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AUTHOR'S PREFACE

he Cambridge Colloquium Lectures on Analysis Situs were

nded as an introduction to the problem of discovering the

mensional manifolds and characterizing them by means of
riants. For the present publication the material of the
ures has been thoroughly revised and is presented in
tore formal way. It thus constitutes something like
stematic treatise on the elements of Analysis Situs. The
or does not, however, imagine that it is in any sense
nfinitive treatment. For the snbject is still in such a state
the best welcome which can De offered to any com-
iensive treatment is to wish it a speedy obsolescence.
he definition of a manifold which has been used is that
ch proceeds from the consideration of a generalized poly-
ron consisting of n-dimensional cells. The relations among
cells are described by means of matrices of integers and the
rerties of the manifolds are obtained by operations with the
vices. The most important of these matrices were intro-
d by H. Poincaré to whom we: owe most of our knowledge
-dimensional manifolds™ for the cases in which 2 >2. But
also found convenient to employ certain more elementary
rices of incidence whose elements are reduced modulo 2,
from which the Poincaré matrices can be derived.
he operations on the matrices lead to combinatorial results
¢h are independent of the particular way in which a mani-
is divided into cells and therefore lead to theorems of
Poincaré's work is contained in the following four memoirs: Analysis
, Journal de I'Ecole Polytechnique, 2d Ser., Vol. 1 (1895); Complément
nalysis Situs, Rendiconti del Circolo Matematico di P’alermo, Vol. 13
1); Second Complément, Proceedings of the London Mathematical
ty, Vol. 32 (1900); Cinquiéme Complément, Rendiconti, Vol. 18 (1904).
third and fourth Complements deal with applications to Algebraic

retry, into which we do not go.
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Analysis Situs. The proof that this is so is based on an
article by J.W.Alexander in the Transactions of the American
Mathematical Society, Vol. 16 (1915), p. 148. The continuous
transformations and the singularities (in the way of over-
lapping, ete.) which are allowed in this proof are completely CONTENTS
general, so that we are able to avoid the difficulties, foreign
to Analysis Situs, which beset those treatments of the subject CHAPTER T
which restrict attention to analytic transformations or sin-
gularities‘ LINEAR GRAPHS

It will be seen that, aside from this one question which selcumi;.un damental Definiti e
has to be dealt with in order to give significance to the com- 5: Order Relations 0!: 1((})::‘:(;;; AR P ;
binatorial treatment, we leave out of consideration all the 7. Singular Complexes . ooy -
work that has been done on the point-set problems of Ana- 10. Th cb Simplest, Invarian.t; """""""""""" f{’
lysis Situs and on its foundation in terms of axioms or 14. Symbols for Sets of Ce;lllq. """"""""""" 0
definitions other than those actually used in the lext. We 16. The Matrices I, and ”' """"""""""" 1'1
have also been obliged by lack of space to leave out all 18. Zero- dimcnsionai Circuit; """""""""""" -
reference to the applications. We have not cven given 2. One-dimensional Circuit.\'k """""""""""" 1;:
a definition of an n-cell by means of a set of cquationsfa;\d 26, Trees. ... ... .. .. .. ooooeemmmmemmmrenn 18‘
inequalities, or the discussion of orientation by means of the 5 BT, e
signs of determinants. These are to be found in very readable 38 gigr:cet?ol; ilfm;;p l:;}'i;m;;l (;1; %2;’;§1P]§zg;cm """ ‘19
form in Poincaré’s first paper, where they are given as the 33. Oriented Cells ° - ! ¢ ST ;Eli
basis of his work. They belong properiy, however, to the 36. Matrices of Orienta't,i.0'11. """ STTTraTrrerereee e p=
applications of the subject. For in nearly all cases when 41, Oriented l-Circuitq’ """""""""""" “g
Poincaré (or anyone else) has proved a theorem of Analysis 43. Symbols for Orier;té d ' Com le;(es """" T ‘q
Situs, he has been obliged to set up a machinery which is 17. Normal Form for E. . PIERES v ;9
cquivalent to a set of matrices. 18, Matrices of Inte"er:: """"""""""""" 3;

No attempt has been made to give a complete account of 19, Normal Form fm? g :5%
the history and literature of the subject. These are covered ' LA e e )
for the period up to 1907 by the article on Analysis Situx
by Dehn and Heegard in the Encyklopidie (Vol. 111,, p.153); ~ CHAPTER 1I
and the more important works subsequent to that date which TWO-DIMENSIONAL COMPLEXES AND MANIFOLDS
bear on our part of the subject are referred to in Chap.V. 1. Fundamental Definitions .. ......oooonnonono.. .. 36
I take pleasure in acknowledging my indebtedness to Professor 4. Matrices of InCidence. . . ...oueomonnonen e 37
J.W. Alexander who has read the manuseript and made many 7. Subdivision of 2-Cells ..o vornes e 39
valuable suggestions, and also to Dr. Philip IFranklin who has 11 MAPS. et 49
helped with the manuscript, the drawings, and the proof-sheets, 13. Regular Subdivision . .................. ....... 43

Princerox, May, 1921, 17. Manifolds and 2-Cireuits .........ccoovvvvnn.... 46
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CHAPTER I

LINEAR GRAPHS

Fundamental Definitions

1. We shall presuppose a knowledge of some of the elementary
properties of the real Euclidean space of n dimensions (n < 3
for the first two chapters). In such a space, the points collinear
with and between two distinct points constitute a segment or
one-dimensional simplex whose ends or vertices are the given
points. The ends are not_regarded as points of the segment.
For obvious reasons of symmetry, a single point will be
referred to as a O-dimensional simplex.

2. Counsider any set of objects in (1-1) correspondence*
with the points of a segment and its two ends. The objects
corresponding to the points of the segment constitute a one-
dimensional cell or 1-cell and those corresponding to the ends
constitute the ends or boundary of the 1-cell. In like manner
a single object may be referred to as a O-cell.

In the cases which are usually considered the objects which
constitute a cell and its boundary are points of a k-space
and the correspondence which defines the cell is continuous.
Consequently a 1-cell is an arc of curve joining two distinct
points. In the gencral case, however, it would be meaningless
to say that the correspondence was continuous, because con-
tinuity implies previously determined order relations, and
here the ordersrelations of a cell are detecrmined by means
of the defining correspondence.

The objects which constitute a cell and its boundary will
always be referred to as “points” in the following pages.

* By (1-1) correspondence we mean & correspondence which is one-
to-one reciprocal; i. e., a (1~1) correspondence between two sets [A] and
[B] is such that each 4 corresponds to one and only one B and each B
is the correspondent of one and only one 4.

1 1

2
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The order relations among any set of points on the cell or
its boundary are by definition identical with those of the
corresponding points of the segment and its boundary. Hence,
in particular, a point Pis a limit point of a sct of points [X]
of a cell and its boundary if and only if the corresponding
point P of the segment is a limit point of the corrcsplondin;:
set of points [X] of the segment and its boundary.

A continuous transformation of a cell and its boundary
into itself or into another cell and its boundary is now defined

as a transformation of the cell and its boundary which if it
carries a set [X] to a set [X'] c’tmes every limit point of [ X!}
to a hnnt point of [X']. t

3. A zero-dimensional complex is a set of distinet O-cells, finite
in number. A one-dimensional complex or alinear graph is a zero-
dimensional complex together with a finite number of 1-cells
bounded by pairs of its 0-cells, such that no two of the 1-cells
have a point in common and each O-cell is an end of at least
one 1-cell. Let us denote the number of O-cells by «, and
the number of 1-cells by «,. The O-cells are sometimes called

vertices and the 1-cells edges.

~ i
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For example, the vertices and edges of a tetrahedron (Fig.1)
constitute a linear graph for which ¢y = 4 and «, = 6.
A linear graph is not necessarily assumed to lie in any
space, being defined in a purely abstract way. It is obvious,
however, that if @, points be chosen arbitrarily jn a Euclidean
three-space they can be joined by pairs in any manner what-
cver by e, non-intersecting simple arcs. Therefore, any linear
. graph may be thought of as situated in a Euclidean three-space.

For some purposes it is desirable to use the term one-
dimensional complex to denote a more general set of 1-cells
and O-cells than that described above. " For example, a 1-cell
and its two ends form a one-dimensional complex according
to the definition above, but a 1-cell by itself or a 1-cell and
one of its ends do not. In the following pages we, shall
occasionally refer to an arbitrary subset of the 1-cells and
.| 0-cells of a linear graph as a generalized one-dimensional complex.

4. A transformation F of a set of points [X] of a complex ()
into a set of points [X'] of the same or another complex is
said to be continuous if and only if it is continuous in the
sense of § 2 on each complex composed of a 1-cell of C}
and its ends (i. e., if the transformation effected by I on
those X's which are on such a 1-cell and its ends is con-
tinuous). A (1-1) continuous transformation of a complex
into itself or another complex is called, following Poincaré,
a homeomorphism. The inverse transformation is easily proved
to be continuous. Two complexes 1e1atéd by a homeomorphism
ase said to be homeomorplhic.

The set of all homeomorphisms by which a linear graph
is carried mto ltﬂelf oh\elou\h forms a ﬂ'ump Am lhum,m

invar mnt, b_} '111 tr tulfsforma_tiom of this "wup is a __thcqlgm
of rmc»rhmemzonaz’ A?m!_;«m Situs. The group of homeo-
morphmna of a linear graph is its Analysis Situs group.

Order Relations on Curves

5. By an open curve is meant the set of all points of
a complex composed of a 1-cell and its two ends. By
l.
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a closed curve is meant the set of all points of a complex C,
consisting of two distinct 0-cells af, aJ and two 1-cells al, al,
each of which has o) and af as end’s but which have no
common points (Fig. 2) The most elementary theorems about
curves are those which codify the order relations. They
may be stated (without proof) as follows: ,

Let us denote a 1-cell and its ends by «!, a0 and a). If
aj is any point af a!, there are two 1-cells a; and rr‘ such
tlmt a; has a) ahd af as its ends, al has a? ‘and aj as its
ends, and every point of a' is either on al or a or i&entic.ll
with a. The 1-cell ' is said to be cr;uamfed into the
1-cells a‘ and a; by the O-cell af.

0 0
aj ay

7
ay

Jie. 2,

A O-cell is said to be incident with a 1-cell if and only
if it is an end of the l-cell; and under the same conditions
the 1-cell is said to be incident with the O-cell. It follows
directly from the theorem on separation in the paragraph
above that = distinct points of the 1-cell a' determine
n-4-1 1-cells such that the n points (or O-cells) may be
denoted by by, 13, .-, by and the n+1 1-cells by b,‘, b3, e, Uhiy
in such a4 way that each cell is incident with the cell which
dlrectIy precedes or dlrectly follows it in the sequence
alv bl, 01, bz, L bn, bn+1 az o .

It 0°,09, ..., bn are n distinet points of a closed curve,
the remaining points of the curve constitute n 1-cells b;
(i=1,2,...,n), no two of which have a point in common,
such that each b{ is incident with just two of them. +.\ L,

6. A little reflection will convince the reader that many
of the theorems about functions of one real variable and
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about linear sets of points belong to one-dimensional Analysis
Situs. As an- example we may cite.the theorem that any
nowhere dense perfect set of points on a closed curve can
be transformed into any other such set by a (1-1) continuous
transformation of the curve. The Heine-Borel theorem is an-
other case in point. o8 ?

@‘he theorems of Analysis Situs may be divided somewhat
roughly into two classes, those dealing essentially with continuity
considerations (of which the theorem on perfect sets of points
cited above may serve as an illustration), -and those having an
essentially combinatorial character.) It is the theorems of the
Jatter class which will occupy most of our attention in the follow-
ing pages, though we shall continually make use of theorems
of the former class without proving them.

Singular Complexes

7. Let F be a correspondence between a 0-dimensional com-
plex C, and a set of points [P] of any complex C (for the present,
C is 0- or 1-dimensional) in which each point of C; corresponds
to a single P and cach P is the correspondent of one or more
points of C,. The object obtained by associating any point X
of Cy with the point P which is its image under ' will be denoted
by F(X) and called a point on C; it is said to coincide with P
and P to coincide with it. The set of all points I7(X) on C
is called a O-dimensional complex on C. If any P is_the
correspondent of more than one point X of (o, P is called
a singular point and the complex on C is said to be sinqular.

8. Let 'Q, be a generalized one-dimensional complex and
let F be a continuous correspondence between ¢, and a set
of points [P] of a complex C, in which each point of (}
corresponds to a single P and each I” is the correspondent
of at least one point of C;. The object obtained by associating
any point X of C, with the point P which is its image under
this correspondence will be called a point on C and is uniquely
denoted by the functional notation F'(X); it is said to coincide
with P and P is said to coincide with it. The point F' (X))
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is called a limit point of the points F(X) if X, is a limit
point of the points X. The set of all points F(X) on C is
in a (1-1) continuous correspondence with the points of C,
and thus constitutes a one-dimensional complex Cj identical
in structure with C;. The one-dimensional complex Cj is
said to be on C. If any of the points P is the correspondent
under F of more than one point of C,, €] is called a singular
complex on C and the point P in question a singular point.
If the correspondence F'is (1-1), €1 is said to be non-singidar.

It is to be emphasized that in the definitions above F'is a
perfectly general continuous function. Thus, for example, all
the points of a 1-cell of C; may be imaged on a single point
of C. In the rest of this chapter we shall be referring to
non-singular complexes more often than to singular ones.
We shall therefore understand that a complex is non-singular
unless the opposite is stated. 1

9, Let P be any point of a generalized one-dimensional
complex C,. If P is a point of a 1-cell of C; let @, and
be two points of this l-cell such that P is between them.
It Pis a vertex, let @, Q., -++, @; be a set of points, one
on each 1-cell of which P is an end. The set of points com-
posed of P and of all peints between P and the points @,
sy - -+, Q; is called a nelghlorhood of P.

A generalized one-dimensional complex €7 which is on €
is said to cover €, in case there is at least one point of €1’ on
each point of ¢, and there exists for-every point of Ci a
neighborhood which is a non-singular complex on ;. In case
the number of points of Ci which coincide with a given point
of €, is finite and equal to n for every point of C), Cj is
said to cover Cyn times.

The only connected complex which can cover a 1-cell is a
1-cell, or a subdivision of a 1-cell such as is described in § 5,
and it can cover it only once. A closed ciorve, on the other
hand, can be covered any number of times by another closed curve.

Thé truth of the latter statement may be seen very simply
as follows. Let €, and Cy be two circles in a Euclidean plane.
Denote any point on C, by a coordinate 9 (0<< 0 < 27), and
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any point on C; by 6'(0< 6’ < 2a). Let each point, o,ff

of Cy correspond to the » points ;
0 = A . L ("’—1)0’ 0 =0,

n’ n’ ’ n

of Ci. In case n = 2, for example, a pair of opposite points
of €y corresponds to a single point of C,.

The Simplest Invariants

10. One of the first objects of Analysis Situs is to find the
numerical invariants of complexes under the group of homeo-
morphisms. By an invariant under this group we mean a
number 7(C) determined by a complex € in such a way that
if €’ be any complex homeomorphic with €, the number Z(C’)
determined in the same way for ¢ is the same as I(C).

11. Starting with any point O of a complex €} consider all
points of €, which can be joined to this one Ly open curves,
singular or not,* on C;. This set of points will contain all
points of a certain set of O-cells and 1-cells of €} (a sub-
complex of C;) which we may call €7, Since any two points
of CY can be joined to O by open curves, they can be joined
to each other by an open curve. Hence the same set of points
is determined if any other point of ¢y replace O in the
definition of CY. '

Since () is composed of a finite number of O-cells and
1-cells altogether, it is composed of a finite number of sub-
complexes defined in the same way that €} is defined in the
paragraph above. The number of these sub-complexes contained
in ¢} is obviously an invariant in the sense defined in § 10.
for if two complexes ) and (;" are homeomorphic, any curve
on C,. corresponds to a curve on CY. Thix number shall be
denoted by Iy, If Ry, = 1, () is said to be connected.

* No generality is gained by allowing the curves to be singular, but
the argument is slightly easier, and more in the spirit of its generalizations

to n dimensions.
1
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12. Let us denote the number of O-cells in a complex C,

by @ and the number of 1-cells by. ;. The number co— e,
is an invariant.

To prove this, let us first observe that if C; be modified
by introducing any point of one of its 1-cells as a Q-cell and
thereby separating the 1-cell into two 1-cells, the number
wo—ct; is unchanged. For «, is changed te ¢+ 1 and e,
is changed to e 1.

Now consider two linear graphs C; and C) between which
there is a (1-1) continuous correspondence ¥. Suppose that
C, has &, O-cells and e, 1-cells and CY has «§ O-cells and
op 1-cells. Each 0-cell of C; which is an end of only one
1-cell will correspond under F' to a O-cell of CY having the
same property; otherwise F' could not be continuous. In
like manner, each O-cell of ¢, which is an end of more than
two 1-cells will correspond to a O-cell of CY which is an end
of an equal number of 1-cells. For the same reasons, a 0-cell
of ¢/ which is an end of only one, or of more than two,
1-cells is the correspondent of a like 0-cell of (.

A certain number of O-cells of C; which are ends of two
1-cells each may correspond to points of Y which are not
vertices. Suppose there are I such 0-cells of ¢, and there-
fore & corresponding points of Cy. As explained above, any
one of these points of CY may be introduced as a vertex,
thereby changing CY into a complex with one more 0-cell
and one more l-cell. Repeating this step % times CY is
changed into a complex ¢y’ having eo-+7% O-cells and a1 +%
1-cells. The correspondence F' will carry every vertex of C)
into a vertex of (Y.

Certain of the vertices of Cy’, however, may not be the
correspondents under ¥ of vertices of ;. Suppose there are
n such vertices of Cy’. By precisely the reasoning used in
the last paragraph the points of C, which correspond to these n
vertices of CY’ may be introduced as vertices of ), converting C}
into a complex C; having e,-+n O-cells and a; +n 1-cells.

The complexes C/* and C, have been defined so that under
the (i-1) correspondence F each vertex of C, corresponds

s

. T it el i ST Mis O w3,

e T 1w 8 g B Ea




denoted by O.
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to a vertex of C{’ and each 1-cell of C, to a 1-cell of C}".

Hence
ay+n = ao+k and o, +n = af--k,
from which it follows that

@ —a; = @y—ai.

13. The invariant number ey — e, is called the characteristic*
of the linear graph. The number «, —ey-}+ R, is called the
cyclomatic numbert and denoted by g. In the case of a
connected complex

p=ay—aog+1.

The two invariants, R, and «,—e, are evidently not
sufficient to characterize a linear graph completely. There
is a rather elaborate theory of linear graphsi in existence
which we shall not attempt to cover. Instead we shall go
into detail on questions which cluster around the two in-
variants already found, because this part of the theory is
the basis of important generalizations to n dimensions.

Symbols for Sets of Cells

14. Let us denote the O-cells of a one-dimensional complex
C, by af, a3, .-, ago and the 1-cells by ai, a3, ---, a.lxl.

Any set of O-cells of C;, may be denoted by a symbol (z,,
Zay » ooy xno) in which »; = 1 if ‘@) is in the set and =0
if @ is not in the set. Thus, for example, the pair of points
a‘l’, aq in Fig. 1 is denoted by (1,0, 0, 1). The total number
of symbols (z, 2y, ---, za) is 2%. Hence the total number
of sets of O-cells, barring the O-set, is 2“—1. The symbol
for a null-set, (0, 0.-..,0) will be referred to as zero and

* Cf. W. Dyck, Math. Ann., Vol. 32, p. 457.

T The term is due to J. B. Listing, Census riiumliche Komplexe, Gittingen,
1862. But the significance of this constant had been clearly brought out
by G. Kirchhoff in the paper referred to in § 36 below. -

1 Cf. Dehn-Heegaard, Eneyklopadie, 1II, AB, 3, pp. 172-178.
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The marks O and 1 which appear in the symbols just de-
fined, may profitably be regarded as residues, modulo 2, i. e.,
as symbols which may be combined algebraically according
to the rules
04+0=141=0,04+1=1-+0=1,0x0=0x1=1x0=0, 1 x1=1.

| Under this convention the sum (mod 2) of two symbols, or
of the two sets of points which correspond to the symbols
(xl.- Zay * 1y -’l'no) = X and (?/ly Ysy =0y ?/"o) = :Yy may be
defined as (z + w1, 22+ 92, -+, ZTa,+ye,) = X+ Y. Geo-
metrically, X 1" is the set of all points which are in X or
in ¥ but not in both.*

For example, if X = (1,0, 0, 1) and ¥ = (0, 1, 0, 1)
X+Y=(1,1,0,0); i e, X represents a? and aj, Y repre-
sents af and a}, and X+ Y represents af and ad. Since a?
appears in both X and Y, it is suppressed in forming the
sum, modulo 2.

This type of addition has the obvious property that if two
sets contain eaeh an even number of 0-cells, the sum (mod. 2)
contains an even number of 0-cells.

15. Any set, S, of 1l-cells in ¢} may be denoted by a
symbol (zy, xs, -, x¢) in which z; = 1 if ai is in the set
and z; = 0 if ] is not in the set. The 1-cells in the set
may be thought of as labelled with 1's. and those not in the
set. as labelled with 0’s. The symbol is also regarded as
representing the omne-dimensional complex composed of the
Iecells of § and the O-cells which bound them. Thus, for
example, in Fig. J .ne boundaries of two of the faces are
(1,0, 1,0, 1, 0) and (1, 1, 0, 0, O, 1).

The sum (mod. 2) of two symbols (2, e, -+ -, ire) is defined
in the same way ag for the case of symbols representing
0O-cells, Correspondingly if C7 and €7 are one-dimensional
complexes each of which is a sub-complex of a given one-
dimensional complex C}, the swm

* In other words, X + Y is the difference between the logical sum and
the logical product of the two sets of points. In terms of the logical
operaions, if S and S’ ‘are the given sets, this one is § + 8 — SS".
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C1+ €y (mod. 2)

is defined as the one-dimensional complex obtained by sup-
pressing all 1-cells common to C; and Cy and retaining all
1-cells which appear only in C; or in €Y. For example, in
Fig. 1, the sum of the two curves represented by (1, 0, 1,
0,1,0) and (1, 1, 0, 0, 0, 1) is (0, 1, 1, O, 1, 1) which
represents the curve composed of al, al, a}, @} and their
ends.
The Matrices Hy, and H,

16. It has been seen in § 11 that any one-dimensional
complex falls-into E, sub-complexes each of which is con-
nected. Let us denote these sub-complexes by C1, ‘f, Cf°,
and let the notation be assigned in such a way that
al (=1,2,..., m,) are the 0-cells of Cldf G=my 41, my)
those of Ci, and so on.

With this choice of notation, the sets of vertices of Cr.
(7';’, e, C,R°, respectively, are represented by the symbols

(1, @3, + + - Xa,) Which constitute the rows of the following
matrix.
N My — My oy — My, -1
—— Vi
[1 1 100 «-- 0 «o 00 -«. 0f
iO O ... 011 ... 1 00 ... OI.
. I
!fu; !_ . I| = i,":;
. |
00 ... 000 --- 0 «-- 11 «.. O

For most purposes it is sufficient to limit attention to
connected €omplexes. In such cases B, == 1, and /7, consists
of one row all of whose clements are 1.

17. By the definition in § 5 a O-cell is incident with a
1-cell if it is one of the ends of the 1-cell, and under the
same conditions the 1-cell is incident with the O-cell. The
incidence relations between the O-cells and 1-cells may be
represented in a table or matrix of @, rows and «; columns
as follows: The O-cells of C, having been denoted by

¥
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o, i=1,2,...,a) and the 1-cells by a,(j=1,2,..., ),
let the element of the ith row and the jth column of the
matrix be 1 if a? is incident with a; and let it be 0 if af is

i A

| not incident with al,

For example, the table for the linear graph of Fig. 1 formed
by the vertices and edges of a tetrahedron is as follows:

{ay a; af al a! a
@1 0 0 0 1 1
a0 1 0 1 0 1
@0 0 1 1 1 0
@1 1 1 0 0 0

In the case of the complex used in § 5 to define a simple
closed curve the incidence matrix is :

” 1 1!
1l
We shall denote the element of the sth row and jth column

of the matrix of incidence relations between the 0-cells and
1-cells by 7;; and the matrix itself by

oy = 4.
The 7th row of I/, is the symbol for the set of all 1-cells

* incident with a? and the jth column is the symbol for the

set of two O-cells incident with a;.

The condition which we have imposed on the graph, that
both ends of every 1-cell shall be among the e, O-cells,
implies that every column of the matrix contains exactly
tvo 1's.  Conversely, any matrix whose elements are 0's
and 1’s and which is such that each column contains exactly
two 1’s and each row contains at least one 1, can be regarde:i
as the incidence matrix of a linear graph. For to obtain
such a graph it is only necessary to take e, points in a
3-space, dencte them arbitrarily by ad, a3, ..., a® , and join
the pairs which correspond to 1's in the same coluomn succes-

sively by arcs not meeting the arcs previously constructed.
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This construction also makes it evident that there is a
(1-1) continuous correspondence -between any two graphs
corresponding to the same matrix H,.

Zero-dimensional Circuits

18. A pair of O-cells is called a 0-dimensional circuit or
a O-circuit or a 0-dimensional manifold. Any even number
of O-cells is a set of O-circuits and the sum (mod. 2) of any
number of O-circuits is a set of O-circuits.

If two O-cells are the ends of an open curve on C; (cf. § 5)
they are said to bound the open curve and %o be connected
by it. Such a pair of O-cells is called a bonunding 0-circuit.
For example, in Fig. 1, a} and aj bound the curve o} and
also bound the curve «] af a}.

‘19. In the symbol (xy, ze, - -, Ze,) for a bounding 0-circuit
all the x's are 0 except two which correspond to a pair of
vertices belonging to one of the connected complexes into
which €, falls according to § 11. This symbol must there-
fore satisfy the following equations,

Xy +"1’!+"'+-’l«'ml == 0,
T -1 + DQQ +xm, = 0;

(1)

xm,,q__,+l+ 000 +xr¢n = 0,
in which the variables are reduced meodulo 2, as explained
in § 14. The matrix of these equations is I7,.

Since the symbol for any set of bounding O-circuits is the
sum (mod. 2) of the symbols for the O-circuits of the set, it
follows that any such symbol satisfies the equations (I7,).
This is also evident because in the symbol for any set of
boﬁnding O-circuits an even number of the z’s in each of these
equations must be 1. Hence any such symbol satisfies (7).
On the other hand, the symbol for a non-bounding O-circuit
will not satisfy the equations (IT,) because the two z’s which

14 ANALYSIS SITUS. [Chap, I

are not zero in this symbol appear in different equations;
and, in general, any set of vertices which is not a set of
bounding O-circuits will contain an odd number of vertices
in some connected sub-complex of €y, and hence its symbol
will fail to satisfy these equations. Hence the set of all
solutions of (Iy) is the set of all symbols for sets of bounding
U-cireuits.

Since no two of these equations have a variable in common,
they are linearly independent. Hence all solutions of (II,)
wre linearly dependent (mod. 2) on a set of ey— Iy linearly
imdependent solutions.

20. Denoting the connected sub-complexes of C, by Ci.
Cf,--+, ¢ as in § 16 let the notation be so assigned that
are the 1-cells in C}, CARPRERES a, the l-cells

1 1
TR a’ml

in C1; and so on. The matrix I, then must take the form

d1ioioe o] |
{ o 1 o o |

o 0o m: {

where all the non-zero elements are to be found in the
matrices I, II, III, etc., and I is the matrix of Cf, II of (7,
etc. This is evident because no element of one of the com-
plexes Ci is incident with any element of any of the others.

There are two non-zero elements in each column of 77,.
Hence if we add the rows corresponding to any of the
blocks I, T1, etc. the sum is zero (mod.2).in every column.
Hence the rows of II, are connected by R, linear relations.

Any linear combination (mod. 2) of the rows of M, corre-
sponds to adding a certain number of them together. If this
gave zeros in all the columns it would mean that there were
two or no 1's in each column of the matrix formed Ly the
given rows, and this would mean that any 1-cell incident
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with one of the O-cells corresponding to these rows would
These 0-cells and
the 1-cells incident with them would therefore form a sub-
complex of C; which was not connected with any of the
remaining O-cells and 1-cells of ¢;. Hence it would consist
of one or more of the complexes Ci (/i =1,2, ..., I%) and
the linear relations with which we started would be dependent
on the R, relations already found. Hence there are exactly
R, linearly independent’ linear relations among the rows
of H,, so that if ¢, is the rank of /T,

— )
0, = yg— .

It follows that there is a set of ay— IR, columns of /I, upon
which all columns are linearly dependent. Since every column
of 11, is a solution of (/7,) and since all solutions of (Jly) arc
linearly dependent on ay— I linearly independent solutions,
all solutions of (IT,) are linearly dependent on columns of /1.
In other words any bounding O-civcuit is the sum of some of the
0-circuits which bound the 1-cells aj, -++, a},l .

A linearly independent set of solutions of a set of linear
equations upon which all other solutions are linearly dependent
is called a complete set of solutions. Thus a set of ¢, linearly
independent columns of I/, forms a complete set of solutions
of (II,). The corresponding set of O-circnits is also called
a complete set.

21. If R, = 1 the complex () is connected and all its
O-circuits are bounding and expressible linearly (mod. 2) in
terms of e,—1 of the O-circuits which bound 1-cells.

In case’®, > 1, a O-circuit obtained by taking two points, one
from each of a pair of the sub-complexes Ci(i=1,2,.-, Iy)
is a non-bounding O-circuit, while one obtained by taking

“two points from the same complex ('} is bounding.

If R, = 2 any two O-cells are both in C1, or both in C,
or one in C! and the other in C2. A pair of the last type
forms a non-bounding O-circuit and all non-bounding 0-circuits
are of this type. If ala) is a O-circuit of the last type any
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other non-bounding O-circuit adal, is such that one of its
points, say o}, is in the same connected complex with a? and
the other with af. Hence afa?, is the sum (mod. 2) of a%ay
and the two bounding O-circuits ala? and a2a? . Hence aln)Ifc
non-bounding O-circuit is obtainable by adging bounding
O-circuits to a fixed non-bounding O-circuit.

By a repetition of this reasoning one finds in the general
case that Ry—1 is the nwmber of non-bounding O-circuits
which must be adjoined to the bounding ones in order to have
a set in terms of which all the O-circuits are linearly expressille
(mod. 2). These Ry — 1 non-bounding 0-circuits can obviously
be chosen to consist of the pairs of O-cells,' ay af (i = i, +1,

*s mp—1+1).

mg+1, -

One-dimensional Circuits

22. A connected linear graph each vertex of which is an
end of two-and only two 1l-cells is called a one-dimensional
circut or a l-circuif. By the theorems of § 5 any closed
curve is decomposed by any finite set of points on it into
a 1-circuit. Conversely, it is easy to see that the set of all
points on a l-circuit is a simple closed curve. It is obvious,
further, that any linear graph, such that each vertex is an
end of two and only two 1-cells.is either a 1-circuit or a set of
1-cireuits no two of which have a point in common.

Consider a linear graph C, such that cach vertex is an
end of an even number of edges. Let us trace a path on
C, starting at a O-cell and not covering any 1-cell more than
once, As a result of the hypothesis, we must eventually
reach some O-cell for the second time, hence have traced
a I-circuit. We remove this 1-cireuit and replace the necessary
O-cells. Since the resulting complex has the property originally
a'ssumed for C;, it follows that we can repeat the process
tlll'there is nothing left. Hence €, consists of a number of
l-circuits which have only a finite number of 0-cells in common.

It is obvious that a linear graph composed of a number of
closed curves having only a finite number of points in common

e
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has an even number of 1-cells incident with each vertex. Hence
a necessary and sufficient condition that Cy consist of a riumber
of 1-cirauits having only 0-cells in common 1s that each O-cell of
C, be incident with an even number of 1-cells. A set of 1-circuits
having only O-cells in common will be referred to briefly as
a set of 1-circuits.

23. The sum of the symbols (zy, 2z, - -+, Ze,) for the O-circuits
which bound the 1-cells of a 1-circuit is (0, 0, ---, 0) because
each O-cell appears in two’and only two of these O-circuits.
Hence any 1-circuit or set of 1-circuils determines a lincar
relation, modulo 2, amony the bounding O-circuils.

Conversely, any linear relation among the O-cirenits which
bound 1-cells of a complex determines a 1-circuit or set of
1-circuits. TFor if the sum of a sct of O-circuits reduces to
(0, 0, ---, 0) cach O-cell must enter in an even number of
O-circuits, i.e., as an end of an even number of 1-cells.

24. Let us now inquire under what circumstances a symbol
(1, @3, -+, #a) for a one-dimensional complex contained
in C, will represent a 1l-circuit or a system of I-circuits.

Consider the sum

qha eyt -+ ”}al Le,

where the coefficients q}j are the elements of the ith row
of I,. Each term gjz; of this sum is 0 if aj is not in the
set of 1-cells represented by (x;, s, :--, 7o) because in
this case z, = 0; it is also zero if a.} is not incident with
afbecause 71, = 0 in this case. The term 7}z = 1if a} is
incident with af and in the set represented by (2, 2y, - - Ter,)
because in this case ”11:i =1 and z; = 1. Hence there are
as many nén-zero terms in the sum as there are 1-cells
represented by (zi, @s, -:+, Z«) Which are incident with «7.
Hence by § 22 the required condition is that the number of
non-zero terms in the sum must be even. In other words
if the z's and aj}j’s are reduced modulo 2 as explained in
§ 14 we must have

%
(’Il) 2"]}!‘7"_’ = 0 (i = 17 2y Sty “0)
J =1

i8 ANALYSIS SITUS. {Chap.1

if and only if (2, @, ..., e, represents a 1-circuit or set
of 1-circuits, The matrix of this set of equations (or con-
gruences, mod. 2) is H,,

25, If the rank of the matrix /7, of the equations ()
be o, the theory of linear homogeneous equations (congruences,
mod. 2) tells us that there is a set of &, —g¢, linearly
independent solutions of (H,) upon which -all other solutions
are linearly dependent. This means geometrically that t/ere
exists @ set of ay—o 1-civenits or systems of 1-circuits from

which all others can be obtained by repeated applications of

the operation of adding (mod. 2) described in § 14,  We shall
call this a complete set of 1-circunits or systems of 1-circuits.

Since o, == «y— I?, (§ 20), the number of solutions of (77;)
in a complete set is

== g — g - By,

where pu is the cyclomatic number defined in § 13. For the
sake of uniformity with a notation used later on we shall
also denote o by R, — 1. Thus we have

g—oeey == 14+ R,— .

Trees

26. A connected linear grapfl which contains no 1-cireuits
is called a free. As a corollary of the last section it follows
that a linear graph is a set of Ry trees if' and only if p = 0,

Any connccted linear graph ¢} can be reduced to a tree
by removing p properly chosen 1-cells. For let al(p =i,
ls, +++y ip) be a set of Il-cells whose boundariels form a
complete set of O-circuits (§ 20). The remaining 1-cells of
Ci are g in number and will be denoted by a},(p == 1y Juy
<oey Ju). If these ;o 1-cells are removed from ¢, the linear
graph 7% which remains is connected because every bounding
O-circuit of (', is linearly expressible in terms of the boundaries
of the 1-cells w, (p == i1, &y, -+, 4p) of Ty and hence any
two O-cells of €, are joined by a curve composed of 1-cells
of 7). But since the cyclomatic number of (' is g == ¢, —a,-} 1,
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the removal of ¢ 1-cells reduces it to 0 and hence reduces C,
to a tree. In like manner, if C, is a linear graph for which
Ry>1, it can Dbe reduced to R, trees by removing
p = a; —dy-+ Iy properly chosen 1-cells.

27. There is at least one l-circuit of C, which contains
the 1-cell a}l, for otherwise C; would be separated into two

complexes by removing this 1-cell. Call such a 1-cirenit C}.
In the complex obtained by removing a} from C there is,
1

for the same reason, a 1-circuit C7 which contains «} , and so
3

. S . q 2 .
on. Thus there is a set of 1-circuits C,l, (%, +++, Ci* such that
Cr(p=1,2,..., p) contains «} . These I-circuits are linearly

»

independent because Cf ' contains a 1-cell, “}k_n which does
not appear in any of the cireuits Cf, C ., ¥ and therefore !
cannot be linearly dependent on them. Hence @, Gy o0, (GF !
constitute a complete set of l-circuits. This sharpens the |
theorem of § 25 a little in that it establishes that there is
a complete set of solutions of (J7;) each of which represents
a single 1-circuit.

Geometric Interpretation of Matrix Products
28. According to the definition of multiplication of matrices,

Lagi] - | bjell = o] ein|!
if and only if
j aij by = can,
/=1

8 being the number of columns in || a;|| and the number of

rows in |l D.
Hence,, the equations (H,) of § 19 are equivalent to the
matrix equation,

i-'l-'l ” i|0 |
| |
| x2 loi:'
Hy-ll* | =|‘-i',
Hf (I
oo o]
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in which the matrix on the right has orne column containing
Ry zeros.

Since each column of the matrix 7, is the symbol (as defined
in § 14) for a bounding O-circuit, (i. e., the jth column is the
symbol for the O-circuit which bounds «!) any column of I,
is a solution (2, 2s, -, x«)) of the set of equations (II,).
By the remark above we may express this result in the form,

H,. I, = 0,

where O is the symbol for a matrix all of whose elements
are zero.

29. By the boundary of a one-dimensional complex is meant
the set of O-cells each of which is incident with an odd number
of 1-cells of the complex. So, for example, a 1-circuit is
a linear graph which has no boundary.

From the definition (§ 14) of addition (mod.2) of sets of
points it is clear that the sum of the boundaries of two 1-cells
is the boundary of the complex consisting of the two 1-cells
and their ends. By repeated application of this reasoning we
prove that the boundary of any one-dimensional complex is
an even number of 0-cells, i. e.,, 2 number of O-circuits.

Now consider a one-dimensional complex €7 represented by
the symbol (x;, xs, - -, xa,) for its 1-cells. According to the

reasoning in § 24 each term of
LHE Rk P SR L T

is 1 or O according as the corresponding 1-cell is or is mot
both in €] and incident with a?. Hence this expression is
1 or 0 (mod. 2) according as a? is or is not a boundary point
of C{. Hence if we set

7}1x1+7}2x2+"'+”11'a1xa1 =y, ((=12,.---, )

the symbol (#1, g, - - -, y«,) thus determined represents the set
of points which bounds Cy.

Recalling the rule for multiplying matrices, we see that
this result may be stated as follows:

onaliles —-—--.-—‘.n—-_ﬂ_.
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if and only if (v, ¥s, - -+, ¥a,) denotes the set of points which
bounds the complex denoted by (z, xs, -, Za,)-

Reduction of H, and H; to Normal Form

30. Let us define two matrices B, and B, as follows:

B, is a matrix of ¢, rows and «, columns of which the first
column is the symbol for a®, the next /2,—1 columms are the
symbols for the non-bounding O-circuits enumerated at the end
of §21, and the last @ — R, eolumns are the symbols for
the boundaries of the I-cells aj (j == dy, ds, -+-, o) of the
trees of § 26. :

B, is a matrix of ¢, rows and e, columns of which the
first ¢, columns are.the symbols for «; (j =14, 4y -+, p))
and the last @, — g, columus are the symbols for the 1-circuits
oL Cl .., O

"The determinants of these two matrices are evidently 1
(mod. 2) becanse the columns of B, represent a linearly in-
dependent set of O-dimensional complexes and the columns
of B, a lincarly independent set of 1-dimensional complexes.

The matrix 23, has the properties: (1) all bounding O-cireunits
are linearly dependent (mod. 2) upon the O-circuits represented
by its last ¢, columns; (2) all non-bounding O-circuits are
linearly d®pendent on its last ¢o—1 columns; (3) all sets of
0O-cells are linearly dependent on all its columns.

The matrix B, has the properties: (1) all 1-circunits are
linearly dependent upon the 1-circuits represented by its last
v columns and (2) all sets of 1-cells are linearly dependent
on all its colwumns.

31. From §29 and the definition of B, it is clear that
the first g, columns of the product 17, . B, must be the symbols
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for the boundaries of the 1-cells represented by the first

¢, columns of B;. Hence the first ¢, columns of the product

Hl-]?,.are the same as the last g, columns of B,. The

remaining columns of H;.B, must be composed entirely of

iz{eros since the remaining columns of B, represent 1-circuits.
ence

(1) H,.By = Ao-1I7,
where
[t 0 -« 0 0 ... 0Of
0 1 00 -.. (J‘:
[a - A
H*—i - I
t= 10 o 1 0 0|
| a .;l
o - |
10 0 <o 0 0 oo O]

is a matrix of m, rows and «, columns of which all elements
are 0’s except the first ¢, elements of the main diagonal
and 4, is a matrix of «, rows and «, columns whose ﬁrsé
0 = ao— Ry columns are identical with the last g, columns
of By and whose last I, columns are identical with the first
Ry columns of B,. Since the determinant of B, is 1, the
determinant of A, is 1. Hence (1) may be written ,

@ Ay Hy By = HF

From the point of view of the algebra of matrices (mod. 2)
the determination of the two matrices 45" and B, is the
St>1‘ution of the problem of reducing H, to its normal 01:
unitary form, Hy. Geometrically (cf. § 30) these matrices
may. be regarded as summarizing the theory of circuits in
2 h.near graph. It will be found that this geometrical
sxgmﬁca‘nce of the reduction of H, to its normal form generalizes
to n dimensions. For the sake of completeness we shali
also carry out the analogous reduction of H,. '

32. From § 28 and the definition of 73, it is clear that
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(1) HO'B(): I . . . . . |
el
flo 00 «.. 10 ... 0

the right-hand member of this equation being a matrix of
B, rows and a, columns. Each of the first R, columns of
this matrix contains a 1 for each of the complexes Ci
((i=1,92,.--, R which contains a O-cell of the set
represented by the corresponding columns of B,. The last
«y— I?, columns contain nothing but 0's because the last
«y— R, columns of B, represent bounding O-circuits. This
equation may also be written in the form
(2) Hn-])’n = . H(:)::
in which A is a square matrix of 110 columns identical with
the first 722, columns of Hy. B, and Ho is a matrix of I}y rows
and e, columns all elements of which are O except the
£, elements of the main diagonal, which are all 1.

The determinant of the matrix . is unity and A therefore
has a unique inverse 4~!'. Hence (2) becomes

3) A=V H,- By = Ha.
Thus A~ and B, are a pair of matrices by means of which
H, is transformed to the normal form Ho.

Oriented Cells

33. We twrn now to the notion of “orientation” or ‘‘sense
of description” of a complex. The definitions adopted will
doubtless seem very artificial, but this is bound to be the
case in deﬁning any idea so intuitionally elemental as that of
“sense.’

A O-cell associated with the numbex 4-1 or — 1 shall be
called an oriented O-cell or oriented point.* In the first case

*In amlytxc applications the number 1 1 associated with a pomt is
usually determined by the sign of a functional determinant.
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the oriented O-cell is said to be positively oriented and in the
second case it is said to be. megatively oriented; the two
oriented points are called negatives of each other. A set of
oriented 0O-cells is called an oriented 0-dimensional complex.

A pair of oriented O-cells, formed by associating one point
of a O-circuit with 41 and the other with —1 shall be
called an oriented O-circuit or an oriented O-dimensional mani-
Jfold. If a O-circuit is bounding, ony oriented O-circuit formed
from it is also said to be hounding.

34. The ends ai, a of a 1-cell a' when associated each
with + 1 determine two oriented 0-cells which may be called
¢ and of respectively. "Therefore the ends of «! determine
two oriented O-circuits, namely ¢f, —of and —o?, o). The
object formed by associating «' with cither of these O-circuits
is called an oriented 1-cell.

The oriented 1-cell ¢! formed by associating ' with ¢¢, —«
is said to be positively related to o? and —af and ne_r]atiw_‘lg}
related to — o9 and 6.  An oriented O-cell is said to be
positively or negatively related to an oriented 1-cell according
as the 1-cell is positively or negatively related to it.

The point af is called the terminal point and «? the indtinl
point of the oriented 1-cell ¢! formed by :1ssociut~ing a' with
7!, —a3. In diagrams it is convenient to denote an oriented
1-cell by marking it with an arrow pointing from the initial
point to the terminal point.

In the following sections we shall denote the oriented 0-cells
obtained by associating cach of the 0-cells «f, af, .- -, u° of

a complex C; with +1, by o}, ¢%, ..., ¢ rebpectlvely.
We shall also denote an arbltrary one of tlleo two oriented
l-cells which can be formed from o} ({ = 1, 2, ..., «) by
o;. Any set of oriented 1-cells will be called an oriented
one-dimensional complexz. Thus any linear graph can be con-
verted into an oriented complex in 2“ ways.

35. The cells of a 1-circuit, when oriented by the process
described above, give rise to a sequence of oriented O-cells

and 1-cells,

Ya e
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For example, the vertices and edges of the tetrahedron in
Fig. 1 when oriented as indicated by the arrows constitute
an oriented complex represented by the following matrix:

|==1 0 0 0o —1 1|
- 0 —1 0 1 0 —11|
R 0o —1 —I1 1 0 !|
o1 1 1 0o 0 0

39. Each column of the matrix E is the symbol (§ 37)
for a bounding oriented O-circuit and hence is a solution of
the set of equations (L,). In the notation of matrices, this

means

(1)

The matrix Z, falls into a set of matrices I, 1I, III, ete.
corresponding to those into which H, is decomposed in § 20.
The sum of the rows of any one of these matrices 1, I, 111
is zero because each column has one +1 and one —1. On
the other hand the rows of such a matrix, say I, cannot be
subject to any other linear relation because one of the vari-
ables could be eliminated between this relation and the one
which states that the sum of the rows is zero, and the
resulting relation, after its coefficients were divided by their
H.C.F. and then reduced modulo 2, would eive a linear
relation among the rows of H, of a type which has Dbeen
shown in & 20 to be non-existent. Hence the rows of E,
are subject to &2, linearly independent linear relations. Henee

if », denote the rank of Zi,
]

E()'El == 0.

rn = ()l — au—.’l)().

40. The form of the matrices £, and E, has been limited
somewhat by the convention that o}, AT 630 denote 0-cells
each associated with 1. If we interchange the significance
of ¢ and — o7, s0O that o represents a? associated with —1.
it is necessary to change the 1 in the th column of E, to
__1 and to make corresponding changes in the columns of E,.
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The 1-'est of the discussion on this slightly more general
foundation does not differ in essentials from that alréady given.

Oriented 1-Circuits

41. Every oriented 1-circuit corresponds to a linear relation
among the oriented O-circuits which bound the oriented 1-cells
of which it is composed, for if a given oriented O-cell is
positively related to one such oriented 1-cell, its negative is‘
by the terms of the definition, positively related to another,'
orien.ted 1-cell of the oriented 1-circuit. Conversely any linear
relz!txor} among the bounding O-circuits determines an oriented
l-cx‘rcuxt or set of oriented 1-circuits. All this is analogous
to § 23. Taken with § 39 it establishes that the number of
]ine':u-]v\" independent linear relations among bounding oriented
0-circuits is the same as among bounding O-circuits when
reduced modulo 2.

42, Any set of oriented 1-cells of a complek ¢, may be
denoted by'(x,, X3, - -+, xo,) Where x;=1if ¢} is in the set‘
z, i ‘—-! 1?1——0} is in the sct, and z; == 0 if neither o} nm"
—o; 18 ir it. A necessary and sufficient condition that such
a s.ymbol represent an oriented 1-eircuit or set of orientéd
l-circuits is that it satisfy the system of equations,

“l
26’!..’]‘. = 0
)

J=1

E) .
& G=1,¢2,

the matrix of which is £,. For in this set, the equation,

(l) El!lxl+6}2w2+'“+ézl'a Ty =0

orresponds to the oriented O-cell ). A term &} 2, of the left

" 5 . . . .

ember is zero if ¢}, = 0 or if x; = 0, that is it o1 is not

n end of o! or if th o ' | :

L o ¢ i e set of oriented 1-cells does not con-

: PSR .

."n —thalt' Tho term &}z, 1.5 +1if e}.j and z; are of the same

an, that is if the set of oriented 1-cells contains ¢! and the

”L;I‘.IS positively related to ¢ or if it contains - and

‘en?g 1§ positively related to o); hence there are as man;r +1
s in the left member of (1) as there are oriented 1-cells

=
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in the set (zy, 2y, - --, zs,) Which are positively related to o?,
In like manner there are as many —1 terms as there are
oriented 1-cells in the set which are negatively related to of.
Hence the left-hand member of (1) is the difference between
the number of oriented 1-cells in the set which are positively
related to o) and the number whicl are negatively related to o?.
Hence an oriented 1-circuit satisfies the equations (Z,), and
any solution of (%,) of the kind in question must represent
an oriented 1-circuit or a set of oriented 1-circuits.

Since the number of variables z; in the equations (E,) is «,
and the rank of the matrix of coefficients is ey — I?, (cf. § 39)
the number of solutions in a set on which all others are
linearly dependent is u where

o= oy —ay - .

Such a set is obviously obtained by converting the u 1-circuits
of § 27 into oriented 1-circuits. The symbols (x;, 3, - -+, Z)
for these 1-circuits are linearly independent solutions of (£,)
in which the «’s are 0 or -+ 1.

It is obvious that the equations (£,) have solutions in which
the x’s are integers different from O and 1. In order to
interpret these solutions we shall return to the notion of
a singular complex on C; (§ 8).

Symbols for Oriented Complexes

43, If a O-cell 2’ on C, (in the sense of § 7) is associated
with 41 or —1 the resulting oriented O-cell ¢° is said to
be on Ci, and if 2° coincides with a O-cell a? of C}, o° is
said to coinsde with o) or — ¢ according as ¢* is positively
or negatively oriented.

Let C{ be any linear graph on C, such that each 1-cell
of C{ covers a lL-cell of €, just once (cf. § 9). If the cells
of both complexes are oriented, an oriented 1-cell o) of o
will be said to coincide with an oricited 1-cell o, of C if
and only if (1) each point of o), coincides with a point of
o, and (2) each oriented 0-cell of C; is positively or negatively

i that symbol for its oriented 1-cells.
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related to o) according as it coincides with an oriented 0-cell

of C, which is positively or negatively related to al,

44, A symbol (z1, 22, - - -, 7) in which the 2's are positive

or negative integers or O will be taken to represent a set

of oriented é-cells (/ = 0 or 1) on ¢, in which (1) it
#i(j=1,2, ..., «;) is positive therc are a; oriented i-cells
coinciding with a;.', (2) if «; is negative there are —2; oriented
j-cells coinciding with ——aj.'_. and (3) if a; = 0 there are no
oviented i-cells coinciding with ot or —a},

The object obtained by assigning orientations to the 1-cells
of a complex is called an oriented 1-dimensional compler.
A singlar oriented comples: is defined in similar manner. A
singular oriented complex whose cells coincide with cells of
(, determines a symbol (xy, o, s+« ze). Conversely, any
such symbol determines at least one oriented complex having
This complex can in
general be constructed in a variety of ways, depending on
how we join the 1-cells by O-cells.

In case the numbers ;(j = 1, 2, ..., e;; i = 0, 1), have
a common factor different from unity, i. e., in case

(X1, @2, - oy 20) = (a1, 224, - .. Zer, 1),

any oriented complex whose symbol is (z1, 2o, - - -, 2a,) 1s said
to be covered d times by a complex with symbol (24, 2o, .- -, Ze,)
formed by orienting the cells of a complex covering (zy, 24, -, Ze)

| d times in the sense of § 9.

45, If (z1, 23, - -+, 7¢) and (y1, ya, -+ -, Y) ave symbols for
two sets of oriented i-cells (/ = 0, 1), the symbol (x, +,,
XoF Yoy« o, Xa,+ye) is called the sum of the two symbols
and the set of oriented ¢-cells which it represents is called
the sum of the two sets of oriented é-cells.

Given two (singular) oriented complexes, any oriented com-
plex whose symbol is the sum of the symbols of the given
complexes is called a sum of those complexes.

For example, in Fig. 1 the oriented 1-circuit composed of
v}, 6}, o} may be denoted by (0,0, 0, 1, 1, 1) and the oriented

4? ’n?
l-circuit composed of 7, o}, —al may be denoted by (0, 1,

i
i
i
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§8 44—40)

—1,1,0,0). Their sum is (0,1, —1,2,1,1). If each of
al, ol and —a! be replaced by its negative the sum becomes
0,—1,1,0,1,1). In the first case the sum determines
a pair of oriented 1-circuits, ol appearing once in ecach; in
the second case the sum determines a single oriented 1-circuit.

It can be proved Ly an argument analogous to that used
in § 22 that any solution of the cquations (£,) represents a
set of oriented 1-circuits, two ore more of which may have
a given oriented 1-cell in common.

46. By the houndary of an oriented 1!-cell is meant the
pair of oriented points which are positively related to it.
By the boundary of any oriented one-dimensional complex
is meant the sum of the boundaries of the orviented 1-cells
composing it.

From this definition it follows directly that an oriented
1-circuit has no boundary and that any set of oriented 1-cells
without a Loundary may be regarded as u set of l-circuits.

If (21, @2, - - -, 2 is the symbol for a single oriented 1-cell,
it is obvious from the reasoning used in § 42 that (1. y2. - - -.¥e)
is the symbol for its boundary if and only if

| r ‘ N ‘|

Te || e !

s I .

(1) k‘l . | . | = i| : |p'
i | Il

1l . | : . l'

i|$l'rrl i |yuo .

But the most general symbol (z1, o, - -+, Ze) in which the

Z's are integers or zero can be expressed as a sum of symbols
for oriented 1-cells, and by the algebraic properties of matrices.

] H | |

i J‘1+l1 I Xy ‘ x1

| ’L) i .’l) ‘ Xy | -T,;l
| . b 1l [ .

@  Ee L = A

] | 1
| @, + oo, || || 2e, | T,

] W i U
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Hence in the general case, (w1, 12, - - -, Ye,) is the symbol for
the boundary of (x1, 22, - - -, 2e,) if and only if (1) is satisfied.

Normal Form for E,

47. All columns, cxcept the first one, of the matrix I,
which appeared (§ 32) in the reduction of H, to normal form
are symbols for O-circuits. Hence by changing one of the
I's in each column after the first column to —1, B, is

converted into a matrix, D,. of which the first column re-

presents the oriented O-cell ¢, the next 2,—1 columns re-
present linearly independent non-bounding ouented 0-circuits,
and the last «,—1% columns represent linearly independent
bounding oriented O-circuits. The product E,.D), is clearly
obtained from H,-B, by changing one 1 to — 1 in each
column from the second to the R,;th. Hence

(1) Ey-Dy = (. 2‘::.

where L5 is the same as Hy and C is obtained from A
by changing one 1 into —1 in each column except the first.
The determinant of C'is 4=1. Hence there exists a matrix 01
whose elements are integers and (1) ean be written in the
form

(2) C N Ey-Dy == E.

The reduction of E, to normal form, therefore, is completely
parallel to the corresponding reduction of H,.

Matrices of Integers

48. The reduction of Z; to normal form can be obtained
directly from the general theory of matrices whose elements
are integers.* The fundamental theorem of this theory is
that for any matrix £ of «, rows and . columns whose
Icments are integers there exist two square matrices C and

*The part of this theorv wlnch is needed for our purposes is t.he
subject of an expository article (Appendix IT) by P. Franklin and the
author in the Annals of Mathematics, Vol. 23 (1921), pp. 1-15.
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D of e« rows and e, rows respectively, each of determinant
=+1, such that

1) C.E.D = E*

where E* is a matrix of e¢; rows and e, columns

dy 0 awz B wsss 0
0 dp wwm B w0

N
*
I

o 0 ... 0 ... 0]
in which d, is the highest common factor of all the elements
of E, d; ds the H.C.F. of all the two-rowed determinants which
can be found by removing rows and columns from £, and
finally, dyds --- d, the H.C.F. of all the r-rowed determinants
which can be formed from E. The number 4, is the H.C.F. of
all the numbers d, dgdy -+ dy., ds is the H.C.F. of d,,dy, -, d,, etc.

The numbers d,, d, .-, d, are called the aeariant factors,
or the clementary divisors of the matrix E. They are in-
variants in the sense that if £ is multiplied on the left by

. a square matrix of @, rows and determinant &1 and on the

right by any square matrix of @, rows and determinant 41,
the resulting matrix will be such that the H.C.F. of all the
l-rowed  determinants which can be formed from it is
dy ody ooy dip (h=1,2,..-,0).

If all elements be reduced modulo 2, E reduces to a matrix 2/
all of whoge elements are 0 or 1. The cquation (1) reduces
to an equation like (2) of § 31. The rank of £ differs from
the rank of Z/ by the number of {'s which contain 2 as a factor.

Normal Form for F;
49. Suppose we apply the theory just described to the
reduction to normal form of the matrix £,, with the reduction
represented by the equation
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(’-) Co_l'El'D1=Eik.'

From this we get the following result: There exists a com-
plete set of sets of l-circuits, that is, one such that an
arbitrary set of 1-circuits is a linear combination, with
integral coefficients, of its members. To prove this, we first
obtain from (1) the relation,

2) E Dy = Gy EY.

Since the last a;—», columns of Ef are composed of zeros,
the last a; —y columns of D), represent sets of 1-circuits,
which must be independent, since the determinant of I, is
not zero. Since the determinant of D is actually +1, an
arbitrary set of 1-circuits must be uniquely expressible as
a linear combination, with integral coefficients, of the com-
plexes represented by the columns of D,. If this linear
combination actually involved any of the first », columns,
the combination of the latter columns in question musi
represent a set of I-circuits, and also be independent of the
last @, —7y columns, as all the columns of D, are linearly
independent.  Hence the equations (£,) would have more
than «, — 7, linearly independent solutions, which we know
is not the case. Therefore the linear combination in question
cannot involve any of the first », columns, and we conclude
that the last e —», columns represent a complete set of
sets of 1-circuits.

50. We shall now outline a proof of the fact that the
mvariant factors of E; are all. +1. Suppose a certain
invariant factor, say the jth, had a value greater than 1,
say d. Then from (2) it follows that the Jth column of ¢,
would represent a set of O-circuits which, taken d times,
would bound a 1-dimensional complex represented by the jth
Fulumn of D;. When we go into the subject more decply,
I the general case (Chap. IV, § 30), we shall prove that
under these conditions the set of O-circuits in question could
not bound when taken a smaller positive number of times
than d. But it is not difficult to prove that if a set of
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0O-cireuits bounds when taken d times, d positive, then it
also bounds when taken once. Hence the existence of the
invariant factor d would lead us to a contradiction; and it
follows that all the invariant factors of E, are 1.

51. In view of the general theory it is seen that the
matrix E, for a lincar graph is characterized by the fact
that ifs invariant factors ave all +1. On this account the
theory of the matrix £, is essentially the same as that of H,.
When we come to the generalizations to two and more
dimensions, the invariant factors of the matrix will no longer
have this simple property and the invariant factors will turn
out to be important Analysis Situs invariants.

8

CHAPTER II

TWO-DIMENSIONAL COMPLEXES AND MANIFOLDS

Fundamental Definitions

1. In a Euclidean space three non-collinear points and
the segments which join them by pairs constitute the boundary
of a finite region in the plane of the three points. This region
is called a triangular region or two-dimensional simplex and
the three given points are called its vertices. The points of
the boundary are not regarded as points of the region,

Consider any set of objects in (1-1) correspondence with
the points of a two-dimensional simplex and its boundary.
The objects corresponding to the points of the simplex con-
stitute what is called a {two-dimensional cell or 2-cell, and
those corresponding to the boundary of the simplex what is
called the boundary of the 2-cell.

The objects which constitute a cell and its boundary will
bereafter be referred to as “points,” and the remarks in § 2,
Chap. I, with regard to order reldtions are carried over with-
out change to the two-dimensional case. The boundary of
a 2-cell obviously satisfies the definition given in Chap. I of
a closed curve.

2. A two-dimensional complexr may be defined as a one-
dimensional complex () together with a number, @, of
2-cells whose boundaries are 1-circuits of the one-dimensional
complex, such that each 1-cell is on the boundary of at least
one 2-cell and no 2-cell has a point in common with another
2-cell or with C;. The order relations of the points of the
boundary of each 2-cell must coincide with the order relations
determined among these points as points of the 1-circuit of
the one-dimensional complex which coincides with the boundary.
(Compare the footnote to § 2, Chap. IIL.)

36
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The surface of a tetrahedron (cf. Fig. 1) is a simple example
of a two-dimensional complex. Any polyhedron or combination
of polyhedra in a Euclidean space will furnish a more com-
plicated example.

An arbitrary subset of the O-cells, 1-cells, and 2-cells of
a two-dimensional complex will be occasionally referred to as
a generalized two-dimensional complex.

3. The definitions of limit point and continuous trans-
formation given in Chap. I may be genecralized directly to
two-dimensional complexes and we take them for granted
without further discussion. Asin § 4, Chap.I, two complexes
are said to be liomeomorplhic if there exists a (1-1) con-
tinnous correspondence between them; and any such corre-
spondence is called a lomeomorphism. The two complexes
will in general be defined in quite different ways so that
the numbers e, o, e, are different; but if the two com-
plexes are homeomorphic there is a (1-1) continuous corre-
spondence between them as sets of points.

Any proposition about a complex or set of complexes which
is unaltered under the group of all homeomorphisms of these
complexes is called a’ proposition of tiwo-dimensional Analysis
Situs.

Matrices of Incidence

4, The O-cells and 1-cells on the boundary of a 2-cell are
said to be dncident with the 2-cell and the 2-cell to be
incident with the O-cells and 1-cells of its boundary. The
incidence relations between the 1-cells and 2-cells of a two-
dimensional complex C. may be indicated by a table or

matrix ana]g ous to that described in § 17, Chap I. The
2-cells, e, in number, shall be denoted by ai, aZ, .- ,a?..
The matrix H,=:||7}|| which describes the mc1dence relations
between the 1-cells and 2-cells is such that 7% = 0 if al is
not incident with a} and g7, =1 if al is mc1dent with a?.

"In the case of the tetrahedron in Fig. 1, let us denote the
2-cells opposite the vertices af, aj, a}, a} by a}, a2, a2, a}
respectively. The table of incidence relations becomes
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a 6} a4 o
alf0 1 1 0
atfl 0 1 0
ajl 1 0 0O
ajf1 0 0 1
all0 .1 0 1
a0 0 1 1

5. Since each column of H, contains «, elements it may
be regarded as a symbol (z, zs,-.-, 2« ) in the sense of § 15,
Chap.I for a set of 1-cells. The jth column of H, is, in
fact the symbol for the 1-cells on the boundary of the
2-cell . It is therefore the symbol for a 1-circuit. Hence
the columns of Hs are solutions of the equations (H,). That
is to say

¢y
.Ig! "]’!.’ "]_?/; =0 (i =1,
or, in terms of the multiplication of matrices,

o H,.Hy = 0,

where O stands for the matrix all 6f whose elements are zero.
It should be recalled here that we have already proved
in § 28, Chap.1 that

e g, E=1,.... a)

HO'H] S 0.

The ranks of the matrices H,, H,, H;, computed modulo 2,
will be denoted by ¢, 01, 02 vespectively.

6. From the point of view of Analysis Situs a two-dimensional
complex is fully described by the three matrices H,y, H,, H,
for there is no difficulty in proving that if two two-dimensional
complexes have the same matrices there is a (1-1) con-
tinuous correspondence between them. Our definitions are
such that the boundary of every 1-cell is a pair of distinct
points and the boundary of every 2-cell a non-singular curve.
Hence a figure composed of a 1-cell incident with a O-cell
or a 2-cell is in (1-1) continuous correspondence with any
other such figure.
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If two complexes (s and Cy have the same matrices their
0-cells, 1-cells and 2-cells may be denoted by i, a}, a} and
17, 1, U in such a way that whenever a; for any values of
i, J, I is incident with a? or af, the D; for the same value
of j is incident with the b} or bi with the same value of ¢
or k. A (1-1) continuous correspondence is then set up
Letween (% and € by requiring: (1) that a; correspond to b
- for each value of 7, (2) that aj and its ends correspond
to bj and its ends for each value of jin a (1-1) continuous
correspondence such that the correspondence between the ends
is that set up under (1), and (3) that i and its boundary
correspond to i and its boundary in a (1-1) continuous
correspondence by which the boundaries correspond in the
correspondence set up under (2).

Subdivision of 2-Cells

7. The properties of a two-dimensional complex will be ob-
tained by studying the combinatorial relations codified in the
matrices H,, H,, Hs in connection with the continuity proper-
ties of the 2-cell. The latter properties, according to the
definition in § 1, depend on the order relations in a Euelidean
plane and, in particular, on the theory of planar polygons.
The theory of polygons can be built up in terms of the
incidence matrices. For consider a set of = straight lines
in a Euclidean plane. They separate it into a number a, of
planar convex regions and intersect in a number «, of points
whieh divide the lines into a number «, of linear convex
regions. The e, points can be treated as 0-cells, the e linear
convex reglons as 1-cells and the @ planar convex regions
as 2-cells. Any polygon is a l-circuit, and the theory of
lincar dependence as developed in our first chapter can be
applied to the proof of the fundamental theorems on poly-
gons. For the details of this theory, which belongs to affine
geometry rather than to Analysis Situs, the reader is referred
to Chapters IT and IX of the second volume of Veblen and

Young’s Projective Geometry.
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8. The (1-1) correspondence with the interior and bound-
ary of a triangle which defines a 2-cell and its boundary
determines a system of 1-cells in the 2-cell which are the
correspondents of the straight 1-cells in the interior of the
triangle. By regarding this system of 1-cells as the straight
I-cells and defining the distance between any two points of
the 2-cell and its boundary as the distance between the corre-
sponding two points of the interior of the triangle, we can
carry over all the theorems of the elementary geometry of
a triangle to the 2-cell. The notions of distance and straight-
ness so developed, however, are not invariant under the group
of homeomorphisms, and the corresponding theorems are not
theorems of Analysis Situs. For purposes of Analysis Situs
the theorem of interest here is simply that there exists a system
of 1-cells which are in (1-1) continuous correspondence
with the straight 1-cells of the interior of a triangle of the
Euclidean plane.

Given two circles in a Euclidean plane, it is a simple
matter to put them and their interiors in (1-1) continuous
correspondence in such a way that the correspondence thus
set up between the circles is any preassigned homeomorphisni.
It follows that if definitions of distance are assigned arbitrarily
along all the 1-cells of any complex (g, definitions of distance
and straightness can then be assigned to the 2-cells and their
boundaries in such a way that the distances thus assigned along
the 1-cells agree with those previously assigned. If a 2-ceﬁ
has only two 1-cells on its boundary, they are necessarily
corved under the definitions of distance and straightness for
thit 2-cell.. Otherwise they can be taken straight.

9. The following theorems follow immediately from the

I}fazlneomm‘phism between a 2-cell and the trian;}le used in
defining it:
) 'lf two points 4 and B of the boundary of a 2-cell a® are
Joined by a straight 1-cell a® consisting of points of a® the
.remaining points of a® constitute two 2-cells each of which
15 bounded by a', A, B and one of the two 1-cells into which
the boundary of o® is divided by A and 5.

e M A 0 e AT i N
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If the boundaries of two 2-cells a? and a2 have a 1-cell a and
its ends in common, and the 2-cells and their boundaries have
no other common points, then a;, a? and a constitute ‘a 2-cell.

If there is a (1-1) continuous correspondence F’ between
the boundaries of two 2-cells a? and a3, there exists a (1-1)
continuous correspondence ¥ between the interior and boundary
of o} and the interior and boundary of a3 which effects the
correspondence F' between the boundaries.

A point of a 2-cell can be joined to a set of points A,
Ag, -+, Ay of its boundary by a set of 1-cells a}, al..-., a!

- which are in the 2-cell and have no points in common. The 2-cell

is thus decomposed into n 2-cells @, a3, ---, a} such that the
sum of their boundaries (mod. 2) is the boundary of a*® and
such that the incidence relations between them and a1, al, -+, a;,
are the same as the incidence relations between the 0- cellb
and 1-cells of a 1-circuit.

Conversely, if a}, a}, ---, @ and a, a3, -.-, @} are l-cells
and 2-cells all incident with thc same point ¢® and also in-
cident with one another in such a way that the incidence
relations between the 1-cells and 2-cells are the same as
those between the O-cells and 1-cells of a 1-circmit, and
1, al, ..., al are the only 1-cells that the boundaries of any
two of the 2-cells a?, aj, --., a2 have in common, then the
point ° and the points of a}, al, ..., a. and af, ai, ..., a?
constitute a 2-cell a® which is boundod by the swm (mod. 2)
of the boundaries of the 2-cells a, a3, .-+, a®.

10. The first of the theorems in the last section is a special
case of the theorem that any 1-cell which is in a 2-cell and
joins two pou;\ts of its boundary decomposes the 2-cell into
two 2-cells. This more general theorem depends on the
theorem of Jordan, that any simple closed curve in a Euclidean
plane separates the plane into two regions, the interior and
the exterior; and also on the theorem of Schoenflies that
the interior of a simple closed curve is a 2-cell of which the
curve is the boundary.

We shall not need to use these more general forms of the
separation theorems because we need, in general, mcrely the

9 ANALYSIS SITUS. {Chap. 11

dstence of curves which separate cells, and this is provided
or in the theorems of the last section. In connection with
he Jordan theorem, reference may be made to the proof by
.W. Alexander, Annals of Mathematics, Vol. 21 (1920), p. 180.

Maps

11. With the aid of the theorems on separation a 2-cell
* may be subdivided into further 2-cells as follows: Let
py two points o and a) of the boundary of the 2-cell be
ined by a etlawht 1-cell a} consisting entirely of points of
he 2-cell. The 2-cell is thus separated into two 2-cells af
nd a?. The boundary of «® is likewise separated into two
-cells @) and a} which have a and «? as ends. The O-cells,
.cells and 2-cells into which «® is thus subdivided constitute
2-dimensional complex (. whose matrices are

i N1 1

N S AP ]
" ' Ho 1]
lie numbers «,. a,, «, for C, are respectively 2, 3, 2, so that

o, —a, +ay =1

This subdivision of a* may be contipued by two processes:
{1 introducing a point of a 1-cell as a new O-cell and
2) joining two O-cells of the boundary of a 2-cell by a 1-cell
composed entirely of points of the 2-cell. The first process
increases the numbers of 0O-cells and 1-cells each by 1. The
second process increases the numbers of 1-cells and 2-cells
each by 1. Hence any number of repetitions of the two
[rocesses leave the number e,— «; + ¢ invariant.

Any two-dimensional complex obtainable from a 2-cell by
subdivision of the kind described above is called a simply
eonnected map; and it can easily be proved that any two-
dimensional complex which is homeomorphic with the interior
tuil boundary of a 2-cell is a simply connected map.

The number eq— a; -+ «, determined by any complex C,
huving e, O-cells, ¢; 1-cells and . 2-cells is called the character-

W

= _—-:_._4-\:—-_ —
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¢stic of C3. Thus we have proved that the characteristic of

a stmply connected map is 1.

12. There are a number of interesting theorems about simply
connected maps which must be omitted here because they
are of too special a nature. Many of them are related to
the_four color problem: is it possible to color the cells of a simply
connected map with four colors in such a way that no two
2-cells which are incident with the same 1-cell are colored
alike? This problem is still unsolved, in spite of numerous
attempts. In addition to the references in the Encyclopidic,
Vol. 1I1,, p. 177, the following references may be cited: Birk-
hoff, The reducibility of maps, American Journal of Mathe-
matics, Vol. 35, p. 115; Veblen, Annals of Mathematics,
Vol. 14 (1912), p. 86; and an article by P. Franklin in the
American Journal, Vol. 44 (1922), pp. 225-236.

Regular Subdivision

13. It will often be found convenient to work with com-
plexes whose 2-cells are each incident with three O-cells and
three 1-cells. Such 2-cells will be called {riangles and a com-
plex subdivided into triangles will be said to be triangulated.
Any complex C. may be triangulated by the following process
which is called a reqular subdivicion.

Let Pi(k =1,2,---, @) be an arbitrary point of the 2-cell
ar, P} (j = 1,2, ---. @) an arbitrary point of the 1-cell
a} and P} @ =1,2,..., @) another name for the 0-cell al.
The points Ij ( =10,1,2; j==1,2,..., @) arc to be the
vertices of the complex Cs.

Each I’} scparates the a} on which it lies into two 1-cells.
The 1-cells so defined are to be among the 1-cells of Cy. The
remaining 1-cells of C,-are obtained by joining cach P to
each of the points P and I’j1 of the boundary of ar by a
straight 1-cell in a}. Each 2-cell o}, is thus decomposed into
a set of 2-cells each of which is bounded by three of the
1-cells of (., one on the boundary of a? and two interior

to ai. The 2-cells thus obtained are the 2-cells of C’;.

I
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The complex C, is called a reqular subdivision of Cy and is
also called a regular complex. No two O-cells of C, are
joined by more than one 1-cell of Cy.  Moreover no 1-cell
of Ce joins two points Py, ¥ which have equal superscripts.
Hence any 1-cell of C, may be denoted by Pi P with i< 7

F1e. 3.

No ‘three O-cells of C, are vertices of more than one 2-cell
of C;, and furthermore one of the three vertices incident
vith any 2-cell is a P!, one is 2 P}, and one is a P?. Hence
any 2-cell of C; may be denoted by P P} Pi.

14. Any vertex of C, together with the l-cells and 2-cells
vhich are incident with it is called a triangle star, and the
vertex is called the cenfer of the triangle star. Any point
Ij of (; may be taken as the center of a triangle star of Cs.
For if P is on a 1-cell a} of C, it can be chosen as the corre-
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sponding P} and if it is on a 2-cell a? it can be chosen ax
the corresponding P7. The set of all triangle stars of a given
regular complex is such that each point of the complex is in
at least one of them.

If ¢, is itself regular any two vertices of C; which are
within or on the boundary of a triangle star of C, are joined
by a 1-cell of C..

15. The method of regular subdivision is useful in continuity
arguments where it is desirable to subdivide a given complex
into “arbitrarily small” ecells. Let a complex C: in which
a definition of straight lines and of distance has been intro-
duced as described in § 8, be subjected to a regunlar subdivision
into a complex C; and let C; be regularly subdivided into Ci,
and so on, thus determining a sequence of complexes (s,
Cs, -+, Cs, -+., cach of which is a regular subdivision of
the one preceding it. Let us require also that each new
O-cell introduced in a 1-cell in the process of subdivision
shall be the mid-point of the 1-cell, that each point interior to
a triangular 2-cell (the point P of § 13) shall be the center
of gravity (intersection point of the medians) of the triangle.
and that the l-cells introduced shall be straight. With these
conventions, it is evident that for every number & > O there
exists a number Ny such that if n > Ny every 1-cell in
Oy is of length less than d.

16. The relationship between C. and C: may be stated as
follows: (1) each 2-cell ap of Cy is composed of i and all
the 1-cells P} Pi or Pj P and all 2-cells P} P} Pk, of C,
incident with P%; (2) each 1-cell aj of Cy is composed of
P} and the two 1-cells P} Pj of . incident with P’}; and (3)
each 0-cgll af of C; is the vertex P; of (..

Hence the complex C, may be converted into C; by a series
of steps of two sorts; (1) combine two 2-cells whose bound-
aries have one and only one 1-ccll in common into a new
2-cell, suppressing the common 1-cell and (2) combine two
1-cells both incident with a O-cell which is not incident with
any other 1-cell into a new 1-cell, suppressing the common
0-cell.
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The first type of step requires that the matrix H, of Cs be
modified by adding the column representing one of the two
9.cells to the one representing the other, removing the co-
lumn representing the first of the two 2-cells, and also re-
moving the row corresponding to the 1-cell which is suppressed.
The row which is removed contained only two 1’s before
the two columns were added, because the 1-cell to which it
corresponds is incident with only two 2-cells. After the one
column is added to the other this row contains only one 1
and this 1 is common to the row and column removed.
Hence the first type of step has the effect of reducing the
rank of Hs by 1.

It also has the effect of removing the column of H; cor-
responding to the 1-cell suppressed. This 1l-cell is on the
boundary of a 2-cell. Hence the O-circuit represented by
the column removed is linearly dependent on the columns
corresponding to the other 1-cells of the boundary of this
2-cell. Hence the removal of this column leaves the rank
of H, unaltered.

The first type of step thus changes ¢. and ¢, into 0y —1
and o, respectively. It obviously changes &, a,, and o,
into ey, ¢, — 1 and «; —1 respectively. A similar argument
shows that the second type of step changes ¢; and ¢, into
o, and o, — 1 respectively and also changes e,, e, a3 into

ep—1, ¢, —1, and «, respectively. Hence the numbers

oy —ay + ap

Gy == 0, @

0y — Oy
are the same for (. as for (.. This is a special case of
the more general theorem, to be proved later, that these
numbers are invariants of C. under the group of all homeo-
morphisms.

Manifolds and 2-Circuits
17. By the boundary of a 2-dimensional complex C; is

meant the one-dimensional complex containing each 1-cell of
(s which is incident with an odd number of 2-cells of Cs.




88 17—20) TWO-DIMENSIONAL COMPLEXES. 47

- By. a 2-dimensional circuit or a 2-circuit is meant a 2-di-
mensional complex C, without a boundary such that any
2-dimensional complex whose 2-cells are .a subset of the
2-cells of C; has a boundary. Thus any 2-dimensional complex
in which each 1-cell is incident with an even number of 2-cells
is evidently a 2-circuit or a set of 2-circuits having only
O-cells and 1-cells in common.

A 2-dimensional complex containing no 2-circuits is called
a 2-dimensional {ree.

18. By a meighborhood of a point P of a complex C; is
meant any set § of O-cells, 1-cells and 2-cells composed of
points of C; and such that any set of points of C. having
P as a limit point contains points on the cells of S. Thus
any triangle star of a regular complex is a neighborhood of
its center. Since (cf. § 14) any point of a complex . can
be made a vertex of a regular subdivision of C,, the process
of regular subdivision gives an explicit method of finding a
neighborhood of any point of C..

19. If (5 is a 2-circuit of which every point has a neighbor-
hood which is a 2-cell, then the set of all points on C, is called
a closed two-dimensional manifold* If C, is a regular sub-
division of a 2-circuit C, then it is evident that €, defines
a manifold if and only if it is true that for cach vertex P
of C. the incidence relations between the 1-cells and 2-cells
of C, which are incident with P are the same as those
between the O-cells and I1-cells of a 1-cireuit.

A set of points obtainable from a closed two-dimensional
manifold by removing a finite number of 2-cclls no two of
which have an interior or boundary point in common is called
an open two-dimensional manifold. In the rest of this chapter
the term manifold will mean “closed manifold” unless the
opposite is specified.

20. The simplest example of a two-dimensional manifold

* We ugse this term rather than *surface” in order to have a terminology
which may be used without confusion in Algebraic Geometry. In the
latter science the real and complex points of a surface constitute a four-
dimensional manifold.

—
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is one determind by a complex consisting of two O-cells, two

1-cells and two 2-cells, each Q-cell being incident with both
1-cells and each 1-cell with both 2-cells. Thus the matrices
defining the manifold are

Ho === ”1 1”, HI:Hg:{il i“.

Such a manifold is called a #wo-dimensional splere. It is
easily seen to be homeomorphic with the surface of a
tetrahedron,

21. A simple example of an open manifold, M,, is obtained
from a rectangle 4 BCD (Fig. 4) by setting up a 1-1 con-
tinuous correspondence F between the 1-cells AB and CD
and their ends in such a way that 4 corresponds to D and B
corresponds to €, and then regarding the pairs of points

A e P o D
<
o Y A
B = 0 . C
F1c. 4,

which correspond under F' each as a single point of M.
This open manifold is called a fube or a cylindrical surface.
That it satisfies the definition of an open manifold is easily
proved by dividing the rectangle into 2-cells hy a 1-cell
joining a point /2 of the side 4.1 to a point @ of the side BC.
It is bounded by the two curves formed from the 1-cells
4D and BC respectively.

Let a (1-1) continuous correspondence F'* be set up between
the 1-cells AD and 3C and their ends in such a way that 4
corresponds to B, Pto @, and D) to €. A closed manifold 7" is
defined by regarding as single points of 7' each pair of
points which correspond either under F' or under I''. The
four points A, B, C, D thus coalesce to one point of 7%, This
manifold is called an anchor ring or forus.

22. If a correspondence @ between the 1-cells AB and CD
and their ends is set up in such a way that 4 corresponds to ¢
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and B to D, an open manifold M is obtained by regarding each
pair of points which correspond under G as a single point of M.
This open manifold is called the Mobius band.* A model is most
simply constructed by taking a rectangle, giving it a half-twist
and bringing opposite edges together. Thus the rectangle in
Fig. 4 represents a Mobius band (Fig. 5) if we regard as identical

Fia. 5.

the two vertices labelled «?, the two edges labelled a} and
the two vertices aJ. If the rectangle be divided into two
2-cells by the 1-cell aj joining the two points #? and af we
obtain the following matrices which describe the Mobius band.

H(‘:i'llllv
| |1 1]
‘101001' oL
1001 10| it o
=10 10 01 1’ H’_f'o 1ii
o1 1100/ 1 o
I

-

23. The Mobius band is bounded by the 1-circuit (0, 0.
1,1, 1, 1). If a 2-cell be introduced which is bounded
by this 1-circuit a complex is obtained whose matrices H,
and H, are the same as H, and H, for the Mobius band.
while

* Cf. A, F. Mobius, Gesamnmelte Werke, Vol. 2, pag:s 484 and 519.

4
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111 0 |
]: 1 1 0 |'
Hg = | L 01 il
o 1 1
11 0 1 |
o 1 1 I

The set of pcfint.? on this complex is a manifoid homeomorphic
‘nltf.l t!}e projective plane. Another set of matrices for the
pt'ﬂjectl"i’e plfme and some discussion of its Analysis Situs
y..rupertles will be found in Veblen and Young’s Projective
Geometry, Vol. IT, Chap. IX. '

24. The ope.ration of adding two one-dimensional complexes,
modulo 2, which was defined in § 15, Chap. I may be ex-
tended to two dimensions as follows. Let C: und (3 be t\\"n '
2-dimensional complexes each of which

: lexes eac ch is a sub-

a given complex 5. By romplex:of

Cy+ €3 (mod. 2)

is mean!: the complex composed of those 2-cells and their
lnn.mdarms which are in either of Cs; and C3 but not in both
;['ns2op.erafi0n has t}llc obvious property that if C, and C-‘.
re 2- ‘ f ) i "
‘__l_f-ir-m::jlt;{fults Co '3 (mod, 2) is also a 2-circuit or set of

_’-'J.. Let a sphere, S, be decomposed into cells by the process
described in § 11 and let 51, 83, -+, s be p of the 2 H"
S0 obtained. Let 7, 7% ..., 7P pe )pft h i it
W xS yiheny 17 (n? Or Tings no two
= 1 lave a point in common and which are such that
§ill=1,2, ..., p)is a 2-cell of 7% while 7% and § have
nr:a other points in common than those of s? and its boundﬂ‘r\',
The set of all points on the 2-circuit, l o

1) My =8+T'+T*L ... 7»r (mod. 2),

called a sphere with p handles, or an orientable manifold
) genus p, or an orientable manifold of eonnectivity 2p -+ 1.
¢ proof that the set of points on M, is a manifold is
ade by subdividing it into 2-cells. By the same device ilt
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is easy to prove that a sphere with one handle is an anchor
ring.

26. If one of the anchor rings 7" in the last section is
replaced by a projective plane, the 2-circuit M, is easily
seen to define a manifold. We shall refer to this as a one-
sided manifold of the first kind of genus p—1, or of con-
nectivity 2p. It is easy to verify that a projective plane
is a one-sided manifold of the first kind of genus zero.

If two of the manifolds 7% are projective planes and the
rest are anchor rings the 2-circuit A, again defines a mani-
fold. This is called a one-sided manifold of the second lkind
of genus p—2, or of connectivity 2p—1.

In this section and the last one the terms connectivity
and genus are used in such a way that

R—1=2p+Fk

where [, is the connectivity, p is the genus, and & = 0
for an orientable manifold, # = 1 for an one-sided manifold
of the first kind, and / == 2 for an one-sided manifold of
the second kind.

27. The fundamental problem of two-dimensional Analysis
Situs is that of classifying all two-dimensional manifolds.
The solution of this problem is found by proving: (1) that
for every manifold there is an integer I, the connectivity
(cf. § 29), whici is an invariant under the group of all
homeomorphisms; (2) that there is an invariant property,
that of “orientableness”; and (3) that any two manifolds
which have the same connectivity and are both orientable
or both gon-orientable are homeomorphic. From this it will
follow that the cxamples given in §§ 25 and 26 include all
two-dimensional manifolds.

The proof of the propositions (1) and (2) will be given in
considerable detail in the following pages bLecause it is the
basis of important generalizations to n-dimensions. The third
proposition is covered more summarily because methods of
proving it are well known and there is no possibility of
generalizing it directly to »-dimensions. There is no known

4*
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-

system of invariants or invariant properties of n-dimensional
manifolds which will characterize a manifold completely even
in the three-dimensional case.

The Connectivity R,

28. The boundary of any of the 2-cells a? which enter into
the definition of a complex C: is given by one of the co-
jumns of the matrix H.. The boundary of the complex de-
termined by two of these 2-cells is evidently the sum (mod. 2)
of the boundaries of the 2-cells, and therefore is a 1-circuit
or set of I-circuits composed of cells af and aj of Co. By
a repetition of these considerations it follows that the boun-
dary of any two-dimensional complex composed of cells of
¢, is a 1-circuit or set of 1-circuits which is the sum
(mod. 2) of the boundaries of the 2-cells of the complex.
Hence a symbol (o, @, ---, %e) for such a boundary is
liearly dependent (mod. 2) on the columns of H..
Moreover if any symbol (zy, @y, ---. &) is linearly ex-
pressible in terms of the columns of H, this expression de-
termines a set of 2-cells of C» such that the symbol for the
sum of their boundaries is (xy, 2s, -+, %a,). Hence a ne-
cssary and sufficient condition that a set of l-circuils com-
pced of cells of Cs shall bound a complex composed of cells
of Cs is that ils symbol shall be linearly dependent on the
cwluimns of Hy.

equations (H;) in a complete set is ¢, —¢,. So this is the
mimber of 1-circuits in a complete set. If g is the rank of
H,, the 1-circuits which bound complexes composed of cells
of C, are all linearly dependent on ¢, such 1l-circuits. Hence
a complete set of solutions of (H;) is obtained by adjoining
the symbols for e, —e, —egs 1-circuits or sets of 1-circuits
to ¢. linearly independent columns of H,. Let us set

(1) By—1 = a—o—¢;s.

Hence there exist R;—1 1-circuits or sets of 1-circuits
G, €% ..., O™ such that every l-circuit composed of

29. By § 25, Chap. I the number of solutions of the




88 28--30] TWO-DIMENSIONAL COMPLEXES. D3

1-cells of C, is linearly dependent (mod. 2) on these and on
the boundaries of 2-cells of C:.

It can be so arranged that each of Ci, CF, ..., Ci" " is
a single 1-circuit. For if C! represents more than one
1-circuit it is the sum (mod. 2) of these 1l-circuits and at
least one of these must be linearly independent of Cf, ...,
Cf! and the bounding circuits, for otherwise Cf would it-
self be linearly dependent on them. Let Cf be replaced by
this non-bounding 1-circuit. In like manner, there is at least
one one among the l-circuits represented by CP which is
linearly independent of C1, Ci, - -, ¢ and the bounding
L-cirenits, for otherwise Ci would be lincarly dependent on
them. Let Cf be replaced by this I-circuit andlet a similar
treatment be applied to ¢}, and so on. A set of 1-circuits
thus determined is called a complete set of non-bounding
1-cércuits. It has the properties: (1) There is no two-dimen-
sional complex composed of cells of €, which is bounded by
these 1l-circuits or any subset of them. (2) If ¢} is any
1-circuit composed of cells of C. there is a two-dimensional
complex composed of cells of C. which is bounded either by
C, alone or by C; and some of the circuits ¢7 (; = 1, 2,

.-, By —1). The number, R, is called the connectivity of
the complex C., or, when it is necessary to distingnish it
from the other connectivities Z; which are defined later, the
linear connectivity.

30. Now suppose that C; consists of a single 2-cirenit. In this
case the sum (modulo 2) of the 1-circuits bounding the 2-cells
is (0, 0,..., 0). This constitutes one linear relation among
the columns of H,. There cannot be more than one such
relation, £6v this would imply that a subset of the 2-cells
satisfied the definition of-a 2-circuit. Hence the rank of H, is
«y-—1. Thus we have

(2) fly = ity —1,
and from § 20, Chap. I we have

(3) Ql - ao_.Il)(j.

nd ANALYSIS SITUS. [Chap. II

But since any 2-circuit is connected, R, = 1. Hence on com-
pining (2) and (3) with (1) of § 29 we obtain

4 ay—«,+e, = 3—R,.

This is one of the generalizations of Euler’s well-known
formula for a polyhedron.

31. Since a two-dimensional closed manifold is the set of
points on a particular kind of 2-circuit the formula (4) of
§30, gives the relation between the connectivity R, and the
characteristic of any two-dimensional complex defining a closed
manifold. In -the case of an open manifold, M;, according
to § 19, the boundary consists of a number of curves. Call
this number B,. Of these curves, B,—1 are linearly in-
dependent because otherwise they would be the boundary of
a manifold contained in M., contrary to definition. As in
$29, a complete set of 1-circuits in the complex (% defining
I, may be taken to consist of ¢, bounding 1-circuits and
Ry —1 non-bounding 1-circuits; and of the latter, B, —1 may
be taken to be circuits of the boundary of 3f,. Hence if
R =By = R —1, the non-bounding circuits in the complete
st comprise B,-—1 from the boundary and £, —1 others.

If ¢y be modified by introducing B, 2-cells each bounded
by one of the B, l-circuits of the boundary, C. becomes a
9-circuit €y of ne -+ B, 2-cells, @, 1-cells, and «, O-cells in
which 3, —1 of the non-bounding circuits of €, have become
bounding eircuits. Hence 3 has the connectivity £,. Hence

@y —a+oy+ B = 3— R,
and
—a,+ay = 3 — R — D,

which is the formula for the characteristic of a complex
defining an open manifold of two dimensions. The same
formula holds for any connected two-dimensional tree, as
fillows from (1) and (3) and the fact that gs = ay.
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Singular Complexes

32. The cells af, aj, a}, which enter into the definition of a
complex are all non -singular and their boundaries are also
non-singular, This restriction was necessary in order to
obtain the theorem of § 6 that the matrices Hy, H,,H; fully
- determine the complex. In many applications, however, it is
desirable to drop the restriction that the boundaries of the
cells referred to in the matrices H; shall be non-singular.
The results of the theory of matrices can in general be
applied whenever it is possible to subdivide the cells having
singular boundaries by means of a finite number of O-cells
and 1-cells in such a way as to obtain a complex of non-
singular cells with non-singular boundaries.

For example, in § 21 the anchor ring was defined as
consisting of one O-cell, represented by the four vertices of
the rectangle, two 1-cells represented by its pairs of opposite
edges, and one 2-cell. The matrices of incidence relations
of these cells are

o
~ ool m= g

H, = |1
Thus ¢ = 1, 0, =0, 0 =0, ¢y = 1, &y = 2, @ == L.
Hence
Ry = 3—(ap—a o) =3

- “1_91—02+1-

1f the rectangle is subdivided into triangles so that a non-
singular complex is obtained it will be found that the same
value for R, will be obtained from the non-singular complex
as from the singular one.

33. The notion of a singular complex on a one-dimensional
complex, as defined in §'8, Chap. I, can be generalized directly
to two dimensions as follows:

Let C: be a two-dimensional complex, C’' a generalized
complex of zero, one or two dimensions*, and Fa correspondence

"The deﬁnmon may be extended so that €’ is of any number of
dimensions.
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in which each point of C’ corresponds to one point of a set
of points [P] of ¢ while each P is the correspondent of
one or more points of C'. If C'is of one or two dimensions
we require F' to be continuous. Under these conditions, any
point X of €’ associated with the P to which it correspond‘:'s
under F is called a point on Cy; it is referred as the imaqé
of X under £ and is uniquely denoted by F(X); it is sn'id
to coftncide with P” and P is said to coincide with it. The
point F'(X;) is called a limit point of the points F'(\)
if Xy Is a limit point of the points X. The set of all
points F'(X) on C, is in a (1-1) continuous correspondence
with the points of ¢ and thus constitutes a complex ¢
identical in structure with C’. The complex C” is said to
be on Ce. If amy of the points P is the correspondent
mder ¥ of more than one point of €', " is called a singulor
aomplex on Cs and the point P in question is called a sin}yular
point. If I is (1-1), " is said to be non-sinqular. A cell
of (""" is said to coicide with a cell of (% if and only if the
two cells are in (1-1) continuous correspondence, under 2.

In case € is two-dimensional and such that there is at
least one point of €'’ on each point of €, and if, furthermore,
there exists for every point of C'' a neighborhood which is
a1 non-singular complex on C., then C” is said to corer .
In case the number of points of C” on each point of Cy is
finite and equal to n, € is said to cover (% n limes
(cf. §9, Chap.I).

34. Any 2-circuit which is not a manifold can be regarded
is a singular manifold. TFor let C; be an arbitrary 2-circuit.
Each of its edges, al, is incident with an even number.
2n; of 2-cells. These 2-cells may be grouped arbitrarily in
n; pairs no two of which have a 2-cell in common; let these
be called the pairs of 2-cells associated with nl. Let C; be
2-circuit on (% such that (1) there is one and but one
2-cell of Cy coinciding with each 2-cell of ¢ , (2) there are
i 1-cells of €3 coinciding with each 1-cell a; of Ce, each
f the n; 1-cells being incident with a pair of 2-cells of Cs
hich coincide with one of the pairs of 2-cells associated
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of Schoenflies and Jordan. This will be 1llustrated by the

with a!, and (3) there is one 0-cell of Cz coincident Wit}
simple case considered in the next section.

cach O-cell a? of C,, this O-cell being incident with all the
1-cells of 02 whlch coincide with 1-cells of C. incident
with a. Thus C7 has two 2- cells incident with each of its
1-cells.

The incidence relations of the 1-cells and 2-cells of Cz which
are incident with a vertex a? of C, are the same as those
of the O-cells and 1-cells of a linear graph and since there
are just two 2-cells incident with each 1-cell this linear graph
consists of a number of 1-circuits having no points in common.
Let any set of 1l-cells and 2-cells of 5 which ave incident
with a? and whose incidence relations with one another are
those of a 1l-circuit be called @ group associated with «.
Let C)' be a 2-circuit on Cy such that (1) there is one 'md
but one i-cell (s =1, 2) of Cs' coinciding with each i-cell
of Cs, (2) the incidence relations between the 1-cells and

_cells of ¢4’ are the same as those between the cells of ("
“-lt.h which they coincide, and (3) there is one O-cell of (V'
for each group associated with cach vertex «} of C, and
this 0-cell is coincident with a! and incident with those and
only those 1-cells and 2-cells of i’ which coineide with
l-cells and 2-cells of the group. The set of points on the
complex (3’ is a two-dimensional manifold, by § 19, and
¢4 is a singular complex on C:. Hence (; may be obtained
by coalescing a certain number of I-cells and O-cells of

a manifold.

and its boundary but does not pass through every point of o*
is the boundary of a 2-cell on «®. Let ¢ be the given curve
and O a point of a*® not on c. Let OX be the straicht
l-cell joining O to a variable point X of . ¢. Let O Dbe
a point interior to a triangle ¢ of a Euclidean plane and let
X' be a variable point of the boundary of this triangle. Let
I be a continuous (1-1) correspondence between the set of
points [X'] and the set of points [X]. If we let each point
of @’ X’ correspond to the point of O X which divides it in
the same ratio, a continuous correspondence F' is defined
in which each point of the interior and boundary of the
triangle ¢ corresponds to one point of «®. By § 1 there is thus
defined a 2-cell (in general, singular) which is bounded by c.

It is not essential that () shall not coincide with a point
of ¢, for in case X coincides with O the interval OX may
be taken to be a singular one coinciding with ¢. Hence
we have without restrictions the theorem that any closed
curve on a2 2-cell « is the boundary of a 2-cell on a.

The thcorem may be generalized slightly as follows: Any
cuirre ¢ on a triangle star and its houndury (§ 14) is the boundary
uf n 2-cell on the triangle star. The 2-cell is constructed as
above. taking the center of the triangle star as O.

Congruences and Homologies, Modulo 2

317. Before going on to the solution of the problem stated
n §35, let ns introduce a notation which is adapted from
that of Poincaré. We shall say that a complex C, (n =1, 2)
s congruent (mod. 2) to a set of (n— 1)-cirenits C,—; if and
ny if Cu—y is the boundary of (7. This is represented by
le notation )
B ¢, = C,-1 (mod. 2).

Bounding and Non-bounding 1-Circuits

35. Having defined what is meant by saying that a com-
plex €, (n =£0,1,2) is on a complex (s, we can now state
and solve the problem of bounding and non- -hounding cireuits
in a perfectly general form: Given any set of I- cireuits K
on @ complex Cy, does there exist « tico-dimensional complex: K
on Cy which is bounded by K;?

In spite of the generality of the complex A\, and because
of the generality of K., this problem is free from many of
the difficulties inherent in such point-set theorems as those

n case Cn-1 fails to exist, so that (, is a set of n-circuits, C,
said to be congruent to zero (mod. 2) and (1) is replaced by

36. Any closed curve, singular or not, which is on a 2-cell ¢®

-n-—_lv:
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2 Co = 0 (mod. 2).

. Expressions of the form (1) and (2) are called congruence
(mod. 2). They have been defined thus far only for n = |
and » = 2, but these definitions will apply for all valucs
of n as soon as the terms complex, z-circuit, and boundary of
an n-dimensional complex have been defined for all values of 4.

Both in the one- and two-dimensional cases it is evident
that when two complexes are added (mod. 2) the boundary
of the sum is the sum (mod. 2) of the boundaries. Hence
the sum (mod. 2) of the left-hand members of two congruence:
is congruent to the sum (mod. 2) of the right-hand members,
Or, more generally, any linear combination (mod. 2) of & wumbe
of valid congruences (mod. 2) of the same dimensionality is a valid
congruence (mod. 2).

38. With respect to a complex ¢ a complex C, . is said
to be lomologous to zero (mod. 2) if and only if it is the
right-hand member of a congruence such as (1) in which ¢,
represents a complex on C. This relation is indicated by

(3) Cn,—-l ("D O (mOd. 2).
Thus
Co~0 (mod. 2)
means that C, represents a set of O-circuits which bound
a one-dimensional complex on (', and

C,~0 (mod. 2)

means that C; represents a set of 1-circuits on € which bound a
two-dimensional complex on (. Thus in every case, (3) implies
4) Cn—1 = 0 (mod. 2),

but (4) ddes not imply (3).

From the corresponding proposition in the last section it
follows at once that any linear combination (mod. 2) of a sef
of valid homologies (mod. 2) is a ralid homology (mod. 2).
A homology,

(5) Co1+Ci1~0 (mod. 2),
is also written
(6) Cp—1~~ Cn'—l (mOd- 2)0
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The homology (6) evidently means that there exists a complex C,
on € which is bounded by C.—; and Cy_;.

If C, is a 1-circuit obtained by introducing new vertices
in a l-cireunit €, it is evident that

(y ~C  (mod. 2),

lecause C, and €, bound a singular two-dimensional complex
eoincident with them both.

The Correspondence A

39. The first step toward the solution of the problem of
$ 35 will be to show that if C; is a regular subdivision of Cs,
then for any Il-circuit A, on C. there is a set of 1-circuits
ki composed af ecells of Cs such that

(1) K, ~ K{ (mod. 2).

This has the consequence that any homology among 1-circuits
ean be replaced by one in which each 1-circuit is composed
of cells of Ce; and the problem of § 35 is reduced to that
of finding a necessary and sufficient condition that Ky~ 0
(mod. 2) if Ky represents a set of 1-circuits composed of cells
o €. The next three sectionss aim at establishing the
hlomology (1).

10. Let K be a onc- or two-dimensional complex on a two-
dimensional complex Cs. Let (, be a regular subdivision
of (4. Let a definition of distance and straightness be
introduced relative to €%, and let G, be a regular subdivision
of (' whose I-cells are all straight. The triangle stars
of (s constitute a set of overlapping neighboorhoods such
that every point of C. is interior to at least one of these
neichborhoods. Hence by simple continuity considerations
(Heine-Borel theorem) K can be subdivided, by introducing
new vertices if it is of one dimension, or by the process ot
reenlar subdivision (8 13) if it is of two dimensions into a
complex A" such that for each 1-cell or 2-cell of K there
is a triangle star of (% to whiceh it is interior.

e T —
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Those of the triangle stars of C, whose centers are vertices
of C, have the property that any point of C; is either interior
to one such triangle star or on the boundaries of 2-cells
from two or more such triangle stars. Let us designate as
@ correspondence A any correspondence of the vertices of K
with those of C; by which cach vertex of K which is interior
to a triangle star of C. having a vertex of C, as center
corresponds to this center, and each vertex of K which i
on the boundary of two or more such triangle stars corresponds
to the center of one of them.* Thus a ecorrespondence .{
determines a unique vertex of . for each vertex of K.

This construction is such that any triangle star of ¢t which
contains a vertex of K has the O-cell of (3 to which this
vertex corresponds on its interior or boundary. Moreover
any two vertices of K which arc ends of the same 1-cell
of K coincide with points of the same triangle star of (' and
hence correspond to points of (b of the interior or boundary
of this triangle star. Hence they correspond either to the same
vertex of (. or to the two ends of a 1-cell of C. (Cf. § 14).
In case K is two-dimensional it follows similarly that any
three vertices of K incident with the same 2-cell of K correspond
to one or more vertices of a single 2-cell of C..

41. Let the O-cells, 1-cells and 2-cells of (% be denoted
by &, ¢, -+, c:’,o; €1aCyy e (:'.; and 2, &, .-, respectively:

and those of K by Ay, ks, - o gy W1 T3,
respectively. Having fixed on a corrospondence A between
the vertices of K and those of (y, let each O-cell ki be
joined by a straight 1-cell I} to the corresponding vertex
of C; in case &} does not coincide with its correspondent; and
if ki does coincide with its corxespondent let it be joined to
its correspondent by a singular 1-cell b coinciding with it.

The two ends of a 1-cell /& are thus joined by two 1- cells
b; and b either to the same verte‘( of C» or to the two end:

oo lgs b, R,

* This is essentially the same as requiring (w1th Alexander, in the paper
cited in our preface) that each vertex of K shall correspond to the nearest
vertex of Cy, or to one of the nearest if there are more than one.
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of a 1-cell ¢, of Cy. In the first case k, b and b} are the
1-cells of a 1-circuit and in the second case. ki, U}, bi and ¢,
are the 1-cells of a 1-circuit. In either case there is a single
friangle star of €, which, with its boundary, contains the
I[‘ll’Clllt Therefore by § 36 the 1-circuit bounds a 2-cell
P oon Co.  Thus each I-cell Ii of K determines a 2-cell bi.
The complex composed of the 2-cells b; and their boundaries
is called B,.

12. The incidence relations between the 1-cells b} and the
2.cells i of By are the same as the incidence relations between
the O-cells and 1-cells of K. Hence, in particular, if K is
a 1-cirenit or set of I-circuits, A, the sum (mod. 2) of the
boundaries of the 2-cells J; contains none of the 1-cells J;.
Hence the boundary of B, can consist only of cells of K,
and of Cs. Hence the boundary of B, is either A, alone
or Ky and a set of l-circuits composed of cells of (h. Let
the latter set of 1-circuits be denoted by A7.
Hence we have the congruence,

(2) By = K,-+K; (mod, 2)

i whieh K{ is either zero or a set of 1-circuits composed
of eells of €. From this there follows the homology

(1) K, ~ K (mod. 2)
which we have been seeking.
43, 1f K7 is zero the question as to whether K, satisfies

o homology
3) K, ~0 (mod. 2)

is answered in the affirmative. In any other case, since K
is composed of cells of (% it is represented by a symbol
(r1, #ay «++, 7). If this symbol is linearly dependent on

the columns of the matrix H, for Cs,
Ki~0 (mod. 2)

awcording to § 28. Moreover Ki cannot bound a complex
composed of cells of C, unless its symbol (a1, 2, -+, 2¢) is
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linearly dependent on the columns of H.. If, therefore, we
can prove that Ki cannot bound any complex on C, unless it
bounds one composed. of cells of C, it will follow that (3) is
satisfied if and only if (a1, 22, -+, %) is linearly dependent
on the columns of H,, This we proceed to do, thus com-
pleting the solution of the problem stated in § 35.

44. Let us return to the notations of §§ 40 and 41 and
suppose that K is a two-dimensional complex ]x, The three
1-cells ki, kj, ki of K incident with a 2-cell I of K. have
been seen to determine three 2-cells bf, b,, bi. These 2-cells
are incident by pairs with the 1-cells joining the three vertices
of k,, to their correspondents under the cmrespondence A,
The vertices of (, to which the vertices of X} correspond
are cither the three vertices of a 2-cell cq of C, or the two

ends of a 1-cell of (y or a smg]e 0- cell of Cy. In the first

case the 2-cells, &y, b3, 1}, b and ¢ are the 2-cells of a
sphere; in the second and third cases the 2-cells I.,,, hi, I;J
and b are the 2-cells of a sphere. Iet the sphere which
is thus in every case determined by 4% be denoted by S7.

A 2-cell b} is in an odd number of these spheres if and
only if it is incident with a 1-cell ki of the boundary of A%.
Hence the result of adding the spheres 8¢ to A, (mod. 2)
is either zero or a complex K} the 2-cells of which are either

2-cells of C, or 2-cells b} determined by the 1-cells of the

boundary of K,. In particular, if K is a 2-circuit, either A
is the sum (mod. 2) of the spheres S2 or K} is composed
entirely of cells of Cs.

45. If K, has a boundary, so that

(4) @ K. = K, (mod. 2),

the result of the last section is that by adding a number of
congruences,

6)) S = 0 (mod. 2),

to (4) we obtain a congruence,

(6) K. = K, (mod. 2),
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such that all 2:cells of K3 are either 2-cells of C» or 2-cells
b; determined by the boundary K, of KJ. The complex B}
composed of the latter 2-cells and their boundaries is such that

(7) B = Ki+K{ (mod.2)

where Ky’ is composed of O-cells and 1-cells of C.. On
adding (6) and (7) we obtain a congruence

Q) K:+ By = Ki (mod. 2)

in wich the left-hand member represents a complex composed
only of cells of (5.

46. It is now easy to obtain the result required at the
end of § 43, namely that if a set of 1-circuits K7 is com-
posed of cells of (., then

Ki~0 (mod.?2)

implies that A is the boundary of a complex composed of
cells of C;. Taking a complex bounded by Ki, we subdivide
it as above, preliminary to setting up a correspondence A4,
and denote by X, the corresponding subdivision of Xj. Thus
we have a congruence like (4) of the last section, consequently
one like (8) derived from it. But in this case the Ky’ con-
structed in the last section is easily scen to be identical
with Ki. Hence (8) states that Kj is the boundziry of a
vomplex composed of cells of (%.

Invariance of R,

47. An immmediate coroliary of what has just been proved
is that the I1-circuits Cl1 , Cf s, C,R " Lofa complete set (§ 29)
of non-bounding 1-circuits of (. are not connected by any
homology of the form
(1) Ch+Crt ... +Cx~0 (mod. 2)

in which the superscripts are distinct integers less than R;.
Moreover if K, is any 1-circuit on C; it satisfies a homology
of the form

(2) Kl,\,cl;'l_}_ol"!_l_ o000 —*—C‘:’ (mOd. 2)




§§ 46—49) TWO-DIMENSIONAL COMPLEXES. 65

in which the terms of the right-hand member represent
1-circuits of the complete set. For by § 42

3) Ki~ K: (mod.2)

in which K: is zero or a set of l-circuits compose.d of cells
of Cs, and by §29 Ki is homologous to a combination of
ircui lete set.
1-22“}1;31:(;; ;il'lf 00121,'“1’ ., K1 is any set of 1-circuits .suc!l that
(1) any 1-cirenit is homologous to a i_inear com?)m.atmn .of
them and (2) there is no homology relating them, 1_!; is easily
proved that N = R,—1. For by the propert-les 'of tc],w
1-circuits Cl‘, Cf, veey (,‘1”1_1, there are N homologies like (2),

(4) K~ Chip Cht oo+ 0 (mod. 2),

one for each value of j from 1 to N. If N>R, —1 the
right-hand members of (4) must satisfy a homology becau‘so:
there are only R,—1Ct's. But this is c?ntrary to. the proper t:_\
(2) of the Kbs., Hence N> R, —'}'13 1mposs‘1il.)]c.. Innlll\'(t
manner, inverting the roles of the 1's andv the ()1 s. it follows
that R, —1>> N is impossible. Hence N= I, —1. |

Any homeomorphism of Cy obviously trm}slforms a set nli
1-cireuits K1, Ki, -+ -, Ki satisfying the cotzd1t10p§ (1) anq (2)
into a set of 1-circuits satisfying the samc.com.htlmls. Since
N = R,—1 for every such set of 1-circuits, it fu]}mvs that
R, is an Analysis Situs invariant of the CUJH?]?P;L" Cs. .

49, It was proved in § 16 that the expression in the right-
hand member of

Bi—1 = o —0—0
is the same for (% as for (4. Now let Cy be sudivided 1r:fo
any set of cells which form a non-singular cnrmplex K, on Cs,
and let K. be a regular subdivision of K. The co_znplcx ]\g‘
can replace (; in the discussion above apd hcncg' K h.as t:u‘
same connectivity, I%y, as Cs. Hence K. and C; have tf("
same connectivity., In other words any two complexes h.mf.‘
ﬁlm same connectivity if they are identical as sets of points
and the cells of cach are mon-singular on the other.
5
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It should perhaps be remarked that the relation between
K. and C; may be quite complex in spite of the fact that
cach cell of K, is non-singular on C; and vice versa. For any
1-cell of K, may intersect any number of 1-cells of C; in an
infinite set of points, and any 2-cell of K, may have an in-
finite set of regions in common with any 2-cell of (.

Invariance of the 2-Circuit

50. If K. and C; are related as described in the last section,
Ks 18 a 2-circuit if and only if Cs is a 2-circuit. Since the
relation between C; and K, is reciprocal this theorem will be
established if we prove that if A, is a 2-circuit then (. is one.
Also it is evident that (', or A, is a 2-circuit if and only if a
regular subdivision of it is a 2-circuit. Hence we replace C,
by its regular subdivision C, as in § 40 and construct the
spheres S as in § 44. By § 44 the result of adding the
spheres Sf to K; (mod. 2) is either zero or a set of 2-circuits
composed of cells of (,. If it were zero the 2-circuit K,
would be the sum (mod. 2) of the spheres S7. But this is
impossible, as shown by the following theorem.

51. There is no set of 2-circuits Ki on a 2-circuit Cy such
that (1) for each 2-circuit K theve is a 2-cell of Cs on which
there s mo point of Ki and (2) the sum (mod. 2) of the 2-
viveuits K3 is Cs. :

To prove this theorem, we suppose that there is a set of
2-circuits K having the property (1). We let these 2-circuits
take the place of K in §40,' make the regular subdivision
of Cs into C; and K3 into Ki, construct a correspondence 1
and obtain a set of spheres S7 (which, of course, must not
be confused with those in § 50). When the spheres having
2-cells in common with one of the 2-circuits X; are added
to this K, the result is either zero or a non-singular set of
2-circuits composed of cells of C;. But since C; is a 2-circuit
the only 2-circuit composed of its cells is C. itself. Since
there is one 2-cell of C, which contains no point of K3 it
follows that the sum of K3 and the spheres S determined
by its 2-cells is zero.
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Obviously if each of two 2-circuits is such that the suy
(mod. 2) of it and the spheres S! determined by its 2-cell
is zero the same is true of the sum (mod.2) of the tw.
2-¢circuits. Hence the sum of all the 2-circuits K$ has thi
property. On the other hand the 2-cireuit Ce is such tha
the sum of it and the spheres S determined by its 2-cell;
is O, itself. Hence the 2-circuits K: do not have th
property (2).

52. Letting the 2-circnit K, and the spheres S of § oo
take the place of the 2-circuit (; and the 2- circuits Ks o
§ 51 it follows from the theorem of § 51 that K. is not the
sum (mod.2) of the spheres S;. Hence the sum (mod. 2
of K, and the spheres S is a set of 2-circuits composed o
cells of C.. We shall prove that these 2-circuits constitute (',
If they did not, let them be denoted by Cy, let ¢; be one of
the 2-cells of (% which is not on Cy, and let K, be regularly
subdivided into a complex Ky which has at least one 2-cell
which is interior to cJ-

The complex ¢ is composed of non-sigular cells on K
and hence (3 and K5 can replace K, and (. respectively i
the construction used in § 50 for the spheres S#. Thus a sct
of spheres can be found which when added to a regular sub-
division of (s give a set of 2-cireuits Cy" composed of cells
of a regular subdivision of Ky. It follows from § 51 that ¢
is not vacuous Since X, and its regular subdivisions are
9_circuits, C3’ must be identical with the regular subdivision
of Ks. Thls is not possible unless there is a point of Cs on
cach 2-cell of K7. But this implies that there is a point
of Cz on ¢, contmry to the hypothesis that ¢} is not a cell
of ¢J. MHence ¢/ coincides with C,, as we wished to prove.

Now by reversing the whole process we can show that
any one of the 2- cirenits that compose C» will yicld a sub-
division of the 2-circuit K,. Hence there can be only onc
and the proof of the theorem of § 50 is complete.

53. It is an obvious corollary of this theorem that the
property of a two-dimensional complex, of being a 2-circuit.
is an Analysis Situs invariant. For if G and G are two

5
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complexes which are homeomorphic, the homeomorphism defines
a non-singular complex K; on C: such that each cell of K,
is the image of a cell of G;. By definition, K, is a 2-circui;.
if and only if @, is a 2-circuit, and by the theorem of § 50
K, is a 2-circuit if and only if C; is a 2-circuit.

It is an obvious corollary of this result that the property
of a complex, that it defines a manifold, is also an Analysis
Situs invariant. In other words, any complex into which
a manifold can be subdivided, satisfies the conditions laid
down in § 19.

Matrices of Orientation

54. Let us now convert the 1-dimensional complex com-
posed of the O-cells and 1-cells of Cs into an oriented one-
dimensional complex in the fashion described in §§ 33 to 40
of Chap. I. The oriented O-cells are

[ 0
Glr 027 ct s ngy
the 1-cells are
1 1
017 6-_3; R 0‘11’
and the relations between them are given by the matrices.
Ey, E, satisfying the relation

E,.E, = 0.

}§}ach of the columns of H. is the symbol for a 1-circuit
which, according to § 35, Chap.1, determines two oriented
I-circuits. The symbol for either of these oriented 1-circuits
may be obtained from the corresponding column of H, by
changing some of the 1's to —1's. Hence by changing
some of the 1's in H, to —1's there is determined a matrix

E—”€ H (i:1’2y""“1;j=1,27"';a2)
eaich column of which represents an oriented 1-circuit and

J; therefore a solution of the equations (E,), § 42, Chap. 1.
enee
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As an example, a matrix E, for the tetrahedron in Fig.1,
page 2, is (cf. He in § 4)

i 0o —1 1 0
1 0 —1 0
-1 1 0 0
BE=1 1 0o o —1
0o 1 0o —1
1) 0 1 —1

A further example is furnished by the projective plane,

for which (cf. §§ 22, 23)

[t 1 of

|1 o 1 0 0 1] 1 —1 0‘3

1 0 0—1—1"0] _|[r 0-—t1j

= || Eu—— | it
B=lo—-1 0 0 1—1|" "™ 01—t
‘ 0 1—1 1 0 0] 1t o 1j
o1 1

Note that the rank of E, for the tetrahedron is 3, or e;—I,

and for the projective plane is 3, or a..
55. Let us denote the ranks of Ey, Ey, E» by 79, 71, 7:
respectively. We have seen that

ro = Iy = @o,
L= O

and that in case (% is a 2-circuit,
0y — ag"'—l.

It is impossible that r, should be less than ey—1 because
this would imply a linear relation involving at most «.—1
columns, with relatively prime coefficients, and hence on
reducing modulo 2, that the same statement was true'of the
columns of H., contrary to § 30. Hence there remain two
possibilities

re = oy —1

and
’I'! =

for any (, which is a 2-circuit. The examples in the last
section show that both possibilities can be realized.
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56. A 2-circuit C; such that r, = e;—1 has the property
that if the boundaries of its 2-cells are converted into oriented
1-circuits in any way, they will satisfy a linear relation with
integral coefficients. For the columns of E; represent a sct
of oriented 1-circuits, one bounding each 2-cell, and since
r = wg—1 they are subject to one linear relation,

(1) blcl+bzc2+"‘+ba,('u= =0

in which the ¢’s represent the columns of %, and the I's are
positive or negative integers or zero. If the coefficients are
divided by their highest common factor, and then reduced
modulo 2, this relation must state that the sum of the columns
of Hy is zero. Hence the relation must involve all columns
of E,. .

In case (, has the property that each 1-cell is incident
with two and only two 2-cells (for example, if it is a manifold),
if an oriented 1-cell o} is to cancel out, the two oriented
l-circnits formed from the boundaries of the 2-cells incident
with a] must appear in (1) with numerically equal coefficients.
It follows that the coefficients of (1) arc numerically equal
and therefore that by removing a common factor (1) can be
reduced to a form in which ; = .2-1.

Hence by multiplying some of the columns by —1, £, can
be reduced to a form in which the sum of the columns is
zero.  The columns of F, then represent a set of oriented

| I-cireuits such that if ¢! is any oriented 1-cell formed from

a 1-cell of Cy, one of these 1-circuits contains ¢! and another
one contains —e'. Consequently if (% has the property
that each of its 1-cells is incident with two and only two
Z-cells, the boundaries of its 2-cells can be converted into
oriented 1-circuits in such a way that their sum is zero.

Orientable Circuits

57. The theorem of the last section is that if re = e — 1
for a 2-circuit Ci, the boundaries of the 2-cells of C; can be
tonverted into oriented l-circuits in such a way that they
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satisfy a linear relation. If 7, = @, the boundaries of the
92-cells evidently cannot be thus oriented. In the first case
., is said to be two-sided or orientable and in the second case
to be onc-sided or mon-orientable. A manifold is said to be
orientable or non-orientable according as the complex defining
it is or is not orientable. This extension of the term is
justified by the theorems of §§ 58-60 below, according to which
the complexes defining a given manifold 3/, are all orientable
or all non-orientable.

This definition is equivalent to the one given in 1865 by
A. F. Mobius, Uber die Bestimmung des Inhaltes cines Poly-
éders, Werke, Vol. 2, p. 475; see also p. 519. The term
“orientable” was suggested by J. W. Alexander as preferable
to “two-sided” because the latter term connotes the separation
of a three-dimensional manifold into two parts, the two “sides,”
by the two-dimensicnal manifold, whereas the property which
we are dealing with is an internal property of the two-
dimensional manifold.*

The intuitional significance of orientableness is perhaps best
erasped Ly experiments with the well-known Mdbins paper
strip described in the article referred to above. These ex-
periments can also be used to verify the theorems on de-
formation and on the indicatrix in Chap. V.

58. Suppose that a 2-cell «? of a complex (), the cells of
been oriented in the manner described above, is
The two new 2-cells
in common.

which have
separated into two 2-cells by a 1-cell al,
are bounded by two 1-circuits which have o
It is easily scen that if ¢! is cither of the oriented 1-cells
formed from «!, two oriented 1-circuits can be formed from the

* On the refation between orientableness and two-sidedness, see L. Stei-
nitz, Sitzunzsberichte der Berljner Math. Ges., Vol. 7 (1908), p. 3d; anl
11, Kinig, Archiv der Math. u. Phys., 3d Ser., Vol. 19 (1912), p. 214, The
term orientable (orientierbar) has also been used by H. Tietze in an articl
in the Jahresbericht der Deutschen Math. Ver., Vol. 29 (1920), p. 95, whicl
came to my attention while these lectures were in ]‘l‘inlfbllff_bi This
article contains a general discussion of orientability covering a number of
the questions referred to in the beginning of Chap. V below, and alsv
n useful collection of references.
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boundaries of the two new 2-cells in such a way that one
of them contains ¢' and the other contains — o', Hence the
sum of these oriented 1-circuits is one of the two oriented
1-circuits which can be formed from the boundary of al.

The complex C. is converted into a new complex 02 by
intoducing the new 1-cell a* and subdividing a2. The matrix E,
of C3 has one row and one column more than the matrix L‘.
of Cs, and by the paragraph above can be converted into the
matrix E, for C; by adding the two columns corresponding to
the two new 2-cells and striking out the row corresponding
to a’. These operations evidently reduce the runk by ln.
Hence the rank of E; for (i is equal to the number of 2-cells
of C; if and only if the rank of E, for (% is equal to the
number of 2-cells of (.

Since a regular subdivision of C; can be effected by the
two operations of introducing new O-cells on the 1-cells of C.
and separating the 2-cells into new 2-cells by 1-cells, it follows
from the theorem just proved that any regular subdivision of
(, is such that

re = ay—1
if and only if (3 has this property.

59. If C; is a 2-circuit and G, is apy 2-circuit homeomor phic
with Ce, let K, be the 2-circuit on ¢, whose cells are respect-
ively homeomorphic with the cells of Gy, As in § 50 C, and A
may be regularly subdivided into C, and K, and a set o;
spheres S7 constructed such that the sum (mod. 2) of X, and
the 2-circuits defining these spheres is €. For each 2-cell
I of K, there is one and only one sphere S§ which has %> as
one of its 2-cells. ’

If K. is such that r, == ay—1, K, has the same property,
ha.t is to say, some linear combination of the oriented boun-
dan.es of its 2-cells sums to zero. Each of the spheres S7
obx:10u§ly has this property also. The set of oriented .
l-circuits which can be formed from the boundaries of the
2-cells of K, and of the spheres S is therefore subject to one
lincar relation involving the oriented 1-circuits of K: and

= emme——
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one analogous linear relation for each of the spheres 8. Since
each SF has just one 2-cell in common w'th K,, the linea
relations corresponding to the spheres S? can be multiplied
by integers and added to the linear relation correspondine
to K, in such a way that all terms involving oriented 1.
circuits of K cancel out, thus giving a linear relation, 12, amone
oriented 1-cireuits bounding 2-cells of the spheres 87 whiel
does not involve any oriented 1-circuit bounding a 2-cell of X,

Among the 2-cells of the spheres SY are the 2-cells b} cact
determined as explained in § 41 by a 1-cell Ic: of ;. Each suc!
9_cell is in the spheres 8§ corresponding to the 2-cells of A,
incident with the /i in question, and mno others. Since the
oriented circuits bounding 2-cells of K, which are incident
with 7 were cancelled out in forming I, the oriented 1-cirev?
formed from the boundary of % is also cancelled out. Henee
R contains none of the oriented 1-circuits formed from the
boundaries of the 2-cells 5. Hence I can only contai:
oriented 1-circuits formed from the boundaries of 2-cel:
of Cs. It must contain some of these, for otherwise eact
9.cell of C; would be in an even number of spheres S7 and
hence the sum (mod.2) of these spheres S? and the com-
plex K. would be zero contrary to §51.

Hence the set of oriented 1-circuits formed from th-
boundaries of the 2-cells of C. is subject to one linear con-

dition. Hence by § 55 ry = ex—1 for (. Hence by § 5

re = ay—1 for C;.

60. The theorem of § 53 was that if €, is a 2-circuit am
The theoren

complex homeomorphic with C; is a 2-circuit.

of the last section adds to this result the theorem that 2f (.

is oriertable so is also any complex homeomorphic wille €.

It follows that if one of the complexes into which a manifo’t
can be decomposed is orientable so are all the complexe
into which it can be decomposed. Thus the property
orientability or non-orientability is a property of a manifoll

and is invariant under the group of homeomorphisms.

As a corollary of this it follows that any complex definin:

a sphere is orientable. The same follows for any spher
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wuz p-handles on observing that the particular complexes
used in deﬁnmg. these manifolds are orientable. In lik
manner, the manifolds defined in § 26 are non-orientable )

Normal Forms for Manifolds

6{. It has now been proved that any two homeomorphi
manifolds are both orientable or both one-sided, and hav ¥ hIc
same conne.ctivit,y. Conversely it can be provjtz(i thata"jt‘?tt 'e
dlosed manifolds are both orientable (or both onﬂ-w'rled; NE
lave the same connectivity they are komemnm'pb.fcl L In otahn‘
\zot'ds,t 1}’1 .:md the orientableness of a close.d manifu‘lzcll
‘haracte i
t i]tur;c erize it completely frpm the point of view of Analysis

62. By way of establishing this theorem we shall outline
;q mlcthod.. of reducing any manifold to a normal form. Let
I,‘ denote a complex whose points constitute a manifold 27,
let the 2-cells of Cy be so ordered that o h=2,8, .. a..)

i« inei i

| 1_nculent.“1th at least one l-cell, say ¢! ., which is also

meident with one of the 2-cells a2, o2 a o
= Sy Sy ®

N
According to § 9 5 o} : ttute.
g t0 § 9 the cells «f, al, a? constitute a 2-cell, 72.

Similarly, the eclls B2, al, a2 constitute a 2-cell, 12. The
I'Neess av oo 1 1 o
]._‘n_{__('._h. may be continued until we arrive at a 2-cell >
which is made up of all the 2-cells a2 (/ = 1,2 ‘ 3
ad of the 1-cells a; (j=1,2, : o
I--'e]l?. are in number e, —eay+1 = a,+ R —2 (§ 30
']"]H;ltlml (4)). Hence the boundary of h;",’ contains 2{an—f~ﬂ’b 9;
=" 2 ‘i 01 i i i ! 1‘_--
!. lils which )(.omcnlc by pairs with the I-cells a} (k = «
=1, -v0, ). We denote by 17, i ot
: . e by U, the linear gr: ate
tined by the 1-cells al. | RN A et

g ]

«++y ®s—1). The remaining

0: i
i3. The graph U, has the property that none of its 1-cireuits

o1 sets of 1-circuits s.  For if K
its bounds. For if A, were a bounding set

I l-circuits composed of cells of U,, then C, would be

Mar T i

htnézted by A, into two parts, each bounded: by K;. In
quence of cells a? ({1 =1,2,..., @) there must be at

rast one pair a?. a? B
pair a3, a?, | such that a3 would be in one of the

. J
irts in question 2 7 i
q and a;., would be in the other. Hence
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the 1-cell a} must be on the common boundary of the tw.v()
varts. namely K,, hence on U;. But this would contradict
‘the dcﬁnitiofl of U, as a linear graph containing none of the
1-cells a} (j =1, 2,..., @s—1). Consequently U, has the
property stated above. -

64. The result of the last section may be stateq in the
following form: Any closed manifold M, can be set into con-
tinwous correspondence with the points of a convex polygon
of 2(ey + R, —2) edges in a Euclidean plane in such a way
that (1) each interior point of the polygon corresponds to
and is the correspondent of one point of the 111.’ullif0ld; {.2) C:t.(‘.h
_ interior point of an edge of the polygon dctermmes' an interior
point of another edge such that these t.wo'pomis of th'v
polygon correspond to one point of the manifold, and t.lm
point of the manifold corresponds only to these two points
of the polygon; (3) each vertex of the polygon determines
a set of vertices of the polygon all of which con-uspun‘d. 1'.:
a single point of the manifold, and this point of the manifold
corresponds to these vertices and these only, .

65. By a series of transformations on this polygon whiel
involve .c-,ut.ting it by 1-cells running from one vertex to :u}-
other and piecing it together along corresponding callgcs, it
ean be changed into a polygon of 2 (12, —1) sides all of whose
vertices ('I)I'l‘-é.‘-‘«]!()!ld to a single O-cell of M. This polygon
in turn can be transformed into oune of three normal fr:.r.msl.
If the polygon reduces to the first of these forms the m:mnull.r
is a sphere with p handles; if the polygon takes tl.le second
form, the manifold is a one-sided manifold of the ]ll'.‘i‘t km:?:
and if the, polygon takes the third form, the manifold 1:
a t}lte-sitlefi manifold of the second kind. Thus, every (Inw
manifold M is of one of the three types deseribed in §3 20
and 26. . '

A proof of this theorem which follows the line of argunwn.._
outlined above is to be found in a paper by H.R. Bmha?]_..‘.
in the Annals of Mathematics (2), Vol. 23 (1921), pp. 144-68.

CHAPTER III

COMPLEXES AND MANIFOLDS OF n DIMENSIONS

Fundamental Definitions

1. In a Euclidean three-space, four non-coplanar points
together with the one- and two-dimensional simplexes (§ 1,
Chap.I and § 1, Chap. II) of which they are vertices constitute
the boundary of a finite region, called a three-dimensional sim-
plex or tetraledral region, of which the four given points are
called the wverfices. The points of the boundary are not
regarded as points of the simplex.

A set of n-1 points, not all in the same (n —1) space,
together with the one-, two-, ..., (# —1)-dimensional sim-
plexes of which they are vertices constitute the houndary of
a finite region in the n-space containing the n--1 points.
This region is called an n-déimensional simplex and the -1
given points are called its vertices. The points of the boun-
dary are not regarded as points 6f the simplex.

Consider any set of objects in (1-1) correspondence with the
points of an n-dimensional simplex (»>0) and its boundary.
The objects corresponding to the points of the simplex con-
stitute what is called an n-dimensional cell or n-cell, and those
corresponding to the boundary of the simplex what is called
the boundary of the cell.

The remarks of § 2, Chap. I are now to be applied without
change to the n-dimensional case.

2. An n-dimensional complex is defined by the following
recursive statements:

An n-dimensional complex C, consists of an (n —1)-dimen-
sional complex C,—_; together with a number, «,, of n-cells
whose boundaries are circuits of Cy,—;, such that no n-cell has

a point in common with another n-cell or with C,_; and such
76
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the 1-cell o} must be on the common boundary of the two
parts, namely K;, hence on U;. But this would contradict
the definition of U, as a linear graph containing none of the
l-cells a; j=1,2,.--, oy —1). Consequently U has the
property stated above.

64. The result of the last section may be stated in the
following form: Any closed manifold M. can be set into con-
tinuous correspondence with the points of a convex polygon
of 2(ay+ R, —2) edges in a Euclidean planc in such a way
that (1) each interior point of the polygon corresponds to
and is the correspondent of one point of the manifold; (2) each
. interior point of an edge of the polygon determines an interior
point of another edge such that thesc two points of the
polygon correspond to one point of the manifold, and this
point of the manifold correspends only to these two points
of the polygon; (3) each vertex of the polygon determines
a set of vertices of the polygon all of which correspond to
a single point of the manifold, and this point of the manifold
corresponds to these vertices and these only.

65. By a series of transformations on this polygon which
involve cutting it by 1-cells running from one vertex to an-
other and piccing it together along corresponding cdges, it
can be changed into a polygon of 2 (12, —1) sides all of whose
vertices correspond to a single O-cell of M,. This polygon
in turn can be transformed into one of three normal forms.
If the polygon reduces to the first of these forms the manifold
is a sphere with p handles; if the polygon takes the second
form, the manifold is a one-sided manifold of the first kind:
and if the polygon takes the third form, the manifold is
a one-sided smanifold of the second kind. Thus, every closed
manifold A%, is of one of the three types described in §§ 25
and 26. ‘

A proof of this theorem which follows the line of argument
outlined above is to be found in a paper by H. R. Brahana
in the Annals of Mathematics (2), Vol. 23 (1921), pp. 144-68.

CHAPTER III

COMPLEXES AND MANIFOLDS OF s DIMENSIONS

Fundamental Definitions

1. In a Euclidean three-space, four non-coplanar points
together with the one- and two-dimensional simplexes (§ 1,
Chap.I and § 1, Chap. II) of which they are vertices constitute
the boundary of a finite region, called a three-dimensional sim-
plex or tetrahedral region, of which the four given points are
called the wvertices. The points of the boundary are not
regarded as points of the simplex.

A set of n+41 points, not all in the same (n—1) space,
together with the one-, two-, ..., (» — 1)-dimensional sim-
plexes of which they are vertices constitute the houndary of
a finite region in the n-space containing the n--1 po‘int.q.
This region is called an n-dimensional simplex and the n - 1
given points are called its vertices. The points of the boun-
dary are not regarded as points of the simplex.

Consider any set of objeets in (1-1) correspondence with the
points of an n-dimensional simplex (z >0) and its boundary.
The objects corresponding to the points of the simplex C(I;I-
stitute what is called an n-dimensional cell or n-cell, and those
corresponding to the boundary of the simplex what is called
the boundary of the cell.

The remarks of § 2, Chap. I are now to be applied without
change to the n-dimensional case.

2. An n-dimensional complex is defined by the following
recursive statements:
lAn n-dimensional complex C, consists of an (n —1)-dimen-
sional complex C,—; together with a number, «,, of n-cells
whose boundaries are circuits of Ch—1, such that no n-cell has

A point in common with another n-cell or with C.-1 and such
76
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that each (n — 1)-cell of Cp—y is on the boundary of at least
one n-cell. The order relations of the points of the boundary
of each n-cell coincide with the order relations among these
points regarded as belonging to the (» — 1)-dimensional cir-
cuit.* The (n —k)-cells k=1, 2,..., n) on the boundary
of an n-cell of C, are said to be incident with it and it is
said to be incident with them.

An n-dimensional circuit or n-circuit or generalized n-dimen-
sional polyhedron is an n-dimensional complex C, such that
(1) each (n —1)-cell of C, is incident with an even number
of n-cells and (2) no subset of the cells which constitute C,
satisfies (1).

The definition of komeomorplhism and the remarks in § 3,
Chap.II generalize directly to » dimensions. In particular, any
theorem about an n-dimensional complex which remains valid if
the complex is subjected to any (1-1) continuous transformation
is « theorem of Analysis Situs.

An arbitrary subset of the cells of an n-dimensional com-
plex is sometimes referred to as a generalized n-dimensional
complex, provided ‘it contains at least one n-cell.

3. The definition of a singular or non-singular generalized
complex Cy on a complex C, is a direct generalization of that
given in § 33, Chap. II. It is obtained from the definition in
Chap.II by substituting Cj for C’, C, for C, and making corre-
sponding substitutions wherever the dimensionality of cells or
complexes is mentioned. The number /& may be greater than,

equal to, or less than n.
It is important to notice that in the fundamental definitions

* This #tatement can also be put in the following form: Suppose that an
i-cell af appears on the boundaries of two (i + k)-cells, a{** and a3t*. Then
a'**and ait*and their boundaries are, by definition, in (1-1) correspondences
T, and T, with two (i 4 k)-dimensional simplexes, b and ¢ and their boun-
daries. In the correspondence T a corresponds to an i-dimensional cell b
of the boundary of b while in the correspondence T, it corresponds to zn
i-dimensional cell ¢ of the boundary of ¢. The resultant of the corre-
spondences effected by Ti "and T, on ' and a' respectively is a corre-
spondence in which b corresponds to ¢!, This correspondence must be
conlinuous.

18 ANALYSIS SITUS. {Chap, T

in the two sections above all the cells and the circuits boun-
ding them are non-singular. This insures that the represen-
tation by matrices given below shall be unique. It does not,
however, exclude the possibility of extending the use of the
matrices to cases where, as in § 32, Chap. II, the cells have
singular boundaries. But in proving our general theorems
we stick to the case of non-singular cells with non-singular
boundaries.
Matrices of Incidence

4. Let ap(k = 0,1, ..., n) denote the number of k-cells
in a complex C,. The k-cells themselves may be denoted by
v, ak, ..., a{;}..l The incidence relations between the (& —1)-
cells and the Z-cells are represented by a matrix

Kl —
H?]{,-H = Il hk=1,2,...,n)
in which 5§, = 1 if ¢}~ is incident with af and 4 == 0 if a}
is not incident with aJ’ The matrix I7, has e«, , rows and
;. columns.

An n-dimensional complex is completely described by the

set of matrices,
m, m,, ... I,

for, as can be shown by an obvibus argument (cf. § 6, Chap. II)
any two complexes having the same set of matrices are in
(1-1) continuous correspondence.

The elements of the matrices are combined as integers
reduced modulo 2, just as in Chap. I. The ranks of the matrices
are denoted by e, ¢., - - -, 0. respectively.

By the gencral theory of such matrices, there exists for
each I a pair of square matrices Ax—y, D, of ar—1 and a;
rows respectively, each having its determinant equal to 1,
such that

Ay I By = IIY,

where I is a matrix of ax_; rows and ap columns in which
the first o« elements of the main diagonal are unity and all
the rest of the elements are zero. Thus the theory of the
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n-dimensional complex will involve the matrices /7, A, B,
Ili*y (i=1,2,.. 1),

5. Special cases to illustrate the incidence matrices aye
easily constructed. For example the matrices for a compley
obtained by subdividing a projective 3-space into cells arc
given in Chap. IX, Vol. II of the Veblen and Young Projective
Geometry. The following definition gives another example,

By an n-dimensional sphere or a simple closed manifold of

1 dimensions is meant the set of points on a complex whose
matrices of incidence are

e g N 1},
II,._Il,_..._II,,_“l e

The n-dimensional sphere is easily seen to be homeomorphie
with the boundary of an (n 4 1)-cell. Since it has two 0-cells.
two 1-cells, ..., two n-cells, its characteristic,

e (=1 Cn,

is 0 if n is odd and 2 if n is even.

6. Any set of the k-cells, af, o, ..., a{;k, and also the
k-dimensional complex consisting of a set of L-cells and their
boundaries, may be denoted by a symbol (z,, 2, ++ -+, za), in
which z; = 1 if a¥ is in the set and z; = 0 if ¢/*is not i
the set.

These symbols can be added (mod. 2) by precisely the rule
given in §§ 14 and 15, Chap. I, for the 0- and 1-dimensional
cases, Corresponding to this we have a rule for the addition
of two -dimensional complexes consisting cach of a set of
I-cells and their boundaries. The sum, modulo 2, of two »-
dimensfonal complexes C, and C each of which is a sub-
- complex of a given.complex C,, is the complex determined
by the set of all k-cells in C, or C but not in both ¢, and
Cy; it is denoted by C;+ C. (mod.2). It has the obvious
property that if C, and C,’ are n-circunits, C -+ C,’ (mod. 2)
is also an n-circuit or a set of n-circnits.

1. The boundary of a k-dimensional complex C, is the (k—1)-
dimensional complex consisting of the (k—1)-cells of the

g— o, +ag— ..
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complex C,, which are incident each with an odd number of
k-cells of Ck, and the boundaries of these (k —1)-cells, Thus
a k-dimensional complex is a set of k-circuits if and only if
it has no boundary. .

By precisely the same reasoning as that used in the O-
and 1-dimensional cases (cf. § 28, Chap. IT) the boundary
of a Cr. is a (—1)-dimensional circuit or a set of (k —1)-
dimensional circuits having at most a (k—2)-dimensional
complex in common. From this reasoning it also follows
that every bounding (k— 1)-circuit is a sum (mod. 2) of a set
of (e —1)-circuits which bound k-cells, i.e., which are
represented by columns of ZI.. Hence all bounding (k—1)-
circuits are linearly expressible in terms of those corre-
sponding to a linearly independent set of g columns of II,
where g is the rank of /7.

8. Asin the 0-, 1-, and 2-dimensional cases (cf. § 24, Chap. I),

o y k
VAT o A R o A
is 1 or 0 according as there are an odd or an even number

of Z-cells of the set (xy, xs, - - -, 2e,) incident with the (k—1)-
cell a¥~1. Hence if

| e ‘ v |

) Hy- | = || :
|

]

Lz || e ||

(hy Y2y + * +» Y,_ ) represents the boundary of (z,, za, - -+, Ze,)-
As a corollary it follows that the k-circuits are the solutions
of the equations

O
(i, e, =0 (=1,2.--, &).
) J;l 7 !

Since the columns of the matrix II; represent (k—1)-circuits
they represent solutions of the equations




48 8—9] n-DIMENSIONAL COMPLEXES. . 81
Op-1 .

(Ilk—l) Z ”,i_c,'_l xj =0 ('L == 1, 2, sy “k—z)
J=1

and hence

) Mgy Hp = 0 (k=1,2,.-:,n).

The Connectivities R,

9. If o denotes the rank of I7; (mod. 2) the number of
solutions of the linear homogeneous equations (I7) in a complete
set is ax—or (cf. § 25, Chap. I). According to §8, the
columns of Il are solutions of the equations () and
hence griy of these columns can enter in a complete set
of solutions of (My).

Let Rx—1 be the smallest number of non-bounding k-circuits
which it is necessary to adjoin to a set of g1 linearly
independent bounding k-circuits in order to have a set of
J-circuits on which all others are linearly dependent.

Then for an n-dimensional complex €, the number of
solutions of (Hy) in a complete set is gxs1+ H—1 1f 0 << I <n.
Hence

wp—or = Q1+ I—1 (0l n)
and

Uy —0n — R,—1.
By § 20, Chap. 1

cy— 0 = L.

Hence we have the series of equations

R —1=e& —o¢ —1,

R —1 =0 —0 —0,

R, —1 =0 —0. —0s,
SO '

Ry —1 = op—1—0n—1—0n,

R, —1 = oo, —on.

On multiplying these cquations alternately by -+1 and —1
and adding we obtain

@ Feve =14 Z0@m—n,
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In case the complex C, is an n-circuit, By =1, R =2
and (2) becomes

n—1

® 2 Da=1+1p4 2 (1R,

This is a generalization of Euler’s formula (§ 30, Chap. II)
to n dimensions. If n is even it reduces to

(4) g —atog— .. +e, = 3—R+Ry— ... —R,_..

In case (), is a manifold and » is odd, (3) when combined
with a result obtained in § 29 below reduces to

(5) ao_al+a!—"'_all:O-

10. The number ey—a;+ ... 4 (—1)* e, is called the
characteristic of the complex C,. The number B; (: = 0,1, 2,
.-+, n) is called the connectivity of the ith order.

It will presently be proved that the connectivity numbers
Roy By, ---, B, are Analysis Situs invariants. From this it
will follow that the characteristic is also an invariant.

Reduction of the Matrices H, to Normal Form

11. Let us now consider the matrices Ax_; and By by
which Hy. is reduced to its normal form, i.e., the square
matrices of determinant 1 such that

1) Al - Hy- B = Hyp

where the first ox elements of the main diagonal of H; are 1
and all the other elements of Hy are 0. The existence of
these matrices follows from the general theory of matrices
(cf. §49, Chap. I) and we shall show that they can be so
chosen as to satisfy certain additional conditions analogous
to those found in §§ 30-32, Chap. 1.

Writing (1) in the form

2) I By = Ay - 11
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it follows from § 8 that each of the first o columns of p,
represents a k-dimensional complex bounded by the (lc-p
dimensional complex represented by the corresponding colun
of A;—;. Each of the remaining ax—ox columns of By re.
presents a k-dimensional complex which has no boundary,
i. e, a k-dimensional circuit or set of circuits.

Since B is a square matrix of a; rows whose determinan
is 1, every symbol of the form (2, 2s,::-, %) in Wwhic
the elements are reduced modulo 2 is expressible as a line;:
combination of the columns of Bi. Hence the symbol f
any k-dimensional complex determined by Zk-cells of C i
cxpressible in terms of the columns of Dj. Moreover sine:
the last e, — gr columns of By are linearly independent an
the symbols for all. k-circuits are linearly dependent o
a,— o of them, the last e,— g columns of I are a compiet-
set of k-circuits or sets of k-circuits.

Thus the reduction of the incidence matrices to norm!
form affords an explicit method of determining the bounding
and non-bounding sets of circuits of all dimensionalities.

12. The equation (2) remains valid if we add a giver
column of Bj: to another column of B and perform the
corresponding operation on the columns of A—1 - . Hener
in particular we may replace any one of the last er—¢.
columns of Bi by any linear combination of these colum::
(hence by any symbol for a set of k-circuits) without mod:
fying the right member of (2) since all the last e, — ¢ colum:s
of Aj_1- Hy are composed of zeros.

13. Suppose we change By—; by replacing its last ¢x columns
by the first o columns of {dx—;, and replacing the precedin:
ey — or—1 — @1 columns Dby the symbols for a set ¢
(Jc— 1)-circuits no combination of which bounds, the existenc:
of which follows from §9. By §$12 such a change wit
leave (2) still valid; hence to show that it is permissible i’

is sufficient to prove that the new I, has determinant .
e now have the columns of the new Bj;—; in three blocks.
of which the first is the same as for the old Dr—y. Th»

symbol for any (k— 1)-dimensional complex is a sum
(154
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columns of this first block and a symbol for a set of (fe—1)-
circuits, as follows from the structure of the original By_,.
Now the columns of the last two blocks are linearly in-
dependent (mod. 2) as follows from their choice, and since
they number er_;—gi— it follows from § 9 that the symbol
for any set of (k—1)-circuits is a sum of these columns.
Thus the symbol for any (k—1)-dimensional complex is
a sum of columns of the new Bix_;. Consequently the de-
terminant of the new Bi—; must be 1 (mod. 2), and the
change proposed above can be made. Let this be done for
all values of I from 1 to n. The last g columns of By,
then represent bounding sets of (k —1)-circuits and the Ry._;—1
columns preceding these represent non-bounding (i —1)-circuits.
Since all rows of I after the erxth contain only zeros the last
«;—1— @ columns of Ay, are arbitrary subject to the condition
that the determinant of A,—; shall be 1. Hence these columns
of 4x—1 may be taken as identical with the first or—; -+ Rp_;—1
columns of B3j._;. Let this be done for all values of & from 1 to n.
14. By this process it is brought abont that the matrices A;.
are identical with the matrices By except for a permutation
of columns. The columns of each matrix B, fall into three
blocks. The first ¢ columns represent single l-dimensional
complexes bounded by sets’ of (; —1)-circuits. Each of the
next Zix— 1 columns represents a single non-bounding %-circuit.
The last gr:1 columns rvepresent bounding sets of k-circuits.

Congruences and Homologies, Modulo 2
1.5. The definition of congruences and homologies modulo 2
which was made in §§ 37, 38, Chap. II, applies without change
to the n-dimensional case. Thus

48] Ci = Cx— (mod. 2)
means that Cp_; is the boundary of Cj; and with reference

to a complex C,
(2) k—1~0 (mod. 2)

means that there exists a complex € on C, which satisfies
the congruence (1). The remarks about linear combination -
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of congruences and complexes made in Chap. II apply her
without change.

All the relations stated above by means of the matrices n,
can also be expressed in terms of congruences and homologics,
For if we let aj" G=1,2-.,ari;k=1,2,..., n) represen
the cell aj’r and its boundary, instead of the cell alone as I
the notation heretofore used, we have the congruences*

o, —1

2 7% i~ (mod. 2)

in which 7j; are the elements of the matrix H,. Thes:
congruences, which state the incidence relations of the com-
plex Cy, are called the fundamental congruences (mod. 2).

16. If Oy is the complex represented by (x;, 3, - - -, Ze,) and
Ci—1 the set of (k—1)-circuits represented by (y,, vs, ---, Y )
the congruence (1) is equivalent to the matrix equation (I
of § 8. The result of reducing the incidence matrices to
normal form as summarized in § 14 therefore amounts to the
statement that the fundamental congrucnces are equivalent
to the following set of congruences and homologies

(3) ak

Ki = ;"
0 — R, 10,1
]{I; - Ck-—l'
Cr =0
. " (mod. 2)
4)
=1 —
.(’/c g =0
cl ~ 0
lek:'g“"_l ~ 0.
* We are here making the obvious convention that yof-! = ai-' if

7 =1and pa~' = 0 if » = 0.
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The further study of these congruences and homologies will
involve proving (1) that the Z-cireuits C}, C, - ., CF** are
not homologous to zero (mod. 2) and (2) that every k-circuit
on C, is homologous to a combination of them. With regard
to the statement (1) the discussion up to the present shows
that no combination of these /-circuits bounds any complex
composed of cells of (. And with regard to (2) we know
that every k-circuit composed of cells of (!, is homologous
to a combination of Ck, Cf, - .-, (?,f'*_‘. To bring complexes
on C, which are not composed of cells of C, into consideration
it will be necessary to go beyond the combinatorial properties
of C, and make use of the geometrical properties of the cells.

Theory of the n-Cell

17. The combinatorial properties of a complex ¢, which
lave been discussed above have an elementary application
in the theory of the subdivision of a Euclidean space by
generalized polyhedra. A system of (n— 1)-spaces in an
n-space subdivide the n-space into a set of n-dimensional
convex regions. They intersect in a number of (n — 2)-spaces
which subdivide each (n— 1)-space into a set of (1 —1)-di-
mensional convex regions whicli bound the n-dimensional
convex regions. The (n—2)-spaces have (n—3)-spaces in
common which divide the (n—2)-spaces into convex regions,
and so on. Thus the set of (n—1)-spaces defines a sub-
division of the mn-space into a set of cells which can be
treated by the methods described above. Any k-circuit formed
from the k-dimensional convex regions is a gencralized poly-
hedron.  Any such ZL-circuit bounds a (k- 1)-dimensional
complex composed of convex (k- 1)-cells.

A treatment of the theory of polyhedra from this point of
view by the author is to be found in the Transactions of
the American Math. Soc., Vol. 14 (1913), p. 65. (See also
the correction Vol. 15, p. 506.) Earlier and later treatments
without the machinery used here are to be found in the
apers by N. J. Lennes, Am. Journ. of Math., Vol. 33 (1911),
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p- 37, and Lilly Hahn, Monatshefte fiir Math. u. Phys., Vol. 2;
(1914), p. 303. Since an m-cell is homeomorphic with
Euclidean space all this is the most elementary part of the
theory of the n-cell.

18. As in § 8, Chap. II, we can define a system of curvey
in any n-cell a?(¢ = 1,2, ..., e,) which have the properties
of the system of straight lines interior to a simplex in a Euclidean
space. It is only necessary to set up a (1-1) continupus
correspondence I7; between the interior and boundary of the
n-cell and the interior and boundary of a simplex and to
regard as straiglt those curves in the n-cell which are images
of straight lines in the simplex.

Under these definitions any two points of an n-cell or its
boundary determine a straight 1-cell joining them; any three
non-collinear points determine a straight 2-cell bounded by
them and the three straight 1-cells which they determine by
pairs; in general, any ¢4 1 points (z =1, 2, ..., n) determine
a straight s-dimensional simplex bounded by the straight ;
dimensional simplexes (j = 0, 1, 2, ..., 4) determined by
subsets of the ¢. points.

19. From the separation theorems on Euclidean polyhedra
(§ 17) there follow at once the following important corollaries,
which are all to be understood as referring to complexes
composed of “straight” cells:

If S,—» is an (n —2)-dimensional sphere on the boundary
of an n-cell a* the boundary of " consists of S,—» and
two (n—1)-cells ¢! and a;~'. Any (»—1)-cell a;"' con-
tained in «* and bounded by &,_; separates a* into two
n-cells, onc bounded by a?=1, §,_,, and «;~! and the other
bound&l by a3, S,_,, and a;~!'. There are an infinity of
non-singular (n—1)-cells contained in a* and bounded by
Si—2.

If two n-cells a?, a2 are incident with an (n—1)-cell a*~'
and have no common point they and a*~' constitute an
n-cell *. If their boundaries have nothing in common except
! and its boundary the boundary of 3 is the sum (mod. 2)
of their boundaries.
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This proposition i8 a special case of the following theorem:
If a set of m-cells, (n-+1)-cells, ..., (n+ p)-cells are all
incident with an (n—1)-cell a*»~! and are such that the
incidence relations between the (n--4)-cells ¢ = 0, 1, 2, ...,
p—1) and the (n-7-1) cells are the same as those between
the i-cells and (- 1)-cells of a p-dimensional sphere, the set
of all points on a*~! and the cells incident with it constitute
an (n-+ p)-cell.

The set of all cells of a complex €, which are incident
with an ¢-cell af and of higher dimensionality than a? constitute,
with «f itself, what is called a star of cells. If the incidence
relations among the cells of a star satisfy the conditions
described in the paragraph above the star is said to be semply
connected. If a'*? is one cell of a star, a™t? and all cells of the
star of dimensionality greater than ¢- p which are incident
with a**P constitute a star of cells.

These theorems all remain valid if the restriction to straight
cells is dropped. In this more general form they depend on
the generalizations to n dimensions of the Jordan and Schoen-
flies theorems quoted in § 10, Chap. II. The generalized
Jordan theorem has been proved by L. E. J. Brouwer, Math.
Ann,, Vol. 71 (1911), p. 37 but the generalized Schoenflics
theorem is still unproved. As in the two-dimensional case,
we shall get along with the restricted form of these theorems.

Regular Complexes

20. Just as in Chap. IT it was found convenient to decom-
pose a complex into generalized triangles, here it will be
found convenient to consider complexcs whose n-cells are
generalized simplexes. A complex is said to be regular if
(1) each n-cell aj is in such a (1-1) continuous correspondence
with a sinmiplex that each O-cell incident with aj corresponds
to a vertex of the simplex, each 1-cell incident with a} to an
edge of the simplex and in general each é-cell G =1, 2, ...,
n-—1) incident with a} corresponds to an i-dimensional simplex
of the boundary of the simplex and (2) no set of i+ 1 O-cells
are the vertices of more than one i-cell of the complex.

[Chap. IIT -
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It has been shown in Chap. IT how to decompose any 2-dime.
sional complex C; into a regular complex C;. This process
will now be generalized as follows:

For convenience in phraseology, let a definition of straight.
ness be introduced for all the 2-cells of <, in the fashion of
§ 18. Then let a definition of straightness be introduced for
all the 3-cells, which definition may be entirely unrelated to
the onc used for the 2-cells. And in general let a definition
of straightness be introduced for each é-cell (¢ = 2,3, ...,
quite independently of that used for all other cells.

Let P! =daj(j=1,2,.-+, @) and let Pf be an arbitrary
point interior to the cell i (( = 1,2, ..., n; ) = 1,2, .-+, @),
The points Pf ((=0,1,2,..,n;,7=1,2,..., a) are th
vertices of C,. The 1-cells of C, are the straight I-cells
joining every point Pf(i =1,2,..., n; ; =1,2,-.., “Q ti
every vertex of C, on the boundary of aj. A 2-cell of C, ix
the set of points on all straight 1l-cells joining a point J;
(i=2,3,.-.,n;j=1,2,..., @) to the points of a 1-cel!
of C,, on the boundary of a}:. Each of these 2-cells is bounded
by just three 1-cells of (.

Continning this process step by step we obtain the 3-cellx.
4-cells, - - ., n-cells of (. A k-cell of (', is the set of points
on all straight 1-cells joining a point P} (( =k, k1. -+, m:
j=1,2...., «) to the points of a (k — 1)-cell of () on th
boundary of aj Each k-cell so defined is evidently bonnded
by k+1 (k—1)-cells.

The complex (, thus defined is called a regular subdivision
of C,. B

21. Xo two O-cells of C, are joined by more than one
1-cell. Hence any 1-cell of (', may e denoted by L% I/ (7 <)
In like manner no m O-cells (2 < m < n- 1) are vertices of
more than one (m —1)-cell of (’,. Hence any such cell may
be denoted by its vertices Py P ... I’!. These vertices are
by construction all on cells of C, of different dimensionality
}fence they may always be taken in such an order that

(LG e L8
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Incidentally it may be remarked here that on account of
the properties just referred to, C, may be described by means
of a matrix giving the incidence relations between its n-cells
and O-cells. Also, it can be set into (1-1) continuous corre-
spondence with a set of cells of a simplex in a Euclidean
space of a sufficiently high number of dimensions. For these
propositions, see the Annals of Mathematics, Vol. 14 (1913),
pp- 175-177. The correspondence with cells of a Euclidean
simplex can be used to introduce such a definition of distance
and straightness in C, that the straightness and distance of
any cell is in agreement with the straightness and distance
of any cell with which it is incident.

22. TLe relationship between the complexes (), and C, may
be stated as follows:

(1) Each n-cell of Cy, ai, is the sum (mod. 2) of all n-cells
P; Py -.. P! of C, having P! as a vertex.*

(n—1T+1) Each k-cell of C,, a¥, is the sum (mod. 2) of
all J-cells Py P; -.. Pf of C, which have P’ as a vertex
(the superscripts are all less than or equal to k).

(n+1) Each 0O-cell of (', a? is the 0-cell F 253

23. The values of Ry, Ry, ---, R, determined from C, are
the same as those determined from C,. In order to prove this,
consider any ¢-circuit K; of ), which is not simply a sub-
division of an i-circuit of (’,, and which thercfore contains at
least one of the points ™, m >¢{. We choose such a point
for which m has its maximum value. The 4-cells of X7 which
are incident with P are then incident with (; — I)-cells of
the boundary of the cell aj* of C,. These (i —1)-cells of
the boundary of aj* constitute one or more (; — 1)-circuits
Ki_; because the (i —1)-cells of K; which are incident with

*The sum (mod. 2) of a set of k-cells of a star will be understood to c;;l-
tain the cells of the star that are on the boundaries of the k-cells of the sum.
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P and with (i — 2)-cells of the boundary of a}" are incide:
each with an even number of i-cells of K;. Now by mathc.
matical induction we may assume the invariance of the con.
nectivity numbers for dimensions less than n, since we sha)
later establish it for the dimension n (§ 42). Hence K7,
bounds at least one i-dimensional complex O composed o
cells of C, on the boundary of a*. By its definition it aly
bounds a complex composed of i-cells of K; which are in
cident with P/, These two complexes constitute an 7-circui:
or set of i-circuits K;', which bounds the complex composet
of the (i 1)-cells of C, which are incident with P an
the z-cells of 7. If K7 is added (mod.2) to A; the resultine
set of i-circuits K; does not pass through P;". Repeating this
argument until there are no longer any vertices P;", m>1, of (,
on K, it follows that by adding bounding sets of circuits to #,
it can be converted into a set of ¢-circuits which does not pass
through any of the vertices P, m >4, of C,. Such a set of
i-circuits is simply a subdivision of a set of i-circuits of C,.

From this it follows that all ¢-circuits of €, are linearly
dependent on bounding scts of circuits and circuits coincident
with circuits of C,. Hence the value of I?; determined
C, is not greater than that dctermined by C,. It alw
cannot be less, for if so there would be a linear relatioy
among the i-cireuits ¢7 (p =1, 2, --., ;— 1) regarded o
circuits of (. But this would mean that therc was
complex XK1 composed of cells of C, and bounded by some
or all of the circuits C{. By an argument like that in the
paragraph above K;.; could be replaced by a complex K.
coincident with a complex composed of cells of C,. DBut the
existence of K7 would mean a lincar relation among the
i-circnits €7 regarded as i-civeuits of C,. Hence the value
of R; determined by (), is not less than that determined
by C,.

Manifolds

24. By a neighborhood of any i-cell a' on a complex C), Is
meant any set S of non-singular cells on ¢, such that any
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set of points of €, having a limit point on af contains points
on the cells of S.

If C, is an n-circuit such that every star of its cells is
simply connected, the set of points on C, is called a closed
n-dimensional manifold. It is easily proved that any regular
subdivision of such a (), satisfies the same conditions. This
definition implies that every point of a manifold has a neigh-
borhood which is an n-cell. It has not been proved, how-
ever, that if a point set satisfies the above conditions for
one subdivision into cells, it satisfies them for all other sub-
divisions into cells.

Dual Complexes

25. A complex C is said to be dual to a complex C, if
the incidence relations between the k-cells and (& —1)-cells
of Cn are the same as those between the (n — k)-cells and
(n—k+1)-cellsof (', for k1 =1,2,...,n. In case C, de-
fines a manifold, a complex C;; dual to C,, can be constructed by
first making a regular subdivision of C, into (}, then defining
as an n-cell of C, the set of all points on each star of cells of (),
having a vertex of C, as center; next defining as an (n —1)-
cell of C, the set of all points on each star of cells of
dimensionality » —1 and less which are incident with the
point P on a 1-cell of Cy, but are not incident with any P},
and so on, finally defining as the O-cells of ), the points I
on the n-cells of ().

This process is illustrated in Fig. 3, page 44 for the two-
dimensional case. In this figure the vertices of (4 are the
points P, the 1-cells of ¢ are made up of the pairs of
1-cells P} P?, P! I? of (i, and the 2-cells of (4 are the
triangle stars at the vertices of C,.

26. The construction for ), may be stated a little more
explicitly in terms of our notations (cf. § 22) as follows:

(1) Each O-cell of C, is the O-cell P/
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n—k

(n—k-+1) Each (n — k)-cell of Cy;, b7, is the sum (mod.?,
of all (n—FK)-cells PF PF™... P} of C, which have Pf u
a vertex.

(n—}-l) Each n-cell of Cy, bi, is the sum (mod. 2) of al
n-cells P} P}... PF of C, which have P as a vertex.

In order to make sure that this actually defines a complex
dual to C, it must be proved first that each of the statements
(1).-.(n+41) defines a cell and second that the set of cell:

has the properties required of a dual complex.

97. Consider first the statement (n-+1). The 0-cell 2 i
a vertex af of C,. Since we are dealing with a manifold,
a? and the set of all cells of (' incident with it form a simply
connected star, and the sct of points on this star form an
n-cell. This n-cell we have called U;.

No two of the n-cells b7 have a point in common becaus
no n-cell of €, is incident with more than one vertex of C,
(in the notation, I’ P}... P only one superscript is zero.
Moreover every point on a cell of (’, is on the interior or
boundary of one of the cells i because each n-cell of € i
incident with at least one vertex of (), (the superseript zer:
always appears once in the notation P pr...P)).

Next consider the statement (m — L -1). The point P}
on the k-cell af of C, and this I-cell contains a k-cel’
rop)...PF ot C. Since ¢, is a regular subdivision of
¢y, POP}...PF and the set of all cells of (', of dimen-
sionality -1 or greater which are incident with it form
a simpf;' connected star (8§ 19, 24); and the set of all poin®s
on the cells of the star forms a single cell which is the sum
{mod. 2) of the n-dimensional cells of the star. The n-dimen-
sional cells of the star are all n-cells of C, which can br
denoted by Py Py - .. PF P,"J'1 . Py’ in which the first &+
of the P’s are ﬁ‘{ed and the rest are variable. The mcldencv
relations among the cells of this star are by §§ 19, 24 thos
of an (n—J—1)-dimensional sphere. These incidence relations
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are however the same as those among the (n—k)-cells 13}"13’]‘“"1
.- Py described in the statement (z—% - 1) and the cells of
lower dimensionality with which they are incident. Hence the
sum, (mod.2) of the cells P PF™ ... P} described in the
statement (m — k1) is an (n — #)-cell. This (n — )-cell
we call ¥ 7%, It obviously has the point P, and this point
only, in common with ak.
28 Let us next find the incidence relations among the U's.

If af is incident with a,Jr there is a k-cell, Py Py .. P,, of
Ca contalned in af which is 1nc1dent with the (k4 1)-cell,

P° . PEPFT l, contained in af "', The cell 177" dual to
ai is the sum (mod. 2) of all the (n — k)-cells Pi P,-""H Ptk“
.- P for the given value of /. The cell bJ’.""'“1 dual to a%+1t
is the sum (mod. 2) of all the (n —k— 1)-cells P pf*?

.« Py for the given value of ;. Qince each of the (n —k—1)-

—1
is incident with an

cells of (, which enter into bJ
(n— k)-cell of C, contained in b} ™" it follows that b} is
incident w1th vy

Hence if af is 1nc1dent with af t, b7 7" is incident with b}
The converse proposition is proved in exactly the same
way. Hence af is incident with &} i if and only if b~ is

incident with b; ™ —k= 1

n—hk—

Duality of the Connectivities R,

29. Stating this result for the case ;1 = n—1, we have
that a?~! iy incident with a} if and only if b is incident
with 5. Hence the matrix of incidence relations between
the O-cells and 1-cells of the complex C. is the matrix 17,
obtained from the matrix 7, of the complex C, by inter-
changing rows and columns. In like manner it is seen that,
in gencral, the matrix of incidence relations between the
(n—k—1)-cells and (rn—%)-cells of the complex C, is the
transposed matrix J/y;, of the matrix I ., of the complex C,.
Hence the matrices of incidence Iy, I1,, ..., IT, of (', are
the matrices 11, Iy_y, ..., I1{ of C,.
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The ranks of these matrices are @ny @n—1, - + , @3 TESPECtive]y ® e -
Moreover the numbers of 0-cells, 1-cells, - . . n-cells of C! a;el
%ny On—1,+ -y &, @ respectively. Hence by the foi‘mula f(;r
the 7-dimensional eonnectivity Ry, it follows that the 1-. ..
(n —1)-dimensional connectivities of (, are R,_, , ].'.
respectively. B
It was shown in § 23 that the connectivity R; of a con.
plex C,, obtained by a regular subdivision ‘of ¢}, is the same
as that of C,. But by comparing § 22 with § 26 it is sec
that C, is a regular subdivision both of C, and of C,. Henc;l

For n =0, 1, 2, a generalized manifold is the same as a
manifold. But for n 2> 3 it includes sets of points which are
not manifolds in the narrow sense.

32. To bring this out let us consider the following example
siven in the article on Analysis Situs by Dehn and Heegaard
in the Encyclopadie. Let S; be a Euclidean space of four
dimensions, a® a point in S, S, a three-space in §; but not
on a% and M; an arbitrary two-dimensional manifold (e.g.,
an anchor ring) in Sy. Let 1. be decomposed into O-cells,

the connectivity ; of C,, is the same as that of C,. Hence
Ry, Rys, ---, R, are the same as Ry, Ry, ---, R,

respectively. That is

Bup o = yi (’C:1,2,---,7Z—1).

It should be noted that this duality relation does not apply
to %y and BR,. In the case of a manifold, which we are

considering here, B, = 1 and R, = 2.

30. .An important corollary of this result is that for
a manifold of an odd number of dimensions the characteristic

is zero. For the equations

h=1
o=+ o f(—1) @, = 1+ (—1)y+ 2 (=1 (B:—1)
and o
Rizjl,u-i (1::1,2,---,?.".‘—1'

. give

”O_al+a2_ e —ay, == (),

as already noted in § 9.

Generalized Manifolds

31. The definition of a manifold in § 24 can be generalized as
follows: A generalized manifold of n dimension?s is the set (sf
all I?oint.s on an n-circuit C, such that if 4’ is any eell of 4
t.}.l(: incidenee relations among the (¢)-cells, (s’+1~)-cclls
(¢ +k)-cells (where 7+ Jc — n) ineident with ai-1 are thc,.q:unw
as the incidence relations among the O-cells, 1-cells, -.-, k-cells
of a complex defining a generalized manifold of J- ilinu:nsir.ms”
a generalized manifold of zero dimensions is a O-circuit.

1-cells and 2-cells constituting a two-dimensional complex, B..
The segment joining any O-cell of B, to a° is a 1-cell, the
points on the segments joining the points of a 1-cell of B,
to a® constitute a 2-cell, and the points on the segments
joining the points of a 2-cell of B, to a° constitute a 3-cell.
The complex (s composed of all the 1-cells, 2-cells and 3-cells

formed by this process, together with a° and the cells of B,,
is such that the boundary of an arbitrarily small neighbor-
hood of @ is of the same structure as D,. Hence the set
of points on each such boundary is a surface like M, (e.g.,
an anchor ring). ,

It is obvious that a generalized three-dimensional manifold
can be constructed which has any number of points with
neighborhoods which are not spherical. A generalized four-
dimensional manifold can have both O-cells and 1-cells whose
neighborhoods are not simply connected, and so on.

33. It was shown in Chap. II that any 2-circuit can be
regarded as a singular manifold. The generalization of
this theorem is that any m-circuit is a singular (cf. § 3)
generalized manifold. We shall repeat the process of § 34,
Chap. II, for the three-dimensional case, because one new
point enters, but shall leave the formal generalization to
the reader.

Let C; be an arbitrary 3-circuit. Each of its 2-cells a? is
incident with an even number 2n; of 3-cells. These may be
grouped in n; pairs of 3-cells associated with «f, and the
method used in § 34, Chap. II, may be used to obtain a
3-circuit C; whose cells coincide with those of Cy and which
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is such that each of its 2-cells is incident with two and
only two of its 3-cells.

The incidence relations between the 2-cells and 3-cells of
% which are incident with a 1-cell a} of Cy arc the same
as those of a linear graph in which each O-cell is incident
with just two 1-cells. Since such a linear graph is a set
of 1-circuits having no points in common, the 2-cells and
3-cells incident with aj fall into a number, =, of groups
wssociated with aj such that the incidence relations among
the cells of a group are those of a 1-circuit. With the aid
of these groups, by the method of § 34, Chap.II, a com-
plex Cy' is defined whose cells coincide with those of Cy and
which is such that all of its cells of dimensionality greater
than ¢ which are incident with any one of its é-cells (¢ = 2, 1)
are related among themselves by a set of incidence relations
identical with those of a (2 —¢)-circuit.

The incidence relations between the 1-cells, 2-cells and
3-cells incident with a O-cell a) of C;' now satisfy the same
conditions as those between the O-cells, 1-cells and 2-cells
of a number, n;, of two-dimensional manifolds which have
no points in common, Hence they fall into 2 groups associated
with «f such that the incidence relations among the 1-cells,
9-cells and 3-cells of a group arc the same as those among
the O-cells, 1-cells and 2-cells of a two-dimensional manifold.
Hence a complex €3 can be defined whose cells coincide
with those of (4 and which satisties the definition of a
eeneralized manifold.

C3” will be a manifold in the narow sense only in the
case where each of the groups associated with each vertex
@ has the incidence relations of the cells of a sphere.

34. Since the boundary of any complex consists of one or
more circuits, it consists of one or more generalized manifolds

any or all of which may be singular.

Bounding and Non-bounding Sets of k-Circuits

35. Let us now take up the problem: Given a set of

Jk-circuits Cp on a complex C,, to determine whether or nol
7
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there exists a (k- 1)-dimensional complex, singular or Im;f
on Cn which is bounded by Cr, This is the problem solveti
in Chap. IT (cf. § 35) for the case where # — 2 and J: — 1
As the problem is now formulated % may be less than equai
to, or greater than », and Cj may have singularities’of any
degree of complexity compatible with the- definition in §3
The solution of the problem in the simplest case is contai‘ned.
in !;hc following obvious theorem which is a direct cenerali-
zation of that given in § 36, Chayp. IT: Any sphere of It f?.f?nc:«m-'m;w
on an n-cell a* is the boundary of a (- 1)-cell on a”. L'i‘ll;‘
(l+1)-cell can be constructed by joining an arbitrary po.i.nt.
Py ?f a” to all the points of the k-dimensional spflerc b\;
su:mg,:ht 1-cells or, in case of points of the sphere which
comc-ldc with P, by singular 1-cells coincident with P. The
solum‘{ijn of our problem for the general case which we simll
?:\ZG’eé]e]t); E entirely parallel to that carried out in §§ 39
36. Let A; be .an {-dimensional complex on ,. Let C, be
a regular sub-division of C,. Let a definition of dista"nce
and straightness be introduced relative to €, and let all
references to distance and straightness in the rest of this
argument be understood to refer to this definition. Let (7, be 1
regular subdivision of (,. By simple continuity considerations it
can be proved that K; can be’ regularly subdivided into a
complex K; such that for each j-cell of K; there is a star
I.)f cells of €, to which it is interior. corre.'-yimzdmc‘ﬁ ‘41
ts; now defined as a correspondence between the verticéq (;f
‘h.- and those of €, by which each vertex of A whici] is
interior to a star of cells of C, having a vertex of ¢, as
center corresponds to that vertex of €y, and by which {;ncI.:
vertex of K; which is on the boundary of two or more stars
of cells of (), having vertices of (), as centers correspontlln
to one of these vertices of C,. ‘
Since every point of €, is on or on the boundary of some
star of cells of €}, with center at a vertex of Cj';:, a corre-
spon_flence A determines a unique vertex of ¢, for each vertek
of Ki. Moreover since any cell of K; is on a star of cells

S ———r
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of C, its vertices correspond to vertices of a single cell of C,.
Hence the correspondence A makes each cell of K; correspond
to a cell of C, of the same or lower dimensionality.

37. Let the r-cells of C, be denoted by ¢j(r=0,1,2,:..,n;
j=1,2,..., &) and those of K; by k[ (r =0,1,2, ..., i
j=1,2,--.,8). Each O-cell I of K; can be joined to
the O-cell of €, to which it corresponds under the corre-
spondence 4 by a straight 1-cell Jj; or, if &} coincides with the
point to which it corresponds, by a singular 1-cell I; coin-
ciding with %]. Similarly, for each 1-cell &} of K;, a 2-cell
1? can be constructed by joining each point of Ej to a point
of the corresponding cell of C, by a 1-cell which is either
straight or coincident with a point. By a similar construction
there is determined for every cell &} of K; a cell 5" com-
posed of 1-cells joining points of % to points of the cell
of (!, to which %j corresponds under the correspondence ..
The (-} 1)-dimensional complex composed of the cells b}:“
and their boundaries is denoted by Biyi. It is such that
the incidence relations of ;™" and b, are the same as thosc
of &, and I . .

38. If K;is a set of i-circuits, all i-cells bj(j =1, 2, -- -, i)
must cancel out when the boundaries of the (7 4 1)-cells bfrl
(j=1,2,..., 8) are added together (mod. 2). Hence the
boundary of By consists either of X; alone or of K; and
a set of {-circuits X7 composed of cells of ¢,,. That is to say

(1) Biy; = Ki+K! (mod. 2)
and

K;~K! (mod.2)

where K’{_ is either zero or a set of i-circnits composed of
cells of C,. :

There is no difficulty in seeing that any é-circuit is homo-
logous (mod. 2) to any regular sub-division of itself. This
may be proved by means of a singular (¢4 1)-dimensional
complex which contains, besides the cells of the given ¢-circuit
and those of its subdivision, one (k- 1)-cell incident with
each k-cell of the é-circuit, 1 =10,1,....7. Hence

L]
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Kt ~ Kt
and therefore
2 K;~ Kj.

It is obvious that K/ = 0 if 2>>n. Hence

3) Kutr~0 (mod. 2)
whenever > 0.

39. From the homology (2) it follows that K;~ 0 if and
only if Ki~0. By § 7, Ki bounds a complex composed of
cells of C, if and only if it is represented by a symbol
(z1, 22, -+ -, ) Which is linearly dependent on the columns
of the matrix I, for C,. We shall now prove that if
K!~~0, K/ bounds a complex composed of cells of (),, from
which result it obviously follows that K;~0 if and only if
the symbol (zy, 2, - - -, ze) for K is linearly dependent on
the columns of Jf;4,.

40. Given that K/~ 0 and that K/ is composed of cells
of Cy, let K.y be a bounded complex, and let us subdivide
Kiy1 as above, preparatory to setting up a correspondence A.
We denote the subdivision by K/, and the corresponding
subdivision of K/ by K;’. Then we will have

() Kity = K7 (mod. 2).

Let us construct a correspondence 4 for K/}, exactly as
in § 36, and by means of it construct a complex B; ;-2 analogous
to the complex Bity of § 37. When the boundaries of the
(i+2)-cells of Biyr are added to Ky (mod. 2), all the
(i+1)-cells of Bii» cancel except those determined by the
cells If} of the boundary of K71 and certain others which
are cells of (. Let us denote the (s 1)-dimensional com-
plexes determined by these two sets of (- 1)-cells, by Gy
and K4y respectively. This gives the congrucnce

(5) Bips = K{p1+Gia+Kipn  (mod. 2),

which implies the congruence

’
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(6) Kl Gepr+ Kia = 0 (mod. 2).

Since K/’ is a set of z-clrcmts, none of the cells of B,
determined by (7—1)-cells Iq ' will appear in the boundary
of G411, Hence we have

<) Giya = K{'+ K{" (mod. 2),

where K/" is a set of é-circuits composed of cells of C,. On
adding (4), (6) and (7) we obtain

(8) Kiv1 = K{" (mod. 2).

Hence the theorem stated in § 39 will be proved if we show
that K/ is identical with K.

To prove this, let us consider a single 7-cell, say c‘ of X;.
The vertices of K" on c’ or on its boundary are all assw'ned
to vertices of r} under the correspondence A. Hence the
i-cells, say ¢, of K/’ into which ¢ is subdivided all contribute
either nothmv or c’ itself to the set of i-cells of K;”. Now
the sum (mod 2 of the cells identical with ¢ y obtained from
the cells ¢} is bounded by whatever we get by the process
applied in the previous paragraphs (to obtain XK;" from K}
when that process is applied to the boundary of cj as sub-
divided for K;’. For that is exactly what we did prove at
the end of the last paragraph, with 7 replaced by 7+ 1, and
the subdivision of ¢! replaced by K;%;. But by mathematical
induction we may assume that the boundary thus obtained
is exactly the boundary of «J’ as composed of cells of Kj.
Hence the sum (mod. 2) of the ¢-cells identical with «-j. obtained
as just deseribed, being bounded by the bourdary of cJ’E, must
be exactly cj taken once (mod 2). Since, then, from the sub-
division of every i-cell of K; we obtain that same cell of K,
from the entire subdivision, K;’, of K; we must obtain K7 in
its entirety. In other words, K;" is identical with K/, which
is what we set out to prove.

41. We now have an explicit method for determining whether

a sct of ¢-circuits A; on (), does or does not bound. For
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a construction has been given to determine the homology (2)
of § 38 and K;~0 if and only if K{ bounds a complex com-
posed of cells of Cy.

It is a corollary that no set of n-circuits composed of cells
of C, can satisfy a homology K, ~0. For there are no
(n+1)-cells in C,. Hence, in particular, a set of n-circuits
Cu cannot bound a singular complex on (,. On the other
hang, every (n 4 k)-circuit (¢ > 0) on C, bounds an (n +k-+1)-
dimensional complex on C, as stated in (3), § 38.

Invariance of the Connectivities R,

42. We are now ready to prove the invariance of the con-
nectivities Ko, Ry, ---, B, under the group of all homeo-
morphisms. This invariance is obvious for B, because B, is
the number of connected complexes which compose C,. To
prove the invariance of R;(:>0) for any complex C,, we
first observe that according to § 23, R; is the same for C,
as for any regular subdivision of C,. We therefore fix atten-
tion on a regular subdivision C,,. '

By § 9 there exists* a set of i-circuits ¢Y (j =1, 2,
R;—1) such that (1) there is no (s + 1)-dimensional comple\
composed of cells of C, which lS bounded by any combination
of the circuits ¢/ and (2) it 0, is any other ¢-circuit com-
posed of cells of C, it is homologous to the sum (mod. 2) of
some or all of the ¢-circuits ¢Y. By combining (1) with the
theorem of § 39 we have at once that: (a) there is no (¢ 4 1)-
demensional complex of any sort on C, which is bounded by
any combination of the circuits Cf. From (2) and § 38 it
follows that: () if C; is any i-cirenit on C, it is homologous
lo a linear combination (mod.2) of the i-circuits Cij(j =12...
R;—1). For C; is homologous either to zero or to an i-
circuit C; which is composed of cells of Cy,, and by (2) Ci is
homologous to a combination of the i-circuits CY.

From the properties (a) and (b) it follows by a mere re-

* This is not intended to exclude the case in which Ri—1 = 0, in
which the set of i circuits C; is a null-set.
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petition of the argument in § 48, Chap. II that R; e oy
Analysis Situs invariant of the complex (.

43. It shonld perhaps be pointed out explicitly that the
proof which has just been completed applies as well for ¢ = ,,
as for other values of . If C, is a single n-circuit, I2, = 2,
and since R, is an invariant, any complex C, homeomorphi
with C, contains just one n-circuit. By a repetition of the
argument in § 52, Chap. II, it follows that this n-circuit con.
tains all points of C,. Hence any complex homeomorplie wit)
an n-circuil @8 an m-circuit,

CHAPTER 1V

ORIENTABLE MANIFOLDS

Oriented n-Cells

1. Let us now take up the orientation of n-dimensional
complexes. The first problem is to give a definition of the
term ““oriented n-cell.” We shall give a definition here which
suffices for the elementary part of the matrix theory and
shall postpone to the next chapter the theorems on deformation
which give the full intuitional content of the notion of orienta-
tion. The definition will be made as a part of a process of
mathematical induction in which we prove that if certain
thcorems are truc and certain terms defined for all com-
plexes C; for which i<{n, then the theorems are true and
the terms can be defined for any complex C,. Since the
theorems and definitions in question have already been estab-
lished for all linear graphs, €, this process will establish
them for all complexes C’,. ‘

The terms which we assume to be defined are: oriented
i-eell of a complex C; (4,7 < n) orientable i-circuit (7 <<n),
oriented Z-circuit (i<n), oriented -dimensional complex (i< n),
sum of oriented 7-dimensional complexes (7 < n). The theorems
are: (1) any i-circudt (<< n) which is homeomorphic with an
orientable i-circuit is orientable; (2) any <-civeuit defining an
1-dimensional sphere (1< n) is orientalle.

2. The proof that these theorems hold for any (7, if they
hold for all C; (i<Cn) is a direct generalization of the proot
civen in §§ 58 to 60, Chap. IT for the case » = 2, and will
be given in § 10. Before establishing the theorems we state
the definitions which, it will be noted, derive their content
from the theorems for the cases i<n.

An oriented n-cell of a complex €, is the object obtained
by associating a cell @ (G =1.2,..-, «,) of (', with one

104




8 84—36) LINEAR GRAPHS. 25

(1) "2; d}; 02, dév e 0209 0'}'(0’ '7‘1"

in which each oriented cell is either positively or negatively
related to the one which follows it. According to the con-
vention that ¢ is formed from af by associating it with -+ 1,
each o} is negatively related to the oriented O-cell which follows
it if it is positively related to the one which precedes it
and wice versa. Hence by assigning the notation so that
o} is in every case positively related to the oriented 0-cell
which precedes it in the scquence (1) we can arrange
that ¢}, 02, .-+, ur}xl, represent a set of oriented 1-cells such
that each oriented O-cell positively related to one oriented
1-cell of the set is negatively related to another. Such an
oriented complex formed from the l-cells of a T-cirenit ix
called an orienfed 1-cirenit.

It is obvious that the only other oriented 1-cireuit which
can be formed from the given l-cirenit is that composed of
—o}, —0}, ey, —O . For if one of the oriented 1-cells
in an oriented 1-circuit Le replaced by its negative cach
of the other 1-cells: must be replaced by its negative. The
other oriented complexes which can be formed from the
1-circnit are not oriented I-circuits.

Intuitionally this discussion means that if the oriented
1-cells of an oriented 1-circuit are marked by arrows as in
$ 34, the arrows must all be pointed in the same direction.

Matrices of Orientation

36. The relations between the oriented 0-cells and oriented
1-cells, wiich can be formed from the cells of a complex (;
may be studied by means of two matrices which are closely
analogous to H, and H;. The new matrices will be ecalled
matrices of orientation, and denoted by F, and E,. In our
treatment they are derived from H, and H, and their theory
is entirely parallel to that of H, and H,. They are, how-
ever, the one- and two-dimensional instances of the matrices £
which form the central element in Poincaré’s work on Analysis
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Situs. ',!‘hc matrix £, may be said to date back to the article
by G. Kirchoff in Poggendorf’s Annalen der Physik, Vol. 72
(1847:), p. 497, on the flow of electri'cit,y through a,net-w.ork
of wires, in which Kirchoff made use of a sysiem of linear
equations having E; as its matrix. This paper is doubtle(eq
the first important contribution to the theory of ]inéar grapl‘l:
| 37. Any set of oriented 0-cells may be denoted by a symb(-).l-
gz,, Lys e ey Ze,) in which x; is +1 if 6! is in the set, —1
if — o7 is in the set, and O if neither o® nor — o? is ,in the
set. The symbols for the bounding oriented O-élil'cllits of
a comples C, satisfy a set of equations, (%), identical with
the eq'uatxons (H,) of § 19 except that the variables are taken
to be .mtegers instead of being reduced modulo 2. The corre-
sponding matrix will be denoted by

E, = Hég! (i:1,2,---,]1’0;j= 1,2, .., &)

If the complex is connected, X, = 1 and this matrix
reduces to a one-rowed matrix '
[1,1,...,1]

all of whose «, elements are unity.‘ The equations (Z,) have
o — Il linearly independent solutions, and if 7, is the rank
of E,

"'0 et 9" = RU'

38. The relations between the oriented 0-cells o) and oriented
1-cells o} of an oriented complex C, may be denoted by
a matrix

E = Ht}.j!;’

("‘::172,-""“0;j=1y27"';“1)

in which &l is 4+-1 if o i itively i
if a? is no':{'ttli"\'EIIV ll'ellit:{fd 1: pof"t'“ EI“' rela'ted tjo ;g
% g y rel: 0 af, and is 0 if a is not an end
J

This matrix ean be formed from H, by changing a 1 in
E::"h column to —1, for each o} is positively related to one
of the ¢®'s formed from the ends of a! and neeatively related
to the other. The choice of the —-1‘ is dett:'mineci by t]ﬁ-.

arbitrary choice in the definition of o,
| ¥
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