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INTRODUCTION

THe mathenratical logic which occupies Part I of the present work has
been constructed under the guidance of three different purposes. In the first
place, it aims at effecting the greatest possible anal.ysis of the ideas wiih
which it deals and of the processes by which it conducts demonsbrabions,
and at diminishing to the utmost the number of the undefined ideas and
undemonstrated proposibions (called respectively primitiue ideas and primitiae
propositions) fron'r which it starts. In the second place, it is framed with a
view to the perfectly precise expression, in its symbols, of mathematical
propositions: to secure such expression, and to secure it in the simplest and
rnost convenient notation possible, is the chief rnotive in the choice of topics.
In the third place, the sysbern is specially framed to solve the partrdoxes
rvhich, in recent years, have troubled students of symbolic logic and the
t,heory of aggregates; it is believed that the theory of types, as set forth in
what follows, leads both to the avoidance of contradictions, and to the
rletection of the precise fallacy rvhich has given rise to them.

Of the above three purposes, the first and third often compel us to adopt
rnethr-rds, definitions, and notations which are nrore conrplicated or more
rlifficult than they would be if u'e had the second object alone in view. This
:rpplies especially to the theory of descriptive expressions (x14 and x30) and
to the theory of classes and relations (x20 and x21). On these l,wo points,
:rnd to a lesser degree on others, it has been found necessar5'to make some
sncrificc of lucidity to correctness 'Ihe sacrifice is, horvever, in the maiu
orrly temporary: in each case, the notation ultimately adopted, though its
runl rneaning is very complicated, ha^s an apprrently simple rneaning rvhich,
rrxcept at certain crucial points, can rvithout danger be substituted in
t,hought for the real meaning. It is tberefore convenient, in a preliminary
,,xpl:rnation of the notation, to treat these apparently sinrple ureanings as
prirnitive ideas, i.e. as ideas introduced rvithout definition. When the notation
hrus grown inore or less farnili,rr, it is easier to follorv the more courplicated
,'xpllnations which we believe to be more correct. In the body o1'tlie rvork,
rvlrr:re it is necessary to adhere rigidly to the strict logicnl order, the easier
,'rrLrr of development could not bc adopted; it is therefore givr'n in the
lrrt,rrxluction. The explanabions given in Chapter I oI' the Introduction are
r,r{:h ils place lucidity before correctness; the full explanations are partly
r,rrppliotl in succeedingChapters of the Introduction, partly given in the body
,,1 l , l r r :  rvork.  i . .  ,  t

'l'lrc use of a symbolism,other than that of lvords, in all parts of the book
n'lriclr :rim at embodying strictly accurate demonstlative reasoning, has been
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forced on us by the consistent pursuit of the above three purposes' The

reasons for this extension of symbolism beyond the f'amiliar regions of number

and allied ideas are many : rt t. I

( r )Theideaslrer 'eernployedaremoreabstract thanthosefami l iar lycon.
sidered in language. Accordingly there are no words rvhich are used ntainly

in the exact coosist"nt senses which are required here' Any use of words

rvould require unnatural limitations to their ordinary meanings, which would

be in fact more difficult, to remember consistently than are the definitions of

entirely new symbols.

(2) Tbe grarnnraticai structure of language is adapted to a wide variety

of ostg"r. Thus it possesses no unrque simplicity in representinq tfe f3w

,i-pf"l though highiy abstrao, p.o""..". and ideas arising in the deductive

t.uins of ."o."oni.rf 
"*ployed 

here. In fact the very abstract, simplicity of the

ideas of this rvorli defeut. language. Language can represent complex tdeas

moreeasi ly 'Theproposi t ion. .awhaleisbig, ' representslanguageat i tsbest,
giv ingterse"*p." , . io ' ' toacompl icatedfact ;whi lethetrueanalysisof . ,one
i. u ,lrorrlb". " Ieads, in language, to an intolerable prolixity' Accordingly

terseness is gained by using i tyrnbolittrr especially designed to represent the

ideas and p-."..". of cleduction rvhich occur in t'his rvork'

(3)Theadaptat ior lof therulesofthesymbol isrntotheprocessesof
deduction aids tire intuition in re,gions too abstract for the imagi.ation

reaclily to present to the rnind the tlue relation betrveen the ideas employed.

Fo. uarioos collocatio4s of symbols become familiar as representing im-

portant collocations of ideas; and in turn the possible relations-according
^to 

the rules of the synrbolism-betrveen these collocations of symbols become

familiar, and these further collocations represent still more complicated

relations between the abstract ideas. And thus the mind is finally led to

construct trains of reasoning in regions of thought in rvhich the irnagination

rvould be entirely unable to sustain itself without symbolic help. ordinary

language yields no such help' Its grantmatica-l structure does not represent

u"ilq";ly ihe relations betrveen thc ideas involved. Thus, " a whale is big "

aod',. one is a nuDrber"' both look alike, so that the eye gives no help to the

irnagination.

(a)Thetersenessofthesymbol ismerrablesarvholeproposi t iontobe
,"p"e."nt"d to the eyesi$ht, as one rvhole, or- at rnost in two ol three parts

aiviaea where the natural breaks, represented in the symbolisrn' occur' This

isahumbleproperty,but is infact ,veryirnpor ' tarr t inconnect ionwiththe
advantages enunerated under the heading 13)'

(5) The attainment of tbe first-mentioned object of this rvork' namely

the complete enumeration of all the ideas and steps in reasoning employed
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in mathematics, necessitates both terseness and the presentation of each pro-position with the maximum of formality in a form as characteristic of itselfas possible. '  
, . ,

.. 
tr'urtherJight on the methods and syrnbolism of this book is th'own by aslight consideration of the limits to their useful employment:
(a) Most mathematicar investigation is concerned not with the analysisof the complete process of reasonin'g, but rvith the presentatron of such anabstract of the proof as is sufficient"to convince a properry instructed mind.F.r such investig2ltrien. the detaired presentation oittr" .t"p. i" .";i;;'i.

:l^..:_1,:" 
unnecessary, provided that ihe detail is carried far'eno"gl, t" gr?.dagarnst error' rn this connection it rnay be remembered that ih! i"r"il;;-

tions of Weierstrass and others of the sime school have shown that, even inthe cornmon topics of rnathematiear thought, rnuch more deta' is .ru"u..r.ythan previous generrtions of rnathernabiciu',ns iod anticipated. ,,
(,6) In proportion as the imagination rvorks easily in any region ofthought' symbolism (except for the lxpress purpose of anar.ysis) becomes onrvnecessary as a convenient shorthand writing to register ."."tt. out*irr"lwithout its help. ft is a subsidiary object oi thi. *o.k to show that, withthe aid of symbolisrn, deductive .ur.oirog can be extende, to regions of,h?,.tgl, not usually supposed amenable ir mathematical treatment, Anduniil the ideas of such branches-o_f 

_knowledge have become o'o." fa^'iu",the detailed type of reasoning, which is also iequired for the analysi. ;i;;s[eps, rs appropriate to the investigation of the general truth" 
"unceroingthese subjects.



CHAPTER I

PRELIMINARY EXPLANATIONS OF IDEAS AND NOTATIONS

Tsp notation adopted in the present work is based upon that of Peano,

and the following explanations are to some extent modelled on those which

he prefixes to his Formulario Mathemati,co. His use of dots as brackets is

adopted, and so are many of his symbols.

Variables. The idea of a variable, as it occurs in the present work, is

more genelal than that which is explicitly used in ordinary mathematics.

In ord-inary mathematics, a variable generally stands for an undeterrnjned

number or quantity. In mathematical logic, any symbol whose meaning is not

determinate is called a aariable, and. the various determinations of which its

meaning is susceptible are called the oalues of the variable. The values may

be any 
"set 

of eniities, propositions, functions, classes or relations, according

to circumstances. If a statement is made about " Mr A and Mr 8," " Mr A "

and ,. Mr B " are variables whose values are confined to men. A variable rnay

either have a conventionally-assigned range of values, or may (in the absence

of any indication of the range of values) have as the range of its values all

determinations which render the statement in which it occurs significant

Thus when a text-book of logic asserts that " A is A," rvithout any indication

as to what A may be, what is meant is that ony statenrent of the form

"A ]s A" is true. We may call a variable restricted' when its values are

confined to sorne only of those of which it is crr.pable; otherwise, we shall call

it unrestricted,. Thus when an unrestricbed variable occurs, it represents any

object such that the statement concerned can be ntade significantly (i.e. either

trily or falsely) concerning that object. For the pu{poses of logic, the

unrestricted variable is more convenient than the restricted variable, and we

shall always employ it. We shall find that the unrestricted variable is still

subject to limitations imposed by the manner of iti occurrence, i.a. things

which can bc said significantly concerning a proposition cannot be said

significan+,ly concerning a class or a relation, and so on. But the limitations

to which tire unrestricted variable is sulijeci do not need to be explicitly

indicated, since they are the limibs of significance of the statement in which

the vari.able occurs, and are,therefore intrinsically determined by this state-

ment. This will be more fully explained later*'

To sum up, the three salient facts connected with the use of the variable

are: (1) that a variable is ambiguous in its denotation and accordinglyundefined;

(2) that a variable preserves a recognizable identity in various occurrenc€s

ihroughout the same context, so that, many variables can occur together in the

r Cf. Chapter II of the Introiluction.

oEAP. r] THE VA.RIABLE

Tlrc wses of uarious letters. Yariables will be denoted by single letters, and
so will certain constants; but a letter rvhich has once been assigned to a constant
b.v a definition must not afte.rvards be used to cienote a variable. The smnll
lctbers of the ordin:rry alphabet will all be used for variables, except p and s
after x40, i. which constant meanings are assigned to thcse two letters. The
fol lorvingcapital lettersrvi l l receiveconstantrneanings: B,C,D,E,F, Iand,J.
Arnong srnall Greek letters, rve shall give constant rneanings to e, r and (at a
later stage) to q, 0 and ar. Certain Greek capitals will from time to time be
introduced for constants, but Greek c'pitals will not, be *sed for variables. of
the remaining letters, p, g, r' will be called propositional l,etters, and will stand
for vrrriable propositions (except that, fro'r i<40 onrvards, p must not be used
1r-rr a variable); .f, S, Q, *, X, 0 and (until x33) rv' rvill be called furzctiorat,
lettet's, and will be used for variable firnctions.

The small Greek letters not alrcady rnentioned will be used for variabres
rvhose values are classes, and will be referred to simply as Greek letters. ordinary
crlpital letters not already mentioned will be used for variables whose values
rrre relations, and will be referred to sirnply as capital, letters. Ordinary small
lctters other than p, q, r, s, f, g will be used for variables whose values are not
kno'wn to be functions, classes, or relations; these letters will be referred to
sirnply as small, Latin letters.

After t,he early part of the wo.k, v:.r,riable propositions and variable functions
rvill hardly ever occur. we shall then have three main kinds of variables:
vuriable classes, denoted by smali Greek letters; variable relations, denoted bv
t:,rpibals; and variables not given as necessarily classes or relations, which wiil
be denoted by small latin letters.

In addition to this usage of small Greek letters for variable classes, capital
krtters for variable relations, small Latin letters for variables of type wliolly
rrnrletermined by the context (these arise from the possibiliby of ,,systematit
rr,rrrbiguity," explained later in the explanations of the theory of types), the
r','irder need only remember that all letters reprcsent variables, unless they have
Ixrcn defined as constants in some previous place in the book. rn general the
sl'.rcture of the context determines the scope of the variables contained in it-
lrrrt the special indication of the nature oi the variables employed, u* h"."
1'r,rposed, saves considerable labour of thought.
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'l'he funilamental functiotts of propositiuns' An aggregation of propositions'

considered as wholes oot ,t""".ru-rilyunambiguously debermined' into a single

proposit ionmorecomplexthanitsconsbit 'uents, isafuuctionant/zproptosit ians
Z, igu rrtr. The general idea of such an aggregation of propositions' or of

.rr.iutl"* representing propositions, will not be employed in thisvork'..But

there are fou, .pe"iul1as". *hi.h are of fundamental irnportance, since all the

aggregations oisubordinate propositions into one complex proposition which

o"*.'i" the sequel are formcd out of them step by step'

They are (1) the Contradictory Funcbion, (2) the Logical Sum' or Dis-

iunctive Fun"iio.t, (3) the Logical Product, or Conjunctive tr'unction' (4).the

implicative Function. These iunctions in the sense in which they are required

in ihis ."ork are not all inclependent,; and if two of them are taken as prirnitive

undefined ideas, the other two can be defined in terms of them. It is to some

extent- thorrghnotent i re ly-ar.bi t raryastowhichfunct ionsaretakenas
primitive. Simplicity of primitive ideas and symmetry of treatment seem to

te gained by taking the first t,rvo funct'ions as primitive ideas'

The Contradictory Function rvith argument p, where p is any proposition'

is the proposition which is the contradictory of p, that is, the proposition

assertirig ihut p i. not true. This is denoted by -p' 
f[ss -p is the

contradiciory function with p as argunent and tneans the negation of the

proposition p. ft ,oiU also be referred to as the proposition not-p' Thus -P
means not-p, which means the negation of p'

The Logical Sum is a propositional funct'ion with two arguments p and' q'

and is the froposition ,s.".ting p or q disjunctively' that is' asserting that at'

least one ol the t*o pandq is true. This is denoted by puq' Thus pvg is

the logical sum with p and q as arguments. It is also cailed the logical sum of

pand"q.Accordinglypug."u, , . thatat leastporqistrue,notexcludingthe
case in which both are true.

The Logical Product is a proPositional function with two arguments p and

q, and is thl proposition t*.".tittg p and g conjunctively, t'hat is, asserting bhat

ioth p and g-u." t.o.. This is denoted by p . q, or-in order to make the dots

act as brackets in a way to be explained immedia't'ely-by p tq' or by p t' q'

orbyp::g.Thusp.gisthelogicalproductrv i thpandqasarguurents ' I t
i* ,t.o 

"^I"d 
the logical product of p and q. Accordingly p . q meaDs that both

p and, q are true. it is,[asily seen that this function can be defined in terms

of th"t*o precedingfuncbions. Forwhen pand q are bot,h true.ibmustbe

false that, 
"lth". -p s1 -q is true. Hence in this book p ' q is merely a

shortened forrn of symbolism for
N(NpvNq).

If any further idea attacbes to the proposit,ion " bof'h p and t1 are t'rue," it is

not required here.
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These fo'r functions of propositions are the iirndamental constant (i.e.
definite) propositional functions with proptosit'iors as o,rgtlnrcnds, and all other
constant propositional functions with propositions as arguments, so far as they
are required in the present work, are formed out of then bv successive stens.
No uariable propositional functions of this kind occur in this wolk.

Equiualence. The simplest exarnple of the formation of a more c.mplex
function ofpropositions by the use ofthese four fundamcntal forms is furnished
by " equivalence." 'l'wo propositions p and q are said to be ,,equivalent "
when p implies g and q irnplies p. This relation between p ancr cl is denoted
by"p= q."  Thus "p=q" stands for, , (p>i l .e)Dj '  I t iseasi lyseenrhat
trvo propositions are equivalent when, and only whcn, they are both true or
rr,re both false. Equivalence rises in the scale of irnportance when we come
to " formal implication " and thus to ,,formal eq'ivalence.,, It must nor
be supposed that two propositions which are equivalent are in any sense
identical or even remotely conce.ned with the sarne topic. Thus .'ilervton
w:ls a man"'ncl "the sun is hot" arc cquivalent as being both true, and
" Newton \4'as not a man " and ,,ihe sun is cold ,' are equivalent as being both
lirlse. But here we have anticipatecl dednctions which follorv rater from our
lirrrnal reasoning. Equivalence in its origin is nrer.ely mutual irnplication as
sLated above.

T,uth,-ralues. The " truth-value " of a proposition is trutlt, if it is true,
,nd fulsehooel if it is false *. rt will be observed that the truth-values of

' This phrase is ilue to Frege.
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pv q, p . q, p) q, -p, p= q depend only upon those of p and q, namely the

trnth-value of"pvq" istruth i f , the truth-value of either p or q is truth,

and is falsehood otherwise ; that of " p. q" is truth if that of both p and g is

truth, and is falsehood otherwise ; that of " p> q" is truth if either that ofp

is falsehood or that of q is truth; that of " - p " is the opposite of that of p ;
and that of " p= q" is truth if p and g have the same truth-value, and is

falsehood otherrvise. No'w the only ways in which propositions will occur

in the present work are ways derived from the above by contbinations and

repetitions. Hence it is easy to see (though it cannot be formally proved

excepb in each particular case) that if a proposition p occurs in any propo-

sition /(p) which we shall ever have occasion to deal with, the truth-value

of.f(p) will depend, not upon the particular proposition p, but, only upon

its truth-value ; i.e. if p= q, xre shall have .f(p) =.fQi. Thus whenever two

proposit,ions are knorvn to be equivalent, either may be substituted for the

other in any formula rvith which we shall have occasion to deal.

We may call a function "f (p) 
" 

" truth-function " when ibs argument p is

a proposition, and the truth-value of f(p) depends only upon the truth-

value of p. Such functions are bv no means the only common functions of

propositions. For example, ",4 believes p" is a function of p which will

vary its truth-value for different arguments having the same truth-value:
,4 may believe one true proposition without believing another, and may

believe one false proposition without believing another. Such functions

are not excluded from our consideration, and are included in the scope of

any gener,rl propositions we may make about functions I but the patticular
functions of propositions rvhich we shall have occasion to construct or to con-
sider explicitly are all truth-functions. This fact is closely connected wibh a

characteristic of mathematics, namely, that mathernatics is always concerned

with extensions rather than intensions. The connection, ifnot now obvious, will

become more so when we have considered the theory of classes and relations.

Assertion-sign The sign " F," called the " assertion-sign," means that

what follows is asserted. It is required for distinguishing a complete proPo-

sition, which we assert, from any subordinate propositions conteined in it but
not asserted. In ordinary rvritten language a sentence contained between full

stops denotes an asserted proposition, and if it is false the book is in error.

The sign "F" prefixed to a propositiou serves this sanre Purpose in our sym-

bolism. For example, i \ , i ' l (p)p)" occurs, i t  is to be taken as a complete

assertion convicting the authors of error unless the proposition "p)'p" is

true (as it is). AIso a proposition stated in symbols without tbis sign " F "
prefixed is not asserted, and is melely put forward for consideration, or as a

subordinate part of an asserted proposition.

Infermce. The process of inference is as follows: a proposition "p" is

asserted,and a proposition "p implies g"is asserbed, and then as a sequel
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the proposition "g" is asserted. The trust in inference is the belief that if the
two former assertions are not in error. the final assertion is not in error.
Accordingly whenever, in symbols, where p and g have of course special
determinations,

" lp" and " t (p>i l "
have occurred, then " F g " uill occur if it is desired to put it on record. The
process of the inference cannot be reduced to syrnbols. Its sole recold is the
occurrence of " F q." It is of course convenient, even at the risk of repetition,
to rvri te "Fp" and "F(p)g)" in close juxtaposit ion before proceeding to
" F q " as the result of an inference. 'When this is to be done, for the sake of
dlawing attention to the inference rvhich is being made, we shall rvrite
instead

" F p)f  q; '
rvhich is to be considered as a mere abbreviation of the threefold statement

" Fp'  and "  F(p)q)"  and "  Fq."
Thus "tp)lq" may be read "p, t trerefore q," being in fact the same
abbreviation, essentially, as this is; for "p, therefore g" does not explicitly
state, what is part of its nreaning, that p implies q. An inference is the
dropping of a true premiss ; it is the dissolution of an implication.

Thn use of dots. Dots on the line of the symbols have two uses, one to
blacket off propositions, the other to indicate the logical product of two
propositions. Dots imrnediately preceded ol follorved by " 

" 
" or " ) " or

"="or"F,"orby"(a) l ' " ( r ,y)) ' " (u,y,z)" . . .or"(gu),""(ga,g),""(ga,y,z)" . . .
or "l(tn)($n)f" or "fB(yf" or analogous expressions, serve to bracket off a
proposition; dots occurring otherwise serve to mark a logical product. The
general principle is tlrat a larger number of dots indicates an outside bracket,
a smaller number indicates an inside bracket. The exact rule as to the scope
ol the bracket indicated by dots is arrived at by dividing the occurrences of
dots into three groups which we will name I, II, and IIL Group I consists of
dots adjoining a sign of implication ()) or of equivalence 1=) or of disj unction
(v) or of equality by definition (: D0. Group II consists of dots following
brackets indicative of an apparent variable, such as (n) or (a, y) or (go) or
(gx,y) orl(ta)($n)] or analogous expressions*. Group III consists of dots
rvhich stand between propositions in order to indicate a logical product.
Croup I is of greater force than Group II, and Group II than Group III.
'I'he scope of the bracket indicated by any collection ofdots extends backwards
rrr forrvards beyond any scnaller number of dots, or any equal number from a
group of less force, until we reach eitber the end of the asserted proposition
ot a greater number of dots or an equal number belonging to a group of
ttlual or superior force. Dots indicating a Iogical product have a scope whictr
u'orks both backwards and forwards; other dots only wolk away from the

* The meaning of these erpreseione will be explaiued later, sntl eramples of tbe uee of dots in
oonuection with thom will be giveu on pp. 16, 17.
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adjacent sign of disjunction, irrplication, or equivalence, or forward from the
adjacent symbol of one of the other kinds enumerated in Grorrp II.

Some examples will serve to illustrate the use of dots.
"pv q.) .qv.p" means the proposi t ion, , ,p o,  q '  impl ies,  g or p. , , ,  When

we a,ssert this proposition, instead of rnerely considering it, we write
" l  zpv q.)  .q" p,"

where the two dots after the assertion-sign show that what is asserted is the
whole of what follows the assertion-sign, sincc t,here are not as many as two
dots anyrvhere else. I f  we had writ ten,,p :v :  q.).  q, pl,  that wouid mean
the proposition " either p is true, or q implies ,q or pi If we wished to assert
this, we should have to put three dots after ihe assertion-sign. If we had

Jvritfen " p v q .. > . q ? v = p," that would mean the proposition,i either,,p or q'
inrplies g, orp is true." The forms,.p . v . g . ) . q v p"- and,, p v q . > . C'. n . i',
have no rneaning.

.  "  p)  q.)  :  q)  r . . ) .p)  r"  rv i l l  mean,,  i fp i rnpl ies q,  then i f  q impl ies r ,
p implies r." ff we rvish to assert this (which is tr.ue) rve rvrite

, ,F : .7t)  q.  )  :  q )  r  . )  .p)  r . , ,

.  
Again "  p> q.)  .  q)  r :  ) .p )  r . "  wi l l  mean , , i f  p impl ics q,  impl ies ,g

implies r,' then _p implirrs r." This is in general untrue. (Observe thai
"p)q" is sometimes m.st conve.iently rearl  as,,p irrrpl ies q,,,a,nd sometimes
as." i f  p, then q.")  "p>q.q)r . ) .p)r , ' rv i l l  mean , , i f  p impl ies g,  and
q implies r, then p implies r." In this for'r'la, the first dc't indicaies a logical
producb; hence bhe scope of the second dot extends backwards to the begin-
ning of t ,he proposit ion. *p) q z q).r.  )  .  p ) r ' ,  wi l l  mean .,p implies q; and
if q implics r, t,heu p im plies r." (This is not true in general.l Here the two
dots indicate s |1'gical product; since two dots do not occur anywhere else, the
scope of these twr dots extends back*'ards to the beginning of the proposition,
and forwards to the end.

"pvq.)z.p.v.q)r 'z) .pvr"  rv i i l  mean,, i f  e i therp or q is t rue,  then
if either p or 'll implies r' is tlue, it follorvs that either p or' , i. brue.,, If
tlris is to be asserted, rve ntust put four dots after the assertion-sign, tli.s:

" l -  : :p v q.)  z.  p.v .  q)r : )  .pv r ."
(This proposit ion is proved in the body of t l re rvork; i t  is x2 ?5.) I f  we wish
to assert (rvhat is equivalent to the above) t lre proposit ion: " i f  ei the' p o' q
is true, and either p or 'q implies r. ' is trrre, then either p or r is true,,,  rve
rvrite n

" |  : .  p v t1 |  p.v .  q)  r  z )  .  1t  v t . . ' ,
Here the fir'st pair of dots indicates a logical product, while the second pair
does not. 'rhrrs the scope of the second pair .l'dots passes over the first pair,
and back until we reach the three dots after the assertion-sign.

Other uses of dots follow the same priuciples, and will be explained as
they are introduced. In reading a proposition, the dots should be noticed
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first, as they show its structure. In a proposition containing several signs of
implication or equivalence, the one with the greates[ uumber of dots before
cr after it is the princi'pal' one: everything that goes belbre this one is stated
by the proposition to imply or be ecluivalent to everything that comes after it.

Def,uitions. A definition is a declaration that a certain rrewly-introdrrced
symbol or combiuation of symbols is to mean the same as a certain other
combination of symbols of which the nreaning is already knowu. Or, if the
clefining combination of symbols is one which only acquires meaning when
combined in a suitable manner with other symbols*, rvhat is meant is that
any combinabion of symbols in which the nervly-defined symbol or combination
of symbols occurs is to have that meaning (if any) which resurts from substi-
tuting the defining cornbination of synrbols for the ne'rvly-defined symbol or
combination of symbols wherever the latter occurs. we will give the names
of d'ef'n.iendum and d,ef,niens respectively to rvhat is definecr and to that which
it is defined as meaning. S'e express a definition by putting b6e d,e/iniend,um
to the left and the def,niens to the right, with the sign ,,:,, between, aud the
letters "l)f" to the right of Lhe definiens. rt is to be u.derstood tlrat the
sign ":'and the letters ,.Df " are to be regarded as together frirming one
sJ'mbol. The sign ":" witbout t,he letters ,,Df " rvill have a different meaninc,
to be explained short ly.

An exaurple of a definit ion is

p)q. : . -pv c1 Df.
It is to be observed that a definition is, strictly speaking, no part of the

subject in rvhich it occurs. For a de6nition is concerned rvholly rvith the
syrnbols, not rvith rvhat they symbr-rlise. Moreover it is not true ol false,
being the expression of a volition, not of a proposition. (For this reason,
definitions are not preceded by the assertion-sign ) Theoreticarly, it is
rinnecessary ever to give a definition: we might always use the def,niens
instead, and thus wholly dispense with tbe d,ef,niendutn. Thus althougll we
employ definit ions and do not define,,definit io., ' ,  yet,,definit ion',  does not
*ppear among our primitive ideas, because the clefinitions ar.e 

'o 
part of our

srrbject, but are, strictly speaking, urere typographical conveniences. p.ac_
tically, of course, if we int,r'oduced no definitions, our formulae rvould very soon
lrocome so lengthy as to be unmanagenble; but theoretical ly, al i  definit ions are
superfluous.

In spite of the fact that definitions are theoretically supcrfluous, it is
rr.vertheless true that they often convey more important infonnation than is
t:rntained in the propositio's in which they are used. 'rhis arises from two
..rrses. First, a definition us.ally implies that the def,ttiens is rvorthy ol'
r,:rrcful consideration. Hence the collection of definitions embodies our choicc

' This case rvill be fully coneidered in Clrapier III of the Introduction. lt need not further
( oDceru us &t present.
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of subjects and our judgment as to what is most imporbant. Secondly, when
rvhab is defined is (as often occurs) somet,hing already farniliar, such as cardinal

ot ordinal numbers, the definition contains an analysis of a common idea, and

uray therefore express a notable advance. Cantor's definition of the continuum

illustrates this: his definition amounts to the statement that what he is de-

6ning is the object rvhich has the propercies comnonly associated with the

rvortl " continuum," though what precisely constitutes thcsc properties had

not before been known. In such cascs, a definition is a " tnaking definite ": it

eives definiteness to an idea lvhich had pleviously been more or less vague.

tr'or these reasons, it rvill be found, in what follows, that the definitions

ilre what is rnost important, and rvhat mosb deserves the reader's plolonged

i l t tent l t  n.

Sorne irnpoltant renrarks must be made respectirrg the variables occurring

in the clef.niens and the def'nientlunr'. Bub these rvill be defelred tiil the

notion ofan "apparent variable" has been iutrotluced, when the subject can be

considerecl as a whole.

Sztnrnto.ry of preceding statenunts. There are, in the abovc, three prinri-

tive ideas rvhich are not " defined " but only descriptively explained. Their

primitivencss is only relative to our exposition of logical connection and is

not, absolute; though of oourse such att exposition gains in importance ac-

cording to the siurpliciiy of its primitive ideas. 'Ihese ideas are symbolised

by "-p" and "pvq," , r .nd by "F" pref ixed to a proposi t ion.

'fhree definitir.rns havc becn introduced:

p.q. : . - ( -pv-q) Dl

p)q. : . -pvq Dl

p=q.: .p)q.q)p Df.

Primitiae propositirttts. Some propositions must be assumed without proof,

since all inference proceeds from propositions previously asserted. Tbese, as
far as they colrcern the functions of propositions rnentioned above, will be

found stated in *1, rvhere the formal and corrtinuous exposition of ttre subject

commences. Such propositions will be called "primitive propositions." These,

like the primitive ideas, are to some extent a matter of arbitrary choice; though,

as in the previous case, a logical system grows in irnportance according as the

primitive propositions ar.e ferv and simple. It will be forrnd that orving to the

',ueukness of'ihe i,rugi,ratioii in dealing with simple abstract ideas no very

great stress crrn be laid trpon their obviousness. They are obvious to the in-

structed mind, bub then so are many propositions which cannot be quibe true,

as being disproveti by their conbradictory consequences. The proof of a logical

system is its adequacy and its coherence. That is: (1) the system must enrbrace

among its deductions all thosc propositions which we believe to be true and

capable of deduction from logical prenrisses alone, though possibly they may
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require some slight linritation in the form of an increased stringency of enun-
eiation; and (2) the system musb lead to no contradictions, namely in pursuing
our in{'erences we must never be led to assert, both p and not-pt, i.e. both ., F . p "
and " F . -p" cannot legitirnately appear.

The following are the primitive propositions employed in the calculus of
propositions. The lctters "Pp" stand for "primitive proposition."

(l) Anything implied by a true premiss is true Pp.
This is the rule which justifies inference.
(2) Fzpvp.) .1t  Pp,

i.e. if p or p is true, theo p is true.
(3) F:  q . ) .pv q Pp.

i .e. i f  q is true, then p or g is true.
(4) l -  :p v q.> .  qv p Pp,

i .e. i f  p or g is truc, then g or p is true.
(5) l -  :pv(qvr) .  ) .9"(pvr ' )  Pp,

i.a if either p is true or' "q or r" is true, t,hen either q is true or "p or r"' is
true.

(6) F: .  q)r . )  :pv q.) .pvr Pp,
f.e. if 17 implies r, then "p or {l" implies "p or r."

(7) Besides the above primitive propositions, we require a primitive pro-
position called "the axiorn of identification of reel variables." When rve lravc
separately asserted two different functions of e, rvhere z is undetermined, it
is often irnportaut to l<now whether we can identify the c in one asseltiol
with the r in the other. This will be the case-so our axiom allows us t,,
infer-if both assertions present c as the argument to some one function, that
is to say, if f.z is a constituent in both assertions (rvhatevel propositional frrnc-
t ion { may be), or, rnore general ly, i f .  $(n, y,2,. . .)  is a consti tuent in ont-
:sscrt ion,and$(a,u,u, . . . ) isaconst i tuent intheother.  Thisaxiornintrodu:es
rrotions which have not, yet been explained; for a fuller account, see the remar ks
;rcconrpanying *3 03, *1'7, xl '71, and xl '72 (rvhich is the staternent of this
,r.xiorn) in the body of the work, as well as the explanation of propositional
liructions and ambiguous assertion to be given shortly.

Sonre sitnple propositions. In addition to the prinritive propositions rve
lr:rve already mentioned, the following are among ihe most important of t,hc
r.krrncntary properties of propositions appearing among thc deducti,rns.

' lhe law of excluded middle: ,r .pv-p.
'l'lris is x2'11 belorv. We shall iudicate in brackets the nurnbers siven to the
lirlLrrving proposibions in the body of the work.

'l'ho law of contradiction (x3'24,):

F.-(p.-p).
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The law ofdouble negation (x4'13):

Icuer.

F.P:-(-P).

The principle of transpositiut,i.e."if 1t implies g, then not-g implies not-p,"
and vice versa: this principle has various forms, namely

(t-4 '1)  F tP)q.=.-g)-P,

(x4'r1) l rp:q

(x4' f4)  F =.p.  q.) . r  := =P. -r ' . ) .  -?,
as rvell as otherd which are variants of these.

The law of tautology, in the two forms:

(x4'24) t .p.=.p.p,

@a'25) l tp.=.pvp,

i.e. "p is true" is equivalent to "10 is true andp is true," as rvell as to "p is true
or p is true." From a formal point of view, it is through the larv of tautology
and its consequences that the algebnr, of logic is chiefly distinguished fronr
ordin;rry algebra.

'l'he law of absorption:

(*4 '7r)  F : .p)  q.  =.p.=.p.q,

i a. "p implies g" is equivalent to "p is equivalent to p . q!' This is called the
law of absorption because it shows that the factor q in the product is absorbed
by the tactor p, if p irnplies g. This principle enables us bo replace an impli-
cation (p)q) by an equivalence (p.=,p,q) whenever i t  is convenient to
do so.

An analogous ancl very important principle is the following:

(xa 73) |  : .  q.) .  P.  =.P. q '

Logical additit'n and multiplication of propositions obey the associative
and commutative larvs, and the distributive larv in two fonns, namely

(xa'+;  I  z.p.qv r .=.p.q.v .p. t ' ,

(x4'4f)  F : .p.v.  q.  I  i  = t  lv  q.  pv r ' .

The second of these distinguishes the relations of logical addition and multi-

plication from those of arithmetical adclition and mulbiplication.

Propositional fu,nctiotts. Let $u be a statement containing a variable rz

and such that it beconres a proposition when e is given any fixed determined
meaning. Then Sr is called a "propositional function"; it is not a proposition,
since orvinq to the ambigrity of u it really rnakes no assertion at trll. Thus

"aishrrr t"reai lymakesnoasserbionatal l , t i l l l 'eha,vesett ledrvhoais.  Yet

owing to the individuality retained by the arnbiguous v:rriable a, it is an anr-
biguous exarnple fi'om the collection of propositions arrived at by giving all

possible determinations to a in "z is hult" rvhich yield a proposition, tlue or
false. Alscr iI "a is hutb" and "y is hrtrb" occur in the sonrc context, rvhere y is
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another variable, then according to the determinabions given to a and y, lhey
can be settled to be (possibly) the sanre proposition or (possibly) difrerent
propositions. But apart from some determination given to a andy,they retain
in that' conteKt their ambiguous differentiation. Thus .,a is hurt" is an am-
biguous "value" of a propositional function. When we wish to speak of the
propositional function corresponding to ,.o is hurt," we shall write ,.6 is hurt."
Thus "2 is hurt" is the propositional function and,,r is hurt" is an ambiguous
vafue ofthat function. Accordingly though ,,e is hurt" and ,,y is hurt,, occurrtng
in the same conteat can be distinguished, "6 is hurt" ald ,.f is hurt,'convey
no clistinction of meaning at all. More generally, fa is an ambiguous value of
the propositional function fd, and when a definite signification a is substitutecL
for r, $a is an unarnbiguous value of {6.

Propositional functions are the fundamental kind from which the more usual
fr inds of function, such as "sina" or " loga" or , , the father of n,, ,are derived.
'lhese derivative functions are considered later, and are called ,,descriptive
Iirnctions." The functions of propositions considered above are a particular
cuse of propositional functions.

The range of atr,lues atzd, total uariation. Thus corresponding to any propo_
sitional function {,4, there is a range, or collection, of values, consistinE oflll
t lro propositions (true or {alse) which can be obtained by giving every p-ossible
rfctermination to a in fa. A value of e for which {c is true will be said to
"satisfy" f6. Now in respecb to the truth or falsehood of propositi.ns of this
rrlnge three important cases must be noted and symbolised. These cases are

systcm. The symbol "(t) . $ct'may be lgad r.fa ahvays," or,.{ris ahvays true,,,
or "{z is true for al l  possible valuesof u" Thesl,mbol , ,(ga).Qo,:maybe

'r,rxl 
"there exists an a for which {o is true," or ,,bhere exists an z satisfying

,f,i," and thus conforms to the nat,ural fornr of the expression of thought.
Pr'position (ll) can be expressed in terrns of the fundamental ideas now on

l ' r r r r f .  Inordertodothis,notethat"-6fr"standsfort l recontradictorvof 6u.
At:c.rdingly - 62 is another propositionai function such that each value of d.t
.rnt.r:rdicts a value of - Qi, and vice versa. Ilence ,,(n). 

- far', symbolises the
; 'r ,r ;xrsit iontl-rateveryvalueof fDisuntrue. Thisisnumber(B)asstatedabove.

Ib is an obvious error, though one easy to conrrnit, to a,ssurne that cases
( I );rrrrl (3) are eacb othefs contradictories. 'rhe syrnbolism exposes this fallacy
,lr ,  "rcc, Ibr ( l)  is (r).Q*, and (3) is (a).-fa, while the contradictory o1 (f  )  is,- i(,;).{aJ. For tr,e 

-:[,u;:r:".t:1t3".t;; "j;t".ion is nade, namery
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Definitions of which the object is to gain some trivial advantage in brevity

by a slight adjustment of symbols will be said to be of "merely symbolic import,"

in contradistinction to those definitions which invite consideration of an im-

portant idea.

The proposition (a) . $n is called the "total variation" of the function f0.
For reasons which will be explained in Chapter II, we do not take negation

as a primitive idea when propositions of the forms (*) . Qn and (ga) . $n ate

concerned, but rve def'ne the negation ot (a\ . $n, i'e' of " $a is always true," as

being "fo is sometimes false," i.e. "(ga).-Qu," and similarly we d'ef'ne the

negation of (sa) 
" 

*J;rr 
?i_i",Ji:;; T;

- {(sr) . 4"1 .: .(n) . - 6, Df.
fn like mannerrve define a disjunction in which one of the propositions is

of the form "(4 .4"" or "(gc). Sa" in terms of a disjunction of propositions

not of this form, putting

@). Q*.v .  p ? : .  (n) .  Qcv p Df,

i.e. "either fa is always true, orp is true" is to mean "'$, o, p' is always true,"

with similar definitions in other cases. This subject is resulned in Chapter II,

and in x9 in the body of the work'

AWarent uariables. The symbol "(c) . fe" denotes one definite propositiorr,

and there is no distinction in meaning between "(*). f"" and "(y). {y" when

they occur in the saure context. 'fhus the "c" iu "(a). fr" is not an ambiguous

constituent of any expression in which "(z) . fa" occurs I and such an e.x-

pressiou does not cease to convey a determinate meaning by reason of the

ambiguity of the z in the "fo." The symbol "(r).6r" has some analogy to

the sYmbol 
" 
fu 6 p1a*"

lbr definite integration, since in .uih", 
"u*" 

i, th" expression a function of,r.

The range ofc in "(r) .Qr" or "(gc). fo" extends over the complete

field of the values of ar for which "pa" has meaning, an.d accordingly the

meaning of "(a) . Sa" or "(gn) . fo" involves the suppositioo that such a field

is determinate.  The a which occurs in "(c) .$a" ot" ' (Sr) .Qr" is cal led

(following Peano) an " apparent variable." It follows frorn the meaning of

"(Sr).fu" that the.c in thisu.,expression is also an apparent varizrble. A

proposition in which c occurs as an apparent variable is not a function ofo.

Thus e.g.  "( t ) .a:e" s i l l  mean "everything is equnl  to i tsel f . "  This is an

absolute constant, not a functi,rn of a variable n. This is why the c is called

ao o,pparent variable in such cases.

Besides the " range" of z in "(*).6"" or "(gc). {r," which is the field

of the values that o rnay have, we shall speak of the " scope" ofo, rneaning

rather than
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the function of-rvhich all values or some value are being affirmed. If we are
asserting all values (or some value) of " Qal' " 6r" is the scope of o; if rve are
asserbing al l  values (or some value) of "$a)pi '"$*)p" is the scope of o;
if we are asserting all values (or some value) of " $a ) ^lral' " $a ) ^lru" 

will be
the scope of o, and so on. The scope of o is iudicated by the nunrber of dots
after the "(u)" or "(g)"; that is to say, the scope gxtends forwards until
rve reach an equal nurnbel of dots not indicating a logical product, or a greater
number indicating a logical product, or the end ofthe asserte<l proposition in
rvhich the "(a)" or "(go)" occurs, whichever of these happens first*. Thus a.g.

"(a)=gt.) ,*""

will mean "{a always implies rlra," but

"(n).Q".) .*n"
rvill mean "if fr is always true, then rJec is true for the argument o."

Note that in the proposition

@) .b,  - )  .  *"
the two o's have no connection rvith each other. Since only one dot follows
the o in brackets, the scope of the first c is limited to the " f,r" immediately
lollorving the a in brackets. It usually conduces to clearness to write

@)-Q,.)-+y
@).Q".) .+*,

since the use of different letters emphasises the absence of connection between
t,he two variables; but there is no logical necessity to use different letters,
und it ie sometimes convenient to use the same letter.

Anrbiguous assertion und, the real aat"iable. Any value " $c" of the function

$4 can be asserted. Such an assertion of an ambiguous member of the values
of {6 is symbolised by

, ,1 .6r ; :

Ambiguous assertion of this kind is a primitive idea,which cannot be defined
in terurs of the assertion of propositions. 'lhis prirnitive idea is the one rvhich
crnbodies the use of tlre variable. Apart from ambiguous assertion, the con-
xitl<rrat,ion of " $a," which is an rr,mbiguous rneurber of tbe values of {6, would
lrc of litble conseguence. When rve are considering or asserting "$a," the
vtrirble a is called a " real variable." Take, for exarnple, the law of excluded
rrriddle in the form which it has in traditional forrnal logic:

" a is either 6 or nob b."

llrrle cl and b are real variables: as they vary, different propositions are
,'x plcsserl, though all of them are true. While a and D are undetermined, as in
thc rbove enunciation, no one definite proposition is asserted, but what is
nssrrrted is orzy value of the propositional function in question. This can only

' 'l'hie agres with the rules for the occurrences of alote of the type of Group II as explained

'rl" 'vo, 
pp. 9 anil 10,
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be legitimately asserted if, whatever value may be chosen, that value is true,
i.e.1f alL the values are true. Thus the above form of the law of excluded
middle is equivalent to

" (a,b). o is eitber D or not b,"

i.e. to " il is always true that a is either b or not 0." But these two, though
equivalent, are not identical, and we shall find it necessary to keep them
distinguished.

When we assert something containing a real variable, as in e.g.

" l .a:n,"
we are asserting any value of a propositional function. When we assert some-
thing containing an apparent variable, as in

"1.(* \ .n:u"
or " l - . (Se).u:s l '
we are asserting, in the first case all values, in the second case some value
(undetermined), of the propositional function in question. It, is plain that
we can only legitirnately assert " any value " if oll values are true; for other-
wise, since the value of ttre variable remains to be determined, it might be so
determined as to give a false proposition. Thus in the above instance, since
we have

we may infer F.(u).a:n.

And generally, given an assertion containing a real variable z, rve may trans-
folm the real variable into an apparent one by placingthe n in brackets at
the beginning, followed by as nrany dots as t,here are after the assertion-sign.

When we assert something containing a real variable, we cannot strictly
be said to be asserting a proposition, for we only obtain a definite proposition
by assigning a value to the variable, and then our assertion only applies to
one definite case, so that it has not at all the same force as before. When rvhat
we assert contains a real variable, we are asserting a wholly undetermined one
of all the propositions that lesult from giving various valnes to the valiable.
It will be convenient to speak of such assertions as asserting a propositional,

function. The ordinary formulae of mathematics contain such assertions; for
example

. ,s inraagggzr j :1 ' t

does not assert this or tlrat pariicular case of the formula, nor does it assert
that the fornrula holds for all possible values of o, though it is equivalent to
this latter assertion; it simply ai*erts t,hat the fbrmula holds, leaving r wholly
undetermined; and it is able to do this legitiruaiely, because, however u may
be determined, a true proposition resulbs.

Although an assertion containing a real variable does not, in strictness,
a.ssert a proposition, yet it will be spoken of as asserting a proposition except
when the nature of the arnbiguous assertion involved is under discussion.
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Def,nition anil, real aariables. When the clefiniens contains one or more
real variables, the def,niendnrrzz must also contain them. For in this case we
have a function of the real variables, and the def,nienilunt must have the same
tneaning as tbe d,ef,nietrs for all values of tbese variables, which requires that
the symbol which is the ilefiniend,ura shc-uld contain the letters representing
the real variables. This rule is not always observed by mathematicians, and
its infringement has sometimes caused important confusions of thought,
rrof,afly iu geometr5' and the philosophy of space.

In the definit ions given above of "p.q" and"p)q" and"p:q," p and q
:ue real variables, and therefore appeat on both sides of the definition. In
the definition of "- [(a). fo]" only the funccion considered, namely 52, is a
rcal variable; thus so far as concerns the rule in quesbion, r need nob appear
ou the left. Bub when a real variable is a function, it is necessary to indicate
lrorv the argument is to be supplied, and therefore there are objections to
ornitting an apparent variable rvhere (as in the case before us) this is the
iugurnent to the function which is the real variable. This appears nrore
plainly i[ insteati of a general function {0, we take some particular function,
sa,y "i: a," and consider tbe definition of - [(o) . n: a]. Our definition gives

-l(n). a : aj . : . (S*) . - 
(n : a) Df.

lJtrt  i f  we had adopted a notat ion in which the ambiguous value "a:al '
containing the apparent variable z, did nor occur in lhe ilefiniend,um, we
should have had to construct a notation ernploying the function itself, namely
"i:a." This does not involve an apparent variable, but would be clumsy in
practice. In fact we have found it convenient and possible-except in the
cxplanatory portions-to keep the explicit use of symbols of the type,,$k,"
citlrer as constir,nts fe.g. b: o] or as real variables, almost entirely out of this
ru'ork.

Propositions connecting real and, app&rsnt aariables. The most important
propositions connecting real and apparcnt variables are the following:

(1) " When a propositional function can be asserted, so can the proposition
tlrat all values of the function are true." More br.iefly, if less exactly,..what
holds of any, however choscn, holds of all." 'I'his translates itself into the rule
l,hnt when a real variable occurs in an assertion, we may turn it into an apparent
vrrriable by putting the letter lepresenting it in brackets inrmediately after
l l ro asselt ion-sign.

(2) " What holds of all, holds of any," i.a.

r=(a\ .5a.) .9y.
'l'lris sLates "if f,r is alrvays true, then {y is true."

(3) "If {y is true, then fu is soruetimes ttae," r,.e.
FtSy.) . (S*) .6".
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An asserted proposition of the form "(.d").{o" expresses an "existence-
theolem," namely "there exists an e for which {o is true." The above pro-
position gives what is in practice the only way of proving existence-theorems:
we always have to find some particular g for rvhich fy bolds, and thence to
infer " (gc) . $n." lf we rvere to assurne what is called the multiplicative
axiom, or the equivalent axiorn enunciated by Zermelo, that would, in an
important ciass of cases, give an existence-theorem where no particular instance
of its truth can be found.

fn v i r tue of  "F: \u) .#a.>.Qy" and "F.Oy.) . (ga).6r,"  we have
"t : (a) .Q,.) . (S).6r,"  i .e.  "what is always true issometimes true."  This
would not be the case if nothing existed; thus our assumptions contain the
assumption that t,here is something. This is involved in the principle that
what holds of all, holds of any; for this would not be true if there were uo
" alyJ'

(4) "If fc is always true, and jra is always true, then ,Q".tt' is always
trte," i.e.

t  t .  (u). gr z (n). l ra t  )  .  (n). ga . gu.

(This requires that f and r/r should be functions which take arguments of the
same type. We shall explain this requirenent at a later stage.) The converse
also holds; r.e. rve have

F : .  (o) .  Qr.  *a.)  :  (c) .  Qr = ( t ) .  ga.

It is to some extent optional which of the propositions connecting real
and apparent variables are taken as primitive propositions. The primitive
propositions assurned, on this subject, in the body of the work (xg), are the
following

(r)
(2)

t=ga.) . (g) .Q".

l :$av 6y.) . (g) .$ ' ,
i.e. if either fa is true, or fy is true, then (gz). Qz is true. (On the necessity
for this primitive proposition, see remarks on xg.ll in the body of the work.)

(3) If we can assert Sy, where rr is a real variable, then we can assert,
@) . Qr; i.e. whab holds of any, however chosen, holds of all.
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g,'ttcrally, they can only be lanown when it is already known either that their
lrylnthesis is false or that their conclusion is true; and in neither of these
,:rlscs do they serve to make us know the conclusion, since in the first case the
r:orrclusion need not be true, and in the second it is known already. Thus
rrrr:h irnplications do not serve the purpose for rvhich implications are chiefly
uscfirl, namely that of making us know, by deduction, conclusions of which we
rvt'rc previously ignorant. Formal, implications, on the contrary, do serve this

f)rrrpose, owing to the psychological fact that we often know "(c)z$n.).{a"
,rrrrl {y, in cases rvhere .fry (which follows from these premisses) cannot easily
lx. knorvn directly.

'lhcse reasons, though they do not warrant the complete neglect of impli-
r':ll,ions that are not, instances of formal implications, are reasons which make
li,rrrral implication very important. A fornal implication states that, for all

lxrssible values of o, if the hypothesis {a is true, the conclusion rf.z is true.
Sirrce " $, . ) ..|"a " will alw:iys be true when fo is false, it is only the values
,'l'r that make fc true that arc imltortant in a formal implication; what is
r,llirt:tivcly stated is that, for all these values, "Jr.z is true. Thus propositions
,rf l,he form "all a is Fi'"no a is B" state formal implications, since the first,
(;rs rr.ppears by what has just been said) states

(n)zr isana.) . r isaB,

rvlr i lc the second states
(z) :  e is an a.  ) .4 is not a B.

Arrr l  any formal implication"(r l)=$t.).r ln" may be interpreted as: "Al l
vrlrrcs of c which satisfy* {a satisfy "f.o," 

while the formal implication
" (,r) : {.r .) .-+n" may be interpreted as: " No values of e which satisfy {o
nl,isfy rJro."

Wc have similarly for " some a is B " the formula

(g)."  isana. nisaB,

rrrr, l  f i rr  "some d is not B" the formula

(gr) .  r is  an a.  a is not a B.

'f'rvo functions 6r, *, are called fomwlly equiaalent when each always
rrrrpl ics the other, f .e. when

(a):$a.=.^ l ta,

,,rr,l rr, proposition of this form is called a formal equiualenae. In virtue of
rr'lrrrl rvas said about truth-values, if {z and rf.r are formally equivalent, either

rlry rcplace the other in any truth-function. Hence for all the purposes of

rrrrrl,lrcrnatics or of the present work, $2 may replace ,12 or vice versa in any

;,r,';rosition rvith which we shall be concerned. Norv to say that Qn and' rlra

,11,, lirrmally equivalent is the same thing as to say that Q2 and.fr2 have the
rtn, ertension,i.e. that any value of c which satisfies either satisfies the obher.

' A velue of a is ssid to satiElg Q, or Oi when 4c is true for thst velue of c.
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Thus whenever a constant function occurs in our work, the truth-value of the
proposition in which it occure depends only upon the extension of the function.
A proposition containing a function f2 and having this property (i.e. that its
truth-value depends only upon the extension of {2) will be called an esten-
sional function of {2. Thus the functions of functions with which we shall be
specially concerned will all be extensional functions of functions.

What hasjust been said explains the connection (noted above) between
the fact that the functions of propositions with rvhich mathematics is specially
concerned are all truth-functions and the fact that mathematics is concerned
with extensions rather than intensions.

Corwenient abbreuiation. The following definitions give alternative and often
more convenient notations :

Qa..)" . , ,1n2: z(n) = gn.)  .* ,  Di

Qr. =,.  t l tu t  :  z (u) z $a. : .  $n Df.

This notation " 6r .)n. {ra" is due to Peano, rvho, however, has no notation
for the general idea " (a) . $n." It, may be noticed as an exelcise in the use
of dots as brackets that we might hrrve written

ga)"r ln. :  .  ( r ) .  $a), ln D{

6o="9a.:-(r) ' f r=9, Df

fn practice however, when {0 and r/rd are special functions, it, is not possible
to employ fewer dots than in the first form, and often more are required.

The following definitions give abbreviated notations for functions of trvo
or more variables :

@,i l .  6@,y).  :  :  (a)  :  (y) .  Q @,y) D[

and so on for any number ofvariables;

Q @, y) . )",, . * (r, y) : : : (n, y) : 6 @, y) . ) . * (s, y) Df,

and so on for any number of variables.

Idenfity. The propositional function " c is identical with y " is expressed by

u:9.

This will be defined (cf. xf 3'0i), but, owing to certain difficult points involved
in the definition, we shall here omit it (cf. Chapter II). We bave, of course,

| . r: a (the law of identity),

F:a:g,=.y, : r ,

l :a:Y'A:z ' ) 'o:z '

The first of these expresses the ref,eaiue property of identity: a relation is
called refleriae when it holds between a term and itsel{ either universally, or
wheriever it holds between that term nnd some term. The second of the
above propositions expresses that identity is a symntetrical relation : a relation
is called symmetrical i{ rvhenever it holds between u and y, it also holds
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lx'twecrr y anda. The third proposition expresses that identity is atransitiae

'.frrtion: 
a relation is called transitiuei{ whenever it hotds between a *d, y

rrrrrl bctween y and z, it holds also betrveen u and, z.

we shall find that no new definition of the sign ofequality is required in
rrr*l,hcrnatics: all mathernatical equations in which the sign of equality is used
irr t,hc rirdinary way express some identity, and thus u."ihu sign of equality
irr l,hrt above sense.

Il'a and y are identical, either can replace the other in any proposition
rvit,hout, altering the truth-value ofthe proposition; thus rve have

l=c:A.) .qa=6r.
'l'lr is is a fundamental property of identity, from which the remaining properbies
rrrostly follorv.

".;:the man who did the deed." When such an a has been found, the identitv
of'the criminal has tlanspired.

Classes a,ncl relations. A class (rvhich is.the same as a nanifold or aggre_
rlole) ,s all the objects satisfying some propositional functijn. ri c is the"Jass
rrrrnposedoftheob.jectssai isfyingf0,weshallsaythataisthe classd,etemnined
by f2. Every propositional function thus determines n class, though if the
lrrrpositional function is one which is always false, the class rvill be ntLll,
i r,. rvill have no members. The class determined by the function SO will be
rrrlrrcsented by 2($z)*. Thus for exarnple if {a is au equation, 2($z) will be
flrc class of its roots; if {a is "e has two legs and no I'eathers,,,D($z) will
l rr  the class of men; i f  fe is ' ,0<n(1," 2(gz) rvi l l  be the class of proper
Irlctions, and so on.

It is obvious that the same class of objects rvill have many determining
lrrrrctions. when it is not necessary to specifya determining function of a
r'lir,ss, the class may be conveniently represented by a single Greek letter.
'l'hus Greek letters, other than those to which some constant meaning is
,r*signed, will be exclusively used for classes.

r Any other letter m&y be used iusteaal of z.
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There are two kinds of difficulties which arise in formal logic; one kind
arises in connection with classes and relations and the other in connection
with descriptive functions. The point of the difficulty for classes and relations,
so far as it concerns classes, is that a class cannot be an object suitable as an
argument to any of its determining functions. If a represerrts a class and {6
one of its determining functions fso that a:z($z)], it is not sufficient that

fa be a false proposition, it rnust be nonsense. Thus a certain classification
of rvhat appear to be objecbs into things of essentially different types seems
to be rendered necessary. This whole question is discussed in Chapter II, on
the theory of types, and the fornral treatment in the systematic exposition,
which forms the main body of this rvork, is guided by this discussion. 'Ihe
part of the systematic exposition which is specially concerned wiih the theory
of classes is x20, and in this fntroduction it is discussed in Chapter III It is
sufficient to note here that, in the complete treatment of *20, we have avoided
the decision as to whether a class of things has in any sense an existence as
one object. A decision of this questior in either way is indifferent to our logic,
though perhaps, if we had regarded some solution which held classes and re-
lat,ions to be in sorne real s6nse objects as both trrrc and likely to be universally
received,'rve might have sirnplified one or two definitions and a few preliminary
propositions. Our symbols, such ag " h (Qr) " and a and others, which represent
classes and relations, are rnerely defined in their use,just as V'?, standing for

3"*3*9'=,ou' oy" oz"
has no nreaning aparb from a suitable f'unction of a, y, z on rvhich to operate.
The result of our definitions is that the way in which we use classes corre-
sponds in general to their use in ordinary thought and speech; and whatever
may be the ultimate interpretation of the one is also the interpretation of
the other. Thus in fact our classification of types in Chapter II really
performs the single, though essential, service of justifying us in refraining
from entering on trains of reasoning which lead to contradictory conclusions.
The justification is that what seem to be propositions are really nonsense.

The definitions which occur in the theory of classes, by rvhich the idea of
a class (at least in use) is based on the other ideas assumed as primitive,
cannot be understood without a fuller discussion than can be given now
(cf. Chapter II of this Introducbion and also x20). Accordingly, in this pre-
liminary survey, we proceed to state the more important simple propositions
which result from those definitions, lgaving the reader to cmploy in his mind
the ordinary unanalysed idea of a clads of things. Our symbols in their usage
conform to the ordinary usage of this idea in language. It is to be noticed
that in the systematic exposition our treatment ofclasses and relations requires
no new primitive ideas and only two new primitive propositions, namely the
two forrns of the "Axiom of Reducibility" (cf. next Chapter) for one and two
variables respectively.

rl cLAssEs 25

The propositional function "o is a member of the class a" will be expressed,
following Peano, by the notation

oed.

Here e is chosen as the initial of the word dori. " u e a" may be read ,, o is
an a." Thus "c ernan" will mean "r isa man," and so on. For typographical
convenience we shall put

aN e d. :  .  - (o e c)  Df,

f r ,yea.: . f red. .gea DI.

For "c lass" we shal l  wr i te "Cls";  thus "aeCls" nreans "a is a c lass."

We have
lzne2(gz).=.+a,

i .e. " 'u is a member of the class detennined by Q2'is equivalent to 'z
satisfies $2,' or to'{ra is true.'"

A class is wholly determinate rvhen its membership is known, that is, there
cannot be tlvo different classes having the same membership. Thus if Sz, rfrc
are formally equivalent functions, they determine the same class; for in that
case, if a is a member of the class determined by f0, and therefore satisfies {a,
it also satisfies rlrr,and. is therefore a member of the class determined by rfb.
Tbus we have

| =-2 ($z):2 (*") . = = $t . =n . tlra.

The following propositions are obvious and important:

t  = '  a :2 ($ '9) '  = '  0 e a '  =n'  6a,
i.e. ais identical with the class determinedby Q2 1vhen, and only when, "u is
an a " is formally equivalent to {o;

F =.  a:  B.  = i  f r  e d. .=n. a e B,
i.e. two classes a and B are identical when,,and only when, they have the same
membership;

l .h(uea):a,

i.e. the class whose detemining function is "n is an a" is a, in other words,
c is the class of objects which are members of a;

1.2(gz)eCls,

i.e. the class deternrined by the function f2 is a class.

It will be seen that, according to the above, any function of one variable
can be replaced byan equivalent function ofthe form "uea." Ifence any
extensional function of functions which holds when its argument is a function
of the form "2e a," whatever possible value a may have, will hold also when
its argument is any function f2. Thus variation of classes can replace varia-
tion of functions of one variable in all the propositions of the sort with whieh
we are concerDed,
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In an exartly analogous manner we introduce dual or dyadic relations,
i.a, relations between two terms, Such relations will be catled simply
"relations"g relations between more than two terms will be distinguished as
multiple relations, or (when the number of their terms is specified) as triple,
quadruple,...relations, or as triadic, tetradic,...relations. Such relations will
not concern rrs until we come to Geometry. For the present, the only relations
we are concerned with arc d,ILa,I relations.

Relations, like classes, are to be taken in eaterxion, i.e. il' R and I are
relations which hold between the same pairs of terms, .R and ,S are to be
identical. We may regard a relation, in the sense in which it is required for
our purposes, as a class of couples I i.e. the couple (u, y) ia to be one of the
class of couples constituting the relation Jl if c has the relation R to y*.
This view of relations as classes of couples will not, however, be introduced
into our symbolic treatment, and is only mentioned in order to show that it
is possible so to understand the meaning of the word, rel,ation that a relation
shall be determined by its extension.

Any function Q(o, y) determines a relation R between c and y. If we
regard a relation as a class of couples, the relation determined by Q@,y)is
the class of couples (a, y) for which f 1o, y) is true. The relation determined
by the functio" Q@,9) will be denoted by

fr|Q@,v).
We shall use a capital letter for a relation when it is not necessary to specify
the determining function. Thus whenever a capital letter occurs, it is to be
understood that it stands for a relation.

The propositional
by the notation

function " a has the relation R t'o y" will be expressed

rRy.

This notation is designed to keep as near as possible to common language,
which, when it has to express a relation, generally mentions it between its
terms, as in " a loves y," " u equals Ui' " u is greater t'han y," and so on. For
"relat ion" we shal l  wri te "Rel"; thus "-EeRel" means ".f t  is a relat ion."

Owing to our taking relations in extension, we shall have

| =. hfiS @, g): h0,1, @, y) .= = 6 @' y) .=",y . I (a, v),
i.a. two functions of two variables deterrtirlne the same relation when, and only
rvhen, the two functions are formally equivalent.

We have F . z lifiS @, y)] w. = . Q Q, *),

* Such a couplehas & 8eue, i.e. ihe couple (r, y) is difrerent from the couple (y, o), unless
s=y. We shall call i t e'rcouple with rense," io distinguieh it fromthe class consisting of c
ond y. It noy also be called tn orilcred cotple.
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i-e. " z hx to rz the relation deterrnined by the function Q @, y)" is equivalent
Lo Q@,w);

I z. R : hf iQ (n, y). :  z a&y . =",v. 6 (a, a),
F : .  E :  S.  = z n&y . : r ,a.  asg,

F.hfr@Ry): R,
| . {bfi$(a, y)} e Rel.

'lhese propositions are analogous to those previously given for ciasses. It
rosults from them thai any function of two variables is formally equivalent to
strme function ofthe form uRg;hence,inextensional functions oftwovariables,
vnriation of relations can replace variation of functions of two variables.

Both classes and relations have properties analogous to most, of those of

lrropositions that result from negation and the logical sum, Thelogiaal prod'uct
<rl two classes a and p is their common part, i.e. the class of terms which are
rnembers of both. This is represented by a a B. Thus we put

This gives us

d.^ P=A(nea.aeB) Df,

I  zneaa p,=.aea.nel) ,

ie."nis a member of the logical product of a and B" is equivalent to t,he
logical product of "a is a member of a" and "r is a member of 8."

Similarly lhe logical, sum of two classes a and F is the class of terms which
trc members of either; we denote it by a v B. The definition is

avB:f t1"o'v 'neB) Df '

l,ntl the connection with the logical sum of propositions is given by

|  : .  ueav F.:  z ae a.v.  a e B,

The negation of a class a consists of those terms n for which " a ea" can
ba signif,cantly and,truly denied. We shall fin$ that there are terms of other
lypes for which " a e a " is neither true nor false, but nonsense. These terms
rrrc not members of the negation of a.

Thus the negation of a class a is the class of terms of suibable type which
rrrtr not nrembers of i t , i .e. the class h(n-ea). We cal l  this clase "-a" (read
" rrot-a "); thus the definition is

-  a:  h (a-e a) Df,

rr,rrrl the connection with the negation of propositions is given by

l i f re-d".=.aded,

In place of inrplication \rye have the relation of inclusion. A class a is said
1,,, bc inchrded or contained in a class B if all members of a are meurbels of B,
i . t . i f  nea.) , .aeB. Wewri te "a-CP" for  "aiscontainedinB." Thuswe

l , l l l ,
aCB':=nea')n 'aeB Df '
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Most of the formulae concerning p.q,pvq, -p, 
p>q remain true i f  we

substitute aa B, aw B, -a, aCB. In place of equivalence, we substitute

ident i ty;  for"p= q" was def ined as "p) C-C)pl 'but  "aCl l  .pCa" gives

" u e d. .  =".  s € P,"  whence a:  €.

The following are some propositions concerning classes which are analogues

of propositions previously given concerning propositrons :

l .aaB:-G"u-B),

i .a. the common part of a and B is the negation of "not-a or not 'B";

l .ae(av-a),

i.e. " n is a member of a or not-a ";

F .  r -e (a n -  a) ,

i.e. " u is not a member of both a and not-c ";

F.a:-(-a),

F:  qCF .=.-  BC-a,
F :  a:  B.=.-a:  -  9,
l=d:ana,

lZr l :d.vd.

The two la-st are the two forms of the law of tautology.

The law of absorption holds in the form

F:aC8.=.a:aaB.

Thus for cxample " all Cretans are liars " is equivalent to " Cretans are

identical with lying Cretans."

Just as we have

so we have

t=p)q.q)r . ) .p)r ,

F : a C B . B Cy . )  .  a C ry.

This expresses the ordinary syllogism in Barbara (with the premisses

interchanged); for " a C B " means the same as " all a's are B's," so that the

above proposition states: "ffall a's are p's,and all B's are 7's,then all a's

are ry's." (It should be observed that syllogisms are traditionally expressed

with " therefore," as if they assel'ted both premisses and conclusion. This is,

of course, merely a slipshod way of speaking, since what is really asserted is

only the connection of premisses with conclusion.)

The syllogism in Barbara when the minor premiss has an individual

subject  is  
|  =neB. pc;  ) .ue.y,

e.g. " if Socrates is a man, and all men are mortals, then Socrates is a

mortal." This, as was pointed out by Peano, is not a particular case of

'aCB.BCr.) .aCy,"  s ince"oeB" is not a part icular case of"aC6'"

This point is important, since traditional logic is here rnistaken. The nature

and magnitude of its nristake will become clearer at a later stage'

rl CALCULUS OF CLASSES 29

propositions.For relations, we have precisely analogous delinitions and
We put

,R 
^ 

S: bfi (a&y . aSy) D1
rvhic l r lea.dsto F=a(RArS)y.= .aRy.aSy.

Similarly .R r:r S : Afi @Ry . v . nSy) Df,
:_ f t , :kQ 1_@Ry)l D[

/ i  G S. :  = a&y .)n,r.  nSy Df.

Generally, when we require analogous but different symbols for relations
:rnd for classes, we shall choose for relations the symbol obtained by adding
a dot, in some convenient position, to the corresponding symbol for classes.
(The dot must not, be put on the line, since that would cause confusion with
lhe use of dots as brackets.) But such symbols require and receive a special
definition in each case.

A class is said to eaist .when it has at least one member : ,,a exists,, is
rlenoted by " g t a." Thus we put

f  !c. : . (ga).uea Df.
'Ihe class which has no members is called the ,,null-class," and is denoted bv
"A." Any propositional function which is always false deterrnines the nuli-
class. One such function is known to us already, nanrely ,,a is not identical
with o," which we denote by " a * u." Thus rve may use this function for de-
fining A, and put

n:k(u*u) Df.

The class determined by a function which is alrvays true is called the
unioersal, closs, and is represented by V; thus

Y:k(a:a\  Df.

Thus A is the negation of \r. We have
l . (a) .neY,

'i.e. " ' a is a member of V ' is alu'ays true "; and
l -  .  (c)  .  a-6 [ ,

'i e. " ' s is a member of A' is always false." Also
F:a:A.: . -g!a,

'i e. " a is the null-class " is equivalent to ,. a does not exist."

For relations we use similar notations. We put

S ! n . : . (gu, y) . uRy,
i..e. ",j11-R" means that there is at least one couple a, y between which
l,hc relation -E holds. .A, will be the relation which never holds, and V the

'.lrrtion 
which always holds. V is practically never required; A will be ihe

rrli.rbion kfi 1a ! u .y * U). We have

| . ( " ,y) . - ( ,hy),
F: ,R:A.=.-u!n.r t t td
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There are no classes which contain objects of more than one type. Ac-
cordingly there is a universal class and a null-class proper to each type of

objecb. But these symbols need not be distinguished, since it will be found
that there is no possibility of confusion. Sinrilar remarks apply io relations.

Descrilttions. By a " description " we mean a phrase of the form " the
so-and-so " or of some equivalent form. For the present, we confine our
at,tention to the in the singular. We shall use this rvord strictly, so as to
imply uniqueness; e.g. we shouldnot say "A isthe son of B" if .B had obher
sons besides -4. Thus a description of the form "the so-and-so" will only
have an application in the event of there being one so-and-so and no more.
Ifence a description requires some propositional function {6 rvhich is satisfied
by one value of o and by no other values; then " the r which satisfies {0 "
is a description which definitely describes a cerbain objcct, though we may
not know what object it describes. For exau'rple, ify is a rnan, "r is the
father of y " must be true for one, and only one, value of a. Hence " the
fabher of y" is a description of a certain man, though we may notknow wlnt
nran it describes. A phrase containing " the " always presupposes some inibial
propositional function not containing " the "; thus instead of " z is the father
of y " we ought to take as our inibial function " a begot y "; then " the fathel
of y " means the one value of r which satisfies this propositional function.

If {2 is a proposibional function, the syrnbol "(tr)(Sa)" is used in our
synrbolism in such ir, wly bhnt it c:rn always bc read as " the a lvhich satisfies

{0." But, we t lo not, r lrr t incr " (tn)($n) ";rs standing lbr "the o which satisf ies

f0," thus trcnting l,his lrr,sb phrase as e rnbodying a prirnitive idea. Every use
of "(to)($u)," wht:rc il, a,pprr,rently occtlrs as a constituent of a proposition
in the placo of u,n objccb, is defined in terms of the primitive ideas already
on hand An cxarnplc of this definition in use is given by the proposition

" E ! (ro)1{r) " which is considered immediately. The whole subject is treated
more l i r l ly irr  Ohaptcr I I l .

' l fhc syrrrbol should be compared and contlasted with"h($aS" which irr
use ciur illwrlys be read as " the n's rvhich satisfy f0." Both syrnbols are in-
cornpL'kr syrrrbols defined only in use, and as such are discussed in Chapter III.
'f'hc syrrrlx,l " i (6r) " alrvays has an application, narnely to the class determined
lry <|r,; lrul, " (tr)(Qu) " only has an application rvhen fO is only satisfied by
,nrt, virlurr of z, neithcr rnore nor less. I.t should also be observed that the
rrrrrrning given to the symbol by the definition, given immediately below, of
li) ! (r.r:) (fz) does not presuppose that we know the meaning of " one." This is
;rls,r clr,u'ir,cteristic of the definition of any other use of (la) (fe).

Wc now proceed to define " E ! (lc) (fo) " so that it can be read " the c
satisfying {z exists." (It rvill be observcd that this is a different meaning of
cxisbcnco frorn that which rve express by " 9 ") Its definition is

El  \ tn)(Qu).  :  :  ( f ,c)  z $n. =n. n :  c Dl

rl DnsoRrprroNs 31

'i.e."the o satisfying {0 exists" is to mean "there is an object c such that{a
is true when o is c but not otherrvise."

'Ihe follorving are equivalent forms:
l : .8!( ta)(ga) .  = :  ( t rc)  =gcz ga.)n.  a:c,
t  tE!(tn)(ga). = r (So) .  gc z Sa . Q! .)n,v .  a: U,
F =.El( tx)(ga).  =:  (gc) =Qc=a{c.)" . -#t .

The last of these states that " the c satisfying f0 exists " is equivalent to
" bhere is an object c satislying $6, and, every object other than c does not
satisfy {.?."

The kind of existence just defined covers a great many cases. Thus for
cxarnple " the most perfect Being exists " rvill mean :

(gc) :  c is rnost perfect .  =..  (D: c,
which, tai<ing the last of the above equivalences, is equivalent to

(gc):c is most perfect zr lc. ) , .c is nob most perfect.

A propositron such as "Apollo exists" is really of the same logical form,
although it does not explicitly contain the word the. For "Apollo" means
really " the object having such-and-such properties," say " the object having
the properties enumerated in t,he Classical Dictionary*." If these properties
nrake up the propositional function fz, then "Apollo" rneans ,,(ta)($a),',

and "Apollo exists" means "El(rn)($u)." To take another illustration,
" the author of Waverley" means " the man rvho (or rather, the object which)
wrote Waverley." Thus " Scott is the author of Waverley " is

Scott : (lo) (a wrote Waverley).

Here (as we observed before) the irnportance of id,entity in connection rvith
descriptions plainly appears.

The notation " (ta)(St)," which is long and inconvenient, is seldom used,
being chiefly required to lead up to another notation, namely',R,y," meaning
" the object having the relation R to y." That is, we put

R'g : (tn) (uRy) Df.

The inverbed comma may be read "of." Thus "R.y" is read ,, t \e R of y."
Thus if -B is the relation of father to son, "J?'y" means "the father of g";
if -B is the relation of son to father,"R'y" means "the son of y," which will
onfy " exist " if y has one son and no rnore. R'y is a function of y, but not
a propositional function; we shall call it a descripttiue function. All the
ordinary functions of mathematics are of this kind, as will appear more fully
in the sequel. Thus in our notat ion, " siny" would be writ ten ,, . in.r," and
" sin " would stand for the relation which sin.y has to y. Instead of a variable
descriptive function fy,we p,tt R'y, where the variable relation .B takes the

* The s&me principle applies to m&ny uses of the propor nanres of exi8tent objeots, c.9. to all
uses oI proper names lor objecte knowu to the speaker only by report, and rot by personal
acquaintance.
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pltr:o of the variable function I A descriptive function will in general exist
while g belongs bo a certain domain, but not outside that domain; thus if we
are dealing with positive rationals, y'y will be significant if y is a perfect
square, but not otherwisel if rve are dealing with real numbers, and agree
that" ^,/y" is to mean the positiae square root (or, is to mean the negative
square root), ,/y wlll be significanb provided y is positive, but not otherwise;
and so on. Thus every descriptive function has what we may call a "domain
of definition" or a "dbmain of existence," which may be thus defined: If the
function in question is 8'y, its domain of definition or of existence will be
the class of those arguments y for which we have El R'y, f.e. for which
F,l(ru)(aRy), i.a. for which there is one a, and no more, having the relation
Rtoy.

If R is anyrelation,wewill speak of R'yasLhe "associated descriptive
function." A great many of the constant relations which we shall have occasion
to introduce are only or chiefly important on account of their associated descrip-
tive functions. In such cases, it is easier (though less correct) to begin by
assigning the meaning of the descriptive function, and to deduce the mea.ning
of the relation from that of the descriptive function. This will be done in the
lbllowing expla.nations of notation.

Vadous d,escriptiae funct;ion^s of relatiorx. If .E is any relation, the conaerse
ofl? is the relation which holds betrveen y and a whenever Jl holds between
r alrl g. Thrs greater is the converse of less, before of afie4 cause of effeat

hrcband, of uife, etc. The conver€e of .B is rvritten* Cnv.-E or .B. The defi-
nition is

il,: ag 1yn*y or,
Cnv..E: -il Df.

The secold of these is not a formally correct definition, since we ought to
define "Cnv" and deduce the meaning of Cnv'.B. But it is not worth while
to adopt this plan in our present introductory account, which aims at simplicity
rather than formal correctness.

A relation is called symmetrical if -B:;, i.e. if Ib holds between y and a
whenever it holds betrveen n and y (and therefore vice versa). Identity,
diversity, agr:eenent or disagreement in any respect, are symmetrical relations.
A relation is called asymmetrinal when it is incompatible with its converse,

i.a. when i? A;: i, or, what is equivalent,
a&y .) , ,0.-@n").

Before and after, greater and less, ancestor and descendant, are asym-
metrical, as are all other relations of the sort that lead to series, But there are
many asymmetrical relations which do not lead to series, for instance, that of

* The seoonil of theee notations is tsLen from Sohriicler's Algebra urul Logih dtr nehdoe.
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Thus

R'y:d(rRy't Df,
*n 

r=g1*Ryy Df.
'fhe arrow runs towards y in the first case, to show that we are concerned
with things having the relation R to y; it runs r*ry tior c in the second

case, to show that the relation R goesfromz to the members of E(c' lt runs

in f*h from a referent and, towards a relatum.

The notations i'y,fi* are very important, arrd are used constantly' If

ll is the relation of parent to child, i'., : tt . parents of y,E', - the children
of r, We have

Frrr i 'y .=.ufuy

and rryr f r r ,=,nRy.
These equivalences are ofben embodied in common language. For example'
we say indiscriminately "s is an inhabitant of London" or"", irrttu,Uitt l':i$""-'"
If we put "R" fot "iniabits," "o inhabits London" is ".r-E London," while "c

is an inhabitant of London " is " , rF'London."

Instead of dand h we sometimes use sp;'-R, gstr?, rvhere "sg" s@nds for

" sagitta," and " gs " is " sg " backwards. Thus we put

sg'R: R Df,

gs,R:E or.
These notations are sometimes more convenient than an arrow whel the
relation concerned is reprresented by a combination of letters, instead or a

single letter such as 8- ihos eg. we should write sgr(-E n S), rather than put

an arrow over the rvhole length of (,R a S).
The class of all terms that have the relation R to something or otber-is

called thb doma,in of -R. Thus if -B is the relation of parent *d 
"hild' 

ttt"

* This relation is not strictly asymmetricel, but is so exoept wheln the wife'g brother is also

lhe sister's husbend. In the Greok Church the relation is strictly asymmetrical.
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domain of ]l will be the class of parents. We represent the domain of E by
"D'n." Thus we put

D'R:a[(sD.any] Dt.

Similarly the class of all terrns to which something or other has the relation

-l? is calted the conaerse domain of .B: it is the same as the domain of the
converse of R. The converse domain of R is represented by'!C'l?"' thus

cI,R:0l(ga) .  a&al Df.

The sum of the domain and the convene domain is called the fi,eld,. and, is
represented by c'Rt tnur 

,," = D.-R v q..R Df.

The f,el,d, is chiefl y important in connection with series. If -B is the ordering
relation of a series, Ctli will be the class of terms of the series, D'.8 will be all
the terms except the last (if any), and O',R will be all the terms except the
first (if any). The first term,if it exists, is the only member of D(r?n -(I'R,
since it is the only term which is a predecessor but not a follower. Similarly
the last term (if any) is the only member of (['-E n - D'.R. The condition
that a series sbould have no endis Q'BCD'R,i.e."every fol lorverisapre-
decessor"l the condition for no beginning is Dr,&C(['-8. These conditions
are equivalent respectively to D'R : C' R and CI' n : C' n.

The relntiue prod,uct of two relations -E and S is the relation which holds
between a and z lvhen there is an intermediate term y such that ar has the
relation .B to y and y has the relation ,S to z. The relative product of.B and
rS is represented by .R lB; thus we put

nl S :h2 l(sy). rRy . ySz] Df,

whence tza(Rl S)2.=.(gy).uRy.ySz.

Thus "paternal aunt" is the relative product of sister andfather; "paternal
grandmother " is the relative product of mother atd /ather; " maternal gmnd-
ftrther " is the relative product of father and mother. The relative product is
not commutative, but it obeys the associative law, i.e.

F.(PlQ) l ,R:Pl(81,R).
It also obeys the distributive law with regard to the logical addition of
relations' i 'a' we have 

F . p r(Q u n): (-. i g) v (p lE),
F .  (0 t : l  n)  I  P:  (0 lP),  (RI P).

But with regard to the logical,proilunt, tve have only
F. Pl  (8 

^ 
E) c(Pl  8)  

^ 
(P |  _R),

l - .  (g 
^,8) 

|  P c(gl  P) 
^Ql 

b.
The relative product does not obey the law of tautology, f.e. we do not

have in general R n: n. We put
f t ' : f i  lB Df.

rl

' l 'h rrr lrlternal grandfather : (father),,

rrurtcrnal grandmother : (mother)r.

A rcl;rtion is called transitiae when .B,G-8, i.e. when, if a&y and yRz, we
rrf rlrrys lr:rve uRz, i.e. when

t&a.yHz.)r , r , " .aRz.

l(r,lrrf,irrrrs rvhich generate series are alrvays transitive; th:u.s e.g.

a)! .y>2.)r , , , , " .u12.

ll' / ' is a relation which generates a series, P may conveniently be read
" 1 '1, ' , ' , ' r fcs";  thus "rPy.yPz.)n,r ," .aPz" becomes " i f  n precedes y and y

;r t , ' , r ' r lcs z, then a always precedes 2."  The class of  re lat ions which generate
h,,rrs iuc partially charactelized by the fact that they are transitive and
r ' i r  r r r r r r , t , r ical ,  and never relate a term to ibsel f .

| | /' is rr, relation rvhich generates a series, and if we have not merely P G P,
frrr l  / r ' : .1) , thenPgeneratesaser ieswhich is compdct( i iberal l i l icht) , i .e.such

l l r r r l  l , l r r , rc are terms betn'een anv two. For in th is case rve have

,P". i . (gy).oPy.uPz,

r r, if r prccedes z, there is a term y such that a precedes y and y precedes z,

i , ,  l l r r . r 'c  is  a tenn bet,ween a zrnd. z.  Thus among relat ions which generate
u,,rr.s, llrose rvhich generate cornpact series are those for which .F:P.

Nlrrrr.y relations which do not generate series are transitive, for example,

r , l , , r r l , r ry,  o l  the relat ion of  inclusion between classes. Such cases ar ise rvhen

t,lr,. rr:Lrl,ions are not asymmetrical. Relations which are transitive and syrn-

rrrr,l,r'ir:rl ir.re an important class: they may be regarded as consisting in the

lrlrslssiorr of scme common property.

I'ltrrul descriptiae functioru. The class of berms o which have the relation

/i 1,, s,rrnc member of a class a is denoted by R"aor Ru'a. The definition is

R"a: k l(gy). y e a. uRy\ Df.
' l 'frrrs lirr cxarnple let "B be the relation of inhabiting, and c the class of torvns;

t l r , ' r r  / r l ' ra: inhabi tants of  l ,owns. Let . I l  be the relat ion " less than" among

rrri rrrnirfs, and a the class of those rationals rvhich are of the form , -2-'", for

rrl,'.ll lrrl values of n; then -B'(arvill 
be all rationals less than some member

,,1 n, i.e.;r,ll rationals less than i. IfP is the generating relation of a series,

. r r , la is lnyclassof membersof theser ies,Pt 'awi l lbepredecessorsof a 's, i .e. the

,,,,l,rrr.rrt, defined by a. If P is a relation such that P'y always exists when

11 ,.u. l"'d rvill be the class of all terms of the form P'y for values of y rvhich

, , r , ,  r r r , : r r rb<rrs of  a;  i .e.
P" a :  b I(sD .  y u " . ,  

:  P'YI.
' l lrr,r ir urcrnber of the class "fathers of grerr,t men" will be the father of 9,
r lr,.r,. r7 is some great man. In other cases, tlis rvill not hold; for instance,

l, t /' lrt l,he relation of a nurnber to any number of which it is a factor; then

35
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P'( (evet numbere):factors of even numbers, but this class is not composed
of terms of the form " the factor of r," where o is an even number, because
numbers do not have only one factor apiece.

Unit classes. The class whose only member is a might be thought to be
identical with e, but Peano and tr'rege have shown that this is not the case.
(The reasons why this is not the case will be explained in a preliminary way
in Clrapterll of the Introduction.) We denote by " 1'r" the classrvhose only
nrember is o: thus

t ,a:9(9:a) Df,

i.e, " t'a" means "the class of objects which are identical with o."

The class consisting of ra and y rvill be lsw L'!i the class got by adding
s to a c lassawi l l  be 4vl 'a;  the c lass got byiaking awayo fromaclass a
will be a- t'a. (We write a-B as an abbreviation for o^-F.)

It will be observed that unit classes have been defined without reference
to the number I ; in fact, we use unit classes to define the number 1. This
number is defined as the class of unit classes, i.e.

1 : i {1go) . d: L(n} Df.
This leads to

F : .  ael ,  = :  (gr)  zy ed.=v.  y :  a.

From this it appears further that
F:ae1,=.E!( tu)(nea),

r :2(Qz)e I  . : .  E t ( tn)(Sa),

i.a. " 2 (gz) is a unit class " is equivalent to " the r sabisfying {6 exists."

If ae1, 7a is the only member of a, for the only member of a is the only

term to rvhich a has the relation r. Thus "l'a" takes the place of "(ta)($a),"

if a stands for 2(Qz). In practice, "'L'a" isa more convenient notation than

"(tu)($a)," and is generally used instead of "(tu)($a)."

The above account has explained most of the logical notation employed
in the present rvork. In the applications to various parts of mathematics,
other definitions are introduced; but the obiects defined by these later defi-
nitions belong, for the most part, rather to mathematics than to logic. The
reader who has mastered the symbols explained above will find that any
later formulae can be deciphered by the help of comparatively few additional
definitions.

whence


