CHAPTER III

INCOMPLETE SYMBOLS

(1) Descriptions. By an “incomplete ” symbol we mean a symbol which
is not supposed to have any meaning in isolation, but is only defined in

. d b .
certain contexts. In ordinary mathematics, for example, an and f are in-
a

complete symbols: something has to be supplied before we have anything
significant. Such symbols have what may be called a “definition in use.”

Thus if we put

s
= 37" + a—yz + Fy
we define the use of V2, but V2 by itself remains without meaning. This dis-
tinguishes such symbols from what (in a generalized sense) we may call proper
names: “Socrates,” for example, stands for a certain man, and therefore has
a meaning by itself, without the need of any context. If we supply a context,
as in “ Socrates is mortal,” these words express a fact of which Socrates him-
self is a constituent: there is a certain object, namely Socrates, which does
have the property of mortality, and this object is a constituent of the complex
fact which we assert when we say “ Socrates is mortal.” But in other cases,
this simple analysis fails us. Suppose we say: “The round square does n(?t
exist.” It seems plain that this is a true proposition, yet we cannot regard it
as denying the existence of a certain object called “the round square.” For
if there were such an object, it would exist: we cannot first assume that there
is a certain object, and then proceed to deny that there is such an object.
Whenever the grammatical subject of a proposition can be supposed not to
exist without rendering the proposition meaningless, it is plain that the
grammatical subject is not a proper name, 4.e. not a name directly representing
some object. Thus in all such cases, the proposition must be capa.b.le of being
so analysed that what was the grammatical subject shall have disappeared.
Thus when we say “the round square does not exist,” we may, as a ﬁ.rst
attempt at such analysis, substitute “ it is false that there is an object z which
is both round and square.” Generally, when “the so-and-so” is said not tv
exist, we have a proposition of the ferm*

“~E1(12) (¢),”
Le. ~{(ge) i px .= =0},
or some equivalent. Here the apparent grammatical subject (1z)(¢x) has
completely disappeared; thus in “o EY(12) (@x),” (12) (Ppx) is an sncomplete
symbol.

\'A Df,

* Cf. pp. 80, 31.
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By an extension of the above argument, it can easily be shown that
(1z) (¢) is always an incomplete symbol. Take, for example, the following
proposition: “Scott is the author of Waverley.” [Here “the author of
Waverley” is (1z) (« wrote Waverley).] This proposition expresses an identity;
thus if “ the author of Waverley ” could be taken as a proper name, and sup-
posed to stand for some object ¢, the proposition would be “Scott is ¢.” But
if ¢ is any one except Scott, this proposition is false; while if ¢ is Scott, the
proposition is *“Scott is Scott,” which is trivial, and plainly different from
“Secott is the anthor of Waverley.” Generalizing, we see that the proposition

a=(12) (px)

is one which may be true or may be false, but is never merely trivial, like
a =a; whereas, if (3z) (¢=) were a proper name, a = (1) (¢x) would necessarily
be either false or the same as the trivial proposition a=a. We may express
this by saying that @ =(7z) (¢x) is not a value of the propositional function
a=y, from which it follows that (1z)(¢z) is not a value of y. But since y
may be anything, it follows that (7)(¢) is nothing. Hence, since in use it
has meaning, it must be an incomplete symbol.

It might be suggested that “ Scott is the author of Waverley ” asserts that
“Seott” and “the author of Waverley” are two names for the same object.
But a little reflection will show that this would be a mistake. For if that
were the meaning of “ Scott is the author of Waverley,” what would be required
for its truth would be that Scott should have been called the author of
Waverley: if he had been so called, the proposition would be true, even if
some one else had written Waverley; while if no one called him so, the pro-
position would be false, even if he had written Waverley. But in fact he was
the author of Waverley at a time when no one called him so, and he would
not have been the author if every one had called him so but some one else
had written Waverley. Thus the proposition “Seott is the author of Waverley”
is not a proposition about names, like “ Napoleon is Bonaparte”; and this
illustrates the sense in which “the author of Waverley” differs from a true
proper name.

Thus all phrases (other than propositions) containing the word the (in the
singular) are incomplete symbols: they have a meaning in use, but not in
isolation. For “the author of Waverley ” cannot mean the same as “ Scott,”
or “Scott is the author of Waverley” would mean the same as “Scott is
Scott,” which it plainly does not; nor can “the author of Waverley ” mean
anything other than “Scott,” or “Seott is the author of Waverley ” would be
false. Hence “the author of Waverley” means nothing.

It follows from the above that we must not attempt to define “ (1z) (¢a),”
but must define the uses of this symbol, i.e. the propositions in whose symbolic
cxpression it occurs. Now in seeking to define the uses of this symbol, it is
important to observe the import of propositions in which it occurs, Take as



68 INTRODUCTION [craP.

an illustration: “ The author of Waverley was a poet.” This implies (1) that
Waverley was written, (2) that it was written by one man, and not in collabora-
tion, (3) that the one man who wrote it was a poet. If any one of these fails,
the proposition is false. Thus “the author of ‘ Slawkenburgius on Noses’ was
a poet” is false, because no such book was ever written; “the author of * The
Maid’s Tragedy’ was a poet” is false, because this play was written by
Beaumont and Fletcher jointly. These two possibilities of falsehood do not
arise if we say “Scott was a poet.” Thus our interpretation of the uses of
(12) (¢pz) must be such as to allow for them. Now taking ¢z to replace
“x wrote Waverley,” it is plain that any statement apparently about (1z) (¢z)
requires (1) (gz).(¢pz) and (2) ¢x.dy.D; . 2=y; here (1) states that at
least one object satisfies ¢z, while (2) states that at most one object satisfies
¢x. The two together are equivalent to
(Hge):pz .=, .x=c,

which we defined as E! (12) (¢).
Thus “E! () (px)” must be part of what is affirmed by any proposition
about (1z) (¢x). If our proposition is f {(12) (px)}, what is further affirmed is
Je,if gz.=;.2=c. Thus we have

Sloz)(¢z)} =z (Hc): pz =, .x=c: fc Df
i.e. “the x satisfying ¢« satisfies fx” is to mean: “There is an object ¢ such
that ¢z is true when, and only when, « is ¢, and fe is true,” or, more exactly:
“There is a ¢ such that ‘¢z’ is always equivalent to ‘@ is ¢, and fe.” In this,
“(1z) ($x)” has completely disappeared; thus “(1z) (¢z)” is merely symbolic,
and does not directly represent an object, as single small Latin letters are
assumed to do*.

The proposition “a=(12)(¢z)” is easily shown to be equivalent to
“¢pr.=,.2=a" For, by the definition, it is
(He) i px .= 2=cra=c,
1.e. “ there is a ¢ for which ¢z .=,.4=c, and this ¢ is a,” which is equivalent
to “¢z.=,.xz=a" Thus“ Scott is the author of Waverley ” is equivalent to:

“‘g wrote Waverley’ is always equivalent to ‘z is Scott,
t.e. “x wrote Waverley” is true when « is Scott and false when « is not Scott.

Thus although “(1z) (¢«)” has no meaning by itself, it may be substituted
for y in any propositional function fy, and we get a significant proposition,
though not a value of fy. x&i'

When f{(1z) (¢x)}, as above defined, forms part of some other proposition,
we shall say that (12) (¢z) has a secondary occurrence. When (12) (¢z) has
a secondary occurrence, a proposition in which it occurs may be true even
when (12) (¢«) does not exist. This applies, e.g. to the proposition: “ There

* We shall generally write * f(:x} (¢z)” rather than * f{(:z) (¢x)}?’ in future.
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is no such person as the King of France.” We may interpret this as

~ B 1(12) (o)},
o ns ~ (@) - 0 = (1) (9},
if “¢a” stands for “ x is King of France.” In either case, what is asserted is
that a proposition p in which (72) (¢x) occurs is false, and this proposition p
is thus part of a larger proposition. The same applies to such a proposition
as the following: “If France were a monarchy, the King of France would be
of the House of Orleans.”

It should be observed that such a proposition as

~ [ {(12) ($2)}

is ambiguous; it may deny f{(1z)(¢z)}, in which case it will be true if
(1z) (¢o) does not exist, or it may mean

("e):pz.=p.x=c1 [,
in which case it can only be true if (1z)(¢z) exists. In ordinary language,
the latter interpretation would usually be adopted. For example, the propo-
sition “ the King of France is not bald” would usually be rejected as false,
being held to mean “the King of France exists and is not bald,” rather than
“it is false that the King of France exists and is bald” When (1z) (¢z)
exists, the two interpretations of the ambiguity give equivalent results; but
when (72) (¢x) does not exist, one interpretation is true and one is false. It
is necessary to be able to distinguish these in our notation; and generally, if
we have such propositions as

¥ (12) ($2) - 2. p,

P.2.¥(1z) ($p),

¥ (12) ($2) « 3 - x (12) ($a),
and so on, we must be able by our notation to distinguish whether the whole
or only part of the proposition concerned is to :be treated as the “ f(12) (¢z)”
of our definition. For this purpose, we will put “[(1z) (¢x)]” followed by dots
at the beginning of the part (or whole) which is to be taken as f(1z) (¢), the
dots being sufficiently numerous to bracket off the f(ix) (¢x); ie. f(1z) ($x)
1s to be everything following the dots until we reach an equal number of dots
not signifying a logical product, or a greater number signifying a logical pro-
duct, or the end of the sentence, or the end of a bracket enclosing “[(1z) (¢=)].”

Thus

[(2) (¢2)] - ¥ (02) (@) - D - p
will mean (HC) 1Pz . Sgz=ci¥yc:D.p,
but . [(z) (Pz)) s (12) (Pp2) - D . p
will mean (ge)ipz =g x=c:yc.D.p.

Lt is important to distinguish these two, for if (12)(¢dxz) does not exist, the
first is true and the second false. Again

[(2) ()] . ~ ¥ (1) ($2)
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will mean () : ¢z =5 =01 v Yo,
while ~ {[(12) (¢2)] - ¥ (17) ($a)}
will mean ~{(He) i pz. =5 x=c: ¥l

Here again, when (1z) (¢x) does not exist, the first is false and the second true.

In order to avoid this ambiguity in propositions containing (1) (¢x), we

amend our definition, or rather our notation, putting
[(12) (p2)]. f(12) (pz) s =: () 1 P2 . =5 . x=c 1 fc Df.

By means of this definition, we avoid any doubt as to the portion of our
whole asserted proposition which is to be treated as the “f (1z) (¢z)” of the
definition. This portion will be called the scope of (1z) (¢=). Thus in

[(2) ($2)] . f(12) ($2) . D . p
the scope of (12) (¢=) is f (12) (¢z); but in

[(2) ($2)):f (1) (¢2). D . p
the scope is JS(x) (¢z). 2. p;
in ~ {[(12) ($2)] - f (12) ($2)}
the scope is f(12) (¢z); but in

[(12) (¢2)] - ~ [ (12) ($)

the scope is ~f (1) ().

It will be seen that when (7z)(¢x) has the whole of the proposition
concerned for its scope, the proposition concerned cannot be true unless
E1(1z) (¢); but when (1) (¢x) has only part of the proposition concerned
for its scope, it may often be true even when (1z) (¢z) does not exist, It will
be seen further that when E!(1z)(¢2), we may enlarge or diminish the scope
of (12)(¢x) as much as we please without altering the truth-value of any
proposition in which it occurs,

If a proposition contains two descriptions, say (17)(¢z) and (1z) (=),
we have to distinguish which of them has the larger scope, i.e. we have to
distinguish

(€Y [(12) ($2)] : [(12) (Y2)] - £ {(12) (), (1) (Y2},
2 [(12) (Ya)] : [(12) ($2)] - f {(12) (@), (1) (Y)}.
The first of these, eliminating (12) (¢), becomes
%) (@) b+ =03 2= ¢ 1 [() (Y]« £ e, (1) (),
which, eliminating (12) (yrz), becomes
4) (gc):.¢x.z,.m=c:.(&d):1}rw.§,.m=d:f(c,d),

and the same proposition results if, n (1), we eliminate first (12) (¥rz) and
then (12)(¢z). Similarly (2) becomes, when (1z)(¢z) and (1) (Yz) are
eliminated,

(5) @d) w2 x=d.(go) 1 pz. =, .z =c: f(c, d).

(4) and (5) are equivalent, so that the truth-value of a proposition contain-
ing two descriptions is independent of the question which has the larger scope.
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It will be found that, in most cases in which descriptions occur, their
rcope is, in practice, the smallest proposition enclosed in dots or other brackets
in which they are contained. Thus for example

[(12) (¢2)] . ¥ (1) ($2) - D - [(12) ()] . x (12) ($2)
will occur much more frequently than
[(2) ($2)] 2 4 (12) ($2) - D . x (12) ($2).
Ifor this reason it is convenient to decide that, when the scope of an occurrence
of (1) (¢px) is the smallest proposition, enclosed in dots or other brackets, in
which the occurrence in question is contained, the scope need not be indicated

by “[(1z) (p«)]).” Thus eg.
p.2.a=0z)(dx)

will mean p-2.[(1) (¢2)] - @ = (12) (Px);
and p.d.(da) . a=(12) (¢z)

will mean P9 . (ga).[(1z) (¢2)] . & = (1) (P2);
and p-2-aF(1z)(px)

will mean p-2.[(2)($x)] . ~ {a=(x)(dz)};
but p.D.~{a=(1x)(px)]

will mean P-D.~{[(12)(¢x)] - a = (12) (P)}.

This convention enables vs, in the vast majority of cases that actually
oceur, to dispense with the explicit indication of the scope of a descriptive
symbol; and it will be found that thé convention agrees very closely with the
tacit conventions of ordinary language on this subject. Thus for example, if
“(12)(¢px)” is “the so-and-so,” “a+(1z)(px)” is to be read “a is not the
so-and-so,” which would ordinarily be regarded as implying that “the so-and-
s0” exists; but “~ {a = (12) (¢p2)}” is to be read “it is not true that a is the
so0-and-so,” which would generally be allowed to hold if “ the so-and-so” does
not exist. Ordinary language is, of course, rather loose and fluctuating in its
implications on this matter; but subject to the requirement of definiteness,
our convention seems to keep as near to ordinary language as possible.

In the case when the smallest proposition enclosed in dots or other
brackets contains two or more descriptions, we shall assume, in the absence
of any indication to the contrary, that one which typographically occurs
carlier has a larger scope than one which typographically occurs later. Thus

(12) ($p2) = (12) (Yw)
will mean ()t px - =5 . w=c : [(1x) (Y¥z)] . ¢ = (1) (Y),
while (1) (Yrz) = (1) ()
will mean Wd): ¥z . =5 0=d:[(12) (¢2)] . (1z) () =d.

These two propositions are easily shown to be equivalent.

(2) Classes. The symbols for classes, like those for descriptions, are, in
our system, incomplete symbols: their uses are defined, but they themselves
are not assumed to mean anything at all. That is to say, the uses of such
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symbols are so defined that, when the definiensis substituted for the defintendum,
there no longer remains any symbol which could be supposed to represent
a class. Thus classes, so far as we introduce them, are merely symbolic or
linguistic conveniences, not genuine objects as their members are if they are
individuals.

It is an old dispute whether formal logic should concern itself mainly with
intensions or with extensions. In general, logicians whose training was mainly
philosophical have decided for intensions, while those whose training was
mainly mathematical have decided for extensions. The facts seem to be that,
while mathematical logic requires extensions, philosophical logic refuses to
supply anything except intensions. Our theory of classes recognizes and
reconciles these two apparently opposite facts, by showing that an extension
(which is the same as a class) is an incomplete symbol, whose use always
acquires its meaning through a reference to intension.

In the case of descriptions, it was possible to prove that they are in-
complete symbols. In the case of classes, wé do not know of any equally
definite proof, though arguments of more or less cogency can be elicited from
the ancient problem of the One and the Many*. It is not necessary for our
purposes, however, to assert dogmatically that there are no such things as
classes. It is only necessary for us to show that the incomplete symbols
which we introduce as representatives of classes yield all the propositions for
the sake of which classes might be thought essential. When this has been
shown, the mere principle of economy of primitive ideas leads to the non-
introduction of classes except as incomplete symbols

To explain the theory of classes, it is necessary first to explain the dis-
tinction between extensional and intensional functions. This is effected by
the following definitions:

The truth-value of a proposition is truth if it is true, and falsehood if it is
false. (This expression is due to Frege.)

Two propositions are said to be equivalent when they have the same truth-
value, 7.e. when they are both true or both false.

Two propositional functions are said to be formally equivalent when they
are equivalent with every possible argument, ¢.e. when any argument which
satisfies the one satisfies the other, and vice versa. Thus “Z is a man” is
formally equivalent to “# is a feathgrless biped”; “# is an even prime” is
formally equivalent to “Z is identical with 2.”

A function of a function is called extensional when its truth-value with any
argument is the same as with any formally equivalent argument. That is to
* Briefly, these arguments reduce to the following: If there is such an object as a elass, it

must be in some sense one object. Yet it is only of classes that many can be predicated. Hence,
if we admit classes as objects, we must suppose that the same object can be both one and many,

which seems impossible.
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sy, [(¢$2) is an extensional function of ¢2 if, provided 2 is formally equiva-
lont to ¢2, f($2) is equivalent to f(2). Here the apparent variables ¢ and
¥ nro necessarily of the type from which arguments can significantly be
nupplied to . We find no need to use as apparent variables any functions
ol non-predicative types; accordingly in the sequel all extensional functions
considered ave in fact functions of predicative functions™®.

A function of a function is called sntensional when it is not extensional.

The nature and importance of the distinction between intensional and
extensional functions will be made clearer by some illustrations. The pro-
Josition ““z 1s a man’ always implies ‘z is a mortal’” is an extensional function
of the fanction “# is a man,” because we may substitute, for “x is a man,”
“ais a featherless biped,” or any other statement which applies to the same
objects to which “z is a man” applies, and to no others. But the proposition
“A believes that ‘x is a man’ always implies ‘z is a mortal’” is an intensional
function of “% is a man,” because 4 may never bave considered the question
whether featherless bipeds are mortal, or may believe wrongly that there are
featherless bipeds which are not mortal. Thus even if “x is a featherless
biped ” is formally equivalent to “« is a man,” it by no means follows that a
person who believes that all men are mortal must believe that all featherless
bipeds are mortal, since he may have never thought about featherless bipeds,
or have supposed that featherless bipeds were not always men. Again the
proposition “the number of argunments that satisfy the function ¢ 12 is n” is
an extensional function of ¢ !2, because its truth or falsehood is unchanged if
we substitute for ¢!12 any other function which is true whenever ¢!2 is true,
and false whenever ¢!% is false. But the proposition “4 asserts that the
number of arguments satisfying ¢!2 is #” is an intensional function of ¢!2,
since, if 4 asserts this concerning ¢!32, he certainly cannot assert it concerning
all predicative functions that are equivalent to ¢ ! 2, because life is too short.
Again, consider the proposition “two white men claim to have reached the
North Pole.” This proposition states “two arguments satisfy the function
‘% is a white man who claims to have reached the North Pole.”” The truth or
falsehood of this proposition is unaffected if we substitute for “Z is a white
man who claims to have reached the North Pole” any other statement which
holds of the same arguments, and of no others. Hence it is an extensional
function. But the proposition “it is a strange coincidence that two white
men should claim to have reached the North Pole,” which states “it is a
strange coincidence that two arguments should satisfy the function ‘2 is a
white man who claims to bave reached the North Pole,” is not equivalent to
“it is a strange coincidence that two arguments should satisfy the function
‘2 is Dr Cook or Commander Peary.’” Thus “it is a strange coincidence that
¢ ! 2 should be satisfied by two arguments” is an intensional function of ¢!2.

* Cf. p. 53.
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The above instances illustrate the fact that the functions of functions with
which mathematics is specially concerned are extensional, and that intensional
functions of functions only occur where non-mathematical ideas are introduced,
such as what somebody believes or affirms, or the emotions aroused by some
fact. Hence it is natural, in a mathematical logic, to lay special stress on
extensional functions of functions.

When two functions are formally equivalent, we may say that they have
the same extension. In this definition, we are in close agreement with usage.
We do not assume that there is such a thing as an extension: we merely
define the whole phrase “having the same extension.” We may now say that
an extensional function of a function is one whose truth or falsehood depends
only upon the extension of its argument. In such a case, it is convenient to
regard the statement concerned as being about the extension. Since exten-
sional functions are many and important, it is natural to regard the extension
as an object, called a class, which is supposed to be the subject of all the
equivalent statements about various formally equivalent functions. Thus
e.g. if we say “there were twelve Apostles,” it is natural to regard this state-
ment as attributing the property of being twelve to a certain collection of
men, namely those who were Apostles, rather than as attributing the property
of being satisfied by twelve arguments to the function “Z was an Apostle.”
This view is encouraged by the feeling that there is something which is
identical in the case of two functions which “have the same extension.” And
if we take such simple problems as “ how many combinations can be made of
n things ?” it seems at first sight necessary that each “combination ” should
be a single object which can be counted as one. This, however, is certainly
not necessary technically, and we see no reason to suppose that it is true
philosophically. The technical procedure by which the apparent difficulty is
overcome is as follows.

We have seen that an extensional function of a function may be regarded
as a function of the class determined by the argument-function, but that an
intensional furiction cannot be so regarded. In order to obviate the necessity

of giving different treatment to intensional and extensional functions of

functions, we construct an extensional function derived from any function of
n predicative function 4 ! 2, and having the property of being equivalent to
the function from which it is deriv#, provided this function is extensional,
ns woll ns the property of being significant (by the help of the systematic
ambiguity of equivalence) with any argument ¢2 whose arguments are of the
sume type as those of ¥ 12. The derived function, written “f {2 (¢2)},” is de-
fined as follows: Given a function f (3 ! 2), our derived function is to be “there
is a predicative function which is formally equivalent to ¢2 and satisfies f.”
If ¢2 is a predicative function, our derived function will be true whenever
f(92) is true. If f(¢2) is an extensional function, and ¢Z is a predicative
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function, our derived function will not be true unless f(¢2) is true; thus in
this case, our derived function is equivalent to f(¢2). If f($2) is not an ex-
tensional function, and if @2 is a predicative function, onr derived function
muy sometimes be true when the original function is false. But in any case the
derived function is always extensional.

In order that the derived function should be significant for any function
#2, of whatever order, provided it takes arguments of the right type, it is
necessary and sufficient that £ (y-12) should be significant, where 412 is any
predicative function. The reason of this is that we only require, concerning
an argument ¢2, the hypothesis that it is formally equivalent to some predi-
cative function yr12, and formal equivalence has the same kind of systematic
ambiguity as to type that belongs to truth and falsehood, and can therefore
hold between functions of any two different orders, provided the functions
tuke arguments of the same type. Thus by means of our derived function we.
have not merely provided extensional functions everywhere in place of in-
tensional functions, but we have practically removed the necessity for con-
sidering differences of type among functions whose arguments are of the same
type. This effects the same kind of simplification in our hierarchy as would
result from never considering any but predicative functions.

If (41 2) can be built up by means of the primitive ideas of disjunction,
negation, (x).dz, and (gz).dx, as is the case with all the functions of
functions that explicitly occur in the present work, it will be found that, in
virtue of the systematic ambiguity of the above primitive ideas, any function
¢2 whose arguments are of the same type as those of 4 !% can significantly
be substituted for ¥»12 in f without any other symbolic change. Thus in
such a case what is symbolically, though not really, the same function f can
receive as arguments functions of various different types. If, with a given
argument @2, the function f(¢2), so interpreted, is equivalent to f(!2)
whenever 12 is formally equivalent to ¢2, then {2 (¢z)} is equivalent to
JS(¢2) provided there is any predicative function formally equivalent to ¢2.
At this point, we make ‘use of the axiom of reducibility, according to which
there always is a predicative function formally equivalent to 2.

As was explained above, it is convenient to regard an extensional function
of a function as having for its argument not the function, but the class de-
termined by the function. Now we have seen that our derived function is
always extensional. Hence if our original function was f (Yr12), we write the
derived function f {2 (¢2)[, where “Z (¢2)” may be read * the class of arguments
which satisfy ¢2” or more simply “the class determined by ¢2” Thus
“f12(2)}" will mean: “ There is a predicative function ¥ ! 2 which is formally
equivalent to ¢2 and is such that £(12) is true.” Thisisin reality a function
of 2, but we treat it symbolically as if it had an argument 2 (¢z). By the
help of the axiom of reducibility, we find that the usual properties of classes
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result, For example,; two formally equivalent functions determine the same
class, and conversely, two functions which determine the same class are formally
equivalent. Also to say that « is a member of 2 (¢2), i.e. of the class determined
by ¢2, is true when ¢z is true, and false when ¢z is false. Thus all the
mathematical purposes for which classes might seem to be required are fulfilled
by the purely symbolic objects 2(¢z), provided we assume the axiom of
reducibility.

In virtue of the axiom of reducibility, if ¢2 1s any function, there is
a formally equivalent predicative function +r!2; then the class 2(¢z) is
identical with the class 2 (yr!z), so that every class can be defined by a
predicative function. Hence the totality of the classes to which a given term
can be significantly said to belong or not to belong is a legitimate totality,
although the totality of functions which a given term can be significantly
said to satisfy or not to satisfy is not a legitimate totality. The classes to
which a given term a belongs or does not belong are the classes defined by
a-functions; they are also the classes defined by predicative a-functions. Let
us call them a-classes. Then “a-classes” form a legitimate totality, derived
from that of predicative a-functions. Hence many kinds of general state-
ments become possible which would otherwise involve vicious-circle paradoxes.
These general statements are nove of them such as lead to contradictions, and
many of them such as it is very hard to suppose illegitimate. The fact that
they are rendered possible by the axiom of reducibility, and that they would
otherwise be excluded by the vicious-circle principle, is to be regarded as an
argument in favour of the axiom of reducibility.

The above definition of “the class defined by the function ¢2,” or rather,
of any proposition in which this phrase occurs, is, in symbols, as follows:
FE@)} = @) da.=o ¥ les Flp 13 DE
In order to recommend this definition, we shall-enumerate five requisites
which a definition of classes must satisfy, and we shall then show that the
above definition satisfies these five requisites.

We require of classes, if they are to serve the purposes for which they are
commonly employed, that they shall have certain properties, which may be
enumerated as follows. (1) Every propositional function must determine a
class, which may be regarded as the collection of all the arguments satisfying
the function in question. This principle must hold when the function is
satisfied by an infinite number of.arguments as well as when it is satisfied by
a finite number. It must hold also when no arguments satisfy the function;
i.e. the “null-class” must be just as good a class as any other. (2) Two pro-
positional functions which are formally equivalent, 1.e. such that any argument
which satisfies either satisfies the other, must determine the same class; that
is to say, a class must be something wholly determined by its membership, so
that e.g. the class “ featherless bipeds” is identical with the class “ men,” and
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the class “ even primes ” is identical with the class “ numbers identi.al with 2.”
(3) Counversely, two propositional functions which determine the same class
must be formally equivalent; in other words, when the class is given, the
membership is determinate : two different sets of objects cannot yield the same
class. (4) In the same sense in which there are classes (whatever this sense
may be), or in some closely analogous sense, there must also be classes of
classes. Thus for example “ the combinations of n things m at a time,” where
the n things form a given class, is a class of classes; each combination of
m things is a class, and each such class is a member of the specified set of
combinations, which set is therefore a class whose members are classes. Again,
the class of unit classes, or of couples, is absolutely indispensable; the former
is the number 1, the latter the number 2. Thus without classes of classes,
arithmetic becomes impossible. (53) It must under all circumstances be
meaningless to suppose a class identical with one of its own members. For if
such a supposition had any meaning “a e a” would be a significant propositional
function*, and so would “a~ea.” Hence, by (1) and (4), there would be a
class of all classes satisfying the function “a~ea.” If we call this class #, we
shall have

QAEK.=,.a~ e,
Since, by our hypothesis, “x ¢ «” is supposed significant, the above equivalence,
which holds with all possible values of a, holds with the value «, ..

KEK .= KVEK,
But this is a contradictiont. Hence “aea” and “a~ea” must always be
meaningless. In general, there is nothing surprising about this conclusion,
but it has two consequences which deserve special notice. In the first place,
a class consisting of only one member must not be identical with that one
member, t.e. we must not have t“c=x. For we have ze(‘z, and therefore, if
z =t‘z, we have 1z e L'z, which, we saw, must. be meaningless. It follows that
“z=1‘c" must be absolutely meaningless, not simply false. In the secend
place, it might appear as if the class of all classes were a class, 7.e. as if
(writing “Cls” for “class”) “Cls ¢ Cls” were a true proposition. But this com-
bination of symbols must be meaningless; unless, indeed, an ambi guity exists
in the meaning of “Cls,” so that, in “Cls e Cls,” the first “Cls” can be supposed
to have a different meaning from the second.

As regards the above requisites, it is plain, to begin with, that, in accordance
with our definition, every propositional function ¢Z determines a class 2 (¢z).
Assuming the axiom of reducibility, there must always be true propositions
about Z(¢z), i.e. true propositions of the form f{2(¢z)]. For suppose ¢2 is
formally equivalent to y+! 2, and suppose y-!2 satisfies some function . Then

* As explained in Chapter I (p. 25), “z¢a” means ““‘z is a member of the class a,” or,
more shortly, ‘'z is an «.”” The definition of this expression in terms of our theory of classes

will be given shortly.
t This is the second of the contradictions discussed at the end of Chapter II.
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% (¢z) also satisfies £, Hence, given any function ¢2, there are true propositions
of the form f{2(¢2)}, t.e. true propositions in which “the class determined by
¢2” is grammatically the subject. This shows that our definition fulfils the
first of our five requisites.

The second and third requisites together demand that the classes 2($z) and
2 (y2) should be identical when, and only when, their defining functions are
formally equivalent, t.e. that we should have

2(p2)=2(Y2z). =t pz.=5. V2.
Here the meaning of “2(¢z) =2 (Yz)” is to be derived, by means of a two-
fold application of the definition of /{2 (¢2)}, from the definition of
“x12=012"
which is x!12=012.=:(f): f1x12.2./1012 Df
by the general definition of identity.

In interpreting “2 (¢2) =2 (y2),” we will adopt the convention which we
adopted in regard to (12) (¢) and (12)(yz), namely that the incomplete symbol
which occurs first is to have the larger scope. Thus 2 (¢2) =2 (yz) becomes,
by our definition,

(Ax): ¢z =z x 1 x1 2=2(Y2),
which, by eliminating 2 (yrz), becomes

(qx) ez Zaoxtan (gl iz, =, 01z yl2=012
which is equivalent to
(Ax Hide.Zp.xloiYya.=,.0le:y12=012,

which, again, is equivalent to

(@Ax):pr.=s.xlaeidyz .= xla,
which, in virtue of the axiom of reducibility, is equivalent to

bz.=,. Y.

Thus our definition of the use of 2 (¢z) is such as to satisfy the conditions (2)
and (3) which we laid down for classes, i.e. we have

Fi2(pz)=2(Y2).=:1dz.=;. Y.

Before considering classes of classes, it will be well to define membership
of a class, t.e. to define the symbol “xe2(¢pz),” which may be read “z is a
member of the class determined by ¢2.” Since this is a function of the form
F1{2(¢2)}, it must be derived, by means of our general definition of such func-
tions, from the corresponding function f{y-!2}. We therefore put

zeYlise=.Ylz DI
This definition is only needed in order to give a meaning to “ze 2 (¢z)"; the
meaning it gives is, in virtue of the definition of £ {2 (¢2)},
(@Y):dy.-=y-Ply:yle
It thus appears that “ze?(¢z)” implies ¢a, since it implies Yr!z, and Y1z
is equivalent to ¢z; also, in virtue of the axiom of reducibility, ¢z implies
“ze%(¢z),” since there is a predicative function Y- formally equivalent to ¢,
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and z must satisfy , since « (ez hypothesi) satisfies ¢. Thus in virtue of the
axiom of reducibility we have

Fize2(P2).=. ¢z,
te. z is & member of the class 2(¢z) when, and only when, # satisfies the
function ¢ which defines the class.

We have next to consider how to interpret a class of classes. As we have
defined f{2(¢2)}, we shall naturally regard a class of classes as consisting of
those values of 2 (¢z) which satisfy f{2(¢z)}. Let us write a for 2 (¢z); then
we may write &(fa) for the class of values of a which satisfy fa*. We shall
apply the same definition, and put

Fla(fa)) .=:(qg):/B.=5.9'8:F{gla} D
where “B” stands for any expression of the form 2 (y! 2).
Let us take “ye@(fa)” as an instance of ¥ {a( fa)}. Then
Froyel(fa).=:(qg): fB.=p.g!Biyegla
Jnst as we put zeYlZ2.=.¢ylz Df
80 we pub yegla.=.gly Df.
Thus we find
Froyed(fa).=:(d9): fB.=p-9'B:=9!17

If we now extend the axiom of reducibility so as to apply to functions of

functions, 7.e. if we assume

@) : f (¥12) .=y - gt (Y1 2),

we casily deduce

Fr(@g) :f (il -=- 9 (Y2}
1. Fi(gg): fB.=p.9!8
Thus bFiyeda(fa).=.fy.

Thus every function which can take classes as arguments, 1.e. every function
of functions, determines a class of classes, whose members are those classes
which satisfy the determining function. Thus the theory of classes of classes
offers no difficulty.

We have next to consider our fifth requisite, namely that “2 (¢z) ¢ 2 (¢p2)”
in to be meaningless. Applying our definition of f{2(¢2)}, we find that if this
collection of symbols had a meaning, it would mean

(AY) 1 ¢z .= - Yla: Pl Zedl 2,
i.e. in virtue of the definition

zeYPlZ.=.Y!lz Df

il would mean AV iz .= Yo Y (Y!12)
But here the symbol “yr! (1 2)” occurs, which assigns a function as argument
to itself. Such a symbol is always meaningless, for the reasons explained at
the beginning of Chapter 1T (pp. 38—41). Hence “2 (¢2z) € 2(¢2z)” is meaning-
fens, and our fifth and last requisite is fulfilled.

* The use of a single letter, such a8 a or 3, to represent & variable class, will be further
expluined shortly.
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As in the case of f(12)(¢x), 80 in that of f{2(¢2)], there is an ambiguity
as to the scope of 2(¢2) if it occurs in a proposition which itself is part of a
larger proposition. But in the case of classes, since we always have the axiom

of reducibility, namely V)t ¢ =0 Y1z

which takes the place of E!(1z)(¢x), it follows that the truth-value of any
proposition in which 2 (¢2) occurs is the same whatever scope we may give to
2 (¢2), provided the proposition is an extensional function of whatever functions
it may contain. Hence we may adopt the convention that the scope is to be
always the smallest proposition enclosed in dots or brackets in which 2 (¢2)
occurs. Ifat any time a larger scope is required, we may indicate it by “[2(¢2)]”
followed by dots, in the same way as we did for [(12)(¢«)]

Similarly when two class symbols occur, e.g. in a proposition of the form
[ {2 (#2), 2 (42)}, we need not remember rules for the scopes of the two symbols,
since all choices give equivalent results, as it is easy to prove. For the pre-
liminary propositions a rule is desirable, so we can decide that the class symbol
which occurs first in the order of writing is to have the larger scope.

The representation of a class by a single letter @ can now be understood.
For the denotation of a is ambiguous, in so far as it is undecided as to which
of the symbols 2 (¢2), 2(¥2), Z(x2), ete. it is to stand for, where ¢, ¥2, x2,
ete. are the various determining functions of the class. According to the choice
made, different propositions result. But all the resulting propositions are equi-
valent by virtue of the easily proved proposition:

“Ligpr=,ya.D.f2(p2)] =F {2 (2)]”
Henece unless we wish to discuss the determining funetion itself, so that the
notion of a class is really not properly present, the ambiguity in the denotation
of a is entirely immaterial, though, as we shall see immediately, we are led to
‘limit ourselves to predicative determining functions. Thus “f(a),” where aisa
variable class, is really “f {2 (¢z)],” where ¢ is a variable function, that is, it is
“(AP) - e = Ylao. f{P2)7
where ¢ is a variable function. But here a difficulty arises which is removed
by a limitation to our practice and by the axiom of reducibility. For the deter-
mining functions $2, 42, etc. will be of different types, though the axiom of
reducibility secures that some are predicative functions. Then, in interpreting
a as a variable in terms of the variation of any determining function, we shall
be led into errors unless we confine ourselves to predicative determining fune-
tions. These errors especially atise in the transition to total variation (cf.
pp- 15, 16). Accordingly
fa=.(q¥) . ple=Yla. f{Y!12] DL

1t is the peculiarity of a definition of the use of a single letter [viz. «] for a
variable incomplete symbol that it, though in a sense a real variable, occurs
only in the definiendum, while “@,” though a real variable, oceurs only in the
definiens.
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Thus “f&” stands for

«“ bl = 1z, 131
and “(a) . fa” stands for(E[\Pl) PESGRAL RIS
“(¢): (@¥) - pla=syla. fi{yl1 2]
Accordingly, in mathematical reasoning, we can dismiss the whole apparatus
of functions and think only of classes as “quasi-things,” eapable of immediate
representation by a single name. The advantages are two-fold: (1) classes are
detormined by their membership, so that to one set of members there is one
class, (2) the “type” of a class is entirely defined by the type of its members.
Also a predicative function of a class can be defined thus
Sflas.(g¥).dla=la. fL {12} Df
Thus a predicative function of a class is always a predicative function of any
predicative determining function of the class, though the converse does not hold.

(3) R?lations. With regard to relations, we have a theory strictly analogous
lf' that which we have just explained as regards classes. Relations in extension,
lll(i? classe.s, are incomplete symbols. We require a division of functions of two
vartables into predicative and non-predicative functions, again for reasons which
have been explained in Chapter II. We use the notation “¢!(x, y)” for a
predicative funetion of # and y.

We use “¢! (2, §)” for the function as opposed to its values; and we use
“?)d (x,)” for the relation (in extension) determined by ¢ (», y). We put

FEIS @y = @)1 $ @ 9) - Zay- ¥ (@ y) f ¥ @) DE
"l‘lms even when f{y! (%, %)} is not an extensional function of y, f {2§ ¢ (z,y)}
15 an extensional function of ¢. Hence, just as in the case of classes, we deduce
| PR30y = 3 (@.9) . =1 6(@,9) - 0y ¥ (59,

i.e. a relation is determined by its extension, and vice versa.
On the analogy of the definition of “z e yr!2,” we put
c[HI@ D)y =¥ y) DI
This definition, like that of “zeyr!2,” is not introduced for its own sake,
but in order to give a meaning to

_ o z{2§¢ (2, y)} y-
This meaning, in virtue of our definitions, is

@) 1 (Y) - Zay U@y 12 (YL@ Gy,
re (HY): (2, 9) - =ay - YLz y) 1 P2 y),
and this, in virtue of the axiom of reducibility
“@¥): (@) =ay-¥i(zy),)
is equivalent to ¢ (2, ).
Thus we have always
Fra 2z p)y.=. ¢ (z,y)

* This definition raises certain questions as to the two senses of a relation, which are dealt
with in #21.
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Whenever the determining function of a relation is not relevant, we may
replace 2§ ¢ («,y) by a single capital letter. In virtue of the propositions given

above,
FiR=8.=:2Ry.=,,.28y,

Fe.R=20¢(xz,y).-=:1aRy.=.,. b (2,9),
and b . R=2§(zRy).

Classes of relations, and relations of relations, can be dealt with as classes
of classes were dealt with above.

Just as a class must not be capable of being or not being a member of itself,
so a relation must neither be nor not be referent or relatum with respect to
itself. This turns out to be equivalent to the assertion that ¢! (2, §) cannot
significantly be either of the arguments z or y in ¢! («, ). This principle, again,
results from the limitation to the possible arguments to a function explained
at the beginning of Chapter II.

We may sum up this whole discussion on incomplete symbols as follows.

The use of the symbol “(12)($px)” as if in “ £ (12)(pz;” it directly represented
an argument to the function f2 is rendered possible by the theorems

FE!(e)(dz). D :(x). fo. D . f (1) (p),

b (1z) (¢pz) = (12) (Yz) . D . f (1) () = f (12) (Yrz),

F:E! (12) (92) . 2. (12) (pz) = (1z) (),

2 (1) ($) = (12) (¥2) . = . (1) (Y) = (1) (),

b 2 (1) ($i2) = (1) () . (1) () = (1) (x2) - D - (22) () = (30) ().

The use of the symbol “2Z (¢z)” (or of a single letter, such as a, to represent
such a symbol) as if, in “f {2 (pa)},” it directly represented an argument a to a
function f@, is rendered possible by the theorems

Fi(a).fu. 2. f{2(¢z)],

F1d(ga) =8 (Ya). D 2 ($e)} = & ().
k.2 (ga) =2 (o),

i

-

18(¢z) =8 (Yz). =. 2 (Yo) =E(dz),
F:a(pz)=2z) .2 (Y2)=2(xx). D. & (px)=Z (xx).

Throughout these propositions the types must be supposed to be properly
adjusted, where ambiguity is possible.

The use of the symbol “2§ {¢ (z,y)] ” (or of a single letter, such as R, to
represent such a symbol) asAif, in “f {29 ¢ (z,¥)},” it directly represented an
argument R to a function fR, is rendered possible by the theorems

bi(R).fR.D.[ {39 ¢ @9
1 2] (2, y) =2 ¥ (2,y). . f{2) & (2,9)] =/ 127 ¥ (=, y)j,
iy d (e y) =29 ¢ (2 y),
(2] (=20 ¥ (n,y) . =. 2 ¥ (2,9) =2) ¢ (%, p),
12§ ¢ (2. ) =20 ¥ (0, y) . 2J ¥ (@, y) = 8F x (=, 9) -
2.2 ¢ (v,y)=2§ x (=, y)-

T.— r T 7T
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Throughout these propositions the types must be supposed to be properly
ndjusted where ambiguity is possible.

It follows from these three groups of theorems that these incomplete
symbols are obedient to the same formal rules of identity as symbols which
tirectly represent objects, so long as we only consider the equivalence of the
reaulting variable (or constant) values of propositional functions and not their
identity. This consideration of the identity of propositions never enters into
o formal reasoning.

Similarly the limitations to the use of these symbols can be summed up
w follows. In the case of (12) (¢), the chief way in which its incompleteness
i% relevant is that we do not always have

@)+ fe . . f (1) ($o),
r.e. a function which is always true may nevertheless not be true of (12) (¢).
This is possible because f(1z)(¢x) is not a value of /%, so that even when all
values of f2 are true, f(1z) (¢z) may not be true. This happens when (12) (¢)
does not exist. Thus for example we have (z).2 =2, but we do not have
the round square = the round square.

The inference (=) - fo . 2. f(1z) (¢p)
is only valid when E!(1z) ($z). As soon as we know E ! (1z) (), the fact that
(1r)(¢z) is an incomplete symbol becomes irrelevant so long as we confine
ourselves to truth-functions* of whatever proposition is its scope. But even
when E1(12) (¢#), the incompleteness of (1) (¢x) may be relevant when we
piss outside truth-functions. For example, George IV wished to know whether
Ncott was the author of Waverley, 4.e. he wished to know whether a proposition
of the form “c=(1z) (¢px)” was true. But there was no proposition of the form
“¢=y" concerning which he wished to know if it was true.

In regard to classes, the relevance of their incompleteness is somewhat
different. It may be illustrated by the fact that we may have

2(p2)=Y12.2(p2)=x12
without having YiZ2=x12
For, by a direct application of the definitions, we find that
Fi2(pz)=v!s.=.da=,y!a
Thus we shall have

I-:¢.rz,,w[z!w.¢wszx!.z‘.3.2(¢z)=\[r!2.2(¢z)=x!2,
but we shall not necessarily have 12 = x ! 2 under these circumstances, for
(wo functions may well be formally equivalent without being identical; for
example,
z = Seott . =, . & = the author of Waverley,
bul. the function “2 = the author of Waverley” has the property that George IV
wished to know whether its value with the argument “Scott” was true, whereas
* Cf. p. 8.
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the function “% =Scott” has no such property, and therefore the two functions

are not identical. Hence there is a propositional function, namely
Z=Y.&=2.J.Yy=72,

which holds without any exception, and yet does not hold when for « we

substitute a class, and for y and z we substitute functions. This is only

possible because a class is an incomplete symbol, and therefore “Z(pz)=12”

is not a value of “z=y.”

It will be observed that “f12=+1%2"is not an extensional function of

V12, Thus the scope of 2(¢z) is relevant in interpreting the product
2(p2)=12.2(p2)=x 2.
If we take the whole of the product as the scope of Z(¢z), the product is
equivalent to
(A0): pz=,012.012=Y12.012=x12,

and this does imply Y12=x12

We may say generally that the fact that 2(¢z) is an incomplete symbol
is not relevant so long as we confine ourselves to extensional functions of
functions, but is apt to become relevant for other functions of functions.

PART I

MATHEMATICAL LOGIC




