the boundary
of a. Cr, is a (/c-1)-dimensional circuit or a set of (tc-l)-

dimensional circuits having at most a (/c-2)-dimensional

complex in common. From this reasoning it also follols
that every bounding (/c-l)-circuit is a sum (mod.2) of a set
of (/c - l)-circuits rvhich bound /r-cells, i. e., which are
represented by columns of IIp. Hence all bounding (/c- 1)-
circuits are linearly expressible in terms of those corre-
sponrling to a linearly independent set of Qr columns of II7',
rvhere qr is the rank of /{,.

8. As in the 0-, 1-. and Z-dimensional cases (cf. $ 24, Chap. I),

t f rrr* t f r t r+ . . .  *qlo,*o,

is 1 or 0 according as there are an odd or ttn even number
of /c-cells of the set (rr, *r, - . ., ror) incident with the (/r - l)-
cell af-1. Hence if

I I r .

Ut

,:

Uo*-,

(!Jr, yr, . . ., !or-r) represents the boundary of. (q, q, . . ., an).
As a corollary it follorvs that the /c-circuits are the solutions

rrf the equations

l1

Q9

rl \

ldL

l

ftIk)
dt

) l l t r r :  o ( i :  l '2 ' " ' 'ak-r) '

Since the columns of the matrix I[ represent (/r-l)-circuits
they represent solutions of the equations



antl hence
(2)
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dt 
- t

2 1f;-t, ,  :  g ( i  :  1, 2, " ' ,  uk-z)
j : r

I Inq.Hx :0 ( / r  :  7,2," ' ,n) .

The Connectivities Rr

9. If qr denotes the rank of. IIk (mod. 2) the number of

solutions of the linear homogeneous equations (14J in a complete

set is dh-Qk (cf. $ 25, Chap. I). According to $ 8, the

eolumns of .Uft+r are solutions of the equations (1/2) antl

hence grar of these columns can euter in a complete set

of solutions of (IIk).

LeL Rr,- 1 be the smallest number of non-bounding /c-circuits

rvhich it is necessary to atljoin to a set of gr,l-r linearlr

independent bounding t-circuits in order to have a set of

/,'-cilcuits on rvhich all others ale linett'ly rlcpcndcnt'

'I 'hen for an rz-tlimensional complex C, thc number of

solutions of (If,) in t complete set is gt+ r * 1lr,-l if 0( L(n'

Hence 
cct;- Qt; : Qtc tr * /ir - I (0 ( /r ( a)

l rrd
t t r l -  Qn -  R"-  l .

By $ 20, Chap. I

Henee we have ,r. :;:: I i",,,.",

3g a-ol

(14,-t)

(1)

J?o -1
Bt -1

,, !; -1

R't-r-l
nn - l

-  ao -gr - l t

-  ar  -€r  -Ost

- .  

" t  
-Qs -Qs 

'

-  sn-t- Qn-t-Qn.t
:  dn -?n.

On nultiplying thesc equations alternately by *t and -1

and arlding we obtain

i  f_ l ) 'a;  :  1 + i ( -1)d(&- 1).
i : - .1t  i :0

(2)
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and

(3)

ease the complex C,',, is an n-circuit, Eo : 1 , Rn: 2
(2) becomes

n n-L

2 f- r)r oi -- I + (- I )'+ e 
(- ry0?d- t).

This is a generalization of Euler's formula ($ 30, Chap. II)
to n dimensions. If rr. is even it reduees to

(4) ( to-at*or- . . .  *n, , :  3- IJr  *Rr-  . . .  -Rr-r ,

ln case C, is a manifold and n is otld, (3) when combined
rvith a result obtained in $ 29 below reduces to

(5) do- dr* ot-  a, ,  :  0.

10. The nunrbel ao-nr + .  . .  + (-  1),  a, ;  is col led the
r lmracta' ist ic of  the complex C". The nnmber Rt ( i :0,1,2,
-.-,n) is called the connectiuity of the ith order.

It will presently be provcd that the connectivity numbers
no, n, ; . . .s R,,  are Analysis Situs invariants.  From this i t
rvill follorv that the chirracterisrtic is also an invariant.

Reduction of the Matrices Hr to Normal Form

11. Let us now considel the matlices .4r-r anil ,Br by
which I[, is reduced to its normal fornr, i. e., the square
matrices of determinant I such that

Ar1.H*. IJt  :  HX

rvhere the first er elements of the main diagonal 0f fll,T ars 1
ud all the other elements of I/f are 0. The existenee of
these matrices follorvs from the general theory of matrices
(cf. $ 49, Chap. I) and 'n'e shall shorv that they ctn be so
chosen as to satisfy certain additiorral conditions analogous
to those found in S$ 30-32, Chap. I.

Writing (l) in the form

IIt, . Bx : Atr-t. IItr

( l )

(2)
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it follows from $ 8 that each of the firnt gk columns of /''
represents a lr-dimensional complex bounded by thc (ft-i)'

dimensional complex represented by the corresponding colunr

of Ar-t, Each of the remaining er-ek columns of Dr, r'c.
presents a /r-dimensional complex which has no boundarr

i. e., a /r-dimensional circuit or set of cireuits.
Since Br, is a square matrix of crr rows rvhose determinllrt

is 1 , every symbol of thc form (zr t rt t '", r.*) in rvltir:l

the elements are reduced modulo 2 is expressible ns a li

combination of the columns of. Rr. Hence the s5'mbol

any /c-dimensional complex determined by k-cells of C", i

expressible in terms of the columns of IJr,. I\Ioreovcl sinci

the last dk-Qrc eolumns 0f Br are linearly independent an'l

the symbols for all /c-circuits are linearly dcpendcnt oi
dt.-Qt; of thetn, the last ar-Qh eolttmtts of /Jr; are t compiel '

set of l-circuits or scts of /r-circuits.
Thus the red.uction of the incidenee matrices to not'tttll

fonn affords nn explicit ntethod of determining the bottndirr':

irnd non-bounding sets of cilcuits of all dimensionalities.
I2. The equation (2) r'ernains valid if rve add r giver:

column of Br to another column of Br and perfot'm th"

corresponding operation on the colttmns of. A,-t'IIi[. Ilett'"'

in particular Ne mily t'eplace any one of the llst a1'-1',

columns of Br by any linear combination of these colttntlr'
(hence by any symbol for a set of /r-circuits) rvithout nrotlr'

fying the right nrernbcr of (2) since all the lrrst ah-Q,,colttrttls

of .4r,-r . I/f are composed of zeros.
13. Suppose rve change Br,-r bJ replncing its last 9t colunttt'

by,,the first gr, colttutns of Jr,-r. attd replacing the preeedilr

o,/; - q/c-r - gr, colttmns by the symbols for :t set oi

(/c-l)-circuits no combination of rvhich bottttds, tltc existencl

of 's'hich follorvs from $ 9. By $ 12 sttclt a change rvil.

lcave (2) stil l valitt; hence to shol that it is pelmissible i'

is sufficient to prove that the nelv -/Jt -t ltas determinant l '
Ve norv have the eolutntrs of the ttelv nt-r in thrce blocks'

of rvhich the first is the same as for the old ,Br,-r. Thu

symbol fol any (t-l)-dimcnsional complex '( ' l slrnl (r:
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columns of this flrst block and a symbol for a set of (/c-l)-
circuits, as follows from the structure of the original Br_r.
)'ow the columns of the last tu'o blocks are linearly in-
dependent (urod.2) as follorvs from their choice, and sinee
they number dk-r-Qk-r it follorvs from $ 9 that the symbol
fol any set of (/r-1)-circuits is a sum of these columns.

Thus the symbol for any (/c-l)-dimensional eornplex is
n sum of columns of the nerv Br-r. Consequentl5' the de-
terminant of the nerv By6-1 must be 1 (motl. 2), and the
change proposed above can be made. Let this be done for.
rll values of /,' from I to n. The last Qrr eolumns of. Brr_t
rhen I'eprescnt bounding sets of (/c -l)-circuits antl ilre J?r,._r-l
columns prcceding these represent non-bounding (t-I)-circuits.

Since all rorvs of IIf af.ter the gr,th contain only zeros the last
(ct;-r- gk columns of Ar-r are arbitrary subject to the condition
thrrt the detcrminant of .{r,-r shall be I . Hence these columns
of ,4r-r mir5'be taken as identical rvith the first qr,_r*1?r_r-1
colrtnrrrs of IJr-t. Let this be done for all vtlues of I flom I to n.

14. By this process it is brought about that thc matlices .rh.
;rre identicirl rvith the matr.ices R7, except fol a permutation
of columns. The columns of each mrtrix Br fall irrto three
blocks. The fir'st Q/.. columns replesent single l-dinrensional
,'onplexes bounded by sets' of (; - l)-circuits. Each of the
lext,Iir,- 1 columns leplesents a single non-bound.ing /L-circuit.
' l 'he last Qr i-r columns represcnt bounding sets of /r-circuits.

Congruences and Homologies, Modulo z
15. The dcfinition of congruences and homologies modulo 2

rlhich rvas m:rde in S$ 3?, 38, Chap. II, applies rvithout change
to the la-dilnensional case. Thus

C7 
- 

()p-1 (mod.2)

tneaus that Cr,-r is the boundary of C*; nnd rvith reference
to a cornplex C,
(2) Ci-r - 0 (rnod. 2)
nteans that there exists a complex Cn on C, which satisfies
the congnrence (l). The remarks about linear eombination

(t)
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of eonguenees and complexes made in Chap. II npply hert
without change.

All the relations stated above by means of the matriees I/n
rap also be expressed in terms of congmences and homologics,
For i f  rve let  at j  Q:1,2, . . . ,  dki lc:1,2, . . . rn)  represent
the cell af and its boundary, instead of the cell alone as irr
the notation heretofore used, rve hirve the eongruences*

(mod.2)

which nt;1 are the elements of the matrix ly'*. Thest
congruences, rvhich state the incidenee relations of the eorn-
plex C,,, are called the fund,antental conqt'uencu (mocl.Z).

16.I f  Cn is the complex represented by (xr,  rr , . . . ,  zo^) rrnr l
Cr-r the set of (k-l)-circuits represented by @r, !/z 2 . .., !Jnr_),
the congruence (l) is equivnlent to the matrix equation (li
of $ 8. The result of reducing the incitlence rnatrices t,r
normal folm as summarizetl in $ la therefore amonnts to the
statement thrt the fundirmental congluences &re equivalent
to thc follorving set of congmenecs antl hontologies

Ki : e'^!;'

(4)

l { ( ! .  -  7r l l1.- t lg*-1
z \ , ,

t :  
- :  (motr .z)

r l l lF l  :  n

oltr ru o
"h

:

6'rlrigr+r-l - 6.
+ We are here making the obvious convention

? :  1 orrd , la!- t  :0 i f  7 :  9.

d*- I

"l - Zqbn!-'

that 7of-t  :  at-r i f
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lte further study of these congruences and homologies will
involve proving (1) that the /r-c ircui tsCi,Ci, . . . ,Cf; , - ,  ar"
not honologous to zero (mod. 2) and (Z) that every /c-circuit
0n C,, is homologous to a combination of them. With regard
ro the statement (1) the discussion up to the present shows
that no combination of these /c-circuits bounds any eomplex
composed of cells of. C". And.rvith r.egard to (Z) rve knon,
th&t every /r-circuit composed of cells of (t, is homologous
to a combinat ion of Ci,C' i , , . . . ,Cf*- t ,  To br ing complexes
on C, which are not composed of cells of C',, into consideration
it will be necessary to go beyond the combinatorial properties
of C, and make use of the geornetrical properties of the cells.

Theory of the n-Cell

17. The combinatorial properties of a complex Ci, which
have been discussed above have an elementary application
in the theory of the subdivision of a Euclidean space by
generalized polyhedra. A system of (rz-1)-spaces in an
,,-space subdivide the re-space into a set of rz-dimensional
eonvex regions. They intersect in a number of (n- 2)-spaces
rvhich subdivide each (zr,-l)-space into a set of 0r-l)-di-
nrensional convex regions rvhicll bound thc n-dimensiontl
convex regions. The (z-2)-spaces have (re-B)-spaces in
common which divide the (tz-2)-spaces into convex regions.
irnd so on. Thus the set of (n-l)-spaces defines a sub-
riivision of the r?-splce into a set of cclls l'hich ean be
treated by the nethods described above. Any k-cilcuit formed
fLom the /c-dimensional convex regions is a gcncralized poly-
hedron. Any such L-cir,cuit bounds a (ft* l)-rlimensional
conrplex eomposed of convex (ft* l)-cells.

A treatment of the theory of polyhedra fronr this point of
vierv by the author is to be found in the Transactions of
the American }Iath. Soc., Vol. 14 (1913), p. 65. (See also
the corlection Vol. 15, p. 506.) Eallier and later treatments
tt'ithout the machinery usetl here ale to be found in the
papers by N. J. Lennes, Am. Journ. of I\[ath., Vql. BB (lgl1),
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p. 3?, and Lilly Eahn, Monatshefte fiir Math. u. Phys., Vol. 2b
(1914), p. 303. Since an n-cell is homeomorphic with n
Euclidean space all this is the most elementary part of ilu
theory of the z-cell.

18. As in $ 8, Chap. II, we ean define a system of eurves
in any n-cell aliQ : 1,2,..., on) which have the properties
of the system of straight lines interior to a simplex irr a Euclidean
spaee. It is onl.1' necessary to set up a (l-t) continuous
correspondence,l4 betrveen the interior and boundary of thr:
n-cell and the interior and boundary of a simplex and to
legard as straighl those curves in the n-cell rvhich are images
of straight lines in the simplex.

Under these definitions any two points of an z-ccll or its
boundary determine a straight l-cell joining them; any three
non-collinear points determine ir straight Z-cell bounded br
them and the three straight l-cells rvhich thel' detclminc b.r'
pairs;  in general ,  any f  f  I  points ( i :1,2, . . . ,n)  determine
a straight i-rlimensional simplex bounded by the straight 7
dimensional  s implexes Qi :0,  1,2,  . . . ,  i )  determined br
subsets of the i, points.

l-9. From the separation theorems on Enclidean polyhedrl
($ l?) there follos'at once the follorving important corollaries.
u'hich are all to be understood as referring to complexes
eomposed of "straight" cells:

If ,S,,-s is an (n-2)-dimensional spherc ou the boundar.r
of an n-cell a" the boundary of a." consists of 8r,-g and
trvo (z- l)-cells nli-r and al,'-r. Auy (z- l)-cell oil--t con-
tained in c" and bounded by A',,-z separates a" into tl'o
z-cells, one bortnded by a'f-l, ,5',,-r, irud aii-l tnd the otheL
borrnddl by aT-t, S,,-2, and o;-t. There nrc an infinity of
notr-singular (z-1):cells eontained in a" nnd boundcd b1'
r5',-,J.

If trvo n-eells a'i, a'l are incident rvith au (n-l)-cell a"-l
and have no common point they and nn-r constitute atr
n-cell b''. If their boundaries have nothing in common except
&r,-r and its boundar5' the boundar-v of Zr" is the snm (mod. 2)
of their boundaries.
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This proposition is e special ease of the following theorem:
If a set of n-eells, (z*l)-cells, ..,; (n*p)-cells are all
incitleut with an (n-l)-cell an-r and are such that the
inciilence relations between the (ro*i)-cells (i : 0, 1,2,...,

t)-1) and the (n*i* 1) cells ore the same as those betrveen
the i-cells and (i* l)-cells of a p-dimensional sphere, the set
of all points on o'r:-r and the cells incident rvith it constitute
an (rz*p)-cell.

The set of all cells of a complex 6',, rvhich are incident
rvith an i-cell ai and of higher dirncnsionality than ai eonstitute.
rvith at itself, rvhat is called u stnr of cells. If the incidence
relations among the cells of a star satisfy the eonditions
described in the paragraph above the star is said to be sinryly
cortnected. If ailp is one ccll of a star, ci*l' ftnd all cells of the
star of dimensionality greatel than if 2 rvhich ar.e ineident
with at*r' coustitute a star of cells.

These theorems all renain valid if the restriction to straiglrt
cells is dropped. In this more general folm they depend on
the generalizations to n dimensions of the Jordan and Schoetr-
flies theorems quoted in $ 10, Chap. II. The generalized
.Iordan theorcm has been provcd by L. E. J. I}'ontver', lfath.
. \nn.,  Vol.  7l  (1911),  p.  3? but the general izer l  Schoenf l ies
theorem is stil l unploved. As in the trvo-dimeusional case,
l'e shall get aloug rvith the rbstrictcd form of tlrese theorcnrs.

Regular Complexes

20. Just as in Chap. JI it rvas fouud convenient to decour-
i'ose a eomplex into generalized trianglcs, here it will be
found convenient to consider complexcs rvhose z-cells ue
generalized simplcxes. A conrplex is said to be regular if
(l) each ct-cell ai is in such a (1-1) continuous corrcspondencc
u'ith a sintplex that erch 0-cell incident rvith al.l corresponds
to a vertex of the simplex, each l-eell incident ivith ajl to rn
etlge of the sirnplex and in general each i-eell (i : l, 2, . . .,
tt- 1) incidcnt n'ith a| corresponds to rn ,l-dimensional simplex
of the boundary of the sirnplex anil (2) no set ot i* I 0-cells
nre the vertices of more than one i-cell of the comnlex.
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It has been shown in Chap.II how to decompose any 2-dinerr.
sional comptex G into a regular complex Cs. This process
rvill now be generalized as follorvs:

For convenience in phraseology, let a delinition of straight.
ness be introducetl for all thc 2-cells of C, in the fashion of

$ 18. Then lct a tlefinition of straightness be introduccd for
all the 3-cells, n'hich definition may be entirely unrelatetl to
the onc used for the 2-cclls. And in general let n definition
of straiglrtness be introduced fol each i-cell (f : 2t3t - . .,11
quite independently of that used for all other cells.

Let Pj  :  nJ U :  l ,  2, . . . ,  a, ,)  rrnd let  Pr i  be r tn arbi tnur
point  inter ior  to the cel l  ar{  ( i :7,2,  . . . ,  n;  . i  :1,2.  . . . ,  n;) .

Tlre points l i  Q :  0,  7.2, . . . t  n i  i  :  1,2, . .  - ,a i )  are thr ,
vertices of C,,. l lhe l-cells of C, at'e the stlaight l-eells
jo in ing every poi t t t  4 Q :  1,2,  -  - . ,  n1 i  :  1,2, . . . ,  a i )  t r r

every vertex of C, on the boundary of aj. A 2-cell of Ci, i,
the set of points on all straight l-cclls joining n point /' i
( i :2,3,  . . . ,  n;  j  :1,2, ' . . ,  a i )  to thc points of  a l -* l i

of C,, on tlte boundary of. t_ii. Erreh of these Z-cells is boundt'rl
by just three l-cells of (1,.

Continuing this process step by step rve obtain the 3-cells.
4-cel ls,  .  ' . ,  n-cel ls of ( i , .  A /c-cel l  of  ( i ,  is the set of  poi t t ts

on al l  straiglr t  l -cel ls jo iuing t  point I ' i  Q: Ic, lc*. . l .  " ' ,  r t :
j :1,2, . . . ,  c i )  to the points of  a (k- l ) -cel l  of  Ci ,  ot t  t l r l
boundary of aj. Each /r-cell so defined is evidently bottttdt'l
by L* 1 (/c - l)-cells.

The conrplex (I,r thus defined is calletl r reqttlar stbdirisi',tt
of C.i .

21. Xo trvo O-cells of C',, are joined by tnore. thittt ont

l -cel l .  Hettce any 1-cel l  of  i l ,  may be denoted by I ' i , l l ( i<i t '
Irr like mannel no ln 0-cells (2 1 nt' 1n* l) irre vet'tices o1

more than one (na - l)-cell of (.i,. Hence tnl' sttch eell nrt

be denoted by its vet'tiees pi, p|... f:. These I'ertices at'r'

by constrttetion all on cells of C',, of different dimensionrrlitl'

I lence thcy may nhvaS's be taken itt snclt an ot'der th:rt

i< j<. . . (s.
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Incidentally it may be remarkerl here that on account of
the properties just refemetl to, Cn may be described by means
of a natrix giving the incidence relations between its a-cells
nnd 0-cells. Also, it can be set into (l-l) continuous corre-
spondence with a set of cells of a simplex in a Euclidean
space of a sufflciently high number of dimensions. For these
propositions, see the Annals of It[athematics, Vol. 14 (lglg),
pp.175-177. The conespondenee rvith cells of a Euclidean
simplex can be used to introduce such a definition of distance
rrnd straightness in C',, tltat the straightness and distance of
any cell is in agreement with the straightness rtnd distance
of any cell rvith rvhich it is incident.

22. Tl-e relationship betrveen the complexes Ci and a,, may
be stated as follorvs:

(l) Each z-cell of Co, all, is the sum (mod. 2) of all z-cells
plpi . . .Pl '  of .  Zl ] ,  having P/ ' i rs i l  vertex.*

(n-k*l)  Each / ,-cel l  of  L ' , , ,  of ,  is the sum (motl .2) of
all /c-cells P: P; . .. P! of C], rvhich have pj, as a vertex
(the superscripts are all less than or equal to /r).

rlivision of an i-cir.cuit of (1,, nnd rvhich therefore contains at
leirst one of the points Pj", nr,)i. We choose such a point
lor which n has its maximum value. The i-cells of Kd rvhich
rre incident rvith P/' are then incident rvith (i - l)-cells of
the boundary of the cell aj' of C,. These (i-l)-cells of
the boundary of a/' constitute one or mor'e (i-l)-circuits
/fl-r because the (i - l)-cells of ffi which are incident with

+ The sum (mod.2) of a set of /c-cells of a etar will be understootl to con-
tairr the cells of the star that are on the bounilaries of the k-cells of the sum.

I



g9'l_zq
'I.DIMENSIONAL 

COMPIJEXES.

P.,p and with (i - 2)-cells of the boundary of. af are incident
each with an even number of i-cells of Kt. Now by mathe-
matical induction we may assume the invariance of the eon.
nectivity numbers for dimensions less than n. sinee rve shall
Irter establish it for the dimension n ($  2). Henbe K,l,
bounds nt least one i-dimensional complex Cf composed of
cells of Co on the boundary of. af . B"v its definition it alsn
bounds a complex eomposed of i-cells of Kl which nre in.
cident rvith P1". These two complexes constitute an i-circuii
or set of i-circnits K,9, rvhich bounds the complex composcil
of the (z f l)-cells of C, rvhich arc incident rvith Pl' u,t
the i-cells of Cf. If I{r' is added (rnod. 2) to ,Iir the resultiru
set of ,i-circuits ,I(i does not pass through Pi. Repetting this
:rrgument trntil there al'e no longer any vertices Pj", m)i, of.(,,
on Ii;, it follorvs that by adding bounding sets of circuits to/r',
it can be converted into a set of i-circuits rvhich does not pass
through any of the vertices I'i!, m.)i, of L',,. Such a sct oi
1-circuits is simply a subdivision of a set of i-circuits of Ci,.

From this it follorvs that all i-cilcuits of C, are linerrll '
dcpendent on bounding scts of cilcuits and circuits coincident
rvith circuits of C',,. Hence the value of 1?i deternrined br
C, is not greatel than that deternincd by C,. ft irls,,
cannot be less, for if so there rvould be ir linear relttiorr
among thc i -c ircui ts C! '  (p :  1,2, . . . ,  I l t -  1) regalded ,rs
r:ircuits of C,, But this 'wottld mean thtt therc tyas rr
complex 1ft-1 1 composed of cclls of 6',, and bounded b;' stttttr'
or all of the circuits Ci'. By an arguntent like that in tiri
paragraph above -rKiir could be replaced by a cornplex .I('1r
coincidant rvith a complex comllosed of cells of C',,. But the
existcnce of Ii! t rvould mean a liuear t'elation among the
e.-circuits (,'f regartl6d as i-circuits of. Cr. Hence the vitltrr
of -Ili determined by (,',, is not less than that determinerl
by c,.

Manifolds

24. By a neigltborltootl of. any i-cell ad on a complex C, is
meant any set I of non-singular cells on C, such that ant
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set of points of C" having a lirnit point on ad eontains points
on the cells of 8.

ff C" is an z-circuit such that every star of its cells is
simply connected, the set of points on Cn is ealled a closed
n-clintmsional manifold. It is easily proved that any regular.
subdivision of such a C, satisfies the same conditions. This
dcfiuition implies that every point of a manifold has a neigh-
borhood rvhich is an n-cell. It has uot been proved, how-
ever, that if a point sct satisfies the tbovc conditions for
one subdivision into cells, it satisfies them for. all other. sub-
diyisions into cells.

Dual Complexes

25. A complex Ci is said to be clual to a eomplex C',, if
the incidenee relations between the /c-cells and (ft-l)-cells
of Cl, are the same as those between the (n - /u)-cells and
(.n- l r { l ) -cel ls of  ( i ,  for  h:1,2, . . . , f t .  fn case Co d,e-
lines a manifold, a complex Cidual to C,, can be constructed bv
lirst making a regulrr subdivision 6f f,, into ('o. therr defining
ls an z-cell of Ci the set of all points on each star of cells of Cl,
having a vertex of C, as center.; next defining as an (n - l)-
cell of Ci, the set of all points on eaeh star of cells of
rlimensionalitJ, ,t - 1 and less' tvhich ale incident rvith the
troint P,l on a l-cell of C',,, l-rut are not ineident rvith any pr9,
lnd so ou, finally defining as the O-cells of C.li the points 1ri'
r rn the z-eel ls of C,, .

This proeess is il lustrated in Fig. 3, page 44 fol the trvo-
rlimensional case. In this figule the ver.tiees of C'i are the
lroints P,.2, the l-cells of C.! ne nrirde u1t of the pails of
l-cells ?,1 P;, P: l,i of Z'r, and the Z-cells of (.'.j are ilre
tliangle stal's nt thc verticcs of C'r .

26. The constluctiort f.or C',1 may be stated l l itt,le nrore
rxplicitly in terms of orrr notations (cf. $ 22) as follows:

(1) Erreh O-cell of Cj is the 0-ccll Pj'.

:
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(n-k*l) Each (z - tclcell of C,; b':-t', is the sum (motl.2r
of all (z - tr)-cells PI P/'+r. . . Pli of C',, rvhich have PI ls
a vertex.

@*l) Each m-cell of. Ci,, Di, is the sum (mod.2) of all
z-cells p! pi -. . Pi of C,, which have P.'o as a vertex.

In order to make sure that this actually defines a compler

dual to C, it must be proved first that cach of tlte statements
(1). .  . (n * 1) def ines a cel l  and second that the set of  cel ls

has the properties required of a dual complex.

27, Consider first the statement (n * 1). The 0'eell Pio i,

a vcltex af; of. C,,. Since rve are dealing 'rvitlt a manifolrl.

a! and the set of all cells of (i, incidcnt rvith it form a sinplr

connectcd star, and the set of points olr this stitt ' form ltr

ir-cell. 'Ihis rr-cell rve ltlve called L'i.

No trvo of the rz-cells Dll have a poilrt in eommon becillts' '

no z-cell of (.i, is incident rvith more tltltl one vertex of 0
(in the notation, I': Pi . .. P;' only one strlrersct'ipt is zero'.

nloreovet ever'.v lroint on a cell of (1, is ott the interior or'

boundar'.v of one of the cells Zr,.l becattse eaclt rl-cell of C|, i'

incident rvith at least one vertex of C:,, (the supet'script zet' '

rlrvays appears onee in the uotation tl pi '" P:,'). ,
Next considel the statcment (n - L* l). The point ?j' i '

on the k-cell a'; of C, and this l-cell contains a hcej'

?,1 P] ... Pl' of (',,. Sincc ('1, is ir regttlirt ' ',,uoiui'isn oi

( | , , ,  Pt P;. . .d '  ant l  thc set of  t l l  cel ls of  Ci,  of  dinel '

sionalitv k * 1 or grcater rvhich ar.e ineident rvith it for:tt

a simp$ connected star (S$ 19,24); and the set of all point'

on the cells of the .star forms a singlc cell lvhich is the sttttr

{mod. 2) of thc rl-dimcnsional cclls of the st:rr' 'I 'he n-dimett'

sional cells of the star are all n-cells of C' rvhiclt cltt l"

<lenoted by PJ P; . . .nl '  r f+ '  . . .P;:  in rvhich the f i r 'st  f t* l

of the P's are fixed nnd the rest nre variable' The incidenc"

relations among the cells of this star are b1'$$ 19, 24 thos'

of an (rz-lr-1)-dimensional sphere. llhesc iucidcttce relittiotts

are however the same as thos€ among the (z-ltFcellsPlPjk{ I
... P; described in the statement (n-k+ 1) and the cells of
lower dimensionality rvith which they are incident. Ilence the
sum, (moil. 2) of the cells P/' P!+' .. . Pf' described in the
statement (n-h*I) is an (n-k)-celL This (n-k)-cel l
s'e call 1,.?-t'. It obviously has the point P,!, antl this point
only, in common rvith a!''.

28. Let us uext find the ineidenee relations among the D's.
If af is incident rvith af+t, there is a /r-cell, pl pi .-. . P!, of
C, contained in af rvhich is incident rvith the (/r * l)-cell,
pf pi ... P! prl+t, containetl in af !r. The cell D'l-" dual to
u'i is the sunr (mod.2) of all the (n -/c)-cells pti pr:ft ptct'z
... P;' for the given valne of i. The cell b|-t'-r dual to ati*r

is the sum (mod.2) of  a l l  the bz-k- l ) -cel ls Pk+r Pkt2

-. .  P; '  for the given value of7. Since eaeh of the (n - /r- l ) -
cells of C'^ which enter into bi-k-r is incident rvith au
(z- /c)-cell of (.',, containetl in bi-t' it follorvs that Dl'-" is
incirlent with DjJ-"-r.

Hence if a/i is incident with riji+ r, Di'-k is incident with Dj.'-l'-t .
The converse proposition is proved in exactly the same
wa.y. Hence a!' is incident rvith o!,' if and only if D,t-l' is
incident rvith }'l-"-r
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Duality of the Connectivities R1

29. Stating this result fol the case ft : n- 1, rve have
thaL a'!-r ir; incident rvith aj., if and only if l.i] is incident
rvith Drg. Hence the matlix of incidence relations betu,een
the 0-cells and l-cells of the complex Cii is thc matrix .I/,1
nbtained from the matrix tI, of. the eomplex C" bf inter-
changing rows and columns. In like manner it is seen that,
in general, the matrix of ineidence relations between the
(.n-k- l)-cells and (n -/,)-cells of the complex Ci is the
transposed nratrix IIi i l of the matrix IIp',1of the complex C,,.
llence the matrices of ineidenee IIt, IIt, ..., II,, of (ii tre
the matr ices I I i , ,  I l i t - t ,  .  . . ,  n l  of  C,, .

; i



The ranks of these matrices are e,r, Qn_t, .. ., gr respectivel.y.
Moteover the nurnbers of 0-cells, l-cells;'. . . z-cells of C! a,c
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ent dr-rt . . . t dt t co respectively. Hence by the formula fthe e'-dimensional eonnectivity Rt, it follows that the l-, ...
(n -l)-dimensional connectivities of. A,i are
respectively.

I l ,u-r ,  Ru-2, . . . ,  R, are the same as
respectively. That is

l+(- l ) "+ >(-11;( f t , - l i

R1-p :  !1, ,  ( /c :  I  ,2,  . . . ,  , t - l ) ,
It should be noted that this duality relation does not alrpll

to Ru and 1?,,. In the ease of a manifold, .rvhich *,o'nr,,
considering here, .I?e : I and Ba : /.

30. An important corollary of this result is thnt for
a manifold of an odd number of dimensions the characteristi.
is zero. For the equations

. 
It was shown in $ ZB that flre connectivity R; of a eonr.plex.Cn obtained by a regular subdivision of C,, is thc same

as that of. Co. But by comparing $ 22 with $ 26 it i* .u*:1
tlat C,, is a regular subdivision fi-otfr of C,, and, of qi. Hence
the connectivity R; of Cl is the same as that of C,. H.n,o

ao-dr + . . .  + (-7), ,  o, ,  :

and
Ri- ( i :1,2, . . .

$ve
o,o-ot*or-  cr2 :  Q.

as already noted in $ g.

Generalized Manlfolds

a generalized nranifortl of zero dimensions is a 0-circ.it.
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Fot n:0' 112, L generalized manifold is the some as a

manifold. But for n23 it inclutles sets of points which are

not manifoltls in the narrow sense.
32, To bring this out Iet us consider the follorving example

siven in the article on Analysis Situs by Dehn and Heegaard

in the Encyclopfdie. Let ,Sr be a Euclidean space of four
rlimensions, a0 a point in & 

' 
& a three-space in Bn but not

on o0, :tnd My un arbitrary ttvo-dimensiontl ntanifold (e. g.,

rn irnchor ring) in &. Let trIs be deeomposed into O-eells,
1-cells antl 2-cells constituting t trvo-dimensiond complex, -I3s.
The segment joining any O-cell of .Bs to a0 is a l-cell, thc
points on the segments joining the points of a l-cell of -[lg
to cro constitute a 2-cell, and the points on t.he segments

ioining the points of a 2-cell of.Ilr to a0 constitute a 3-cell.
The complex C's cornposed of all the 1-cells, 2-cells and 3-cells
formerl by this process, together rvith ao and the cells of l?r.
is such that the boundary of an albitrarily small ncighbor-
hood of a0 is of tlte same structure as .Iir. Hcnee the set
of points on each sttch bottndary is a surftce like r\y', (e. g.'

an anchor t' ing).
It is obvious that a getteralized tlrrce-dimensional manifold

can be eonstructed rvhich has any number of points with
neighborhoods rvhich are not ipherieal. A generalized four-
dimensional manifold can have both 0-cells and 1'cclls lvhose
neighborhoods are not sinrply connected, and so on.

33. It rvas shorvn in Chap. Il that any 2-eircuit can be
regarded as a singttlar mtnifold. The generalization of
this theorem is that any re-circuit is a singular (cf. $ 3)
qerzeralized ntanifold. We shall repeat the process of $ 34'
Chap. II, for the three-dimensional case, becattse one new
point enters, but shall leave the folmal generalization to
the reader.

Let Cs be an albitrary 3-circuit. Each of its Z-cells a! is
incident with an even number 2ni of 3-cells. These may be
groupetl in nr pairs of 3-cells associated rvith cr'f , and the
nrethotl userl in $ 34, Chap. II, may be used to obtain a
.3-circuit CJ rvhose cells coincide rvith those of G and rvhich
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is such that each of its Z-cells is incident with two and

only two of its 3-cells.
The incitlence relations between the Z'cells antl 3-cells of

C':i rvhich are incident rvith a l-eell ar1 of Ci arc the same

ns those of a linear graph in rvhich each 0'cell is incident

rvith just two l-cells. Since such a linear graph is a set

of l-circuits having no points in comtnon, the 2'cells and

3-eells incident rvith arr fall into a nttmber, n, of qroups

a2ussciq,letl rcittt nj sucli that the incidence relatiotts emong

the cells of a grbup are those of a l-circuit. With thc aid

of thesc groups, by thc method of $ 34, Chap. II, & com-

plex CJ'is defined rvhose cells coincide rvith those of CIi and

l'hich is such that, all of its cells of dimensionality greatet'

tlran z rvhich are incident with any one of its z-eells (i :2, l)

are related among themselves by a set of incidence relations

itlentical rvith those of a (2-i)-circtrit.

The incidence relations betrveett the 1-cells, 2-cells and

3-cells incident rvith a 0-eell ni] of C'r' lorv satisfy the same

conditions ns those betrveen the 0-cells, 1-cells antl 2-cells

of a numberT 'tL1;1 of two-dirnensional manifolds rvhich hlvc

rro lroints in comnlon. Hence thcy frtll into rr. lJlluls ussociutad
,u'ith, u!, sttch that the incidence relations among the 1-cells,

Z-cells and 3-cells of a glottp are the same as those among

the 0-cells, 1-cells and Z-cells of a tu'o-dimensionitl manifold'

Hcnce a complex O,!" cirn be defincd rvhose cells coincide

n'itlr those of. C\i' and rvhlch satisfies thc dcfinition of a

generalized mnnifold.
CJ" rvill be a nranifold in the nat'rorv sense ottly in the

case rvhere etch of the groups associtted lvith each vertex

rr,fl has the incidence relations of thc cells of a sphere'

34. Sin@ the boundary of any complex consists of one or

more circuits, it consists of oue or mOre generalized manifolds

any or all of rvhich may be singrtlar.

Bounding and Non-bounding Sets of k-Circuits

35. Let us now take up the problem: Given a set of

/c-circtrits Cr on a complex C,,, to de.termine rdtether or nol
7

.lfi1,,,
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norv develop is entirery pa'ailer to that ea*ied out in $$ Bf)
to 46, Chlp. II.

36. Let /rr be .an i-dimensional complex on Ci,. Let C,, he
a regular sub-division of. Cn. Let a delinition of distanec
and straightness be introduced relative to C,, and let rrll

'efercnces 
to distance and straightness in the rcst of trris
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of i,, its artices cuvay2onil ta uertices of a single cell of d,,.
Hence the conesponrlence ./. makes each cell of Kl corespond
to a cell of. C" of. the same or lower dimensionality.

37.Let the r-cel ls of C, be denoted by cj(r :0,  I  r2r. . . ,k i

, i :1,2, . . . ,an) and those of  fn Uy kj(r :0,1,2, . . . , i ;
j : | , 2, . . ., F,). Each 0-cell t$ ot 14 can be joineil to
the 0-ccll of C,, to 'rvhich it corresponds under the corre-
spondenee Aby a straight l-cell D;1; or, if /rrg coincides u'ith thc
point to which it corresponds, by a singular l-cell D;r coin-
cirling with /rj. Similally, for eaeh l-cell l;1 of. E;, a Z-ccll
tfi cm be constructett by joirring each point of kJ to a point
of the colresponding cell of C',, by a l-cell rvhich is cither
straight or coincident with a point. By a sinrilrr constmction
there is determined for every cell tS of I{i a cell /-rj+r con-
posed of l-cells joining points ot IS to points of the cell
6f [',, t0 rvhich /cj corresponds under the correspondence ,1.
The (a-f l)-dimensiortal contplex composcd of the cells l,irt
and their boundaries is denoted by Bi+t. It is such t,hrt
the incidence lelations nf t;it and bi arc the same rs those
of. lt, and li)-r.

38. I f  Kr is a set of  i -c ircui ts,  al l  z-cel ls bj( j  :  1,2, . . . ,  f i_r l '
must cancel out when the boundarics of the (i* l)-cells Dj+l
( j :1,2, . . - ,  d l )  are added together (mod.2).  Hence the
boundary of B,it.r consists eithel of 1C alone ol of 1(; and
a set of i-circuits Kj composed of cells of 6',,. That is to say

( r  )
and

B;41: I { i+K! (mod. 2)

Kt- K! (mod. 2)

where .4 is either zero or a set of i-circnits eomposed of
cells of Co.

There is no difficulty in seeing that any e'-cireuit is homo-
logous (mod. 2) to any regular sub-division of itself. This
may be proved by means of a sirrgular ( i* l ) -dimensional
complex rvhich contains, besides the cells of the given z'-circuit
and those of its subdivision, one (/rf l)-cell incident rvith
each /c-cell of the i-circuit, fu : Q, | , . . .. i. Hence

oo
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and therefore
(2)
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Kr- Kr

&- Ki.

tOhop. III

(3)

It is obvious that Ki : 0 if zl) rr. Henee

K,,+r- 0 (mod. 2)
whenever r)0.

39. From the homology (2) it follorvs that Kt- 0 if and
only if Kj- 0. By $ 7, Kj bounds a complex composed of
cells of C, if and only if it is represented by rr, symbol
(xt ,  rzr. . . ,  ro1) rvhich is l inearly dependent on the columns
of the mirtrix IIi-1-1 f.or C,,, We shall now pl'ove that if
Kl..-O, K,f bounds a complex composed of cells of Ci,. from
rthich result it obviously follorvs that li; - 0 if and only if
tlre s.ymbol (r1, :r2, . . ., ro,) f or Ki is linenrly dependent on
the columns of. IIn*t,

40. Given that 1(-0 attd that ,hi is contposed 6f cells
of Co, let r(i ir be r bounded complex, and let us subdividc
Ki+r as above, pteparatory to setting up a col'respondence -i{ .
We denote the subdivision by Kia1, and the corresponding
subdivision of Ki: by Ki', Then we rvill have

KlJ ' ;1, :  Ri '  (mod.2).

Let us construct ft corresporrdence .,{ fot' Ki'y1 exactly as
in $ 36, and by means of it constluct a complex Zl; ;-2 analogous
to the complex 3r+r of $ 37. When the boundalies of thc
(i*2)-cells of B;a2 are added to Ki\ (mod. 2), all the
(i* l)-cells of Bias cancel exeept those determiuetl by the
cells /rrq of the boundary of Ki!+r and certain othels which
are cells of Cn. Let us denote the (i+l)-dimensional com-
;rlexes determined by these trvo sets of (i * l)-cells, by Gu,
rnd .K;+r respectively. This gives the congnrcnce

(5) B;q2 :  Kl+r*G;+t* Krt  (mod. 2) '  ,

which implies the congtuence

({)
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Kil* O+t* 
-Kt+, : 0 (mod. 2).

Sinee K/' is a set of i-circuits, none of the cells of 842
determinetl by (i-l)-cells /rj-t will appear in the boundanl
of Gl+r. Hence we have

(?) Gt+r 
- 

Ki'+ K!" (mod.2),

where K!" is a set of a'-circuits composed of ce.lls of Co. 0n
adding (4), (6) and (?) rve obtain

(8) Kt+t 
- 

Ki" (nrod.2).

Hence the theorem stated in $ 39 will be proved if rve shol-
that K!" is identical with Ki.

To prove this, let us consider a single ri-cell, say cj, of K'r.
The vertices of Il 'on cj ol on its boundary are all-assigned
to vertices of rj under the correspoudencc ,4.. Henee the
i-cells, say q;, of. I{j ' into which cj'is subdivided all contributc
either nothing or ci itself to the set of e'-cells of Ki". Nol'
the sum (mod.2) of .the cells identicnl rvith rj obtained from
the cells cjn is bounded b1' rvhatevel rve get by the process
applied in the previons para,graphs (to obtain 14" from ft')
l 'hen that process is applied to the boundary of tii as sp[-
divided for lil'. For that is exactly rvhrt rye did prove rt
the end of the litst palagraph, r'ith e leplaced by z.f l, and
tlre subdivision of cj replaced by Kiu. But by mathemltical
incluction we may assume that the bonndirr;v thus obt:rined
is exactly the boundrrl' of rj as composed of eells of. Ii i.
Hence the sum (mod. 2) of the i-cells identical u'ith cl obtainetl
ns just dewribcd, being bounded by the bourrdary oi cr'i, must
be exactly cj taken once.(rnod. 2). Since, then, from the sub-
rlivision of every i-cell of .Iij rve obtain that same cell of .I(l,
from the entire subdivision, Ki', of. Kj rve must obtain Ki in
its entirety. In other words, K,l" is identical l'ith 1(,f, rvhich
is rvhat rve set ont to prove.

41. We now hatve an explicit method for determining rvhcther
a set of i-circuits -IC on C, does or does not bound. I,'ot'
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a construction has been given to determine the homology (2)
of $ 38 and .Kr - 0 if and only if Ki bounds a complex com-
posed of cells of G'.

It is a corollary that no set of z-circuits composed of cells
of C" can satisfy a homology /(,, - 0. For there are no
(z * l)-cells in Cu. Hence, in particular, a set of n-circuits
C,, cannot bound a singular complex on C,r. On the other'
hand, every (z f /c)-circuit (/c ) 0) on G, bounds an Qr { /r + 1)-
dimensional cornplex on Cu as statetl in (3), $ 38.

Invariance of the Connectivities R1

42. We rre notv ready to prove the invariance of the con-
nectivities IJo, l}t, ..., IJ,, under the group of all homeo-
morphisms. This invarianee is obvious for. Ro because .Be is
the number of connected complexes rvhich compose Cr. To
prove the invariance of. RiQ ) 0) for any complex Cn, rve
first obselve that according to $ 23, R; is the same for C',,
as for any regular subdivision of. Cu. ![e thelefore fix atten-
tion on a regular subdivision Ci,.

By $ 9 there exists* a set  of  i -c i rcui ts iU :1,2, . . . ,
Ri- l )  such that ( l )  there is no ( i f  1)-dimensional complex
composed of cells of Ci, rvhich is bounded by any combination
of the circuits C antl (2) it Ci is any other i-circuit eom-
posed of cells of C, it is homologous to the sum (mod. 2) of
some or all of the i-circuiCs 4. By combining (l) with the
theorem of $ 39 we have at once that: (a) tha'e is no (i.*l)-
dimensional contptlet of any sort oi C,, uhich is bou,nd,ed, by
any conrbinatton of tlrc ciratits Q. From (2) and $ 38 it
follorvs that: (D) if Q is any i-ciruit on C,o it ,is honroloqous
to a linear conrbination (motl.2) of thc i-ciracits LY (i - 7,2, . . .,

&-1). For Cr is homologous either to zero or to an i-
circuit C,f rvhich is composed of cells of C',,, and by (2) Cl is
homologous to a combination of the i-circuits 4.

From the properties (a) and (}) it follorvs by a rnere re-

*This is not intender l  to exclude the case in which Er- l :0.  in
which the set of d circuits Ci is a null-set.
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petition of the argument in $ 48, Chap. II that -Ri rlu nri
Analysis Sihts inuariant of tlte compler (t',,

43. It shonld perhaps be pointed out explicitly that the
proof rvhich has just been completed applies as well for i :. r,
ns for other values of i. If g, is a single n-circuit. Rn: 2.
and since 1?,, is an invariant, any complex C,i horncomorphi.
rvith 6i. contains just one n-circuit. By rr repctition of th,'
irlgument in $ 52, Chap. II, it follorvs that this rt-eircuit eon.
tains all points of. Ci,. Hence any contpler honrcontorpltie uitl,
tm n-cit'tztit is an n-drudt.

CEAPTER IV

ORIEMABLE MANIFOLDS

Oriented n-Cells

1. Let us now toke up the orientatiou of n-dimensional
eomplexes. The first problem is to give a definition of the
term "oriented rz-cell." We shall give a definition here rvhich
suffices for the elementtry part of the matrix theory and
shall postpone to thc next chapter the theorems on deformatiorr
rvhich give the full intuitional content of the notion of orienta-
tion. The definition 'rvill be made as t part of a plocess of
mathematieal indnction in which \\'e l)rove that if certairr
theorems are true and certain terms dcfined fol all cour-
plexes Ci for which i4tt,, then the theorems irre true and
the terms can be defined fol anl' complex C,,. Sincc the
theorems ald definitions in qucstion have ah'eatl.v becn estal.r-
lished for ll l l ineal glaphs, (,i ; this procoss l' i l l establish
them for al l  complexes ( ' , , .

The terms which rve assuule to be defined tre: oriented
t-cel l  of  a complex Ci ( i , j (z) or ientable i ' -c i lcui t  ( i . -n),
oriented i-circnit (ilrt), oriented i-dimensional complex (i{n),
sum of or iented i-dimensionul complexes ( i<n).  The theorerns
;rrc: (l) ony i-cirtrti,t (i<n) ulticlr is lttnrcornor'ythic rcil,lt. utt
oriuztuble i-cirait is ot'ienlnbhi (2) anlf i-r,iruril drifininq utt,
t<Iimensional, spltere (i 1 n) is u'iental.tlc.

2. The pl'oof thlt these theorenrs hold fot' itn.y fi, if thev
lrold for il lG Gl n) is n direet generalization of the proof
given in )sS 58 to 60, Chap. I I  for the case n:2, and I ' i l l
be givcn in $ 10. Refore cstablishing the thcolems \vc stilt('
the definitions n'hich, it rvill bc noted, derive tlteir eotttent
h'om the theorems for thc cases i ( rz.

An oriuttcd n-cell of a contplcx C,, is the object obtained
lrv associat ing a cel l  a i  Q:1.2, . . . ,  ( , )  of  ( ' ,  rv i th one
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(1)

LINEAR CNAPITS.

o!, ol, al, olr, .. . o2o, orno, ol,

in which each oriented cell is either positively or negatively

related to the one rvhich follorvs it. According to the con-

vention that o! is folmed from a! by associating it rvith f 1,

each r] is negatively relateil to the oriented 0-cell rvhich follorvs

it if it is positively relaterl to the onc l'hich prceedes it,

rnd, dcr: rersu. Henee by assigning the notntion so thirt
a,l is in eyel)' errse lrositively related to the oriented 0-cell

l ihich precedes it in the sequence (1) \\'e ean ilrrang('

that ofr  dI ,  . . . ,  o| , ,  reDt 'esent a set of  or iented l-eel ls such

that each ot'ientett O-cell positively rclrrted to ontl oriented

l-cell of the set is ttegatively rclated to irnother. Snch iltt

0r'ictrted contllcx fot'tttetl fronr thc l'eclls of I l-r' itr:ttit is

cnlled irrr t)t' irnl('(l l-dritit,
It is obviorts that the orrly otltet' oricntcd l-cit'ctrit rvhich

erur be fotrtted ft'ttnt tltc givctt 1-r:ircrtit is thlt r:otnposed of
-  o! ,  _ 6!) ,  . . . ,  - t ln.  ! 'or i f  ot tc of t l te or iel t tet l  l -ccl ls

in an ot'ielttctl l -cit'cttit bc t'eplnced bf its tttrgittive each

of thc otlter' 1-cells'mttst be replitcctl by its negirtive. Thtr

othel oliettted t:omplexes lvhich cltt be folmed ft'ttnt tltt '

l-circuit iu'e ttot orietttctl l-circttits.
Intuitiorrally this discussiou rrreirns that if the orientetl

l-cells of an oriented l-cilcuit lt 'e tnilt 'ked b5'alt'orvs as itt

$ 34, the fll lo\ys mttst itl l be poitttetl in the same dit'ectiott'

Matrices of Orientation

36. The t'elrrtions betn'een the oriented 0-cells itttd ol'ictttcd

l-cells, rvlfieh ean be formed front the cells of tr complex (i

miry be studietl by ttteans of trvo tnittl'iees rvhieh are elosell'

analogous to .Elo and f/r. l l lhe nel' matt'ices vill bc callctl

mutrices of oriantation. and denoted by /:1, lttd /?t ' Itt our'

treatment tltey at'e delived from /{o itnd .El' and their theol'1'

is entirely parnllel to that of I/o itttd .fi|1 . Tltey are, lton"

ever, tlte one- and two-tlirnensional institnces of thc matt'ices lr

rvhich for.m the eentnl element in Poineat'd's I'ork ott Anal-vsis

situs. Thc matrix E may be said to date back to flre ar.ticle
b.v G. Kirchofr in poggendorf,s A'nalen der physik. yol. Zi
(184?), p.497, on flre florv of electribity througi a'network
of rvires, i' rvhich Kirchoff made ,se of a system of rinear
equations ha'ing E1 as its matrix. This paper. is doubiless
the first irnportant contribution to trre theory of rinear graprrs.

37. An.v set of orienterl 0-cells may be denoted t 5, r *ymtrnt
( t r , r t , . ; , , ton) in rvhieh e,  is  f  I  i f  or9 is i1 th l  set ,  - t
if - o! is in the set, lnd 0 if neither. ono no, -_ o,9 is i,, tl,o
set. The symbols for ilre bo'nding o.iented O-circ'its of
ir complex 6', satisfy a set of equations, (i?rr), idcntical rvith
the eqrrntions (Ho) of $ l9 exccpt that the valiirbles are taken
to be integers instead of being leduced moduro 2. The con,o-
sponding matr.ix u'il l be denotetl by

t ' , '  :  l l r l i l  Q -  1,2, . . . ,  I io; j  :  1,2, . . . ,qr) .
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If the complex is connected, JJ,, : I and this rnntr.ix
reduces to a one-r'orved matrix

11,1, . . . ,  l l i

all of rvhose nu ele'rents are uuit;.. 'Ihe equations (/:,0) have
oc - no Iinearlf independent solutdons, and if r.6 is the rank
of Z;

1'u :: Qo : l?0.

38. The relations betu'een the oriented 0-cells ouo antl orierrted
l-cells.orr of an orientetl complex C, may be denoted b5.
a nratrix

2 ' r  :  l ie, f . l l  Q =-.  1,2, . . . ,  uoi j  :1,2, . . . ,  ar)
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