CHAPTER 11

THE THEORY OF LOGICAL TYPES

THE theory of logical types, to be explained in the present Chapter, re-
commended itself to us in the first instance by its ability to solve certain
contradictions, of which the one best known to mathematicians is Burali-Forti's
concerning the greatest ordinal. But the theory in question is not wholly
dependent upon this indirect recommendation: it has also a certain consonance
with common sense which makes it inherently credible. In what follows, we
shall therefore first set forth the theory on its own account, and then apply it
to the solution of the contradictions.

L The Vicious-Circle Principle.

An analysis of the paradoxes to be avoided shows that they all result from
a certain kind of vicious circle*. The vicious circles in question arise from
supposing that a collection of objects may contain members which can only be
defined by means of the collection as a whole. Thus, for example, the collection
of propositions will be supposed to contain a proposition stating that “all
propositions are either true or false.” It would seem, however, that such a
statement could not be legitimate unless “all propositions” referred to some
nlready definite collection, which it cannot do if new propositions are created
by statements about “all propositions.” We shall, therefore, have to say that
statements about “all propositions” are meaningless. More generally, given
any set of objects such that, if we suppose the set to have a total, it will con-
tain members which presuppose this total, then such a set cannot have a total.
By saying that a set has “no total,” we mean, primarily, that no significant
statement can be made about “all its members.” Propositions, as the above
illustration shows, must be a set having no total. The same is true, as we shall
shortly see, of propositional functions, even when these are restricted to such
ns can significantly have as argument a given object @. In such cases, it is
necessary to break up our set into smaller sets, each of which is capable of a
total. This is what the theory of types aims at effecting.

The principle which enables us to avoid illegitimate totalities may be
tated as follows: “Whatever involves all of a collection must not be one of
the collection”; or, conversely: “If, provided a certain collection had a total,
it would have members only definable in terms of that total, then the said
collection has no total.” We shall call this the “vicious-circle principle,” be-
enuse it enables us to avoid the vicious circles involved in the assumption of
illegitimate totalities. Arguments which are condemned by the vicious-circle

* Hee the last section of the present Chapter. Cf. also H. Poincaré, *‘ Les mathématiques et
I logique,” Revue de Métaphysique et de Morale, Mai 1906, p. 307.
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principle will be called “vicious-circle fallacies.” Such arguments, in certain
circumstances, may lead to contradictions, but it often happens that the con-
clusions to which they lead are in fact true, though the arguments are
fallacious. Take, for example, the law of excluded middle, in the form “all
Propositions are true or false.” If from this law we argue that, because the
law of excluded middle is a proposition, therefore the law of excluded middle
Is true or false, we incur a vicious-circle fallacy. “All propositions” must be
in some way limited before it becomes a legitimate totality, and any limita-
tion which makes it legitimate must make any statement about the totality
fall outside the totality. Similarly, the imaginary sceptic, who asserts that
he knows nothing, and is refuted by being asked if he knows that he knows
nothing, has asserted nonsense, and has been fallaciously refuted by an
argument which involves a vicious-circle fallacy. In order that the sceptic’s
assertion may become significant, it is necessary to place some limitation
upon the things of which he is asserting his ignorance, because the things
of which it is possible to be ignorant form an illegitimate totality. But as
soon as a suitable limitation has been placed by him upon the collection of
propositions of which he is asserting his ignorance, the proposition that he is
ignorant of every member of this collection must not itself be one of the
collection. Hence any significant scepticism is not open to the above form of
refutation.

The paradoxes of symbolic logic concern various sorts of objects: propo-
sitions, classes, cardinal and ordinal numbers, ete. All these sorts of objects,
as we shall show, represent illegitimate totalities, and are therefore capable of
giving rise to vicious-circle fallacies. But by means of the theory (to be
explained in Chapter IIT) which reduces statements that are verbally con-
cerned with classes and relations to statements that are concerned with
propositional functions, the paradoxes are reduced to such as are concerned
with propositions and propositional functions. The paradoxes that concern
propositions are only indirectly relevant to mathematics, while those that
more nearly concern the mathematician are all concerned with propositional
Junctions. We shall therefore proceed at once to the consideration of propo-
sitional functions, y

11. The Nature of Propositional Functions.

By a “propositional function” w& mean something which contains a
variable #, and expresses a proposition as soon as a value is assigned to .
That is to say, it differs from a proposition solely by the fact that it is
ambiguous: it contains a variable of which the value is unassigned. It agrees
with the ordinary functions of mathematics in the fact of containing an
unassigned variable; where it differs is in the fact that the values of the
function are propositions. Thus e.g. “z is a man” or “sinz=1"isa propo-
sitional function. We shall find that it is possible to incur a vicious-circle
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fallacy at the very outset, by admitting as possible arguments to a propositional
fanction terms which presuppose the function. This form of the fallacy is very
instructive, and its avoidance leads, as we shall see, to the hierarchy of types.

The question as to the nature of a function®* is by no means an easy one.
It would seem, however, that the essential characteristic of a function is
ambiguity. Take, for example, the law of identity in the form “ A4 is 4,” which
is the form in which it is usually enunciated. It is plain that, regarded
psychologically, we have here a single judgment. But what are we to say of
the object of the judgment? We are not judging that Socrates is Socrates,
nor that Plato is Plato, nor any other of the definite judgments that are
instances of the law of identity. Yet each of these judgments is, in a sense,
within the scope of our judgment. We are in fact Jjudging an ambiguous
instance of the propositional function “4 is 4.” We appear to have a single
thought which does not have a definite object, but has as its object an
undetermined one of the values of the function “4 is 4.” It is this kind of
ambiguity that constitutes the essence of a function. When we speak of “ow,”
where z is not specified, we mean one value of the function, but not a definite
one. We may express this by saying that “¢xz” ambiguously denotes da, db, de,
etc.,, where ¢a, ¢b, ¢c, etc,, are the various values of “¢a.”

When we say that “¢z” ambiguously denotes pa, $b, ¢c, ete., we mean
that “¢z” means one of the objects ¢a, ¢b, ¢, ete., though not a definite
one, but an undetermined one. It follows that “¢z” only has a well-defined
meaning (well-defined, that is to say, except in so far as it is of its essence to
be ambiguous) if the objects ¢a, ¢b, de, ete., are well-defined. That is to say,
o function is not a well-defined function unless all its values are already well-
defined. It follows from this that no function can have among its values
anything which presupposes the function, for if it had, we could not regard
the objects ambiguously denoted by the function as definite until the function
was definite, while conversely, as we have Jjust seen, the function cannot be
definite until its values are definite. This is a particular case, but perhaps the
most fundamental case, of the vicious-circle principle. A function is what
ambiguously denotes some one of a certain totality, namely the values of the
function ; hence this totality cannot contain any members which involve the
function, since, if it did, it would contain members involving the totality,
which, by the vicious-circle principle, no totality can do.

It will be seen that, according to the above account, the values of a
function are presupposed by the function, not vice versa. It is sufficiently
obvious, in any particular case, that a value of a function does not presuppose
the function. Thus for example the proposition “ Socrates is human ” can be
perfectly apprehended without regarding it as a value of the function “# is
human.” It is true that, conversely, a function can be apprehended without

* When the word *“ function ” is used in the sequel, *¢ propositional function’’ is always meant.
Other functions will not be in question in the p t Chapt




40 INTRODUCTION [crAP.

its being necessary to apprehend its values severally and individually. If this
were not the case, no function could be apprehended at all, since the number
of values (true and false) of a function is necessarily infinite and there zre
necessarily possible arguments with which we are unacquainted. What is
necessary is not that the values should be given individually and extensionally,
but that the totality of the values should be given intensionally, so that, con-
cerning any assigned object, it is at least theoretically determinate whether or
not the said object is a value of the function.

Tt is necessary practically to distinguish the function itself from an
undetermined value of the function. We may regard the function itself as
that which ambiguously denotes, while an undetermined value of the function
is that which is ambiguously denoted. If the undetermined value is written
“¢a,” we will write the function itself “4)’1 ” (Any other letter may be used
in place of #.) Thus we should say “¢= is a proposition,” but “¢$2 is a propo-
gitional function.” When we say “¢z is a proposition,” we mean to state
something which is true for every possible value of #, though we do not decide
what value z is to have. We are making an ambiguous statement about any
value of the function. But when we say “ ¢# is a function,” we are not making
an ambiguous statement. It would be more correct to say that we are making
a statement about an ambiguity, taking the view that a function is an am-
biguity. The function itself, 2, is the single thing which ambiguously denotes
its many values; while ¢z, where z is not specified, is one of the denoted
objects, with the ambiguity belonging to the manner of denoting.

We have seen that, in accordance with the vicious-circle principle, the
values of a function cannot contain terms only definable in terms of the
function. Now given a function ¢#, the values for the function* are all pro-
positions of the form ¢x. It follows that there must be no propositions, of
the form ¢z, in which  has a value which involves ¢2. (If this were the case,
the values of the function would not all be determinate until the funetion
was determinate, whereas we found that the function is not determinate unless
its values are previously determinate.) Hence there must be no such thing as
the value for ¢2 with the argument ¢%, or with any argument which involves
¢2. That is to say, the symbol “¢ (¢£)” must not express a proposition, as
“pa” does if pa is a value for ¢2. In fact “¢ (¢2)” must be a symbol which
does not express anything: we may therefore say that it is not significant. Thus
given any function ¢®, there are arguments with which the function has no
value, as well as argumeni;s with which it has a value. We will call the
arguments with which ¢% has a value “possible values of 2.” We will say
that ¢2 is “significant with the argument z” when ¢# has a value with the
argument .

* We shall speak in this Chapter of ‘“values for ¢£” and of *‘ values of ¢z,” meaning in each

case the same thing, namely ¢a, ¢b, ¢c, etec. The distinction of phraseology serves to avoid
ambiguity where several variables are concerned, especially when one of them is a function.
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When it is said that eg. “ ¢ (¢2)” is meaningless, and therefore neither
true nor false, it is necessary to avoid a misunderstanding. If “¢ ($2)” were
interpreted as meaning “the value for ¢2 with the argument ¢2 is true,”
that would be not meaningless, but false. It is false for the same reason for
which “the King of France is bald” is false, namely because there is no such
thing as “the value for ¢2 with the argument ¢2.” But when, with some
argument a, we assert ¢a, we are not meaning to assert “the value for ¢2 with
the argument a is true”; we are meaning to assert the actual proposition
which ds the value for ¢# with the argument a. Thus for example if ¢# is
“% is a man,” ¢ (Socrates) will be “Socrates is a man,” not “the value for
the function ‘2 is a man,’ with the argument Socrates, is true.” Thus
in accordance with our principle that “¢(¢2)” is meaningless, we cannot
legitimately deny “the function ‘2 is a man’ is a man,” because this is
nonsense, but we can legitimately deny “the value for the function ‘2 is a
man’ with the argument ‘2 is a man’ is true,” not on the ground that the
value in question is false, but on the ground that there is no such value for
the function.

We will denote by the symbol “(z) . ¢” the proposition “¢z always*,’
i.e. the proposition which asserts all the values for ¢# This proposition
involves the function ¢2, not merely an ambiguous value of the function. The
assertion of ¢z, where z is unspecified, is a different assertion from the one
which asserts all values for ¢# for the former is an ambiguous assertion,
whereas the latter is in no sense ambiguous. It will be observed that “(x).¢a”
does not assert “¢z with all values of z,” because, as we have seen, there must
be values of # with which “¢x” is meaningless. What is asserted by “(«). ¢z”
is all propositions which are values for ¢#; hence it is only with such values
of x as make “$=z” significant, ¢.e. with all possible arguments, that ¢z is asserted
when we assert “(z). ¢z.” Thus a convenient way to read “(z). ¢pa” is “¢a is
true with all possible values of #.” This is, however, a less accurate reading
than “¢z always,” because the notion of fruth is not part of the content of
what is judged. When we judge “all men are mortal,” we judge truly, but
the notion of truth is not necessarily in our minds, any more than it need be
when we judge “Socrates is mortal.”

IIL. Definstion and Systematic Ambiguity of Truth and Falsehood.

Since “(z) . ¢p&” involves the function ¢#, it must, according to our
principle, be impossible as an argument to ¢. That is to say, the symbol
“¢ {(#) . o}” must be meaningless. This principle would seem, at first sight,
to have certain exceptions. Take, for example, the function “p is false,” and
consider the proposition “(p).p is false” This should be a proposition
asserting all propositions of the form “p is false.” Such a proposition, we

* We use ‘““always” as meaning ‘‘in all cases,” not ‘“at all times.” Similarly *sometimes”
will mean ‘‘in some cases.”
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should be inclined to say, must be false, because “p is false” is not always
true. Hence we should be led to the proposition
“{(p) - p is false} is false,”

1. we should be led to a proposition in which “(p).p is false” is the argu-
ment to the function “p is false,” which we had declared to be impossible.
Now it will be seen that “(p).p is false,” in the above, purports to be a
proposition about all propositions, and that, by the general form of the vicious-
circle principle, there must be no propositions about all propositions. Never-
theless, it seems plain that, given any function, there is a proposition (true or
false) asserting all its values. Hence we are led to the conclusion that “p is
false” and “g is false” must not always be the values, with the arguments p
and g, for a single function “ 5 is false.” This, however, is only possible if the
word “false” really has many different meanings, appropriate to propositions
of different kinds.

That the words “true” and “false” have many different meanings, accord-
ing to the kind of proposition to which they are applied, is not difficult to
see. Let us take any function ¢2, and let ¢ be one of its values. Let us call
the sort of truth which is applicable to ¢a “ first truth.” (This is not to assume
that this would be first truth in another context: it is merely to indicate that
it is the first sort of truth in our context.) Consider now the proposition
(2) . 2. If this has truth of the sort appropriate to it, that will mean that
every value ¢z has “first truth.” Thus if we call the sort of truth that is
appropriate to (). ¢z “second truth,” we may define “{(z).z} has second
truth” as meaning “every value for ¢2 has first truth,” i.e. “(x). (¢« has first
truth).” Similarly, if we denote by “(sq[z) . ¢ ” the proposition “ ¢« sometimes,”
1.e. a8 we may less accurately express it, “¢« with some value of 2,” we find
that (g#) . ¢z has second truth if there is an # with which ¢z has first truth;
thus we may define “{(q). ¢z} has second truth” as meaning “some value
for ¢2 has first truth,” i.e. “(qz) . (¢= has first truth).” Similar remarks apply
to falsehood. Thus “{(x). ¢} has second falsehood” will mean “some value
for ¢2 has first falsehood,” ie. “(mz).(¢z has first falsehood),” while
“{(Hz) . o} has second falsehood” will mean “all values for ¢2 have first
falsehood,” i.e. “(z) . (¢ has first falsehood).” Thus the sort of falsehood that
can belong to a general proposition is different from the sort that can belong
to a particular proposition.

Applying these considerations @ the proposition “(p). p is false,” we see
that the kind of falsehood in question must be specified. If, for example,
first falsehood is meant, the function “$ has first falsehood” is only signi-
ficant when p is the sort of proposition which has first falsehood or first
truth. Hence “(p).p is false” will be replaced by a statement which is
equivalent to “all propositions having either first truth or first falsehood
have first falsehood.” This proposition has second falsehood, and is not

i TRUTH AND FALSEHOOD 43

o possible argument to the function “$ has first falsehood.” Thus the
apparent exception to the principle that “¢ {(x). ¢z} ” must be meaningless
disappears. : ‘

Similar considerations will enable us to deal with “not-p” and with “p or ¢.”
It might seem as if these were functions in which any proposition might
appear as argument. But this is due to a systematic ambiguity in the mean-
ings of “not” and “or,” by which they adapt themselves to propositions of any
order. To explain fully how this occurs, it will be well to begin with a
definition of the simplest kind-of ¢ruth and falsehood.

The universe consists of objects having various qualities and standing
in various relations. Some of the objects which occur in the universe are
complex. When an object is complex, it consists of interrelated parts. Let
us consider a complex object composed of two parts ¢ and b standing to each
other in the relation R. The complex object “a-in-the-relation-R-to-b” may
be capable of being perceived ; when perceived, it is perceived as one object.
Attention may show that it is complex ; we then judge that ¢ and b stand in
the relation R. Such a judgment, being derived from perception by mere
attention, may be called a “judgment of perception.” This judgment of
perception, considered as an actual occurrence, is a relation of four terms,
namely @ and b and R and the percipient. The perception, on the contrary, is
a relation of two terms, namely “a-in-the-relation-R-to-b,” and the percipient.
Since an object of perception cannot be nothing, we cannot perceive “a-in-the-
relation-R-to-b” unless o is in the relation B to b. Hence a judgment of
perception, according to the above definition, must be true. This does not
mean that, in a judgment which appears to us to be one of perception, we
are sure of not being in error, since we may err in thinking that our judgment
has really been derived merely by analysis of what was perceived. But if our
judgment has been so derived, it must be true.’ In fact, we may define truth,
where such judgments are concerned, as consisting in the fact that there is a
complex corresponding to the discursive thought which is the judgment. That is,
when we judge “a has the relation R to b,” our judgment is said to be true
when there is a complex “a-in-the-relation-R-to-b,” and is said to be false
when this is not the case. This is a definition of truth and falsehood in rela-
tion to judgments of this kind.

It will be seen that, according to the above account, a judgment does not
have a single object, namely the proposition, but has several interrelated
objects. That is to say, the relation which constitutes judgment is not a
relation of two terms, namely the judging mind and the proposition, but is a
relation of several terms, namely the mind and what are called the constituents
of the proposition. That is, when we judge (say) “this is red,” what occurs
is a relation of three terms, the mind, and “this,” and red. On the other hand,
when we perceive “the redness of this,” there is a relation of two terms, namely
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the mind and the complex object “the redness of this” When a Jjudgment
occurs, there is a certain complex entity, composed of the mind and the
various objects of the judgment. When the judgment is true, in the case of
the kind of judgments we have been considering, there is a corresponding
complex of the objects of the Judgment alone, Falsehood, in regard to our
present class of judgments, consists in the absence of a corresponding complex
composed of the objects alone. It follows from the above theory that a
“proposition,” in the sense in which a proposition is supposed to be the object
of a judgment, is a false abstraction, because a Judgment has several objects,
Dot one. It is the severalness of the objects in judgment (as opposed to
perception) which has led people to speak of thought as “discursive,” though
they do not appear to have realized clearly what was meant by this epithet.

Owing to the plurality of the objects of a single judgment, it follows that
what we call a “proposition” (in the sense in which this is distinguished from
the phrase expressing it) is not a single entity at all. That is to say, the phrase
which expresses a proposition is what we call an incomplete ” symbol *; it
does not have meaning in itself, but requires some supplementation in order
to acquire a complete meaning. This fact is somewhat concealed by the
circumstance that judgment in itself supplies a sufficient supplement, and that
Jjudgment in itself makes no verbal addition to the proposition. Thus “the
proposition ‘Socrates is human’ uses “Socrates is human” in a way which
requires a supplement of some kind before it acquires a complete meaning;
but when I judge “Socrates is human,” the meaning is completed by the act of
Judging,and we no longer have an incomplete symbol. The fact that propositions
are “incomplete symbols” is important philosophically, and is relevant at certain
points in symbolic logic.

The judgments we have been dealing with hitherto are such as are of the
same form as judgments of perception, 7.e. their subjects are always particular
and definite. But there are many judgments which are not, of this form. Such
are “all men are mortal” “I met a man,” “some men are Greeks.” Before
dealing with such judgments, we will introduce some technical terms.

We will give the name of “a complez” to any such object as “« in the re-
lation R to b” or “a having the quality ¢,” or “a and b and ¢ standing in the
relation S.” Broadly speaking, a complez is anything which occurs in the
universe and is not simple. We will call a Judgment elementary when it
merely asserts such things as “a his the relation R to b,” “ g has the quality ¢”
or “a and b and ¢ stand in the relation S.” Then an elementary judgment is
true when there is a corresponding complex, and false when there is no corre-
sponding complex.

But take now such a proposition as “all men are mortal” Here the
Jjudgment does not correspond to one complex, but to many, namely “Socrates

* See Chapter III.
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is mortal,” “Plato is mortal,” “Aristotle is mortal,” ete. (For the moment, it
is unnecessary to inquire whether each of these does not require further
treatment before we reach the ultimate complexes involved. For purposes of
illustration, “Socrates is mortal” is here treated as an elementary judgment,
though it is in fact not one, as will be explained later. Truly elementary
Judgments are not very easily found.) We do not mean to deny that there
may be some relation of the concept man to the concept mortal which may be
equivalent to “all men are mortal,” but in any case this relation is not the
same thing as what we affirm when we say that all men are mortal, Our
Judgment that all men are mortal collects together a number of elementary
Judgments. It is not, however, composed of these, since (e.g.) the fact that
Socrates is mortal is no part of what we assert, as may be seen by considering
the fact that our assertion can be understood by a person who has never heard
of Socrates. In order to understand the judgment “all men are mortal” it is
not necessary to know what men there are. We must admit, therefore, as a
radically new kind of judgment, such general assertions as “all men are mortal.”
We assert that, given that « is human, 2 is always mortal. That is, we assert
“x is mortal” of every = which is human. Thus we are able to Jjudge (whether
truly or falsely) that all the objects which have some assigned property also
have some other assigned property. That is, given any propositional functions
¢@ and 3, there is a judgment asserting Y& with every « for which we have
¢a. Such judgments we will eall general judgments.

It is evident (as explained above) that the definition of truth is different
in the case of general judgments from what it was in the case of elementary
Jjudgments. Let us call the meaning of ¢ruth which we gave for elementary
Judgments “elementary truth.” Then when we assert that it is true that all
men are mortal, we shall mean that all Judgments of the form “z is mortal,”
where z is a man, have elementary truth. We may define this as “truth of
the second order” or “second-order truth.” Then if we express the proposition
“all men are mortal” in the form :

“(@). is mortal, where « is a man,”
and call this judgment p, then “p is true” must be taken to mean “p has
second-order truth,” which in turn means
“(2) « ‘z is mortal’ has elementary truth, where z is a man.”

In order to avoid the necessity for stating explicitly the limitation to
which our variable is subject, it is convenient to replace the above interpre-
tation of “all men are mortal” by a slightly different interpretation. The
proposition “all men are mortal” is equivalent to “ s is a man’ implies ‘a is
mortal," with all possible values of 2" Here # is not restricted to such values
as are men, but may have any value with which “‘z is a man’ implies ‘z is
mortal’” is significant, i.e. either true or false. Such a proposition is called a
“forinal implication.” The advantage of this form is that the values which the
variable may take are given by the function to which it is the argument: the
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values which the variable may take are all those with which the function is
significant.

We use the symbol “(z).¢z” to express the general judgment which
asserts all judgments of the form “¢z.” Then the judgment “all men are
mortal” is equivalent to

“(#) . ‘z is a man’ implies ‘z is a mortal,’”
1.e. (in virtue of the definition of implication) to
“(x) . 2 1s not a man or z is mortal.”

As we have just seen, the meaning of #ruth which is applicable to this pro-
position is not the same as the meaning of ¢ruth which is applicable to“zisa
man” or to “z is mortal.” And generally, in any judgment (z) . ¢, the sense
in which this judgment is or may be true is not the same as that in which ¢z
is or may be true. If ¢ is an elementary judgment, it is true when it points
fo a corresponding complex. But (z). ¢« does not point to a single corre-
sponding complex : the corresponding complexes are as numerous as the possible
values of .

It follows from the above that such a proposition as “all the judgments
made by Epimenides are true” will only be prima facie capable of truth if all
his judgments are of the same order. If they are of varying orders, of which
the nth is the highest, we may make = assertions of the form “all the judg-
ments of order m made by Epimenides are true,” where m has all values up
to n. But no such judgment can include itself in its own scope, since such a
judgment is always of higher order than the judgments to which it refers.

Let us consider next what is meant by the negation of a proposition of
the form “(z).¢z.” We observe, to begin with, that “¢2 in some cases,” or
“¢z sometimes,” is a judgment which is on a par with “¢z in all cases,” or
“¢x always.” The judgment “¢z sometimes” is true if one or more values of
x exist for which ¢z is true. We will express the proposition “¢z sometimes”
by the notation “(qz).¢x,” where “H” stands for “there exists,” and the
whole symbol may be read “there exists an « such that ¢o.” We take the
two kinds of judgment expressed by “(x).¢z” and “(gz). px” as primitive
ideas. We also take as a primitive idea the negation of an elementary pro-
position. We can then define the negations of (z). ¢z and (qz). ¢z. The
negation of any proposition p will be denoted by the symbol “~p.” Then the
negation of (z) . ¢z will be defined as meaning

“(q#) - ~ ¢,
and the negation of (72). ¢z will be defined as meaning “(z). ~ ¢z.” Thus,
in the traditional language of formal logic, the negation of a universal affir-
mative is to be defined as the particular negative, and the negation of the
particular affirmative is to be defined as the universal negative.- Hence the
meaning of negation for such propositions is different from the meaning of
negation for elementary propositions.
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An analogous explanation will apply to disjunction. Consider the state-
ment “either p, or ¢z always,” We will denote the disjunction of two
propositions p, ¢ by “p v ¢.” Then our statement is “p. v . (z) . pz.” We will
suppose that p is an elementary proposition, and that ¢z is always an elemen-
tary proposition. We take the disjunction of two elementary propositions as
n primitive idea, and we wish to define the disjunction

“pov.(z). paz”

This may be defined as “(z). pv ¢x,” i.e. “either p is true, or ¢= is always true”
is to mean “‘p or ¢z’ is always true.” Similarly we will define

“p.v.(dz). px”
iy meaning “(gz) . pv ¢a,” .e. we define “either p is true or there is an 2
for which ¢z is true” as meaning “there is an # for which either p or ¢z is
true.” Similarly we can define a disjunction of two universal propositions:
“(@). px.v.(y).yy” will be defined as meaning “(z,y). pz vy’ te.
“either ¢z is always true or yry is always true” is to mean “‘¢z or Yy’ is
always true.” By this method we obtain definitions of disjunctions con-
taining propositions of the form (). ¢z or (). ¢« in terms of disjunctions
of elementary propositions; but the meaning of “disjunction” is not the same
for propositions of the forms (z). ¢z, () - P, as it was for elementary pro-
positions.

Similar explanations could be given for implication and conjunction, but
this is unnecessary, since these can be defined in terms of negation and
disjunction,

IV. Why a Given Function requires Arguments of a Certain Type.

The considerations so far adduced in favour of the view that a function
cannot significantly have as argument anything defined in terms of the
function itself have been more or less indirect. But a direct consideration
of the kinds of functions which have functions as arguments and the kinds
of functions which have arguments other than functions will show, if we are
not mistaken, that not only is it impossible for a function ¢2 to have itself
or anything derived from it as argument, but that, if 42 is another function
such that there are arguments « with which both “¢a” and “yra” are sig-
nificant, then 2 and anything derived from it cannot significantly be
argument to ¢2. This arises from the fact that a function is essentially
an ambiguity, and that, if it is to occur in a definite proposition, it must
occur in such a way that the ambiguity has disappeared, and a wholly
unambiguous statement has resulted. A few illustrations will make this clear.
Thus “(z) . ¢z,” which we have already considered, is a function of ¢%; as soon
0s ¢ is assigned, we have a definite proposition, wholly free from ambiguity.
But it is obvious that we cannot substitute for the function something which
is not a function: “().¢z” means “¢z in all cases,” and depends for its
significance upon the fact that there are “cases” of ¢w, e upon the
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ambiguity which is characteristic of a function. This instance illustrates
the fact that, when a function can occur significantly as argument, something
which is not a function cannot occur significantly as argument. But con-
versely, when something which is not u function can oceur significantly
as argument, a function cannot occur significantly. Take, e.g. “& is a man,”
and consider “¢2 is a man,” Here there is nothing to eliminate the
ambiguity which constitutes ¢#; there is thus nothing definite which is
said to be a man. A function, in fact, is not a definite object, which could
be or not be a man; it is a mere ambiguity awaiting determination, and
in order that it may occur significantly it must receive the necessary deter-
mination, which it obviously does not receive if it is merely substituted
for something determinate in a proposition*, This argument does not, how-
ever, apply directly as against such a statement as “{(z). s} is a man.”
Common sense would pronounce such a statement to be meaningless, but it
cannot be condemned on the ground of ambiguity in its subject. We need
here a new objection, namely the following: A proposition is not a single entity,
but a relation of several; hence a statement in which a proposition appears
as subject will only be significant if it can be reduced to a statement about
the terms which appear in the proposition. A proposition, like such phrases
as “the so-and-so,” where grammatically it appears as subject, must be broken
up into its constituents if we are to find the true subject or subjects+. But
in such a statement as “p is a man,” where p is a proposition, this is not
possible. Hence “{(z). ¢z} is a man” is meaningless.

V. The Hierarchy of Functions and Propositions.

We are thus led to the conclusion, both from the vicious-circle principle
and from direct inspection, that the functions to which a given object a can
be an argument are incapable of being arguments to each other, and that they
have no term in common with the functions to which they can be arguments.
We are thus led to construct a hierarchy. Beginning with a and the other
terms which can be arguments to the same functions to which @ can be argu-
ment, we come next to functions to which a is a possible argument, and then
to functions to which such functions are possible arguments, and so on. But
the hierarchy which has to be constructed is not so simple as might at first
appear. The functions which can take ¢ as argument form an illegitimate
totality, and themselves require division into a hierarchy of functions. This
is easily seen as follows. Let f(¢2, #) be a function of the two variables ¢%
and z. Then if, keeping « fixed for'the moment, we assert this with all possible
values of ¢, we obtain a proposition:

($)- 1 (#2, 2).

* Note that statements concerning the significance of a phrase containing ““ 2" concern the
symbol **¢2,” and therefore do not fall under the rule that the elimination of the functional
ambiguity is necessary to significance. Significance is a property of gigns. Cf, pp. 40, 41,

1 Cf. Chapter IIL,
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Here, if # is variable, we have a function of z; but as this function involves
a totality of values of ¢2*, it cannot itself be one of the values included in
the totality, by the vicious-circle principle. It follows that the totality of values
of ¢2 concerned in (¢). 7 (¢2, #) is not the totality of all functions in which
@ can occur as argument, and that there is no such totality as that of all func-
tions in which # can occur as argument.

It follows from the above that a function in which $2 appears as argument
requires that “¢2"” should not stand for any function which is capable of a
given argument, but must be restricted in such a way that none of the
functions which are possible values of “¢2” should involve any reference to
the totality of such functions. Let us take as an illustration the definition
of identity. We might attempt to define “z is identical with y” as meaning
“whatever is true of « is true of y,” i.e. “¢z always implies ¢y.” But here,
since we are concerned to assert all values of “¢z implies ¢y” regarded as a
function of ¢, we shall be compelled to impose upon ¢ some limitation which
will prevent us from including among values of ¢ values in which “all possible
values of ¢” are referred to. Thus for example “« is identical with a” is a
function of w; hence, if it is a legitimate value of ¢ in “¢z always implies
¢y,” we shall be able to infer, by means of the above definition, that if x is
identical with o, and « is identical with %, then y is identical with a.
Although the conclusion is sound, the reasoning embodies a vicious-circle
fallacy, since we have taken “(¢). ¢z implies pa” as a possible value of ¢z,
which it cannot be. If, however, we impose any limitation upon ¢, it may
happen, so far as appears at present, that with other values of ¢ we might
have ¢z true and ¢y false, so that our proposed definition of identity would
plainly be wrong. This difficulty is avoided by the “axiom of reducibility,”
to be explained later. For the present, it is only mentioned in order to
illustrate the necessity and the relevance .of the hierarchy of functions of a
given argument.

Let us give the name “a-functions” to functions that are significant for a
given argument a. Then suppose we take any selection of a-functions, and
consider the proposition “a satisfies all the functions belonging to the selection
in question.” If we here replace a by a variable, we obtain an a-function; but
by the vicious-circle principle this a-function cannot be a member of our
selection, since it refers to the whole of the selection. Let the selection consist
of all those functions which satisfy 7 (¢2). Then our new function is

($)- {f (¢2) implies ¢pa},
where z is the argument. It thus appears that, whatever selection of
a-functions we may make, there will be other a-functions that lie outside our
* When we speak of ‘“values of ¢2” it is ¢, not z, that is to be assigned. This follows from
the explanation in the note on p. 40. When the function itself is the variable, it is possible and

simpler to-write ¢ rather than ¢Z, except in positions where it is necessary to emphasize that an
argument must be supplied to secure significance,
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selection. Such a-functions, as the above instance illustrates, will always
arige through taking a function of two arguments, ¢2 and z,and asserting all
or some of the values resulting from varying ¢. What is necessary, therefore,
in order to avoid vicious-circle fallacies, is to divide our a-functions into
“types,” each of which contains no functions which refer to the whole of that
type. I

When something is asserted or denied about all possible values or about
some (undetermined) possible values of a variable, that variable is called
apparent, after Peano. The presence of the words all or some in a proposition
indicates the presence of an apparent variable; but often an apparent variable
is really present where langnage does not at once indicate its presence. Thus
for example “4 is mortal” means “there is a time at which 4 will die,” Thus
a variable time occurs as apparent variable.

The clearest instances of propositions not containing apparent variables
are such as express immediate judgments of perception, such as “this is red”
or “this is painful,” where “this” is something immediately given. In other
Jjudgments, even where at first sight no variable appears to be present, it
often happens that there really is one. Take (say) “Socrates is human.” To
Socrates himself, the word “Socrates” no doubt stood for an object of which
he was immediately aware, and the judgment “Socrates is human” contained
no apparent variable. But to us, who only know Socrates by description, the
word “Socrates” cannot mean what it meant to him; it means rather “the
person having such-and-such properties,” (say) “the Athenian philosopher who
drank the hemlock.” Now in all propositions about “the so-and-so” there is
an apparent variable, as will be shown in Chapter III. Thus in what we have
in mind when we say “Socrates is human” there is an apparent variable,
though there was no apparent variable in the corresponding judgment as
made by Socrates, provided we assume that there is such a thing as immediate
awareness of oneself.

Whatever may be the instances of propositions not containing apparent
variables, it is obvious that propositional functions whose values do not contain
apparent variables are the source of propositions containing apparent variables,
in the sense in which the function ¢2 is the source of the proposition (z). ¢.
For the values for ¢2 do not contain the apparent variable #, which appears
in (z).¢z; if they contain an apparent variable y, this can be similarly
eliminated, and so on. This pr(fgess must comne to an end, since no proposition
which we can apprehend can contain more than a finite number of apparent
variables, on the ground that whatever we can apprehend must be of finite
complexity. Thus we must arrive at last at a function of as many variables
as there have been stages in reaching it from our original proposition, and
this function will be such that its values contain no apparent variables. We
may call this function the matriz of our original proposition and of any other
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propositions and functions to be obtained by turning some of the arguments
to the function into apparent variables. Thus for example, if we have a matrix-
function whose values are ¢ (z, y), we shall derive from it :

() - ¢ (2, ), which is a function of z,

(7). ¢ (#,y), which is a function of , 1
(2,9) - $ (2, y), meaning “¢ (z,y) is true with all possible values ‘of zand y.
This last is a proposition containing no real variable, i.e. no variable except
apparent variables. ‘

It is thus plain that all possible propositions and funetions are ol)ltama.able
from matrices by the process of turning the arguments to tht? matrices into
apparent variables. In order to divide our propositions and functions into types,
we shall, therefore, start from matrices, and consider how they are to be divided
with a view to the avoidance of vicious-circle fallacies in the definitions of the
functions concerned. For this purpose, we will use such lettersas a, b, ¢, o, &,
to denote objects which are neither propositions nor functions, Such‘ ?bjecta
we shall call individuals. Such objects will be constituents of propositions or
functions, and will be genuine constituents, in the sense that they do not
disappear on analysis, as (for example) classes do, or phrases of the form “the
so-and-so.”

The first matrices that oceur are those whose values are of the forms

¢z, ¥ (2, 9), x (2.9, 2 cd
i.e. where the arguments, however many there may be, are.all individuals.
The fanctions ¢, ¥, X ..., since (by definition) they contain no apparent
variables, and have no arguments except individuals, do not presuppose any
totality of functions. From the functions y» X ... we may proceed to form
other functions of @, such as (¥). ¥ (%), (@Y) - ¥ (= ¥) (y z).x (=¥, 2),
(y) : (q2) - X (@, y, 2), and so on. All these presuppose no totality e.tccept« t-?lat
of individuals. We thus arrive at a certain collection of functions of @,
characterized by the fact that they involve no variables except individuals.
Such functions we will call “first-order functions.”

We may now introduce a notation to express “any first-order function.”
We will denote any first-order function by “¢!2” and any value ff)r sucl} a
function by “¢! «.” Thus “¢ ! 2" stands for any value for any function \\thlch
involves no variables except individuals. It will be seen that “¢! a” is itself
a function of fwo variables, namely ¢ ! 2 and 2. Thus ¢! # involves a variable
which is not an individual, namely ¢ !2. Similarly “(2).¢! x" is a function
of the variable ¢! 2, and thus involves a variable other than an individual.
Again, if a is a given individual,

“¢ 1z implies ¢ ! @ with all possible values of ¢”
is a function of #, but it is not a function of the form ¢ ! z, because it involves
an (apparent) variable ¢ which is not an individual. Let us give the Dame
«predicate” to any first-order function ¢ ! 2. (This use of the word “ predicate
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18 only proposed for the purposes of the present discussion.) Then the state-
ment “¢ !« implies ¢ ! @ with all possible values of ¢” may be read “all the
.predicates of z are predicates of a.” This makes a statement about z, but does
not attribute to 2 a predicate in the special sense just defined.

Owing to the introduction of the variable first-order function ¢!2, we
now have a new set of matrices. Thus “¢!«” is a function which contains no
apparent variables, but contains the two real variables ¢!2 and z. (It should
be observed that when ¢ is assigned, we may obtain a function whose values do
involve individuals as apparent variables, for example if ¢ ! z is () . ¥ (z, y).
But so long as ¢ is variable, ¢ ! x contains no apparent variables.) Again,
if @ is a definite individual, ¢! @ is a function of the one variable b2
If a and b are definite individuals, “¢ ! a implies 4! 5" is a function of the
two variables ¢ 12, 4~12, and so on. We are thus led to a whole set of new

matrices,

f(P12), g(9p12,412), F($!32 z), and so on.
These matrices contain individuals and first-order functions as arguments, but
(like all matrices) they contain no apparent variables. Any such matrix, if it
contains more than one variable, gives rise to new functions of one variable
by turning all its arguments except one into apparent variables. Thus we
obtain the functions

($) - g (12, Y 12), which is a function of -1 2.

(2). F($!2, ), which is a function of ¢ !2.

(¢). F($!2, ), which is a function of .

We will give the name of second-order matrices to such matrices as have
first-order functions among their arguments, and have no arguments except
first-order functions and individuals. (It is not necessary that they should
have individuals among their arguments.) We will give the name of second-
order functions to such as either are second-order matrices or are derived from
such matrices by turning some of the arguments into apparent variables. It
will be secn that either an individual or a first-order function may appear as
argument to a second-order function. Second-order functions are such as con-
tain variables which are first-order functions, but contain no other variables
except (possibly) individuals.

We now have various new classes of functions at our command. In the first
place, we have second-order functions which have one argument which is a
first-order l'unction We will denote a %ariable function of this kind by the
notation ! (¢!z), and any value of such a functmn by f1{¢!12). Like
bl f1(¢!2)isafunction of two variables, namely £ (¢ 2)and ¢ !12. Among
possible values of f1(¢12) will be ¢pla (where a is constant), {x} ¢la,
(@z)- ¢!« and so on. (These result from assigning a value to f, leavmg

¢ to be assigned.) We will call such functions “predicative functions of
first-order functions.”
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In the second place, we have second-order functions of two arguments, one
of which is a first-order function while the other is an individual. Let us denote

undetermined values of such functions by the notation
FU@1%,).
An Hoon as @ is assigned, we shall have a predicative function of ¢ 12. If our

funetion contains no first-order function as apparent variable, we shall obtain
n predicative function of z if we assign a value to ¢ 12. Thus, to take the
simplest possible case,if f1(¢ ! 2,z)is ¢ ! z,the assignment of a value to ¢ gives
un o predicative function of z, in virtue of the definition of “¢!2.” But if

(¢! 2, 2) contains a first-order function as apparent variable, the assignment

of n value to ¢! 2 gives us a second-order function of .

In the third place, we have second-order functions of individuals. These
will all be derived from functions of the form f!(¢ ! 2, 2) by turning ¢ into an
upparent variable. We do not, therefore, need a new notation for them.

We have also second-order functions of two first-order functions, or of two
such functions and an individual, and so on.

We may now proceed in exactly the same way to third-order matrices,
which will be functions containing second-order functions as arguments, and
containing no apparent variables, and no arguments except individuals and
first-order functions and second-order functions. Thence we shall proceed, as
before, to third-order functions; and so we can proceed indefinitely. If the
highest order of variable occurring in a function, whether as argument or as
apparent variable, is a function of the nth order, then the function in which
it oceurs is of the n + 1th order. We do not arrive at functions of an infinite
order, because the number of arguments and of apparent variables in a function
must be finite, and therefore every function must be of a finite order. Since
the orders of functions are only defined step by step, there can be no process
of “proceeding to the limit,” and functions of an infinite order cannot occur.

We will define a function of one variable as predicative when it is of the
next order above that of its argument, 7.e. of the lowest order compatible with
its having that argument. Ifa function has several arguments, and the highest
order of function occurring among the arguments is the nth, we call the function
predicative if it is of the n+ 1th order, <.e. again, if it is of the lowest order
compatible with its having the arguments it has. A function of several
arguments is predicative if there is one of its arguments such that, when the
other arguments have values assigned to them, we obtain a predicative function
of the one undetermined argument.

It is important to observe that all possible functions in the above hierarchy
can be obtained by means of predicative functions and apparent variables. Thus,
as we saw, second-order functions of an individual z are of the form

($)-f1(P!2,2) or () - L2, 2)or (¢,¥) . f1 (12,412 x)or ete,

where f 1s a second-order predicative function. And speaking generally, a
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non-predicative function of the nth order is obtained from a predicative function
of the nth order by turning all the arguments of the » — 1th order into apparent
variables. (Other arguments also may be turned into apparent variables.) Thus
we need not introduce as variables any functions except predicative functions.
Moreover, to obtain any function of one variable 2, we need not go beyond
predicative functions of two variables. For the function (). (¢! 2,4 12,2),
where fis given, is a function of ¢! % and «, and is predicative. Thus it is of
the form F1(¢!%,2), and therefore (¢,¥).f1(p12,¢!12,2) is of the form
(¢). F1(¢1%,2). Thusspeaking generally, by a succession of steps we find that,
if ¢ 1% is a predicative function of a sufficiently high order, any assigned non-
predicative function of z will be of one of the two forms

(¢)'F!(¢!ﬁ!$)’ (H¢)'F!(¢!’ﬁ1x):

where F is a predicative function of ¢ ! & and z.

The nature of the above hierarchy of functions may be restated as follows.
A function, as we saw at an earlier stage, presupposes as part of its meaning
the totality of its values, or, what comes to the same thing, the totality of
its possible arguments. The arguments to a function may be functions or
propositions or individuals. (It will be remembered that individuals were
defined as whatever is neither a proposition nor a function.) For the present
we neglect the case in which the argument to a function is a proposition.
Consider a function whose¢ argument is an individual. This function pre-
supposes the totality of individuals; but unless it contains functions as
apparent variables, it does not presuppose any totality of functions. If,
however, it does contain a function as apparent variable, then it cannot
be defined until some totality of functions has been defined. It follows that
we must first define the totality of those functions that have individuals
as arguments and contain no functions as apparent variables. These are
the predicative functions of individuals. Generally, a predicative function
of a variable argument is one which involves mo totality except that of
the possible values of the argument, and those that are presupposed by any
one of the possible arguments. Thus a predicative function of a variable
argument is any function which can be specified without introducing new
kinds of variables not necessarily presupposed by the variable which is the
argument,.

A closely analogous treatment can be developed for propositions. Pro-
positions which contain no functions and no/apparent variables may be called
elementary propositions. Propositions which are not elementary, which contain
no functions, and no apparent variables except individuals, may be called
Jirst-order propositions. (It should be observed that mo variables except
apparent variables can occur in a proposition, since whatever contains a real
variable is a function, not a proposition.) Thus elementary and first-order
propositions will be values of first-order functions. (It should be remembered
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that o function is not a constituent in one of its values: thus for example
tho function “2 is human ” is not a constituent of the proposition “Socrates
is human.”) Elementary and first-order propositions presuppose no totality
except (at most) the totality of individuals. They are of one or other of the

three forms Pla; (2). hle; (q2)- pla,

whore ¢ 1z is a predicative function of an individual. If follows that, if p
represents a variable elementary proposition or a variable first-order propo-
sition, a function fp is either f(¢ ! z) or f{(z). ¢!} or f{(qx). ¢! x}. Thus
n function of an elementary or a first-order proposition may always be reduced
to a function of a first-order function. It follows that a proposition involving
the totality of first-order propositions may be reduced to one involving the
totality of first-order functions; and this obviously applies equally to higher
orders. The propositional hierarchy can, therefore, be derived from the
functional hierarchy, and we may define a proposition of the nth order as
one which involves an apparent variable of the n — 1th order in the functional
hicrarchy. The propositional hierarchy is never required in practice, and is
only relevant for the solution of paradoxes; hence it is unnecessary to go into
further detail as to the types of propositions.

VI. The Aziom of Reducibility.

It remains to consider the “axiom of reducibility.” It will be seen that,
nccording to the above hierarchy, no statement can be made significantly
nbout “all a-functions,” where @ is some given object. Thus such a notion
an “all properties of a,” meaning “all functions which are true with the
argument @,” will be illegitimate. We shall have to distinguish the order
of function concerned. We can speak of “all predicative properties of a,**all
necond-order properties of a,” and so on. (If @ is not an individual, but an
objeet of order n, “second-order properties of @” will mean “functions of
order n + 2 satisfied by @.”) But we cannot speak of “all properties of a.”
In some cases, we can see that some statement will hold of “all nth-order
properties of a,” whatever value » may have. In such cases, no practical
harm results from regarding the statement as being about “all properties of
@, provided we remember that it is really a number of statements, and not
n single statement which could be regarded as assigning another property to
a, over and above all properties. Such cases will always involve some syste-
matic ambiguity, such as that involved in the meaning of the word “truth,”
ws explained above. Owing to this systematic ambiguity, it will be possible,
sometimes, to combine into a single verbal statement what are really a number
ol different statements, corresponding to different orders in the hierarchy.
This is illustrated in the case of the liar, where the statement “all A’s
statements are false ” should be broken up into different statements referring
to his statements of various orders, and attributing to each the appropriate
kind of falsehood.
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The axiom of reducibility is introduced in order to legitimate a great
mass of reasoning, in which, prima facie, we are concerned with such notions
as “all properties of @” or “all a-functions,” and in which, nevertheless, it
seems scarcely possible to suspect any substantial error. In order to state
the axiom, we must first define what is meant by “ formal equivalence.” Two
functions ¢2, ¥ 2 are said to be “formally equivalent” when, with every possible
argument 2, ¢z is equivalent to ¥z, d.e. ¢x and Yz are either both true or
both false. Thus two functions are formally equivalent when they are satisfied
by the same set of arguments. The axiom of reducibility is the assumption
that, given any function ¢#, there is a formally equivalent predicative function,
1.e. there is a predicative function which is true when ¢z is true and false
when ¢z is false. In symbols, the axiom is:

Fe(gy):da.=;. ¢!
For two variables, we require a similar axiom, namely: Given any function
¢ (2, §), there is a formally equivalent predicative function, .e.
Fi(@y): ¢ (@ 9) =y - ¥z Y).

In order to explain the purposes of the axiom of reducibility, and the nature
of the grounds for supposing it true, we shall first illustrate it by applying it
to some particular cases.

If we call a predicate of an object a predicative function which is true of
that object, then the predicates of an object are only some among its properties.
Take for example such a proposition as “ Napoleon had all the qualities that
make a great general.” We may interpret this as meaning “Napoleon had all
the predicates that make a great general.” Here there is a predicate which is
an apparent variable. If we put “f(¢!2)” for “¢!2 is a predicate required
in a great general,” our proposition is

(¢):f(¢!2) implies ¢ ! (Napoleon).
Since this refers to a totality of predicates, it is not itself a predicate of
Napoleon. It by no means follows, however, that there is not some one predicate
common and peculiar to great generals. In fact, it is certain that there is such
a predicate. For the number of great generals is finite, and each of them
certainly possessed some predicate not possessed by any other human being
—for example, the exact instant of his birth. The disjunction of such predicates
will constitute a predicate common and peculiar to great generals*. If we
call this predicate ! 2, the statement we made about Napoleon was equi-
valent to ¢ ! (Napoleon). And this équivalence holds equally if we substitute
any other individual for Napoleon. Thus we have arrived at a predicate which
is always equivalent to the property we ascribed to Napoleon, i.e. it belongs
to those objects which have this property, and to no others. The axiom of
reducibility states that such a predicate always exists, 1.e. that any property

* When a (finite} set of predicates is given by actual enumeration, their disjunction is a
predicate, because no predicate occurs as apparent variable in the disjunction.
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of an object belongs to the same collection of objects as those that possess
nome predicate.

We may next illustrate our principle by its application to identity. In
this connection, it has a certain affinity with Leibniz’s identity of indiscernibles.
It is plain that, if z and y are identical, and ¢z is true, then ¢y is true. Here
il eannot matter what sort of function ¢2 may be: the statement must hold
for any function. But we cannot say, conversely: “If, with all values of ¢,
¢ implies ¢y, then z and y are identical ”; because “all values of ¢” is
madmissible.  If we wish to speak of “all values of ¢,” we must confine
ourselves to functions of one order. We may confine ¢ to predicates, or to
second-order functions, or to functions of any order we please. But we must
necessarily leave out functions of all but one order. Thus we shall obtain, so
L speak, a hierarchy of different degrees of identity. We may say “all the
predicates of « belong to y,” “all second-order properties of # belong to y,”
sl so on. Each of these statements implies all its predecessors: for
example, if all second-order properties of x belong to y, then all predicates
of = belong to ¥, for to have all the predicates of z is a second-order property,
anel this property belongs to . But we cannot, without the help of an axiom,
nrgue conversely that if all the predicates of z belong to ¥, all the second-order
properties of x must also belong to y. Thus we cannot, without the help of
nn axiom, be sure that # and y are identical if they have the same predicates.
Leibniz’s identity of indiscernibles supplied this axiom. It should be observed
that by “indiscernibles”” he cannot have meant two objects which agree as to
oll their properties, for one of the properties of « is to be identical with z,
und therefore this property would necessarily belong to y if z and y agreed
i all their properties. Some limitation of the common properties necessary
to make things indiscernible is therefore implied by the necessity of an axiom.
IFor purposes of illustration (not of interpreting Leibniz) we may suppose the
common properties required for indiscernibility to be limited to predicates.
Then the identity of indiscernibles will state that if £ and y agree as to
wll their predicates, they are identical. This can be proved if we assume the
nxiom of reducibility. For, in that case, every property belongs to the same
collection of objects as is defined by some predicate. Hence there is some
predicate common and peculiar to the objects which are identical with z.
This predicate belongs to z, since « is identical with itself; hence it belongs
o y. since y has all the predicates of #; hence y is identical with = It
Inllows that we may define  and y as identical when all the predicates of &
holong to g, i.e. when (¢):plz.D. d1y. We therefore adopt the following
definition of identity *:

c=y.=:(¢p):P!z.D.¢!y DI

" Note that in this definition the second sign of equality is to be regarded as combining with
“ DI to form one symbol; what is defined is the sign of equality not followed by the letters “ Df.”
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But apart from the axiom of reducibility, or some axiom equivalent in this
connection, we should be compelled to regard identity as indefinable, and to
admit (what seems impossible) that two objects may agree in all their pre-
dicates without being identical.

The axiom of reducibility is even more essential in the theory of classes.
It should be observed, in the first place, that if we assume the existence of
classes, the axiom of reducibility can be proved. For in that case, given any
function ¢2 of whatever order, there is a class a consisting of just those
objects which satisfy ¢2. Hence “¢x” is equivalent to “z belongs to a.”
But “z belongs to a” is a statement containing no apparent variable, and is
therefore a predicative function of . Hence if we assume the existence of
classes, the axiom of reducibility becomes unnecessary. The assumption of
the axiom of reducibility is therefore a smaller assumption than the assump-
tion that there are classes. This latter assumption has hitherto been made
uphesitatingly. However, both on the ground of the contradictions, which
require a more complicated treatment if classes are assumed, and on the ground
that it is always well to make the smallest assumption required for proving
our theorems, we prefer to assume the axiom of reducibility rather than the
existence of classes. But in order to explain the use of the axiom in dealing
with classes, it is necessary first to explain the theory of classes, which is a
topic belonging to Chapter III. We therefore postpone to that Chapter the
explanation of the use of our axiom in dealing with classes.

It is worth while to note that all the purposes served by the axiom of
reducibility are equally well served if we assume that there is always a function
of the nth order (where n is fixed) which is formally equivalent to ¢#, what-
ever may be the order of ¢# Here we shall mean by “a function of the nth
order” a function of the nth order relative to the arguments to ¢#; thus if
these arguments are absolutely of the mth order, we assume the existence of
a function formally equivalent to $2 whose absolute order is the m + nth. The
axiom of reducibility in the form assumed above takes n=1, but this is not
necessary to the use of the axiom. It is also unnecessary that » should be the
same for different values of m; what is necessary is that n should be constant
so long as m is constant. What is needed is that, where extensional functions
of functions are concerned, we should be able to deal with any a-function by
means of some formally equivalent function of a given type, so as to be able
to obtain results which would otherwise require the illegitimate notion of
“all a-functions”; but it does not matter what the given type is. It does
not appear, however, that the axiom of reducibility is rendered appreciably
more plausible by being put in the above more general but more complicated
form.

The axiom of reducibility is equivalent to the assumption that “any
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cotbination or disjunction of predicates* is equivalent to a single predicate,”
r¢. to the assumption that, if we assert that x has all the predicates that
snbisfy a function f (¢! 2), there is some one predicate which z will have
whenever onr assertion is true, and will not have whenever it is false, and
similarly if we assert that 2 has some one of the predicates that satisfy a function

S {(¢$!2). For by means of this assumption, the order of anon-predicative function

cnn be lowered by one; hence, after some finite number of steps, we shall be able
lo get from any non-predicative function to a formally equivalent predicative
fuuction. It does not seem probable that the above assumption could be
substituted for the axiom of reducibility in symbolic deductions, since its use
would require the explicit introduction of the further assumption that by a
finite number of downward steps we can pass from any function to a predicative
function, and this assumption -could not well be made without developments
that are scarcely possible at an early stage. But on the above grounds it seems
plain that in fact, if the above alternative axiom is true, so is the axiom of
reducibility. The converse, which completes the proof of equivalence, is of
course evident.

VIL Reasons for Accepting the Axiom of Reducibility.

That the axiom of reducibility is self-evident is a proposition which can
hardly be maintained. But in fact self-evidence is never more than a part of
the reason for accepting an axiom, and is never indispensable. The reason
for accepting an axiom, as for accepting any other proposition, is always
lnrgely inductive, namely that many propositions which are nearly indubitable
enn be deduced from it, and that no equally plausible way is known by which
these propositions could be true if the axiom were false, and nothing which is
probably false can be deduced from it. If the axiom is apparently self-evident,
thnt only means, practically, that it is nearly indubitable; for things have
bieen thought to be self-evident and have yet turned out to be false. And if
the axiom itself is nearly indubitable, that merely adds to the inductive
evidence derived from the fact that its consequences are nearly indubitable :
it. does not provide new evidence of a radically different kind. Infallibility is
never attainable, and therefore some element of doubt should always attach
(v wvery axiom and to all its consequences. In formal logic, the element of
donbt is less than in most sciences, but it is not absent, as appears from the
fuet. Lhat the paradoxes followed from premisses which were not previously
known 1o require limitations. In the case of the axiom of reducibility, the
mduclive evidence in its favour is very strong, since the reasonings which it
prermils and the results to which it leads are all such as appear valid. But
nlthough it seems very improbable that the axiom should turn out to be false,

* 1lere the combination or disjunction is supposed to be given intensionally, If given exten-

wionnlly (i.e. by enumeration), no assumption is required; but in this case the number of
fredionton concerned must be finite.
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it is by no means improbable that it should be found to be deducible from
some other more fundamental and more evident axiom. It is possible that the
use of the vicious-circle principle, as embodied in the above hierarchy of types,
is more drastic than it need be, and that by a less drastic use the necessity
for the axiom might be avoided. Such changes, however, would not render
anything false which had been asserted on the basis of the principles explained
above: they would merely provide easier proofs of the same theorems. There
would seem, therefore, to be but the slenderest ground for fearing that the
use of the axiom of reducibility may lead us into error.

VIII. The Contradictions.

We are now in a position to show how the theory of types affects the
solution of the contradictions which have beset mathematical logic. For this
purpose, we shall begin by an enumeration of some of the more important and
illustrative of these contradictions, and shall then show how they all embody
vicious-circle fallacies, and are therefore all avoided by the theory of types. It
will be noticed that these paradoxes do not relate exclusively to the ideas of
number and quantity. Accordingly no solution can be adequate which seeks
to explain them merely as the result of some illegitimate use of these ideas.
The solution must be sought in some such scrutiny of fundamental logical
ideas as has been attempted in the foregoing pages.

(1) The oldest contradiction of the kind in question is the Epimenides.
Epimenides the Cretan said that all Cretans were liars, and all other state-
ments made by Cretans were certainly lies. Was this a lie? The simplest form
of this contradiction is afforded by the man who says “I am lying”; if he is
lying, he is speaking the truth, and vice versa.

(2) Let w be the class of all those classes which are not members of
themselves. Then, whatever class £ may be, “z is 2 w” is equivalent to “z is
not an z.” Hence, giving to 2 the value w, “w is a w” is equivalent to
“w is not a w.”

(3) Let T be the relation which subsists between two relations R and §
whenever B does not have the relation B to S. Then, whatever relations
E and S may be, “R has the relation 7' to 8" is equivalent to “R does not
have the relation B to S.” Hence, giving the value 7' to both B and S,
“T has the relation 7' to T” is equivalent to “7 does not have the relation
TtoT”

(4) Burali-Forti’s contradiction®* may be stated as follows: It can be
shown that every well-ordered series has an ordinal number, that the series of
ordinals up to and including any given ordinal exceeds the given ordinal by
one, and (on certain very natural assumptions) that the series of all ordinals
(in order of magnitude) is well-ordered. It follows that the series of.all

* ““Una questione sui numeri transfiniti,” Rendiconti del circolo matematico di Palermo, Vol.
x1. (1897). See #256.
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ordinals has an ordinal number, 0 say. But in that case the series of all
ordinals including Q has the ordinal number  + 1, which must be greater
than . Hence (2 is not the ordinal number of all ordinals.

(5) The number of syllables in the English names of finite integers
tends to increase as the integers grow larger, and must gradually increase
indefinitely, since only a finite number of names can be made with a given
finite number of syllables. Hence the names of some integers must consist of
ab least nineteen syllables, and among these there must be a least. Hence “the
lcast integer not nameable in fewer than nineteen syllables” must denote a
definite integer; in fact, it denotes 111,777. But “the least integer not
naumeable in fewer than nineteen syllables” is itself a name consisting of
cighteen syllables; hence the least integer not nameable in fewer than nine-
teen syllables can be named in eighteen syllables, which is a contradiction*.

(6) Awmong transfinite ordinals some can be defined, while others can not;
for the total number of possible definitions is N,T, while the number of trans-
finite ordinals exceeds &,. Hence there must be indefinable ordinals, and
wmong these there must be a least. But thisis defined as “the least indefinable
ordinal,” which is a contradiction}.

(7) Richard’s paradox§ is akin to that of the least indefinable ordinal. It
ix ag follows : Consider all decimals that can be defined by means of a finite
number of words ; let E be the class of such decimals. Then £ has N, terms;
hence its members can be ordered as the 1st, 2nd, 3rd, .... Let IV be a number
defined as follows: If the mth figure in the nth decimal is p, let the nth
figure in N be p+1 (or 0, if p =9). Then N is different from all the members
of I, since, whatever finite value n may have, the nth figure in N is different
from the nth figure in the nth of the decimals composing X, and therefore N
i dhifferent from the nth decimal. Nevertheless we have defined & in a finite
number of words, and therefore N ought to be a member of E. Thus N both
i and is not a member of E.

In all the above contradictions (which are merely selections from an
indefinite number) there is a common characteristic, which we may describe
s self-reference or reflexiveness. The remark of Epimenides must include
ilxclf in its own scope. If all classes, provided they are not members of them-
melves, are members of w, this must also apply to w; and similarly for the

* This contradiction was suggested to us by Mr G. G. Berry of the Bodleian Library.

| N, is the number of finite integers. See »123.

 CI. Konig, **Ueber die Grundlagen der Mengenlehre und das Kontinuumproblem,” Math,
{unnlen, Vol. Lx1. (1905); A. C. Dixon, “On *well-ordered’ aggregates,” Proc. London Math.
o Meries 2, Vol, 1v. Part 1. (1906); and E. W. Hobson, ‘*On the Arithmetie Continuum,” ibid.
Pl nobution offered in the last of these papers depends upon the variation of the * apparatus of
dafimtion,” and is thus in outline in agreement with the solution adopted here. But it does not
tuvalidnte the statement in the text, if “definition” is given a constant meaning.

& ¢ Poincaré, *“Les mathématiques et la logique,” Revue de Métuphysique et de Morale,
Mui 1906, expecially sections vir. and Ix.; also Peano, Revista de Mathematica, Vol. vur. No. 5
(tuot), p. 149 11,
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analogous relational contradiction. In the cases of names and definitions, the
paradoxes result from considering non-nameability and indefinability as ele-
ments in names and definitions. In the case of Burali-Forti’s paradox, the
series whose ordinal number causes the difficulty is the series of all ordinal
numbers. In each contradiction something is said about all cases of some kind,
and from what is said a new case seems to be generated, which both is and is not
of the same kind as the cases of which all were concerned in what was said.
But this is the characteristic of illegitimate totalities, as we defined them in
stating the vicious-circle principle. Hence all our contradictions are illustra-
tions of vicious-circle fallacies. It only remains to show, therefore, that the
illegitimate totalities involved are excluded by the hierarchy of types which
we have constructed.

(1) When a man says “I am lying,” we may interpret his statement as:
“There is a proposition which I am affirming and which is false.” That is to
say, he is asserting the truth of some value of the function “I assert p, and p
is false.” But we saw that the word “false” is ambiguous, and that, in order
to make it unambiguous, we must specify the order of falsehood, or, what comes
to the same thing, the order of the proposition to which falsehood is ascribed.
We saw also that, if p is a proposition of the nth order, a proposition in which
D occurs as an apparent variable is not of the nth order, but of a higher order.
Hence the kind of truth or falsehood which can belong to the statement “there
is a proposition p which I am affirming and which has falsehood of the nth
order” is truth or falsehood of a higher order than the nth. Hence the state-
ment of Epimenides does not fall within its own scope, and therefore no
contradiction emerges.

If we regard the statement “I am lying” as a compact way of simultaneously
making all the following statements: “I am asserting a false proposition of the
first order,” “l am asserting a false proposition of the second order,” and so on,
we find the following curious state of things: As no proposition of the first
order is being asserted, the statement “I am asserting a false proposition of
the first order” is false. This statement is of the second order, hence the
statement “I am making a false statement of the second order” is true. This
1s a statement of the third order, and is the only statement of the third order
which is being made. Hence the statement “I am making a false statement
of the third order” is false. Thus we see ghat the statement “I amn making a
false statement of order 2n + 1” is false, while the statement “I am making
a false statement of order 2n” is true. But in this state of things there is no
contradiction.

(2) In order to solve the contradiction about the class of classes which are
not members of themselves, we shall assume, what will be explained in the
next Chapter, that a proposition about a class is always to be reduced to a
statement about a function which defines the class, 4.. about a function which
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is satisfied by the members of the class and by no other arguments. Thus a
clags is an object derived from a function and presupposing the function, just
a8, for example, (). ¢o presupposes the function ¢2. Hence a class cannot,
by the vicious-circle principle, significantly be the argument to its defining
function, that is to say, if we denote by “2(¢z)” the class defined by ¢2, the
symbol “¢ (2 (¢2)}" must be meaningless. Hence a class neither satisfies nor
does not satisfy its defining function, and therefore (as will appear more fully
in Chapter IIT) is neither a member of itself nor not a member of itself. This
is an immediate consequence of the limitation to the possible arguments to a
function which was explained at the beginning of the present Chapter. Thus
if a is a class, the statement “a is not a member of a” is always meaningless,
and there is therefore no sense in the phrase “the class of those classes which
are not members of themselves.” Hence the contradiction which results from
supposing that there is such a class disappears.

(3) Exactly similar remarks apply to “the relation which holds between
R and 8 whenever R does not have the relation B to 5. Suppose the
relation K is defined by a function ¢ (2, %), i.e. B holds between  and y
whenever ¢ (z, y) is true, but not otherwise, Then in order to interpret
“R has the relation B to 8” we shall have to suppose that R and 8 can
significantly be the arguments to ¢. But (assuming, as will appear in
Chapter III, that R presupposes its defining function) this would require
that ¢ should be able to take as argument an object which is defined in
terms of ¢, and this no function can do, as we saw at the beginning of this
Chapter. Hence “R has the relation R to §” is meaningless, and the contra-
diction ceases.

(4) The solution of Burali-Forti’s contradiction requires some further
developments for its solution. At this stage; it must suffice to observe that
a series is a relation, and an ordinal number is a class of series. (These state-
ments are justified in the body of the work.) Hence a series of ordinal numbers
1s a relation between classes of relations, and is of higher type than any of the
series which are members of the ordinal numbers in question. Burali-Forti’s
“ordinal number of all ordinals” must be the ordinal number of all ordinals of
a given type, and must therefore be of higher type than any of these ordinals.
Hence it is not one of these ordinals, and there is no contradiction in its being
greater than any of them*.

(56) The paradox about “the least integer not nameable in fewer than
nineteen syllables” embodies, as is at once obvious, a vicious-cirele fallacy.
For the word “ nameable” refers to the totality of names, and yet is allowed
to occur in what professes to be one among names. Hence there can be no
such thing as a totality of names, in the sense in which the paradox speaks

* The solution of Burali-Forti’s paradox by means of the theory of types is given in detail in
»256.



64 INTRODUCTION [cHAP.

of “names.” It is easy to see that, in virtue of the hierarchy of functions,
the theory of types renders a totality of “names” impossible. We may, in
fact, distinguish names of different orders as follows: (a) Elementary names
will be such as are true “proper names,” 7.e. conventional appellations not
involving any description. (b) First-order names will be such as involve a
description by means of a first-order function; that is to say, if ¢! % is a first-
order function, “the term which satisfies ¢!2” will be a first-order name,
though there will not always be an object named by this name. (c) Second-
order names will be such as involve a description by means of a second-order
function; among such names will be those involving a reference to the totality
of first-order names. And so we can proceed through a whole hierarchy. But
at no stage can we give a meaning to the word “nameable” unless we specify
the order of names to be employed; and any name in which the phrase “name-
able by names of order «” occurs is necessarily of a higher order than the nth.
Thus the paradox disappears.

The solutions of the paradox about the least inlefinable ordinal and
of Richard’s paradox are closely analogous to the awvove. The notion of
“definable,” which occurs in both, is nearly the same as “nameable,” which
occurs in our fifth paradox: “definable” is what “nameable” becomes
when elementary names are excluded, 7.e. “definable” means “nameable by
a name which is not elementary.” But here there is the same ambiguity
as to type as there was before, and the same need for the addition of words
which specify the type to which the definition is to belong. And however
the type may be specified, “the least ordinal not definable by definitions of
this type” is a definition of a higher type; and in Richard’s paradox, when
we confine ourselves, as we must, to decimals that have a definition of a given
type, the number N, which causes the paradox, is found to have a definition
which belongs to a higher type, and thus not to come within the scope of our
previous definitions.

An indefinite number of other contradictions, of similar nature to the
above seven, can easily be manufactured. In all of them, the solution is
of the same kind. In all of them, the appearance of contradiction is pro-
duced by the presence of some word which has systematic ambiguity of
type, such as truth, falsehood, funmction, property, class, relation, cardinal,
ordinal, name, definition. Any such word, if its typical ambiguity is over-
looked, will apparently generate a totality containing members defined in
terms of itself, and will thus give rise $o vicious-circle fallacies. In most
cases, the conclusions of arguments which involve vicious-circle fallacies
will not be self-contradictory, but wherever we have an illegitimate totality,
a little ingenuity will enable us to construct a vicious-circle fallacy leading
to a contradiction, which disappears as soon as the typically ambiguous words
are rendered typically definite, 7.e. are determined as belonging to this or that

+

type.
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Thus the appearance of contradiction is always due to the presence of words
embodying a concealed typical ambiguity, and the solution of the apparent
contradietion lies in bringing the concealed ambiguity to light.

In spite of the contradictions which result from unnoticed typical
wnbiguity, it is not desirable to avoid words and symbols which have
typical ambiguity. Such words and symbols embrace practically all the
ilens with which mathematics and mathematical logic are concerned: the
nystematic ambiguity is the result of a systematic analogy. That is to say,in
ahnost all the reasonings which constitute mathematics and mathematical
logic, we are using ideas which may receive any one of an infinite number of
different typical determinations, any one of which leaves the reasoning valid.
Thus by employing typically ambiguous words and symbols, we are able to make
one chain of reasoning applicable to any one of an infinite number of different
cuses, which would not be possible if we were to forego the use of typically
ninbiguous words and symbols.

Among propositions wholly expressed in terms of typically ambiguous
nolions practically the only ones which may differ, in respect of truth or false-
hood, according to the typical determination which they receive, are existence-
theorems. If we assume that the total number of individuals is n, then the
totnl number of classes of individuals is 2%, the total number of classes of classes
ol individuals is 22", and so on. Here n may be either finite or infinite, and in
vither case 2 >n. Thus cardinals greater than n but not greater than 2 exist
i npplied to classes of classes, but not as applied to classes of individuals, so
thut whatever may be supposed to be the number of individuals, there will be
nxistence-theorems which hold for higher types but not for lower types. Even
here, however, so long as the number of individuals is not asserted, but is
merely assumed hypothetically, we may replace the type of individuals by any
other type, provided we make a corresponding change in all the other types
occurring in the same context. That is, we may give the name “relative in-
dividuals” to the members of an arbitrarily chosen type 7, and the name
"rolative classes of individuals” to classes of “relative individuals” and so on.
Thuxs so long as only hypotheticals are concerned, in which existence-theorems
for one type are shown to be implied by existence-theorems for another, only
relutive types are relevant even in existence-theorems. This applies also to cases
where the hypothesis (and therefore the conclusion) is asserted, provided the
wwerbion holds for any type, however chosen. For example, any type has at
lenit. one member; hence any type which consists of classes, of whatever order,
huwn i, lenst two members. But the further pursuit of these topics must be left
to the body of the work.



