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the total, since each term can be written once without, and once with, a
negation sign. So we have, using the preceding transformation of the sum,

z / - \  ' . - ' -  / " - t \  
r -1 / - - r \

: 2n(2 * 1;"-t : 2n . 3n-L (44)

For the transition to the second line we use the binomial theorem

(45)

choosing P:2,  Q: l ,  and putt ing n -  l fot  nandm - l  for  m.For n:  I
we have p:2; for  n:2,  p --  12 (see 8);  for  n:3,  p:54.

There are many applications for the relations developed for three classes.
Let Br be a symptom of illness; 82, a certain disease; .B3, the case of death.
The simple mutual probabilities may be known from statistics; the relation
(35) shows that only five are to be ascertained, the sixth being determinable.
Furthermore, one of the compound probabilities must be ascertained, for
instance, P(Br.Bz,Ba). When these values are known, all statistical ques-
tions referring to the three classes are answerable except those referring to
absolute probabilities or probabilities of negative reference. A psychological
application obtains when Br means a certain stimulus; 82, a perception; .B3.
a certain reaction of a nerson.

$ 25. Remarks Concerning the Mathematical Formalization
of the Probability Calculus

Having carried through, to a large extent, the formalization of the calculu.
of probability, we are now free to discuss this procedure from a logical vien-
point. The "logification" by which this construction of the calculus was intrc'
duced has, in the meantime, been transformed into a "mathematization", a
notation in which the logical operations are restricted to the inner part c':
the P-s1'rnbols. The resulting complexes of the P-symbols, into which thest
symbols enter as units, have the character of mathematical equations. Thu-.
the probability calculus acquires a form that is convenient for the purpose o:
carrying out calculations.

This manner of writing-the mathematical notation-has the disadvantag=
that it cannot express certain relations of a nonmathematical kind that hol,i
within the probability calculus. There are three different forms of suc:
relations:

1. The dependence of a mathematical equation on the validity oT ano$her
mathematical equation, that is, the implication between equations. An exam-

(p * q)' : 
hQ) rmqn-m
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ple is given by the assertion that (4, $ 1a) is the condition of validity for
,5,  $ 14).

2. The dependence of a mathematical equation on a nonmathematical
condition. Of this kind is the condition (.4 I B) in axiom rr,1 or the condition
of exclusion in axiom lr.

3. Logical properties of the quantities occurring, such as are expressed in
the statement of univocality formulated in axiom r.

The first case is irrelevant because the existence of a logical implication
i.'etrveen equations is easily expressible by some connecting words in the
context. This is the method usually applied in mathematics. The second
case is serious because here the condition on which the validity of a mathe-
natical equation depends is not expressible in mathematical notation. The
third case is irrelevant again. It concerns only the assertion of univocality;
this assertion, as is usual in mathematics, may be added in words.

It will now be shown that the second difficulty can be eliminated by the
u--.e of a method that translates the logical condition into a mathematical
r-ondition. The method may be illustrated by reference to the general theorem
r,f addition. It was seen, in $ 20, that the condition of exclusion, written for
ttris axiom in the logical notation, could be replaced by the condition that
ihe corresponding probability becomes 0. Since this assumption, according to
9. $ i3), states less than the strict condition of exclusion, a certain generaliza-

lion of the special theorem of addition has thus been constructed. It will now
ie shown that the same procedure is feasible in some other places, so that,
'r'r- its use, relations of the form 2 can be reduced to those of the form 1. We
rre concerned here with the following theorems written in the implicational
notat ion:  

@)B)r[(A+c)=(a.B+c)]  (1)

(A ) B) , Go>ifn., i u, .(oo: ,) (z)

(A ) B) I t(a ? 
c) = (a 

Z 
B.cll (3)

(c ) B): I(a i 
c) = (A 

7 
B.cll @)

The proof of the theorems is easily given. Let us prove immediately their
generalization for the cases P(,A,.B) : 1 and P(C,B) : 1, respectively. From
ihis result, of course, by the help of rr,1, theorems (1)-(a) follow.

Instead of (1) we obtain: if P(A,B) : 1, then

P(A,C) : P(A.B,C) (5)

This follows from the elimination theo&em (2, $ 19) because e6l,,B1 : Oi.
Formula (5) states that, if P(A,B) : I, B and any C are mutually independent
rith respect to ,4,.
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Instead of (2) we obtain: iL P(A,B) : I rnd P(A,C) ) 0, we have for any C

P(A.C,B) : t  (6)

The proof follows from the product rule (6, $ 21) by the use of (5). If P(A,C)
: 0, (6) is not derivable; in this case the value of P(4. C,B) cannot be deter-
mined f.rom P(A,B), though it is possible that a determinate vahe P(A .C,B)
exists.

Instead of (3) we obtain: n P(A,B) : 1, theu

P(A,C) :  P(A,B.C) (7)

The proof is given by the multiplication theorem (3, $ 14) with the help of
(6). This formula is also valid for the case P(A,C) : 0, since it then follows
directly from the multiplication theorem without the use of (6).

Instead of (4) we obtain: rf. P(C,B): 1 and P(C,A) ) 0, then

P(A,C) : P(A,B.C) (8)

The proof is given by the multiplication theorem, since, for the assumptions
made, P(A.C,B): 1, according to (6), if d and C are interchanged in (6).

TVith these proofs the mathematical formalization is carried through for
the four theorems.r It will now be shown that in axiom u,1, too, the condi-
tiou (r4, ) B) can be formally eliminated.

In this case we make use of the equivalence

( [A)B|=[B: AvB])  (e)

The formula is proved by solving the right side according to (7b, $ 4), apply-
ing (4e, $ 4) and (4b, $ 4) and, finally, transforrring the left side by (6o, $ 4).
Formula (9) is a tautology of the class calculus, that is, the expression inside
the parentheses represents the universal class. The formula can be trau-
scribed into the form

( .4)B):(B:AvB)

This formula means that if d is a subclass of B, the joint class r{, v B is ideu-
tical with B.

Because of (9), axiom rr,1 is equivalent to the expression

(e)

P(A,A vB):1

For we.have, on account of (9),

(A ) B) )\P(A,B) : P(A,A v B)l

(10)

(11)

t The restrictions P(.A,C) ) 0 and P(C,A) ) 0 added, respectively, to (6) and (8) are
not required for the corresponding theorems (2) and (4). Thig is due to the fact that the logi-
cal implication represents I stronger assumption than the probability 

i
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Therefore, rr,1 follows from (10). That, conversely, (10) follows from rr,1
can be shown by the use of (8o, $ 4).

As a formula that cannot be formalized mathematically, there remains
only axiom r, the axiom of univocality, apart from implications of the form 1.
All other expressions can be formalized, and we may ask whether we can
omit axiom r and construct, a mathematical aaiom tystem of the calculus of
probability. By this term is understood a system in which the logical opera-
tions are restricted to the inner part of the P-syrnfols, whereas the symbols
themselves enter into relations having the form of mathematical equations.
Such an axiom system can be construeted; the condition of univocality is
then added in words.

In order to set up this axiom system, we introduce the following changes
from the axiom system written in the implicational notation. We replace
rr,1 by (10). Furthermore, we replace the addition theorem ru by the general
theorem of addition (8, $ 20), so that we can free ourselves from the condition
of exelusion. This requires, in the group of axioms of normalization, a further
axiom, c,2, which defines the probability 0 in I way similar to that in which
c,l defines the probability 1. We thus obtain the following mathunattical
atiwn, systan of the calatlus of probaAility:

c) Axrous oF NoRMALrzarroN

l.  P(A,A vB) :  1

2. P(A,B.B) : s

3. 0 s P(A,B)
p) Axrou oF aDDrrroN

P(A,B vC) :  P(A,B) + P(A,C) -  P(A,B.C)

r) Axrou oF Mur,TrPr,rcarroN

P(A,B.C) :  P(A,B) .  P(A.B,C)

Axiom ct,3 needs no qualification demanding that .4 be nonempty, beeause,
if / is empty, this inequality does not represent any restriction on the numer-
iral values of probabilities. According to the convention concerning the use
d the P-symbol for empty reference classes (see p. 59), the inequality 4,3
expresses, in this case, merely a trivial existential statement. Thus the axiom
does not depend on a special condition to be added in words. The only condi-
tion of this kind is the axiom of univocality. It may be convenient to formu-
late this axiom, together with the rule of existence and the convention about
the use of P-symbol, as a rule given in thqgmetalanguage.

It wiil be shown briefly how the rule of the complement (7, $ 13) c*n be
derived from these axioms. We substitute first, in c,1, B v B for B1 because,
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according to (8c, $ 4), the relation (A ) B v B) is always valid, we obtain.
by the use of (11), p(A,B V B) : 1

Dissolving the term on the left side according to axiom B, we obtain, by the
use of a,2, P(A,B vB) : P(A,B) + P(A,B) : r ( r2

From this result we derive the special theorem of addition for the mutuall5
exclusive events B and C, that is, for (B r C). Since (B )O : (BZ), the
relation (A ) B. C) follows from (B ) C) with the help of (8c, $ 4); substituting
in (11) B.C f.or B and using axiom a,l we thus derive

P(A,B.C):  P(A,AVB.C): l  (13)

With the help of (12) we now derive P(A,B C) : 0 and thus obtain frorc
axiom B the special theorem of addition.

Regarding the theorem of multiplication, the previous remarks hold good.
according to which this theorem can be replaced by the weaker assumptior.
of $ 15. It is possible, furthermore, to replace the axioms B and 7 by a com-
pound axiom, as was shown by William Gustin. According to Gustin, th"
following mathematical axiom system is sufficient:

O) NONUET,TZATION 
T, P(A.B,B) :1

2. o < P(A,B)

b) Axrolr oF THE coMpLEMENT ox'THE pRoDUcr

P(A,B'C) :  t  -  P(A,B) '  P(A'B,C)

The postulate of univocality must be added in words, as in the precedi,ng
system. The Gustin system shows that the axiom of addition can be replacei
by the rule of the complement and that the latter can be combined with th:
axiom of multiplication in one axiom. In this system the rule of the comple-
ment is derivable as follows:

P(A,B):P(A,B.B):  I  -  P(A,B).P(A.B,B):  |  -  P(A,B) (11

Using this result, we immediately derive from axiom b the general theore=
of multiplication. The general theorem of addition is proved as follows:

P(A,B v C) : P(A,B.q : 1 - P(A,B) . P(A.B,e)
: 1 - P(A,B) . lr  - P(A.B,C)]
: P(A,B) + P(A,B.C)
: P(A,B) + P(A,C) . P(A.C,B)
:  P(A,B) + P(A,C). l r  -  P(A.C,B) l
: P(A,B) + P(A,C) - P(A,B C) (Li
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Axiom o,2 follows when B is substituted for C in the theorem of addition,
and the rule of the complement is used. Axiom a,l follows by substituting
A for C in the theorem of addition. The Gustin system is thus proved to
be equivalent to the system of axioms a1.

The mathematical axiom systems presented here are sufficient to prove all
the theorems of the calculus of probability. They do not carry through the
formalization completely; the condition of univocality and the implication
between equations must be added verbally in the context. But the nonformal-
ized residue is relatively small. It is true that my mathematical axiom systems
require the use of symbolic logic for the inner part of the probability symbols,
but I hope that the presentation shows that this feature only facilitates
operations within the calculus. With the help of symbolic logic a probability
calculus has been constructed that exhibits not only the mathematical but
also the logical structure of its subject matter. I should be happy if the
unification of mathematics and syrnbolic logic thus achieved would stimulate
other authors to attempt similar constructions in other fields of research.

Historicalremarlc concerwing the axinmati,c construnti,onot the cal,culus o! probabil:itg.-Aio-
matic foundations of the calculus of probabiliiies have been given repeatedly within the
last few decades, Corresponding to my division into a formal and an interpreted theory of
probability, two groups may be distinguished. The interpreted form of axiomatic construction
regards probability, from the beginning, as a frequency, and derives from this interpreta-
tion, by the possible inclusion of additional postulates, the rules of the theory. This group
began with Richard von Mises' analysesl (1919) and was continued by the inquiries of Karl
D0rge, (1930), Erhard Torniers (1930), and Erich Kamkea (1932); it includes, also, the
investigations by Arthur H. Copeland6 (1928).

The formal conception introduces the concept of probability by the method of implicit
dsfinifisag, and uses no properties of the concept other than those expressed in a set of
formal relations placed as axioms at the beginning of the theory, Ieaving open various
possibilities for its interpretation. The group includes the axiom system given in 1901 by
Georg Bohlmanno and the analyses published by S. Bernsteinz (1917) and Emile Borela
(1925). To it belongs also my own axiomatic presentation, which was fust published in
1932.e It was followed by an axiomatic construction by A. N. Kolmogorofilo in 1933.

4 (1928). p. 535: and later papers.'6 
En;iki. d. ftmth. I/riss., V6l. I, Part 2 D 4b (1901

? "Veisuch einer axiomatischen Beeriinduns der V
852-9t7.

? "Veisuch einer axiomatischen Begriindung der Wahrscheinlichkeitsrecbnung," it Mitt.
il. math. Ges. Charkow (1917), pp. 209-274.

E Trail| d,u calnul iles probabilitts (Paris, 192+), Vol. I, Part L; Prindpes d, lormales clas-
siaues du calcul des probabilit4s (Paris, 1925).-s 

"Axiomatik der Wahrscheinlichkeitsrechnung," i! Math. Zs., Vol. 34 (1932), pp.568-619.AvrUgIvwuuulr6,L! l lq9| ! .uo. ' f

Lo Srundbegrifre der W ah4:llei'nl:ichksitsrechntrng (Berlin, 1933).
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Most inquiries of the formal group omit the development of a theory of the order of
probability sequences. The problem was first, attacked by von Mises, Drirge, and Copeland
in articles applying the interpreted conception, whereas my presentation has shown that
the problem can be dealt with even within the formal conception. The next chapter deals
with the difrerences between my presentation and those of von Mises, Diirge, Tornier, and
other authors. These differences result from the fact that my theory develops a system
comprising all types of order, whereas the other systems are restricted to special types.

A third line of development, going much further back historically than the axiomatic
inquiries, connects the treatment of probability with the methods of symbolic logic This
line can be traced to Leibniz,lr whose program of a mathematical logic included that of a
logic of probability. The idea of construing probability as a relation between statements,
which includes logical implication as a special case, was proposed in 1837 by Bernard Bol-
zano.l2 British and American logicians have followed a similer course. In his fundamental
work introducing the period of modern logic, George Boole'! (1854) included a logic of
probability; he was followed by John Vennll (1866), Charles S. Peircer6 (1878), and John
M. Keyneslo (1921). The latter work, besides combining symbolic logic with the calculus
oi probability, contains a report on earlier attempts at constructing such a calculus. In
this group belong also the publications of Harold Jeffreys.rT

My own presentation undertakes to unite the axiomatic method with the construction of
a logico-mathematical calculus, which I developed without a knowledge of the calculi pub
Iished much earlier by the authors cited. My theory of probability implication originated
within the context of inquiries into the nature of causality.ts T'he table of rules of probability
implication given there is to be replaced by my present formulation. A summary of my
theory of probability was published in French.le

^^n See the presentation by Louis Couturat, La Logique ile Leibniz. .. (Paris, 1g0l), pp.
239-250.
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Problem 1

APPENDIX TO CHAPTER 3
Exnncrsns

According to official statistics from 1937, published by the National So-
cialist government, Germany had 66,031,580 inhabitants (.4); among them
were 502,799 Jews (,I) and 325,541sentenced criminals (C). Among the latter
category were 1,794 Jews. What is the probability

a) that a German Jew is a criminal?
b) that a non-Jewish German is a criminal?
c) that a German criminal is a Jew?
d) that a non-criminal German is a Jew?

For the solution use the frequency interpretation directly.

Problem 2
Out of 1,000 unmarried men who are 20 years old (/.), 28.3 die in that

year (D). Among these, 6.1 die from tuberculosis (7), and 6.6 die from acci-
dents (C) (German statistics of 1937). What is the probability

a) that & man 20 years old dies from tuberculosis m accident?
b) that a reported case of death of & man 20 years old is due to tuber-

culosis?
c) that a reported case of death of a m&n 20 years old is due to tubercu-

losis or accident?
For the solution use the frequency interpretation directly.

Problern S
Throwing (z{-) with two dice distinsuished as B and C, what is the prob-

ability of getting a number smaller than 5 on die B or a number greater than
4 on die C?

Problem /1
Urn,4. contains 10 slips showing the number 1, 20 slips showing the number

2, 30 slips showing the number 3. Urn Br contains 30 black and 50 white
balls; urn Bz contains 50 black and 50 white balls; urn 83 contains 60 black
and 20 white balls. The drawing is made as follows. A slip is drawn from
urn A. The number obtained determines with which urn B; to continue, and
a ball is then drawn from that urn.

o) Determine the probability of getting a white ban (Q.
b) If a white ball has been drawn, it being unknown from which of the

urns B; it was obtained, what is the probability that it was drawn,
respectively, from urns 81, 82, Bs?

Problem 6
Mr. Smith's gardener is not dependable; the chances are 2 to 1 that he

will forget to water the rosebush during Smith's absence. The rosebush"is in



I24 
ELEMENTARY cALcUIJUS oF PRoBABILITYa questionabre condition; it has even chances of recovery if it is watered, butonly 25/o chances or ,".or,"ry o'ii',]l", watered. il;"; ."fu.oi.rg, smith5'T::iTji"11T:'.:::t ft;j wd, is rhe probabrity trrat rhe gardener

Problem 6

dog was stolen by gypsies?
had.been _ua",-*lui-ioutd be the

problem 7 
,len by gypsies?

bre the.counting of the votes, Jonesment.,A 
3imnle majority will decidenow that the highway *il nu .oo_
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Probl,eml sorrurroNs

a) P(A.J,c) :N:(A'J 'c)  -  J! !4
N\aJ) 

: 
6'799: 

3'57 Per thousand

_ n"(A.J.c) _ (325,54t _ 1,794)b) P(A.J,C) :
N"(A.J) 66,081,b90 _ E\z,Zgg

: 4S4 per thousand

N"(A.C.J) t ,Zg4c) P(A.C,J) :'ffi : 
ffi: 

5.52 per thousand

d) PA.e.J\ :N"(A'e 'D -  5 l2,7gg -  r ,7g4.v'v, - 
N;@T 

: 
oqoat,sso _ B2E,E4L

:7.64 per thousand

The figures show that criminality among Jews is smaller than among non-Jews.

Probl,em 2

a) P(A,D.r v D.e : w"fe 'tr 'r-t 
'  

' t , 6'1 + o'o
'  N"(A) 

- :  
10p00:0'00127

v"(A.D .T) 6.  Ib) P(A.D,T) :

c)  P(A.D,T v c1 :N"( ! - 'D' [T,-v c])  :  6 '1 + 6 '6'- w"O.a : -28.t- : o'45
Probl,un g

Notatiun: Br: number smaller than 5 0n die B; cn: number greater
than 4 on die C.

P(A,86 VC4) : p(A,86) + P(A,CA) _ p(A,86.C4)

:3++-3.+:#
Probkm 4 

,P(a'c) 
: ;E:iT i' r:':':: *

P(A.c,Bh) : f-P(A'n) 'P(t 'no'cy- f1-,P@,Ej: p@-&,c)

P(A.C,B) :  # P(A.C,B2) :  # p(A.C,Bs) :  #
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Problern 6

This and problem 6 are examples of a formalization of an informal use of
probability rules-in particular, of the rule of Bayes. The numerical values
used should be considered as rough estimates of the probabilities concerned.
The inference then leads to values that have some significance, at least
qualitatively, and correspond to instinctive appraisals of probabilities made,
for example, by detectives or other experts in indirect evidence, in situations
of the kind described.

Notation:,4. : the situation before Smith's voyage: W : Lhe watering of
the rosebush; D : the withering of the rosebush.

P(A,W): + P(A,fr1 :3 P(A.W,D):  
'  

P(A.w,D):2

P(A.D,w): P(A,fi) .P(A.fr/,D)
_3
-4

P(A,W) .P(A.W,D) + P(A,ty)  .P(A.W,D)

Problem 6

Notation: A : general situation after the poodle's disappearance, but not
yet including a statement that an accident has occurred; 7 : the poodle's
going to the town; 7 : the poodle's going to the village; W : the poodle's
going to the woods; D : the poodle's being in the dog pound; C : the
poodle's having an accident of any kind, including the case of his being stolen
by gypsies. The following values are given:

P(A,T) : # P(A,V) : & P(4,t4/) : &

P(A.T,C) :  r fo P(A.T,D) :  1%% P(A.V,C) :  f -v

P(A.W,C) : r-#d

Question o; The poodle is not in the dog pound. Beeause he has never been
absent for more than three days but has now been missing for five days, we
consider the assumption of an accident as true. The assumption that he was
stolen by gypsies is equivalent to his having gone to the village and having
an accident, that is to V.C. Therefore the probability sought for is given by

P(A.C,V) :
P(A,V).P(A.V,C) : 85%

P(A,C)

where P(A,C) : P(A,T) . P(A.T,C) + P(A,V) . P(A.V,C) + P(A,W)

. P(A.W,C) : 
"oo%
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Qwstion b.' Here the situation is characterized by C v D, and the rule of
reduction must be applied:

P(A.tC v Dl,V) :
P(A,C) . P(A.C,V) + P(A,D) . P(A.D,V)

P(A,C) + P(A,D)

Now P(A .D,V) :0 because the dog pound is not in the village but in the
town. Furthermore, we have

P(A,D) :  P(A,T) .P(A.T,D) + P@,N .P(A.T,D)

Since the dog pound is in the town, P(d .iI,D) :0. Therefore

P(A,D):  P(A,T) 'P(A.T,D):  # ' r fu:  *

and the probability asked for is given by

P(A.lC v Dl,V) :3r.57o

This result shows that the probability of an aecident is considerably smaller
so long as there is a chance that the poodle is in the dog pound.

Probl,ern 7

Qunst;ion o
P(A,C)

: P(A,B) .  P(A.B,C) + P(A,J) .P(A.J,C) + P(A,n) .P(A.R,C)

:  ?t :67'570

Qwstionb

P(A.lB v Rl,c) - P(a'B) ' PT:P'C) + P(A'n) ' P(A 'n'c)
' P(A,B) + P(A,n)

:  t :46.670


