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INTRODUCTION

THE mathematical logic which occupies Part I of the present work has
been constructed under the guidance of three different purposes. In the first
place, it aims at effecting the greatest possible analysis of the ideas with
which it deals and of the processes by which it conducts demonstrations,
and at diminishing to the utmost the number of the undefined ideas and
undemonstrated propositions (called respectively primitive ideas and primitive
propositions) from which it starts. In the second place, it is framed with a
view to the perfectly precise expression, in its symbols, of mathematical
propositions: to secure such expression, and to secure it in the simplest and
most convenient notation possible, is the chief motive in the choice of topics.
In the third place, the system is specially framed to solve the paradoxes
which, in recent years, have troubled students of symbolic logic and the
theory of aggregates; it is believed that the theory of types, as set forth in
what follows, leads both to the avoidance of contradictions, and to the
detection of the precise fallacy which has given rise to them, .

Of the above three purposes, the first and third often compel us to adopt
methods, definitions, and notations which are more complicated or more
difficult than they would be if we had the second object alone in view. This
applies especially to the theory of descriptive expressions (%14 and %30) and
to the theory of classes and relations (%20 and %21). On these two points,
and to a lesser degrec on others, it has been found necessary to make some
sacrifice of lucidity to correctness. The sacrifice is, however, in the main
only temporary: in each case, the notation ultimately adopted, though its
real meaning is very complicated, has an apparently simple meaning which,
except at certain crucial points, can without danger be substituted in
thought for the real meaning. It is therefore convenient, in a preliminary
explanation of the notation, to treat these apparently simple meanings as
primitive ideas, .e. as ideas introduced without definition. When the notation
hins grown more or less familiar, it is easier to follow the more complicated
explanations which we believe to be more correct. In the body of the work,
where 16 is necessary to adhere rigidly to the strict logical oider, the easier
arder of development could not be adopted; it is therefore given in the
Introduction. The explanations given in Chapter I of the Introduction are
mich as place lucidity before correctness; the full explanations are partly
surpplied in succeeding Chapters of the Introduction, partly given in the body
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of the work.

The use of & symbolism, other than that of words, in all parts of the book
which aim at embodying strictly accurate demonstrative reasoning, has been
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forced on us by the consistent pursuit of the above three purposes. The
reasons for this extension of symbolism beyond the familiar regions of number

and allied ideas are many : ¢t

(1) The ideas here employed are more abstract than those familiarly con-
sidered in language. Accordingly there are no words which are used mainly
in the exact consistent senses which are required here. Any use of words
would require unnatural limitations to their ordinary meanings, which would
be in fact more difficult to remember consistently than are the definitions of

entirely new symbols. o

(2) The grammatical structure of language is adapted to a wide variety
of usages. Thus it possesses no unique simplicity in representing the few
simple, though highly abstract, processes and ideas arising in the deductive
trains of reasoning employed here. In fact the very abstract simplicity of the
ideas of this work defeats language. Language can represent complex ideas
more easily. The proposition “a whale is big” represents language at its best,
giving terse expression to a complicated fact ; while the true analysis of “one
is a number” leads, in language, to an intolerable prolixity. Accordingly
terseness is gained by using a symbolism especially designed to represent the
ideas and processes of deduction which occur in this work. degs

(8) The adaptation of the rules of the symbolism to the processes of
deduction aids the intuition in regions too abstract for the imagination
readily to present to the mind the true relation between the ideas employed.
For various collocations of symbols become familiar as representing im-
portant collocations of ideas; and in turn the possible relations—according
to the rules of the symbolism—between these collocations of symbols become
familiar, and these further collocations represent still more complicated
relations between the abstract ideas. And thus the mind is finally led to
construct trains of reasoning in regions of thought in which the imagination
would be entirely unable to sustain itself without symbolic help. Ordinary
language yields no such help. Its grammatical structure does not represent
uniquely the relations between the ideas involved. Thus, “a whale is big”
and “one is a number ” both look alike, so that the eye gives no help to the
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imagination.

(4) The terseness of the symbolism enables a whole proposition to be
represented to the eyesight as one whole, or at most in two or three parts
divided where the natural breaks, represented in the symbolism, occur. This
is a humble property, but is in fact very important in connection with the
advantages enumerated under the heading (3).

(5) The attainment of the first-mentioned object of this work, namely
the complete enumeration of all the ideas and steps in reasoning employed
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CHAPTER 1

PRELIMINARY EXPLANATIONS OF IDEAS AND NOTATIONS

TaE notation adopted in the present work is based upon that of Peaflo,
and the following explanations are to some extent modelled on those whlc.h
he prefixes to his Formulario Mathematico. His use of dots as brackets is
adopted, and so are many of his symbols.

Variables. The idea of a var{able, as it occurs in the present work,. is
more general than that which is explicitly used in ordinary mathema'tlcs.
In ordinary mathematics, a variable generally stands for an unde.terr'mned

. number or quantity. In mathematical logic, any symbol v'vhos'e meaning is not
determinate is called a variable, and the various determinations of which its
meaning is susceptible are called the values of the variable. T.he values may
be any set of entities, propositions, functions, classes or relatlons,”accordm%
to circumstances. If a statement is made about “Mr A and Mr B, . “Mr A
and “ Mr B” are variables whose values are confined to men. A variable may
either have a conventionally-assigned range of values, or may (m_ the absence
of any indication of the range of values) have as the range of its .va.11.1e5 all
determinations which render the statement in which 1t occurs s%gm.ﬁca.nt.
Thus when a text-book of logic asserts that “4 is 4,” without any indication
as to what A may be, what is meant is that any statement. of the form
“A is A” is true. We may call a variable restricted whep its values are
confined to some only of those of which it is capable; otherw.lse, we shall call
it unrestricted. Thus when an unrestricted variable oceurs, 16 represents any
object such that the statement concerned can be made significantly (z.e._elther
truly or falsely) concerning that object. For the purposes .of logic, the
unrestricted variable is more convenient than the restrlc.ted vana.ble, a,'nd we
shall always employ it. We shall find that the un.re'stnched varlaple is 'stlll
subject to limitations imposed by the manner of its occurrence, %.¢. thlngs
which can be said significantly concerning a proposition cannot 1f)e §a1d
significantly concerning a class or a relation, and so on. But the llmlta.izl?ns
to which the unrestricted variable is subject do not need to be e.xphcl.tly
indicated, since they are the limits of significance of the statement in which
the variable occurs, and are therefore intrinsically determined by this state-
ment. This will be more fully explained later*.

To sum up, the three salient facts connecte(% with the use of the variable
are: (1) that a variable is ambiguousin its denotz:a.tl on .and_accord.mgly undefined;
(2) that a variable preserves a recognizable 1'dent1ty in various occurrences
throughout the same context, so that many variables can occur together in the

* Cf. Chapter II of the Introduction.
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same context each with its separate identity; and (3) that either the range of
possible determinations of two variables may be the same, so that a possible
determination of one variable is also a possible determination of the other, or
the ranges of two variables may be different, so that, if a possible determina-
tion of one variable is given to the other, ihe resulting complete phrase is
meaningless instead of becoming a complete unambiguous proposition (true

or false) as would be the case if all variables in it had been given any suitable
determinations.

The uses of various letters. Variables will be denoted by single letters, and
so will certain constants; but a letter which has once been assigned to a constant
by a definition must not afterwards be used to denote a variable. The small
letters of the ordinary alphabet will all be used for variables, except p and s
after %40, in which constant meanings are assigned to these two letters, The
following capital letters will receive constant meanings: B, C, D, E, F, [ and J.
Among small Greek letters, we shall give constant meanings to ¢, ¢ and (at a
later stage) to 5, 6 and w. Certain Greek capitals will from time to time be
introduced for constants, but Greek capitals will not be used for variables, Of
the remaining letters, p, g, » will be called propositional letters, and will stand
for variable propositions (except that, from %40 onwards, p must not be used

for a variable); f, g, ¢, ¥, x, 6 and (until *33) F will be called functional
letters, and will be used for variable functions.

The small Greek letters not alrcady mentioned will be used for variables
whose values are classes, and will be referred to simply as Greek letters. Ordinary
capital letters not already mentioned will be used for variables whose values
are relations, and will be referred to simply as capital letters. Ordinary small
letters other than p, ¢, r, s, /; g will be used for variables whose values are not
known to be functions, classes, or relations; these letters will be referred to
simply as small Latin letters.

After the early part of the work, variable propositions and variable functions
will hardly ever occur. We shall then have three main kinds of variables :
variable classes, denoted by small Greek letters; variable relations, denoted by

capitals; and variables not given as necessarily classes or relations, which will
be denoted by small Latin letters.

In addition to this usage of small Greek letters for variable classes, capital
letters for variable relations, small Latin letters for variables of type wholly
undetermined by the context (these arise from the possibility of “systematic
wmbiguity,” explained later in the explanations of the theory of types), the
reader need only remember that all letters represent variables, unless they have
been defined as constants in some previous place in the book. In general the
structure of the context determines the scope of the variables contained in it;
but the special indication of the nature of the variables employed, as here
proposed, saves considerable labour of thought.
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The fundamental functions of propositions. An aggregation of propositions,
considered as wholes not necessarily unambiguously determined, into a single
proposition more complex than its constituents, is a fuuction with proposttions
as arguments. The general idea of such an aggregation of propositions, or of
variables representing propositions, will not be employed in this work. But
there are four special cases which are of fundamental importance, since all the
aggregations of subordinate propositions into one complex proposition which
oceur in the sequel are formed out of them step by step-

They are (1) the Contradictory Function, (2) the Logical Sum, or Dis-
junctive Function, (8) the Logical Product, or Conjunctive Function, (4) the
Implicative Funetion. These functions in the sense in which they are required
in this work are not all independent; and if two of them are taken as primitive
undefined ideas, the other two can be defined in terms of them. It is to some
extent—though not entirely—arbitrary as to which functions are taken as
primitive. Simplicity of primitive ideas and symmetry of treatment seem to
be gained by taking the first two functions as primitive ideas.

The Contradictory Function with argument p, where p is any proposition,
is the proposition which is the contradictory of p, that is, the proposition
asserting that p is not true. This is denoted by ~p. Thus ~p is the
contradictory function with p as argument and means the negation of the
proposition p. It will also be referred to as the proposition not-p. Thus ~p
means not-p, which means the negation of p.

The Logical Sum is a propositional function with two arguments p and g,
and is the proposition asserting p or ¢ disjunectively, that is, asserting that at
least one of the two pand ¢ is true. This is denoted by pvg. Thus pvgis
the logical sum with p and g as arguments. It isalso called the logical sum of
p and g. Accordingly p v ¢ means that at least p or ¢ is true, not excluding the
case in which both are true.

The Logical Product is a propositional function with two arguments p and
g, and is the proposition asserting p and ¢ conjunctively, that is, asserting that
both p and g are true. This is denoted by p. g, or—in order to make the dots
act as brackets in a way to be explained immediately—by p t g, or by p:. g,
or by p::q. Thus p.q is the logical product with p and g as arguments. It
is also called the logical product of p and . Accordingly p - ¢ means that both
p and g are true. It is‘éasily seen that this function can be defined in terms
of the two preceding functions. For when p and ¢ are both true it must be
false that either ~p or ~gq is true. Hence in this book p.gq is merely a
shortened form of symbolism for

~(~pveg).

If any further idea attaches to the proposition “both p and ¢ are true,” it is
not required here.
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The Implicative Function is a propositional function with two arguments
p and .q,ﬁan(l is the proposition that either.not-p or g is true, that is, it is the
propoa:t.mn ~ pvg. Thusif p is true, ~p is false, and accordingly the only
fi.lternatwe left by the proposition ~ pv ¢ is that ¢ is true. In other words
if p and ~pVqare both true, then g is true. In this sense the proposition
~pvg wll_l be quoted as stating that p implies q. The idea contained in
t-h.xs prt?posmionﬂ.l function is so important that it requires a symbolism which
W{th direct simplicity represents the proposition as connu‘acting p and ¢
\"lthn.'mb the intervention of ~ p. But “implies” as used here expresses
n‘ct‘hmg.e]se than the connection between p and g also expressed by the
fls_]unctuz?'" not-p or ¢.” The symbol employed for “p implies ¢, i.e. for
~pvg” s “p¢" This symbol may also be read “if p, then ¢.” The
association of implication with the use of an apparent variable produces
an exten‘siun called “formal implication.” This is explained later: it is an
1dea..(%er1va.t.ivc from “implication ” as here defined. When it is necessary
expllcully to diseriminate “implication” from * formal implication,” it is called
“material implication.” Thus “ material implication ” is simply "i'mplicatinn”
as here defined. The process of inference, which in common usage is. uf'.l;en
confused with implication, is explained immediately.

These four functions of propositions are the fundamental constant (i.e
definite) propositional functions with propositions as arguments, and all otht'n:
constant.propositional functions with propositions as arguments, so far as they
are required in the present work, are formed out of them by successive steps
No variable propositional functions of this kind occur in this work. .

E.qui-ualence. The simplest example of the formation of a more complex
function of propositions by the use of these four fundamental forms is furnished
by « equ.ivalence.” Two propositiens p and ¢ are said to be “equivalent”
when p m:,plies g and ¢ implies p. This relation between p and ¢ is denoted
by “p=gq. . Thlls “p= q.” stands for “(p D ¢). (gD p).” Itis easily seen thai
two propositions are equivalent when, and only when, they are both true or
are both false. Equivalence rises in the scale of importance when we come
to “formal implication” and thus to “formal equivalence.” It must not
be supposed that two propositions which are equivalent are in any sense
identical or even remotely concerned with the sarae topic. Thus “ Newton
was a man” and “the sun is hot” are equivalent as being both true, and
Newton was not a man” and “ the sun is cold ” are equivalent as being both
f:-mlse. But here we have anticipated deductions which follow later from our
formal reasoning. Equivalence in its origin is merely mutual implication as
stated above.

Truth-valuezs. .Tl'xe “truth-value” of a proposition is fruth if it is true
and falsehood if it is false®. It will be observed that the truth-values of

* This phrase is due to Frege.



8 INTRODUCTION [cHAR

pPvVq p.qpDg ~p p=q depend only upon those of p and g, namely the
trath-value of “pvg” is truth if,the truth-value of either p or ¢ is truth,
and is falsehood otherwise ; that of “p . g ” is truth if that of both p and ¢ is
truth, and is falsehood otherwise; that of “p g~ is truth if either that of p
is falsehood or that of ¢ is truth; that of “~ p” is the opposite of that of p;
and that of “p=q” is truth if p and ¢ have the same truth-value, and is
falsehood otherwise. Now the only ways in which propositions will occur
in the present work are ways derived from the above by combinations and
repetitions. Hence it is easy to see (though it cannot be formally proved
except in each particular case) that if a proposition p occurs in any propo-
sition f(p) which we shall ever have occasion to deal with, the truth-value
of f(p) will depend, not upon the particular proposition p, but only upon
its truth-value; Z.e. if p = q, we shall have f(p)=f(g). Thus whenever two
propositions are known to be equivalent, either may be substituted for the
other in any formula with which we shall have occasion to deal.

We may call a fanction f(p) a “truth-function ” when its argument p is
a proposition, and the truth-value of f(p) depends only upon the truth-
value of p. Such functions are by no means the only common functions of
propositions. For example, “A believes p” is a function of p which will
vary its truth-value for different arguments having the same truth-value:
A may believe one true proposiiion without believing another, and may
believe one false proposition without believing amother. Such functions
are not excluded from our consideration, and are included in the scope of
any general propositions we may make about functions; but the particular
functions of propositions which we shall have occasion to construct or to con-
sider explicitly are all truth-functions. This fact is closely connected with a
characteristic of mathematics, namely, that mathematics is always concerned
with extensions rather than intensions. The connection, if not now obvious, will
become more so when we have considered the theory of classes and relations.

Assertion-sign. The sign “F” called the © assertion-sign,” means that
what follows is asserted. It is required for distinguishing a complete propo-
sition, which we assert, from any subordinate propositions contained in it but
not asserted. In ordinary written language a sentence contained between full
stops denotes an asserted proposition, and if it is false the book is in error.
The sign “I” prefixed to a proposition serves this same purpose in our sym-
bolism. For example, if.“}F(p D p)” occurs, it is to be taken as a complete
assertion convicting the authors of error unless the proposition “pJp” is
true (as it is). Also a proposition stated in symbols without this sign “F”
prefixed is not asserted, and is merely put forward for consideration, or as a
subordinate part of an asserted proposition.

€ M

Inference. The process of inference is as follows: a proposition “p” is
asserted, and a proposition “p implies ¢” is asserted, and then as a sequel
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the proposition “q” is asserted. The trust in inference is the belief that if the
two former assertions are not in error, the final assertion is not in error.
Accordingly whenever, in symbols, where p and ¢ have of course special
determinations,
“Fp” and “F(pD¢)”
have occurred, then “F¢” will occur if it is desired to put it on record. The
process of the inference cannot be reduced to symbols. Its sole record is the
occurrence of “F¢.” It is of course convenient, even at the risk of repetition,
to write “Fp” and “F(pD¢)” in close juxtaposition before proceeding to
“F q” as the result of an inference. When this is to be done, for the sake of
drawing attention to the inference which is being made, we shall write
instead
“Fpdtg”
which is to be considered as a mere abbreviation of the threefold statement
“Fp”and “F(pDg)”and “Fq.”
Thus “FpDFq” may be read “p, therefore g,” being in fact the same
abbreviation, essentially, as this is; for “p, therefore ¢” does not explicitly
state, what is part of its meaning, that p implies ¢. An inference is the
dropping of a true premiss; it is the dissolution of an implication.

The use of dots. Dots on the line of the symbols have two uses, one to
bracket off propositions, the other to indicate the logical product of two
propositions. Dots immediately preceded or followed by “v” or “J” or
“="or“k"orby “(z)” “(z,y).” “(z,y,2)"... o1 “(g2),” “ (4% ¥),” “(A=, ¥, 2)”. ..
or “[(1z) (¢x)]” or “[Rfy)” or analogous expressions, serve to bracket off a
proposition ; dots occurring otherwise serve to mark a logical product. The
geueral principle is that a larger number of dots indicates an outside bracket,
a smaller number indicates an inside bracket. The exact rule as to the scope
of the bracket indicated by dots is arrived at by dividing the occurrences of
dots into three groups which we will name I, IT, and III. Group I consists of
dots adjoining a sign of implication (J) or of equivalence (=) or of disjunction
(v) or of equality by definition (=Df). Group II consists of dots following
brackets indicative of an apparent variable, such as (z) or (z, y) or (gz) or
(4=, y) or [(1z) (¢x)] or analogous expressions®. Group III consists of dots
which stand between propositions in order to indicate a logical product.
Group I is of greater force than Group II, and Group II than Group IIL
The scope of the bracket indicated by any collection of dots extends backwards
or forwards beyond any smaller number of dots, or any equal number from a
aroup of less force, until we reach either the end of the asserted proposition
or a greater number of dots or an equal number belonging to a group of
cqual or superior force. Dots indicating a logical product have a scope which
works both backwards and forwards; other dots only work away from the

* The meaning of these expressions will be explained later, and examples of the use of dots in
connection with them will be given on pp. 16, 17.
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adjacent sign of disjunction, implication, or equivalence, or forward from the
adjacent symbol of one of the other kinds enumerated in Group IIL

Some examples will serve to illustrate the use of dots.

“PVvg.2.qvp” means the proposition “‘p or ¢’ implies ‘gorp’” When
we assert this proposition, instead of merely considering it, we write

“Fipvqg.Dd.qvp”

where the two dots after the assertion-sign show that what is asserted is the
whole of what follows the assertion-sign, since there are not as many as two
dots anywhere else. If we had written “p:v: q.J.qvp,” that would mean
the proposition “either p is true, or q implies ‘qorp.” If we wished to assert
this, we should have to put three dots after the assertion-sign. If we had
written “pvg.D.g:v:p,” that would mean the proposition “ either ‘p or ¢’
tmplies ¢, or p is true.” The forms “p.v.q.J.qvp”and “pvg.d.q.v.p"
have no meaning.

“P2g.2:¢Dr.D.pIr” will mean “if p implies ¢, then if ¢ implies »,
P implies .” If we wish to assert this (which ig true) we write

“b:.pDg.D:¢dr.d.pdr”

Again “pJ¢.D0.¢Dr:D.pI»” will mean “if ‘p implies ¢’ implies ‘q
implies 7, then p implies »” This is in general untrue. (Observe that
“pIq” is sometimes most conveniently read as “p implies ¢,” and sometimes
as “if p, then ¢.”) “pDq.gdr.D.pDr” will mean “if p implies ¢, and
g implies 7, then p implies ».” In this formula, the first dot indicates a logical
product; hence the scope of the second dot extends backwards to the begin-
ning of the proposition. “pDq:qDr.D.pd+” will mean “p implies ¢; and
if ¢ implies 7, then p implies ».” (This is not true in general.) Here the two
dots indicate a logical product ; since two dots do not occur anywhere else, the
scope of these two dots extends backwards to the beginning of the proposition,
and forwards to the end.

“pvq.2:up.v.qOr:D.pvr” will mean “if either p or ¢ is true, then
if either p or ‘q implies »’ is true, it follows that either p or » is true.” If
this 1s to be asserted, we must put four dots after the assertion-sign, thus:

“brpvg.dup.v.gdr:D.pve”
(This proposition is proved in the body of the work; it is #275.) If we wish
to assert (what is equivalent to the above) the proposition: “if either porg
is true, and either p or ‘g implies +’ is true, then either p or r is true,” we
write s
“Frapvgip.v.gdr:d.pvr”

Here the first pair of dots indicates a logical product, while the second pair
does not. Thus the scope of the second pair of dots passes over the first pair,
and back until we reach the three dots after the assertion-sign.

Other uses of dots follow the same priuciples, and will be explained as
they are introduced. In reading a proposition, the dots should be noticed
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first, as they show its structure. In a proposition containing several signs of
implication or equivalence, the one with the greatest number of dots before
or after it is the principal one: everything that goes before this one is stated
by the proposition to imply or be equivalent to everything that comes after it.

Definitions. A definition is a declaration that a certain newly-introduced
symbol or combination of symbols is to mean the same as a certain other
combination of symbols of which the meaning is already known. Or, if the
defining combination of symbols is one which only acquires meaning when
combined in a suitable manner with other symbols*, what is meant is that
any combination of symbols in which the newly-defined symbol or combination
of symbols occurs is to have that meaning (if any) which results from substi-
tuting the defining combination of symbols for the newly-defined symbol or
combination of symbols wherever the latter occurs. We will give the names
of definiendum and definiens respectively to what is defined and to that which
it is defined as meaning. We express a definition by putting the definiendum

to the left and the definiens to the right, with the sign “=" between, and the
letters “Df” to the right of the definiens. It is to be understood that the
sign “=” and the letters “Df” are to be regarded as together forming one
symbol. The sign “=" without the letters “Df” will have a different meaning,

to be explained shortly.

An example of a definition is

prAg.=.~pvg Df

It is to be observed that a definition is, strictly speaking, no part of the
subject in which it occurs. For a definition is concerned wholly with the
symbols, not with what they symbolise. Moreover it is not true or false,
being the expression of a volition, not of a proposition. (For this reason,
definitions are not preceded by the assertion-sign) Theoretically, it is
tnnecessary ever to give a definition: we might always use the definiens
instead, and thus wholly dispense with the definiendum. Thus although we
employ definitions and do not define “ definition,” yet “definition” does not
appear among our primitive ideas, because the definitions are no part of our
subject, but are, strictly speaking, mere typographical conveniences. Prac-
tically, of course, if we introduced no definitions, our formulae would very soon
hecome so lengthy as to be unmanageable; but theoretically, all definitions are
superfluous.

In spite of the fact that definitions are theoretically superfluous, it is
nevertheless true that they often convey more important information than is
contained in the propositions in which they are used. This arises from two
causes. First, a definition usually implies that the definiens is worthy of
earcful consideration. Hence the collection of definitions embodies our choice

" This case will be fully considered in Chapier III of the Introduction. It need not further
concern us ab present.,
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of subjects and our judgment as to what is most important. Secondly, when
what is defined is (as often occurs) something already familiar, such as cardinal
or ordinal numbers, the definition contains an analysis of a common idea, and
may therefore express a notable advance. Cantor’s definition of the continuum
illustrates this: his definition amounts to the statement that what he is de-
fining is the object which has the properties commouly associated with the
word “continuum,” though what precisely constitutes these properties had
not before been known. In such cases, a definition is a “ making definite ”: it
gives definiteness to an idea which had previously been more or less vague.

For these reasons, it will be found, in what follows, that the definitions
are what is most important, and what most deserves the reader’s prolonged
attention.

Soine important remarks must be made respecting the variables occurring
in the definiens and the defindendum. But these will be deferred till the
notion of an “apparent variable” has been introduced, when the subject can be
considered as a whole.

Summary of preceding statements. There are, in the above, three primi-
tive ideas which are not “defined ” but only descriptively explained. Their
primitivencss is only relative to our exposition of logical connection and is
not absolute; though of course such an exposition gains in importance ac-
cording to the simplicity of its primitive ideas. These ideas are symbolised
by “~p” and “pv ¢~ and by “F” prefixed to a proposition.

Three definitions have been introduced:

peg-=.~(~pv~g Df
pAg-=.~pvyg Df,
p=gq.=.pJgq.qdp Df

Primitive propositions. Some propositions must be assumed without proof,
since all inference proceeds from propositions pre'viously asserted. These, as
far as they concern the functions of propositions mentioned above, will be
found stated in %1, where the formal and continuous exposition of the subject
commences. Such propositions will be called “primitive propositions.” These,
like the primitive ideas, are to some extent a matter of arbitrary choice; though,
as in the previous case, a logical system grows in importance according as the
primitive propositions are few and simple. It will be found that owing to the
weakness of the imagination in dealing with simple abstract ideas no very
great stress can be laid upon their obviousness. They are obvious to the in-
structed mind, but then so are many propositions which cannot be quite true,
as being disproved by their contradictory consequences. The proof of a logical
system is its adequacy and its coherence. That is: (1) the system must embrace
among its deductions all those propositions which we believe to be true and
capable of deduction from logical premisses alone, though possibly they may
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require some slight limitation in the form of an increased stringency of enun-
ciation; and (2) the system must lead to no contradictions, namely in pursuing
our inferences we must never be led to assert both p and not-p, i.e. both “F . p”
and “F.~p” cannot legitimately appear.

The following are the primitive propositions employed in the calculus of
propositions. The letters “Pp” stand for “primitive proposition.”

(1) Anything implied by a true premiss is true Pp.

This is the rule which justifies inference.

(2) F:pvp.D.p Pp,

t.e. if p or p is true, then p is true.

3) F:g.2.pvg Pp,
te. if ¢ is true, then p or ¢ is true.

(4) F:pvg.D.qvp Pp,

i.e. if p or g is true, then ¢ or p is true.

(5) F:pv(gvr).D.qv(pvr) Pp,

v.e. if either p is true or “q or »” is true, then either ¢ is true or “p or »” is
true.

(6) F1.gdr.d:pvg.D.pvr Pp,
ve. if g implies r, then “p or ¢” implies “p or r.”

(7) Besides the above primitive propositions, we require a primitive pro-
position called “the axiom of identification of real variables.” When we have
separately asserted two different functions of z, where « is undetermined, it
is often important to know whether we can identify the # in one assertion
with the # in the other. This will be the case—so our axiom allows us to
infer—if both assertions present « as the argument to some one function, that
1s to say, if ¢z is a constituent in both assertions (whatever propositional func-
tton ¢ may be), or, more generally, if ¢ (2, ¥, z,...) is a constituent in one
assertion, and ¢ (z,u, v, ...) is a constituent in the other. This axiom introdu ses
notions which have not yet been explained; for a fuller account, see the remarks
accompanying %303, %1°7, %1°71, and %172 (which is the statement of this
axiom) in the body of the work, as well as the explanation of propositional
functions and ambiguous assertion to be given shortly.

Some simple propositions. In addition to the primitive propositions we
have already mentioned, the following are among the most important of the
clementary properties of propositions appearing among the deductions.

The law of excluded middle:

F.pvep.
This is #2'11 below. We shall indicate in brackets the nunbers given to the
following propositions in the body of the work.

The Jaw of contradiction (%3:24):

Fem(penp).
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The law of double negation (%4'13):
k. P=Eev (~ p)
The prineiple of transposition, i.e. “if p implies g, then not-g implies not-p,”
and vice versa: this principle has various forms, namely
(*41) F:ipdg.=.~¢q¢d~p,
(*411) Fip=g.=.~op=~ygq,
(*¥4'14) Fup.g.D.ri=:p.~r.d.~yg,
as well as others which are variants of these.
The law of tautology, in the two forms:
(x424) F:p.=.p.p,
(%425) F:p.=.pvp,
1.e. “p is true” is equivalent to “p is true and p is true,” as well as to “p is true
or p is true.” From a formal point of view, it is through the law of tautology
and its consequences that the algebra of logic is chiefly distinguished from
ordinary algebra.
The law of absorption:
*471) Fipdg.=:p.=.p.q
1.e. “p implies ¢” is equivalent to “p is equivalent to p.¢.” This is called the
law of absorption because it shows that the factor ¢ in the product is absorbed
by the factor p, if p implies ¢. This principle enables us to replace an impli-
cation (p D q) by an equivalence (p.=.p.q) whenever it is convenient to
do so.
An analogous and very important principle is the following:
(*%473) Fig.Jd:ip.=.p.q
Logical addition and multiplication of propositions obey the associative
and commutative laws, and the distributive law in two forms, namely
(%44) Fip.gvr.=:p.q.v.p.7,
(%441) Fap.v.g.ri=:pvg.pvr.
The second of these distinguishes the relations of logical addition and multi-
plication from those of arithmetical addition and multiplication.
Propositional functions. Let ¢z be a statement containing a variable «
and such that it becomes a proposition when « is given any fixed determined
meaning. Then ¢z is called a “propositional function”; it is not a proposition,
since owing to the ambiguity of « it really makes no assertion at all. Thus
“g is hurt” really makes no assertion at all, till we have settled who #is. Yet
owing to the individuality retained by the ambiguous variable , it is an an-
biguous exawmple from the collection of propositions arrived at by giving all

possible determinations to @ in “a is hurt” which yield a proposition, true or

false. Also if “a is hurt” and “y is hurt” oceur in the same context, where y is
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another variable, then according to the determinations given to # and y, they
can be settled to be (possibly) the same proposition or (possibly) different
propositions. But apart from some determination given to z and y, they retain
in that context their ambiguous differentiation. Thus “z is hurt” is an am-
biguous “value” of a propositional function. When we wish to speak of the
propositional function corresponding to “= is hurt,” we shall write “£ is hurt.”
Thus “2 is hurt” is the propositional function and “« is hurt” is an ambiguous
value of that function. Accordingly though “zis hurt” and “y is hurt” occurring
in the same context can be distinguished, “2 is hurt” and “§ is hurt” convey
no distinction of meaning at all. More generally, ¢ is an ambiguous value of
the propositional function ¢, and when a definite signification a is substituted
for z, ¢pa is an unambiguous value of ¢2.

Propositional functions are the fundamental kind from which the more usnal
kinds of function, such as “sina” or “log #” or “the father of ,” are derived.
These derivative functions are considered later, and are called “descriptive
functions.” The functions of propositions considered above are a particular
case of propositional functions.

The range of values and total variation. Thus corresponding to any propo-
sitional function @, there is a range, or collection, of values, consisting of all”
the propositions (true or false) which can be obtained by giving every possible
determination to z in ¢z. A value of & for which ¢z is true will be said to
“satisfy” ¢2. Now in respect to the truth or falsehood of propositions of this
range three important cases must be noted and symbolised. These cases are
given by three propositions of which one at least must be true. Either (1)all
propositions of the range are true, or (2) some propositions of the mnge. are
brug, or (3) no proposition of the range is true. The statement (1) is symbolised
Ly (). da,” and (2) is symbolised by “(5q#).¢a”" No definition is given of
these two symbols, which accordingly embody two new primitive ideas in our
system. The symbol “(z) . ¢z” may be read “¢a always,” or “ ¢ is always true,”
or “¢z is true for all possible values of 2.” The symbol “(g«). ¢«” may be
read “there exists an # for which ¢ is true,” or “there exists an  satisfying
$*” and thus conforms to the natural form of the expression of thought.

Proposition (3) can be expressed in terms of the fundamental ideas now on
hand. TIn order to do this, note that “ ~ ¢z” stands for the contradictory of ¢z.
Accordingly ~ ¢2 is another propositional function such that each value of ¢
contradicts a value of ~ ¢, and vice versa. Hence “(z) . ~ ¢a” symbolises the
proposition that every value of ¢2 is untrue. Thisis number (3) as stated above.

It is an obvious error, though one easy to commit, to assume that cages
(1) and (3) are each other’s contradictories. The symbolism exposes this fallacy
al once, for (1) is (z). ¢z, and (8) is (z).~ ¢z, while the contradictory of (1) is
~ |(x).¢x}. For the sake of brevity of symbolism a definition is made, namely

~(z). px.=.~{(z). pz} Df.
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Definitions of which the object is to gain some trivial advantage in brevity
by a slight adjustment of symbols will be said to be of “merely symbolic import,”
in contradistinction to those definitions which invite consideration of an im-
portant idea.

The proposition (z) . ¢ is called the “total variation” of the function ¢2.

For reasons which will be explained in Chapter II, we do not take negation
as a primitive idea when propositions of the forms (z). ¢z and (=) . = are
concerned, but we define the negation of (). ¢z, i.e. of “¢px is always true,” as
being “¢x is sometimes false,” ie. “(g2).~¢z,” and similarly we define the
negation of (§z) . ¢z as being (@) . ~¢z. Thus we put

~{(@) . ¢2} . =. (qz). ~ o DI,
~{(gz) . ¢z} . =.(x) . ~¢x DI

In like manner we define a disjunction in which one of the propositions is
of the form “(z) . ¢z” or “(5[x). pz” in terms of a disjunction of propositions
not of this form, putting

(@).pz.v.pr=.(2).pzvp Df,
i.e. “either ¢ is always true, or p is true” is to mean “‘¢z or p’ is always true,”
with similar definitions in other cases. This subject is resumed in Chapter II,
and in %9 in the body of the work.

Apparent variables. The symbol “(x) . p2” denotes one definite proposition,
and there is no distinction in meaning between “(z) . ¢ and “(y) . ¢y” when
they occur in the same context. Thus the “z” in “() . ¢« is not an ambiguous
constituent of any expression in which “(x).¢a” occurs; and sach an ex-
pression does not cease to convey a determinate meaning by reason of the
ambiguity of the  in the “¢x.” The symbol “(z).¢ps” has some analogy to

the symbol R
| $@da
a .
for definite integration, since in neither case is the expression a function of «.

The range of z in “(z).$z” or “(yz)-¢pz” extends over the complete
field of the values of z for which “¢z” bhas meaning, and accordingly the
meaning of “(z) . pz” or “(qx) . dx” involves the supposition that such a field
is determinate. The a which occurs in “(z). ¢z or “(gz).dz” is called
(following Peano) an “apparent variable.” It follows from the meaning of
“(q«).¢a” that the z in this expression is also an apparent variable. A
proposition in which z occurs as an apparent variable is not a function of 2.
Thus eg. “(#).x =" will mean “everything is equal to itself” This is an
absolute constant, not a function of a variable #. This is why the # is called
an apparent variable in such cases.

Besides the “range” of z in “(z).¢z” or “(gz). ¢z, which is the field
of the values that # may have, we shall speak of the “scope” of z, meaning
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the function of which all values or some value are being affirmed. If we are
asserting all values (or some value) of “¢z,” “¢a” is the scope of z; if we are
asserting all values (or some value) of “px D p,” “¢px D p” is the scope of z;
if we are asserting all values (or some value) of “¢px D Ya,” “¢pz D Yrz” will be
the scope of z, and so on. The scope of « is indicated by the number of dots
after the “(z)” or “(gz)”; that is to say, the scope extends forwards until
we reach an equal number of dots not indicating a logical product, or a greater
number indicating a logical product, or the end of the asserted proposition in
which the “(2)” or “(g#)” occurs, whichever of these happens first*. Thus e.g.
“(By:¢z.d. Yz’

will mean “¢z always implies {rz,” but
“(2) . pz.D . Yz”
will mean “if ¢z is always true, then Yz is true for the argument 2.”
Note that in the proposition
(). ¢z.0. ¥z
the two 2’s have no connection with each other. Since only one dot follows
the z in brackets, the scope of the first z is limited to the “¢2” immediately
following the x in brackets. It usually conduces to clearness to write
(®)-¢2.23 . vy
rather than (). Pz . D Az,
since the use of different letters emphasises the absence of connection between
the two variables; but there is no logical necessity to use ditferent letters,
and 1t is sometimes convenient to use the same letter.

Ambiguous assertion and the real variable. Any value “¢z” of the function
¢% can be asserted. Such an assertion of an ambiguous member of the values
of ¢& 1s symbolised by

“t. gz

Ambiguous assertion of this kind isa primitive idea, which cannot be defined
in terms of the assertion of propositions. This primitive idea is the one which
cmbodies the use of the variable. Apart from ambiguous assertion, the con-
wideration of “¢z,” which is an ambiguous member of the values of ¢2, would
be of little consequence. When we are considering or asserting “¢z,” the
variable # is called a “real variable.” Take, for example, the law of excluded
middle in the form which it has in traditional formal logic :

“a is either b or not b.”
llere @ and b are real variables: as they vary, different propositions are
expressed, though all of them are true. While ¢ and b are undetermined, as in
the above enunciation, no one definite proposition is asserted, but what is
nsserted is any value of the propositional function in question. This can only

* This agrees with the rules for the occurrences of dots of the type of Group II as explained
nbove, pp. 9 and 10.



18 INTRODUCTION [cHAP.

be legitimately asserted if, whatever value may be chosen, that value is true,
t.e. if all the values are true. Thus the above form of the law of excluded
middle is equivalent to
“(a, b).a is either b or not b,”
1.e. to “it is always true that a is either b or not 5" But these two, though
equivalent, are not identical, and we shall find it necessary to keep them
distinguished.
When we assert something containing a real variable, as in e.g.
“t.z=ug"
we are asserting any value of a propositional function. When we assert some-
thing containing an apparent variable, as in
“Fo(z).z=2"
or “b.(qa).z=a,"
we are asserting, in the first case all values, in the second case some value
(undetermined), of the propositional function in question. It is plain that
we can only legitimately assert “any value” if «ll values are true; for other-
wise, since the value of the variable remains to be determined, it might be so
determined as to give a false proposition. Thus in the above instance, since
we have
Foaz==
we may infer Fo@).r=u
And generally, given an assertion containing a real variable , we may trans-
form the real variable into an apparent one by placing the z in brackets at
the beginning, followed by as many dots as there are after the assertion-sign.

When we assert something containing a real variable, we cannot strictly
be said to be asserting a proposition, for we only obtain a definite proposition
by assigning a value to the variable, and then our assertion only applies to
one definite case, so that it has not at all the same force as before. When what
we assert contains a real variable, we are asserting a wholly undetermined one
of all the propositions that result from giving various values to the variable.
It will be convenient to speak of such assertions as asserting a propositional
Junction. The ordinary formulae of mathematics contain such assertions; for
example

“sin?zx +cos?x=1"
does not assert this or that particular case of the formula, nor does it assert
that the formula holds for all possible values of x, though it is equivalent to
this latter assertion; it simply a$terts that the formula holds, leaving & wholly
undetermined; and it is able to do this legitimately, because, however « may
be determined, a true proposition results.

Although an assertion containing a real variable does not, in strictness,
assert a proposition, yet it will be spoken of as asserting a proposition except
when the nature of the ambiguous assertion involved is under discussion.
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Definition and real variables. When the definiens contains one or more
real variables, the definiendum must also contain them. For in this case we
have a function of the real variables, and the definiendum must have the same
ineaning as the definiens for all values of these variables, which requires that
the symbol which is the definiendum should contain the letters representing
the real variables. This rule is not always observed by mathematicians, and
its infringement has sometimes caused important confusions of thought,
notably in geometry and the philosophy of space.

In the definitions given above of “p.¢” and “pD¢” and “p=¢,” p and ¢
are real variables, and therefore appear on both sides of the definition. In
the definition of “~ {(z) . p2}” only the function considered, namely ¢32, is a
real variable; thus so far as concerns the rule in question, = need not appear
on the left. But when a real variable is a function, it is necessary to indicate
how the argument is to be supplied, and therefore there are objections to
omitting an apparent variable where (as in the case before us) this is the
argument to the function which is the real variable. This appears more
plainly if, instead of a general function ¢2, we take some particular function,
say “Z=a,” and consider the definition of ~{(z).2z=a}. Our definition gives

~{@ . e=al.=.(qz). ~(z=a) Df.

But if we had adopted a notation in which the ambiguous value “z=a,”
containing the apparent variable z, did not occur in the definiendum, we
should have had to construct a notation employing the function itself, namely
“@=a." This does not involve an apparent variable, but would be clumsy in
practice. In fact we have found it convenient and possible—except in the
explanatory portions—to keep the explicit use of symbols of the type “¢%,”
cither as constants [e.g. £ = a) or as real variables, almost entirely out of this
work.

Propositions connecting real and apparent variables. The most important
propositions connecting real and apparent variables are the following:

(1) “When a propositional function can be asserted, so can the proposition
that all values of the function are true.” More briefly, if less exactly, “ what
holds of any, however chosen, holds of all.” This translates itself into the rule
that when a real variable occurs in an assertion, we may turn it into an apparent
variable by putting the letter representing it in brackets immediately after
the assertion-sign.

(2) “ What holds of all, holds of any,” ..
F:(z).dpz.D. ¢y.

'This states “if ¢a is always true, then ¢y is true.”

(3) “If ¢y is true, then ¢z is sometimes true,” v.e.
Figy.d.(qz) . da.
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An asserted proposition of the form “(yz).¢x” expresses an “existence-
theorem,” namely “there exists an z for which ¢z is true.” The above pro-
position gives what is in practice the only way of proving existence-theorems:
we always have to find some particular y for which ¢y holds, and thence to
infer “(qz).¢z." If we were to assume what is called the multiplicative
axiom, or the equivalent axiom enunciated by Zermelo, that would, in an
important ciass of cases, give an existence-theorem where no particular instance
of its truth can be found.

In virtue of “F:(z).¢x.D.¢y” and “t:¢y.D.(gz).dx,” we have
“Fi(x).¢px.D.(qx). pz,” i.e. “ what is always true is sometimes true.” This
would not be the case if nothing existed; thus our assumptions contain the
assumption that there is something. This is involved in the principle that
what holds of all, holds of any; for this would not be true if there were no

« 3

any.

(4) “If ¢ is always true, and =z is always true, then ‘¢z .4z’ is always
true,” i.e.
(This requires that ¢ and y should be functions which take arguments of the
same type. We shall explain this requirement at a later stage.) The converse
also holds; 7.e. we have

Fi(@). pz .z D1 (x). pa: (2) . .

It is to some extent optional which of the propositions connecting real

and apparent variables are taken as primitive propositions. The primitive

propositions assumed, on this subject, in the body of the work (%9), are the
following :

(¢)) Figpz.D.(gz). ¢pz.

(2) Figavdy.D.(gz). ¢z,
te. if either ¢ is true, or ¢y is true, then (32) . ¢z is true. (On the necessity
for this primitive proposition, see remarks on %9'11 in the body of the work.)

(8) If we can assert ¢y, where y is a real variable, then we can assert
(®) . ¢z; 1.e. what holds of any, however chosen, holds of all.

Formal implication and formal equivalence. When an implication, say
$a . I .y, is said to hold always, i.e. when (z): ¢z . D . Y, we shall say that
¢ formally implies Yz ; and propositions of the form “(z): ¢z . D .y will
be said to state formal implications. In the usual instances of implication,
such as “‘Socrates is a man’ implies * Socrates is mortal,’” we have a propo-
sition of the form “¢z.D.yz" in a case in which “(«): pa.D. Jra” is true.
In such a case, we feel the implication as a particular case of a formal impli-
cation. Thus it has come about that implications which are not particular
cases of formal implications have not been regarded as implications at all.
There is also a practical ground for the neglect of such implications, for, speaking
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generally, they can only be known when it is already known either that their
hypothesis is false or that their conclusion is true; and in neither of these
euses do they serve to make us know the conclusion, since in the first case the
conclusion need not be true, and in the second it is known already. Thus
such implications do not serve the purpose for which implications are chiefly
uscful, namely that of making us know, by deduction, conclusions of which we
were previously ignorant. Formal implications, on the contrary, do serve this
purpose, owing to the psychological fact that we often know “(z):¢z.Dd.4z”
and ¢y, in cases where yry (which follows from these premisses) cannot easily
be known directly.

These reasons, though they do not warrant the complete neglect of impli-
cations that are not instances of formal implications, are reasons which make
formal implication very important. A formal implication states that, for all
possible values of #, if the hypothesis ¢z is true, the conclusion Y= is true.
Sinee “ ¢z. D . Pz” will always be true when ¢ is false, it is only the values
of & that make ¢ true that are mportant in a formal implication; what is
effectively stated is that, for all these values, Y& is true. Thus propositions
of the form “all ais 8,” “no a is B state formal implications, since the first
(as appears by what has just been said) states

(#)y:zisana.d.zisa B,
while the second states
(r):zisana.d.zisnota B.
And any formal implication “(z): ¢z .D .z ” may be interpreted as: “ All
vilues of z which satisfy* ¢z satisfy +rz,” while the formal implication
" (&)1 pw. D~z may be interpreted as: “ No values of  which satisfy ¢z

snbisfy Jra.”
We have similarly for “some a is 8” the formula
() .xisana.zxisa B,
mud for “some a is not 8" the formula
(qz).zisan a.z is not a B.

Two functions ¢z, Yo are called formally equivalent when each always
implies the other, ¢.e. when
(): px .= . Y=z,

wnd w proposition of this form is called a formal equivalence. In virtue of
what was said about truth-values, if ¢z and Yz are formally equivalent, either
may replace the other in any truth-function. Hence for all the purposes of
muthematics or of the present work, ¢2 may replace Y2 or vice versa in any
proposition with which we shall be concerned. Now to say that ¢ and Yz
are formally equivalent is the same thing as to say that ¢2 and ¥Z have the
wune extension, t.e. that any value of # which satisfies either satisfies the other.

* A value of z is said to satisfy ¢z or ¢£ when ¢z is true for that value of z.
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Thus whenever a constant function occurs in our work, the truth-value of the
proposition in which it occurs depends only upon the extension of the function.
A proposition containing a function ¢2 and having this property (z.e. that its
truth-value depends only upon the extension of ¢2) will be called an exten-
sional function of $2. Thus the functions of functions with which we shall be
specially concerned will all be extensional functions of functions.

What has just been said explains the connection (noted above) between
the fact that the functions of propositions with which mathematics is specially
concerned are all truth-functions and the fact that mathematics is concerned
with extensions rather than intensions.

Convenient abbreviation. The following definitions give alternative and often
more convenient notations :

b2 dyobzi=:(2):1 pz.D .Yz DI,
¢r.=;.Yri=:(x):dx.=.Yx DI
This notation “ ¢z . D, . Yrz” is due to Peano, who, however, has no notation
for the general idea “(«) . ¢2.” It may be noticed as an exercise in the use
of dots as brackets that we might have written
¢z Yz .=.(x). px DYz Df,
pr=VYz.=.(z).pr=+yaz DL
In practice however, when ¢2 and % are special functions, 1t is not possible
to employ fewer dots than in the first form, and often more are required.

The following definitions give abbreviated notations for functions of two

or more variables :
(@y)-¢(@y)-=:(2):(y)-¢(zy) Df
and so on for any number of variables;
$(29) ey - V(@Y i=:@y:¢@y) .. ¥(xy) Df
and so on for any number of variables.
Identity. The propositional function “ z is identical with y” is expressed by
z=y.

This will be defined (cf. ¥13'01), but, owing to certain difficult points involved
in the definition, we shall here omit it (cf. Chapter II). We have, of course,

F.z=a (the law of identity),

F:z:y.%.%=z,

Fre=y.y=2.0.x=2
The first of these expresses the reflexive property of identity: a relation is
called reflexive when it holds between a term and itself, either universally, or
whenever it holds between that term and some term. The second of the

above propositions expresses that identity is a symmetrical relation : a relation
is called symmetrical if, whenever it holds between z and y, it also holds
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between y and «. The third proposition expresses that identity is a transitive
relation: a relation is called transitive if, whenever it holds between @ and y
nnd between y and 2, it holds also between # and 2.

We shall find that no new definition of the sign of equality 1s required in
mathematies: all mathematical equations in which the sign of equality is used
i the ordinary way express some identity, and thus use the sign of equality
in the above sense.

If 2 and y are identical, either can replace the other in any proposition
without altering the truth-value of the proposition ; thus we have

Fiz=y.D.¢pz=¢y.
This is a fundamental property of identity, from which the remaiming properties
mostly follow.

It might be thought that identity wonld not have much importance, since
it ean only hold between 2 and y if @ and y are different symbols for the same
ohject. This view, however, does not apply to what we shall eall « descriptive
phrases,” t.e. “ the so-and-so.” It is in regard to such phrases that identity is
tnportant, as we shall shortly explain. A proposition such as “ Scott was the
author of Waverley " expresses an identity in which there is a deseriptive
phrase (namely “ the author of Waverley ”); this illustrates how, in such cases,
the assertion of identity may be important. It is essentially the same case
when the newspapers say “the identity of the criminal has not transpired.”
In such a case, the criminal is known by a descriptive phrase, namely “ the
man who did the deed,” and we wish to find an @ of whom it is true that
" x=the man who did the deed.” When such an « has been found, the identity
of the criminal has transpired.

Classes and relations. A class (which is the same as a manifold or aggre-
gate) s all the objects satisfying some propositional function. If « is the class
composed of the objects satisfying ¢, we shall say that a is the class determined
by ¢2. Every propositional function thus determines a class, though if the
propositional function is one which is always false, the class will be null,
te. will have no members. The class determined by the function ¢# will be
represented by 2 (¢z)*. Thus for example if ¢z is an equation, 2 (¢z) will be
the class of its roots; if ¢ is “z has two legs and no feathers,” 2 (¢z) will
be the class of men; if ¢z is “0 <2 <1, 2(¢z) will be the class of proper
fractions, and so on.

It is obvious that the same class of objects will have many determining
functions. When it is not necessary to specify a determining function of a
class, the class may be conveniently represented by a single Greek letter.
Thus Greek letters, other than those to which some constant meaning is
assigned, will be exclusively used for classes.

* Any other letter may be used instead of z.
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There are two kinds of difficulties which arise in formal logic; one kind
arises in connection with classes and relations and the other in connection
with descriptive functions. The point of the difficulty for classes and relations,
so far as it concerns classes, is that a class cannot be an object suitable as an
argument to any of its determining functions. If a represents a class and ¢2
one of its determining functions [so that a =2 ($2)], it is not sufficient that
¢a be a false proposition, it must be nonsense. Thus a certain classification
of what appear to be objects into things of essentially different types seems
to be rendered necessary. This whole question is discussed in Chapter II, on
the theory of types, and the formal treatment in the systematic exposition,
which forms the main body of this work, is guided by this discussion. The
part of the systematic exposition which is specially concerned with the theory
of classes is %20, and in this Introduction it is discussed in Chapter III, It is
sufficient to note here that, in the complete treatment of %20, we have avoided
the decision as to whether a class of things has in any sense an existence as
one object. A decision of this question in either way is indifferent to our logic,
though perhaps, if we had regarded some solution which held classes and re-
lations to be in some real sénse objects as both true and likely to be universally
received, we might have simplified one or two definitions and a few preliminary
propositions. Our symbols, such ag “# (¢«) ” and a and others, which represent
classes and relations, are merely defined in their use, just as V2, standing for

0° 0?02

@ oyt o
has no meaning apart from a suitable function of z, y, z on which to operate.
The result of our definitions is that the way in which we use classes corre-
sponds in general to their use in ordinary thought and speech ; and whatever
may be the ultimate interpretation of the one is also the interpretation of
the other. Thus in fact our classification of types in Chapter II really
performs the single, though essential, service of justifying us in refraining
from entering on trains of reasoning which lead to contradictory conclusions.
The justification is that what seem to be propositions are really nonsense.

The definitions which occur in the theory of classes, by which the idea of
a class (at least in use) is based on the other ideas assumed as primitive,
cannot be understood without a fuller discussion than can be given now
(cf. Chapter II of this Introduction and also %20). Accordingly, in this pre-
liminary survey, we proceed to state the more important simple propositions
which result from those definitions, leavmg the reader to employ in his mind
the ordinary unanalysed idea of a class of thmgs Our symbols in their usage
conform to the ordinary usage of this idea in language. It is to be noticed
that in the systematic exposition our treatment of classes and relations requires
no new primitive ideas and only two new primitive propositions, namely the
two forms of the “Axiom of Reducibility ” (cf. next Chapter) for one and two
variables respectively.
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The propositional function “z is a member of the class a” will be expressed,

following Peano, by the notation
zea

Here e is chosen as the initial of the word éo7i. “zea” may be read “x is
an a.” Thus “# e man” will mean “z is a man,” and so on. For typographical
convenience we shall put
zvea.=.~(zea)y Df
z,yead.=.zea.yea DL
For “class” we shall write “Cls”; thus “aeCls” means “a is a class.”

We have
Fize2(dpz).=. ¢,
2.6. “‘x is a member of the class determined by ¢2’ is equivalent to ‘z
satisfies ¢2,” or to ‘ px is true.””

A class is wholly determinate when its membership is known, that is, there
cannot be two different classes having the same membership. Thus if ¢z,
are formally equivalent functions, they determine the same class; for in that
case, if « is a member of the class determined by ¢2, and therefore satisfies ¢z,
1t also satisfies Yz, and is therefore a member of the class determined by 2.
Thus we have

Fo2(¢2)=2(2).=:1¢z.=5. Y.
The following propositions are obvious and important :
Frna=2(p2).=:12ea.=,. ¢z,
t.e. a is identical with the class determined by ¢2 when, and only when, “z is
an a” is formally equivalent to ¢z;
Fia=B.=:zea.=,.2¢f,

1.e. two classes a and B are identical when, and only when, they have the same
membership;

F.2(xea)=a,
t.e. the class whose determining function is “x is an «” is @, in other words,
a is the class of objects which are members of a;

F.2(¢z)eCls,
t.e. the class determined by the function ¢2 is a class.

Tt will be seen that, according to the above, any function of one variable
can be replaced by an equivalent function of the form “zea” Hence any
extensional function of functions which holds when its argument is a function
of the form “2 ea,” whatever possible value a may have, will hold also when
its argument is any function ¢2. Thus variation of classes can replace varia-
tion of functions of one variable in all the propositions of the sort with which
we are concerned.
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In an exactly analogous manner we introduce dual or dyadic relations,
t.e. relations between two terms. Such relations will be called simply
“relations”; relations between more than two terms will be distinguished as
multiple relations, or (when the number of their terms is specified) as triple,
quadruple,...relations, or as triadic, tetradic,...relations. Such relations will
not concern us until we come to Geometry. For the present, the only relations
we are concerned with are dual relations.

Relations, like classes, are to be taken in estension, .. if R and S are
relations which hold between the same pairs of terms, R and S are to be
identical. We may regard a relation, in the sense in which it is required for
our purposes, as a class of couples; ¢.e. the couple («, y) is to be one of the
class of couples constituting the relation R if # has the relation B to y*.
This view of relations as classes of couples will not, however, be introduced
into our symbolic treatment, and is only mentioned in order to show that it
is possible so to understand the meaning of the word relation that a relation
shall be determined by its extension.

Any function ¢ (z, y) determines a relation R between z and y. If we
regard a relation as a class of couples, the relation determined by ¢ (z, ) is
the class of couples (, y) for which ¢ (#, y) is true. The relation determined
by the function ¢ (#, ) will be denoted by

29¢ (=, y).
We shall use a capital letter for a relation when it is not necessary to specify
the determining function. Thus whenever a capital letter occurs, it is to be
understood that it stands for a relation.

The propositional function “z has the relation B to y” will be expressed
by the notation
zRy.

This notation is designed to keep as near as possible to common language,
which, when it has to express a relation, generally mentions it between its
terms, as in “z loves y,” “= equals y,” “« is greater than y,” and so on. For
“relation ” we shall write “ Rel ”; thus “ R e Rel” means “R is a relation.”

Owing to our taking relations in extension, we shall have
Fi2§¢(2,9)=20¥ (@ 9)-=: @ Y) =0y - ¥ (@ Y),

t.e. two functions of two variables deterrfine the same relation when, and only
when, the two functions are formally equivalent.

We have Foz{@fod (e, y)lw.=.¢ (2 w),

* Buch a couple has a sense, i.e. the couple (x, y) is different from the couple (y, £}, unless
z=y. We shall eall it a *couple with sense,” to distinguish it from the class consisting of =
and y. It may also be called an ordered couple.
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t.¢. “z has to w the relation determined by the function ¢ (z,y)” is equivalent

to ¢ (z, w);
ek L R=20¢(z,y).=t2Ry .=, 4.0 (5, ¥),
R

These propositions are analogous to those previously given for classes. It
results from them that any function of two variables is formally equivalent to
some function of the form z Ry; hence, in extensional functions of two variables,
variation of relations can replace variation of functions of two variables.

Both classes and relations have properties analogous to most of those of
propositions that result from negation and the logical sum. The logical product
of two classes « and B is their common part, z.e. the class of terms which are
members of both. This is represented by a n 8. Thus we put

anB==%(zxea.zeB) DI

This gives us FizeanB.=.zea.zef,

t.e. “x is a member of the logical product of @ and 8” is equivalent to the
logical product of “z is a member of a” and “= is a member of 3.”

Similarly the logical sum of two classes a and 3 is the class of terms which
are members of either; we denote it by a v 8. The definition is
avfi=%(zea.v.zeB) Df
and the connection with the logical sum of propositions is given by

FrzeavB.=:xca.v.zef.

The negation of a class a consists of those terms z for which “zea” can
be significantly and truly denied. We shall find that there are terms of other
types for which “ze¢a” is neither true nor false, but nonsense. These terms
are not members of the negation of a.

Thus the negation of a class a is the class of terms of suitable type which
nre not members of it, 1.e. the class £ (r~ea). We call this class “—a” (read
“not-a”); thus the definition is

—a=%(@~ea) Df,
and the connection with the negation of propositions is given by

Fize—a.=.ax~vea

In place of implication we have the relation of inclusion. A class a is said
1o be included or contained in a class B if all members of a are members of 8,
te if vea.dy.xeB. We write “aCB” for “a is contained in 8.” Thus we
puels

aCB.=:zea.l,.zeB DI
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Most of the formulae concerning p.q, pvg, ~p, p g remain true if we
substitute an B, avB, —a, aCB. In place of equivalence, we substitute
identity; for “p=g” was defined as “pDg.¢Ip,” but “aCB.8Ca” gives
“Tea.=,.vef,” whence a=3.

The following are some propositions concerning classes which are analogues
of propositions previously given concerning propositions:

FoanB=—(-av—8g),
s.e. the common part of a and A is the negation of “not-a or not-3";
Foze(av—a),
i.e. “z 1s a member of a or not-a”;
Foz~e(an —a),
i.e. “z is not a member of both a and not-a”;
Foa=—(—a)
F:aCB.=.—BC—aq,
bia=B.=.~a=-4,
Fra=ana,
Fia=ava
The two last are the two forms of the law of tautology.
The law of absorption holds in the form
F:aCB.=.a=anpB.

Thus for example “all Cretans are liars” is equivalent to “Cretans are
identical with lying Cretans.”

Just as we have F:pDq.qIr.D.pIr,
so we have F:aCB.8Cy.0.aCy.

This expresses the ordinary syllogism in Barbara (with the premisses
interchanged); for “a C 8" means the same as “all a’s are 8's,” so that the
above proposition states: “If all a's are 8's, and all B's are s, then all o's
are 7's.” (It should be observed that syllogisms are traditionally expressed
with “ therefore,” as if they asserted both premisses and conclusion. This is,
of course, merely a slipshod way of speaking, since what is really asserted is
only the connection of premisses with conclusion.)

The syllogism in Barbara when the minor premiss has an individual

subject is P
FizeB.BCy.D.zey,
e.g. “if Socrates is a man, and all men are mortals, then Socrates is a
mortal” This, as was pointed out by Peano, is not a particular case of
“qCRB.BCy.D.aCy, since “zeB” is not a particular case of “a CB.”
This point is important, since traditional logic is here mistaken. The nature
and magnitude of its mistake will become clearer at a later stage.
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For relations, we have precisely analogous definitions and propositions.
We put
RAS=2)(zRy.xSy) Df,

which leads to F:a(RAS)y.=.xRy.xSy.
Similarly RuS=2)(zRy.v.zSy) Df,
~ R=8j{~(Ry)} D

RGS.=:2Ry.D,,.aS8y Dt

Generally, when we require analogous but different symbols for relations
and for classes, we shall choose for relations the symbol obtained by adding
a dot, in some convenient position, to the corresponding symbol for classes.
(The dot must not be put on the line, since that would cause confusion with
the use of dots as brackets.) But such symbols require and receive a special
definition in each case.

A class is sald to exist when it has at least one member: “a exists” is
denoted by “g !'a.” Thus we put
qla.=.(gz).zea DL
The class which has no members is called the “null-class,” and is denoted by
“A.” Any propositional function which is always false determines the null-
clz.iss. One such funetion is known to us already, namely “z is not identical
with #,” which we denote by “244.” Thus we may use this function for de-
fining A, and put
A=2(x+z) Df
The class determined by a funetion which is always true is called the
unwversal class, and is represented by V; thus
V=2%@==2) Df.
Thus A is the negation of V. We have
Fo(2).zeV,

«e

te. ““xz is a member of V’ is always true”; and
F.o(z).z~veA,
re. “‘z 18 a member of A’ is always false.” Also

Fra=A.=.~q!q
te. “a1s the null-class ” is equivalent to “a does not exist.”

For relations we use similar notations. We put
H!E.=.(gz,y). 2Ry,
Le. “j!B” means that there is at least one couple z, y between which
the l_relatlon R holds. A will be the relation which never holds, and V the
relation which always holds. V is practically never required; A will be the
relation 2§ (4 z.y+y). We have
Fo(@,y).~(zAy),

and F:R=A.=.~f!R
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There are no classes which contain objects of more than one type. Ac-
cordingly there is a universal class and a null-class proper to each type of
object. But these symbols need not be distinguished, since it will be found
that there is no possibility of confusion. Similar remarks apply to relations.

Descriptions. By a “description” we mean a phrase of the form “the
so-and-so” or of some equivalent form. For the present, we confine our
attention to the in the singular. We shall use this word strictly, so as to
imply uniqueness; e.g. we should not say “A4 is the son of B” if B had other
sons besides 4. Thus a description of the form “the so-and-so” will only
have an application in the event of there being one so-and-so and no more.
Hence a description requires some propositional function ¢£ which is satisfied
by one value of z and by no other values; then ““the 2 which satisfies ¢2”
is a description which definitely describes a certain object, though we may
not know what object it describes. For example, if y is a man, “z is the
father of y¥” must be true for one, and only one, value of . Hence “the
father of y” is a description of a certain man, though we may not know what
man it describes. A phrase containing “ the ” always presupposes some initial
propositional function not containing “the ”; thus instead of “ « is the father
of y” we ought to take as our initial function “z begot y”; then “the father
of ¥"” means the one value of # which satisfies this propositional function.

If ¢2 is a propositional function, the symbol “(1z)(¢px)” is used in our
symbolism in such a way that it can always be read as “ the 2 which satisfies
¢2.” But we do not define “(12) (¢x) ” as standing for “ the & which satisfies
¢2,” thus treating this last phrase as embodying a primitive idea. Every use
of “(1z) (¢px),” where it apparently occurs as a constituent of a proposition
in the place of an object, is defined in terms of the primitive ideas already
on hand. An example of this definition in use is given by the proposition
“E!(1z){px)"” which is considered immediately. The whole subject is treated
more fully in Chapter IIL

The symbol should be compared and contrasted with “2 (¢«)” which in
use can always be read as “the «’s which satisfy ¢2.” Both symbols are in-
complete symbols defined only in use, and as such are discussed in Chapter ITI.
The symbol “ 2 (¢x) ” always has an application, namely to the class determined
by ¢ but “ (1) (p)” only has an application when ¢& is only satisfied by
onc value of z, neither more nor less. It should also be observed that the
meaning given to the symbol by the definition, given immediately below, of
5! (12) () does not presuppose that we know the meaning of “one.” This is
also characteristic of the definition of any other use of (1z) (¢z).

We now proceed to define “E!(1z) (¢z)” so that it can be read “the x
satisfying ¢a exists.” (It will be observed that this is a different meaning of
existence from that which we express by “q.”) Its definition is

Et(z)(¢az).=:(He): ¢z .=, 2 =c DI
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e “the  satisfying ¢2 exists” is to mean “ there is an object ¢ such that ¢z
is true when = is ¢ but not otherwise.”
The following are equivalent forms:
FrLE(z)(dz) = (o) ez Dy =0,
FLELOz)(r).=:(He). e dpr . dy. Dy y. 2=y,
Fi. BE1(z)(px) .= (go) s peiadc . Dypu ~ o
The last of these states that « the = satisfying ¢& exists” is equivalent to
“there is an object ¢ satisfying ¢2, and every object other than ¢ does not
satisfy ¢2.”
The kind of existence just defined covers a great many cases. Thus for
cxample “ the most perfect Being exists ” will mean :

(mc) t 2 is most perfect .=, .z =c,
which, taking the last of the above equivalences, is equivalent to
(gc) = ¢ is most perfect : £ ¢. D, . z is not most perfect.

A proposition such as “Apollo exists” is really of the same logical form,
although it does not explicitly contain the word the. For “Apollo” means
really “the object having such-and-such properties,” say “the object having
the properties enumerated in the Classical Dictionary*.” If these properties
make up the propositional function ¢z, then “Apollo” means “ (1) (¢),”
and “Apollo exists” means “E! (1z) (¢2).” To take another illustration,
“the author of Waverley” means “ the man who (or rather, the object which)
wrote Waverley.” Thus “Scott is the author of Waverley ” is

Scott = (12) (z wrote Waverley).

Here (as we observed before) the importance of identity in connection with
descripticns plainly appears.

The notation “(1z) (¢x),” which is long and inconvenient, is seldom used,
being chiefly required to lead up to another notation, namely “R,” meaning
“the object having the relation R to y.” That is, we put

Rfy = (1z) («Ry) Df.
The inverted comma may be read “of.” Thus “Rf” is read “the R of y.”
Thus if R is the relation of father to son, “R¢y " means “ the father of y”;
if R is the relation of son to father, “R‘” means “the son of y,” which will
only “exist” if y has one son and no more. Ry is a function of y, but not
a propositional function; we shall call it a descriptive function. All the
ordinary functions of mathematics are of this kind, as will appear more fully
in the sequel. Thus in our notation, “sin y” would be written “sin ‘y,” and
“sin” would stand for the relation which sin ‘y has to y. Instead of a variable
descriptive function fy, we put R‘y, where the variable relation R takes the

* The same principle applies to many uses of the proper names of existent objects, e.g. to all
uses of proper names for objects known to the speaker only by report, and not by personal
acquaintance.
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place of the variable function f. A descriptive function will in general exist
while y belongs to a certain domain, but not outside that domain; thus if we
are dealing with positive rationals, +/y will be significant if y is a perfect
square, but not otherwise; if we are dealing with real numbers, and agree
that “4/y” is to mean the positive square root (or, is to mean the negative
square root), /y will be significant provided y is positive, but not otherwise;
and so on. Thus every descriptive function has what we may call a “domain
of definition” or a “domain of existence,” which may be thus defined : If the
function in question is R¢y, its domain of definition or of existence will be
the class of those arguments y for which we have E! Ry, ie. for which
E!(1z) (xRy), i.e. for which there is one z, and no more, having the relation
R toy.

If R is any relation, we will speak of Rfy as the “associated descriptive
function.” A great many of the constant relations which we shall have occasion
to introduce are only or chiefly important on account of their associated descrip-
tive functions. In such cases, it is easier (though less correct) to begin by
assigning the meaning of the descriptive function, and to deduce the meaning
of the relation from that of the descriptive function. This will be done in the
following explanations of notation.

Various descriptive functions of relations. If R is any relation, the converse
of B is the relation which holds between y and = whenever R holds between
« and y. Thus greater is the converse of less, before of after, cause of effect

husband of wife, etc. The converse of R is written® Cnv‘R or R. The defi-
nition is
R =2§ (yRz) Df,
CnvR = R Df.
The second of these is not a formally correct definition, since we ought to
define “Cnv” and deduce the meaning of Cnv‘R. But it is not worth while

to adopt this plan in our present introductory account, which aims at simplicity
rather than formal correctness.

A relation is called symmetrical if R = IVZ, t.e. if it holds between y and «
whenever it holds between # and y (and therefore vice versa). Identity,
diversity, agreement or disagreement in any respect, are symmetrical relations.
A relation is called asymmetrical when it is incompatible with its converse,

v.e. when B A I\é = A, or, what is equivalent,
By « Dy, y « ~ (yRz).

Before and after, greater and less, ancestor and descendant, are asym-
metrical, as are all other relations of the sort that lead to series. But there are
many asymmetrical relations which do not lead to series, for instance, that of

* The second of these notations is taken from Sohroder’s Algebra und Logik der Relative.
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metrieal ;
CpB and
ost, will

wife's brother®. A relation may be neither symmetrical nor asym
for example, this holds of the relation of inclusion between classes: &
A Ca will both be true if « =8, but otherwise only one of them, at m :
he true. The relation brother is neither symmetrical nor asyin metrical, for if
a is the brother of 3, ¥ may be either the brother or the sister of #-

In the propositional function zRy, we call z the referent and y the rei&m??‘i-
The class 2 («Ry), consisting of all the «’s which have the relation bt to.-3; 18
called the class of referents of y with respect to R; the class § (zRY) conslst-mg.
of all the y’s to which & has the relation R, is called the class if,re]ataffﬂ-
with respect to R. These two classes are denoted respectively by Y and R'.
Thus

_)
R'y==2(aRy) DI,

—

Riz=4(2Ry) Df. d
The arrow runs towards y in the first case, to show that we are COnCerne d
with things having the relation R to y; it runs away from @ ig_the secon
case, to show that the relation B goes from # to the members of B‘a. It runs
in fact from a referent and towards a relatum.

= o«
The notations Ry, R‘z are very important, and are used constantly. If

- — :
R is the relation of parent to child, R‘y = the parents of y, R‘z = the children

of . We have
-
FizeRy.=.2Ry

and l-:ye‘R—‘w.E.a:Ry.

These equivalences are often embodied in common language. For example,;
we say indiscriminately “z is an inhabitant of London” or “z inhabits Lon_do’il‘-

If we put “R” for “inhabits” “z inhabits London” is “sR London,” while “a

_’
1s an inhabitant of London” is “« ¢ R London.”

- «— . »
Instead of R and R we sometimes use sg‘R, gs*R, where “sg stands for

“sagitta,” and “gs” is “sg” backwards. Thus we put
e 2
sg‘R=PR Df,

(——
g*R=R Df.
These notations are sometimes more convenient than an arrow whe
relation concerned is represented by a combination of letters, instead
single letter such as R. Thus e.g. we should write sg‘(R A S), rather than
an arrow over the whole length of (R A 8). .
The class of all terms that have the relation R to something oOF o'ther =
called the domain of R. Thus if R is the relation of parent and child, the

. LA . . , q is also
* This relation is not strictly asymmetrical, but is so except when the wife’s brother 18
the sister’s husband. In the Greek Church the relation is strictly asymmetrical.

n the
of a
put
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domain of R will be the class of parents. We represent the domain of R by
“D‘R.” Thus we put

D‘R=2{(qy).xRy] Df.
Similarly the class of all terms to which something or other has the relation
R is called the converse domain of R; it is the same as the domain of the
converse of R. The converse domain of R is represented by “ ‘R ”; thus

‘R =4 {(qz) . vrRy} Df
The sum of the domain and the converse domain is called the field, and is
represented by C*R: thus

C‘R=D‘Rvd‘R Df

The field is chiefly important in connection with series. If R is the ordering
relation of a series, C*R will be the class of terms of the series, DR will be all
the terms except the last (if any), and ‘R will be all the terms except the
first (if any). The first term, if it exists, is the only member of DR a — ‘R,
since it is the only term which is a predecessor but not a follower. Similarly
the last term (if any) is the only member of ‘R n —D‘R. The condition
that a series should have no end is ‘R CD*R, 7.e. “every follower is a pre-
decessor ”; the condition for no beginning is DR CU‘R. These conditions
are equivalent respectively to D‘R = C*R and ‘R =C*R.

The relative product of two relations R and 8 is the relation which holds
between z and z when there is an intermediate term » such that z has the
relation R to y and y has the relation S to z. The relative product of R and
8§ is represented by R|S; thus we put

R|S=22{(qy). =Ry .ySz} Df
whence F:z(R|S)z.=.(qy) . xRy . yS
Thus “paternal aunt” is the relative product of sister and father; “ paternal
grandmother ” is the relative product of mother and father; “maternal grand-
father” is the relative product of father and mother. The relative product is
not commutative, but it obeys the associative law, v.e.

F.(PIQ|R=P|(Q|R).

It also obeys the distributive law with regard to the logical addition of
relations, v.e. we have

F.P{(QuR)=(P|Q)u(P|R),
F.(QuR) | P=@Q|P)v(R|P)
But with regard to the logical,product, we have only
k. PIQAR)C(PQA(P|R)
F.(@AR)| PC(Q|P)A(Q|R).
The relative product does not obey the law of tautology, i.e. we do not

have in general R R=R. We put
R:*=R|R Df
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Thus paternal grandfather = (father)?,
maternal grandmother = (mother)?

A relation is called ¢ransitive when R*G R, t.e. when, if zRy and yRz, we

nlwinys have zRz, i.e. when
zRy .yRz.D,,, . xRz,
Relntions which generate series are always transitive; thus e.g.
E>Y YD 2.y T > 2

I 1" is a relation which generates a series, P may conveniently be read
“precedes s thus “cPy.yPz.D,,, . 2P2” becomes “if z precedes y and y
precedes 2, then 2 always precedes 2.7 The class of relations which generate
nertes are partially characterized by the fact that they are transitive and
naymnetrical, and never relate a term to itself.

I P15 a relation which generates a series, and if we have not merely PGP,
but 1" = P, then P generates a series which is compact (@berall dicht), i.e. such
that there are terms between any two. For in this case we have

«Pz.D.(qy).xPy.yPz,
i it & precedes z, there is a term y such that z precedes y and y precedes 2,
1o there is a term between 2 and z. Thus among relations which generate
sories, those which generabe compact series are those for which P*= P,

Muny relations which do not generate series are transitive, for example,
ulentity, or the relation of inclusion between classes. Such cases arise when
the relations are not asymmetrical. Relations which are transitive and sym-
metrical are an important class: they may be regarded as consisting in the
promsession of some common property.

Plural descriptive functions. The class of terms 2 which have the relation
I! (o some member of a class a is denoted by R““a or R.‘a. The definition is
R“a=%{(qy).yea.zRy} DL
Thus for example let B be the relation of inhabiting, and a the class of towns;
then R =inhabitants of towns. Let R be the relation “less than” among
vaitonals, and a the class of those rationals which are of the form 1 —277, for
integral values of n; then Ra will be all rationals less than some member
ol a, ie. all rationals less than 1. If P is the generating relation of a series,
il & is any class of members of the series, P*‘a will be predecessors of a’s, ¢.e. the
mpment defined by @ If P is a relation such that Py always exists when
v e a, I"a will be the class of all terms of the form Py for values of y which
are members of a; e
Pa=3{(qy) . yea.x= Pyl
Thns o member of the class fathers of great men” will be the father of y,
where 4 is some great man. In other cases, this will not hold; for instance,
lot £ be the relation of a number to any number of which it is a factor; then
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P¢¢ (even numbers) = factors of even numbers, but this class is not composed
of terms of the form “the factor of z,” where x is an even number, because
numbers do not have only one factor apiece.

Unit classes. The class whose only member is # might be thought to be
identical with z, but Peano and Frege have shown that this is not the case.
(The reasons why this is not the case will be explained in a preliminary way
in Chapter II of the Introduction.) We denote by “t‘z” the class whose only
member is z: thus

tz=4(y==x) Df,
t.e. “t‘z” means “the class of objects which are identical with #.”

The class consisting of & and y will be t‘z v 1y ; the class got by adding
z to a class a will be a v t‘z; the class got by taking away z from a class a
will be a — ¢‘z. (We write a— 8 as an abbreviation for an —S.)

It will be observed that unit classes have been defined without reference
to the number 1; in fact, we use unit classes to define the number 1. This
number is defined as the class of unit classes, t.e.

1=da{(gaz).a=1z} DL
This leads to
Froael.=:(ge)iyea.=,.y==z
From this it appears further that
Fiael.=.E!(12)(zea),
whence F:2(¢2)el.=.E! (1x)(¢2),
.e. “2 (¢2) is a unit class” is equivalent to “ the « satisfying ¢& exists.”

If ael, 0 is the only member of a, for the only member of « is the only
term to which a has the relation ¢. Thus “t‘a” takes the place of “(1x)(¢z),”

if a stands for 2 (¢pz). In practice, “i‘a” is a more convenient notation than
“(12) (¢z),” and is generally used instead of “(1z) (¢x).”

The above account has explained most of the logical notation employed
in the present work. In the applications to various parts of mathematics,
other definitions are introduced ; but the objects defined by these later defi-
nitions belong, for the most part, rather to mathematics than to logic. The
reader who has mastered the symbols explained above will find that any
later formulae can be deciphered by the help of comparatively few additional
definitions.



