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foc'..al difficulties that were connected with this theorem in the historv of the
!ri--al u-: of probability.

$ 15. Reduction of the Multipllcation Theorem
to a Weaker Axiom

TLe theorem of multiplication is not independent of the other axiomsl it
qlr be reduced to a weaker assumption. In order to show this dependence
I.l",r.ll make use of the fact that the multiplication theorem can be split into
;rp 

-parate 
assertions. The first partial assertion states that the probability

P -t -B.C) is determined,by P(A,B) and by P(A.B,C); the second assertion
x ;iiit P(A,B.C) is obtained, in particular, by lhe arithmetical multipltication
d .jre two probabilities. The second assertion need not be stated explicitly
.nL* :n a\iom, but can be derived from the calculus with the use of the other
$E_*.|m.

To prove this contention, multiplication theorem rv is replaced by the
w'a,ker axiom

r[a. (A + B) .(A.B + C) I (:  u,) (A = B .C) . lw : f(p,u)l
p{w

E*e / stands for a mathematical function, temporarily undefined, that is to
jeermine for any values p,u the corresponding u and, conversely, is required
-- be solvable unambiguously for p and u. Similarly to (1 and 2, $ 14), it
.rn b€ shown that the probability implication written at the right in these
;heorems assumes the degree of probability corresponding to the solution of
t : f(p,u) for p and u respectively; in these theorems the probability on
-.h= right side is replaced by

p : !'(w,u) and z : I"(w,p), respectively, (1)

rhere/' andf" represent the functions obtained by the solution. In this way
h can be shown analogous to (3, $ 14) that we may write

P(A,B .C) :  I \P(A,B),  P(A.B,C)] (2)

The function / is the function occurring in rvo, and the comma between the
probability symbols separates the two arguments of this function; that is,
fo 

-rves 
as the comma between the arguments of a mathematical function.

In order to infer the form of/from (2), we substitute for C the disjunction
of two mutually exclusive events C and D; then (2) becomes

P(A,B. lC v Dl)  :  ! \P(A,B),  P(A.B,C v D)l  (3)

According to the first distributive law (4o, $ 4), we dissolve

( ,B. [C v D]= B.C u B.D) (4)
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and apply to both sides of equation (3) the addition theorem (3, g 13):

P(A,B . lC v Dl)  :  P(A,B .C v B .D) :  P(A,B .C) + p(A,B .D) (5a)

P(A.B,C v D) :  P(A.B,C) + P(A.B,D) (5b)

The probabilities of the logical products occurring in (5a) are dissolved again
according to (2): p(A,B.C) : !tp(A,B), p(A.B,C)l

P(A,B.D) : ! \P(A,B), P(A.B,D)l

Thus (3) is transformed into

! lp(A,B), p(A.B,C)I + Ilp(A,B), p(A.B,D)l

: ![P(A,B), P(A.B,C) + P(A.B,D\ g)

Using the abbreviations

P(A,B):  p P(A.B,C):4 P(A.B,D):  u (S)

we c&n write (7) as 
!b,u) * Ilp,ul : flp,u * al (e)

This is a functional equation for /; if it is to be valid for any values u and. u
the function / must have the form

llp,ul: s(d ' u (10)

where g(p) represents a function of p alone, which remains undetermined for
the time being.r

In (2) we now substitute .Jvelfor C; then (2) becomes

P(A,B.lC v il) : IIP(A,B),P(A. B,C v e)l
According to (5c, $ 4), we have

and therefore
(.B.[c v e1= n1

(6)

(  11)

(12)

(13)P(A,B. lC vCl) :  P(A,B): .p P(A.B,C vi)  :1
1r refer to a well-known theorem of mathematics. It may be proved as follows: we out

z : 0; then we derive from (9) that f(A0) : 0. Assuming u to be ttre differential increase^da,
we write (9): tt-r rp,0 * dul - llp,01 = llp,u I du) - ![p,u)
Dividing by du, we obtain for the limit du : 0 the differential equation

(9liPA\ : (aftP,"t\
\ Az ,/0 \ 6u ,/u

The subscript marks the argument-place at which the differential quotient is to be formed.
Since z can be chosen at random, the equation states the difrerential quotient for u to be
constant; that is, the function/is linearwith respect to u.lt is even iossible to drop the
assumption-that the function / is differentiable and continuous, but th-e proof will th6n be
more complicated.
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Esing these results in combination with (10), we transform (11) into

p:f lp, l l :S(p).1:S(p)

Sith this determination of g(p), the relation (10) assumes the form

I(p,u):p.1r

Bceause of (2) and (8) this means

P(A,B.C) : P(A,B) . P(A.B,C)
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(14)

(15)

(16)

ltus we have proved the multiplication theorem (3, $ 14).
It is seen from this demonstration that the theorem of multiplication repre-

snts a necessary formula within the frame of the calculus of probability.
That the probability of the logical product is given by an arith-etical product
ir a consequence of the fact that the probability of a logical sum is given by
en arithmetical sum, in combination with the first distributive law of logic.

The result enables us to introduce a new definition of the property of inde-
1rendence, defined in (4, $ 14) or (5, $ 14). Combining (4, $ 14) with (2), we
may define independence as follows.2 Two events are independent with
respect to ,4. if the probability from A to their logical product is a function
of their individual probabilities with respect to ,4. alone, that is, if

P (A,B . C) : llP (A,B),P (A,C)l (17)

It then follows that / &ssumes the form of the arithmetical product. This
characterization of independence is very instructivel it states that the prob-
ability of the combination of independent events is determined whenever
the probabilities of the separate events are given. For insf,slgs, the probability
I for each of two dice determines the probability j|. for the combination of
any two faces.

$ 16. The Frequency Interpretation

Axioms r to rv suffice to derive all the theorems of the calculus in which
probability sequences occur as wholes the structure of which is not considered.
The totality of these theorems is called the elementary calculus of probability.
With the given axioms we therefore control lhe fumal, structtne of the ele.
mentary ealculus of probability. But before developing the theorems of this
celculus we wish to give the probability concept an interpretation over and
above the characterization of its formal structure (see $ 8).

This leads to a problem that has been under much discussion. The formal
structure of the probability calculus that I have developed might be conceded

I I am indebted to Kurt Grelling for the suggestion that independence can be character-
ized in this m&nner; he thereby directed my attention to the foregoing proof for the product
form of the function/.
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by adherents of the most diverse theories about probability. But the question
of the interpretation of the probability concept can be answered only on the
basis of painstaking philosophical investigations, and differeut theories have
answered it in difrerent ways. It will be treated, therefore, in more detail
later (see chap. 9).

The laws of the calculus of probability are difficult to understand, however,
if one does not envisage a definite interpretation. Thus, for didactic reasons,
an interpretation of the probability concept must be added, at this point, to
the axiomatic construction. But this method wiII not prejudice later investi-
gations of the problem. The interpretation is employed merely as a meann
of illustrating the system of formal laws of the probability concept, and it
will always be possible to separate the conceptual system from the interpre
tation, because, for the derivation of theorems, the axioms will be used in the
sense of merely formal statements, without reference to the interpretation-

fhis presentation follows a method applied in the teaching of geometry,
where the conceptual formulation of geometrical axioms is always accom-
panied by spatial imagery. Although logical precision requires that the prem-
ises of the inferences be restricted to the meaning given in the conceptual
formulation, the interpretation is used as a parallel 6sa,ning in order to make
the conceptual part easier to understand. The method of teaching thus
follows the historical path of the development of geometry, since, historically
speaking, the separation of the conceptual system of geometry from its inter-
pretation is a later discovery. The history of the calculus of probability has
followed a similar path. The mathematicians who developed the laws of this
calculus in the seventeenth and eighteenth centuries always had in mind an
interpretation of probability, usually the frequency interpretation, though it

has sometimes accompanied by other i:rterpretations.
In order to develop the frequency interpretation, we define probability as

lhe limi,t of a frequency within an infinite sequence. The definition follows a
path that was pointed out by S. D. Poissonl in 1837. In 1854 it was used
by George Boole,2 and in recent times it was brought, to the fore by Richard
von Mises,s who defended it successfully against critical objections.

The following not'ation will be used for the formulation of the frequency
interpretation. In order to secure sufficient generality for the definition, we
shall not yet assume that all elements rr of the sequence belong to the class.r4..
We assume, therefore, that the sequence is interspersed vliLh elements r; of
a different kind. For instance, the sequence of throws of a coin may be inter-
spersed with throws of a second coin. In this case only certain elements oi

L Rechrches stn la yrobabilitt d,es jugatmtts en, matilre a"fuvinelle et m mat:i?re citlilp . ..
(Paris, 1837).

2 The Laws o! Thought (London, 1854), p. 295.
r "Grundlagen der Wahrscheinlichkeitsrechnung," in Math. Zs., Vol, V (1919), p. 52, and

later publications.
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will belong to the class,4., if the class is defined as representing the throws of

n

N (r ;c A)
i : l

(1a)

which means the number of such c; between I and n that satisfy r;cA.
The symbol is extended correspondingly to apply to difrerent variables and
to different classes and also to a pair, a triplet, and so on, of variables. For
instance' the expression 

fr. @r, a).(y; e B) t (1b)
i -1

represents the number of pairs f,;,/; such lhat a; belongs to ,4 and simul_
teneously y; belongs to B; it signifies the number of pairs x;,y;thal are ele_
ments of the common class,4, and B. To abbreviate the notation, the following
qrmbol is introduced:

ar

N"(A) :  ot  ! { . ( r ;eA) N"(A.B):  or  N,@;eA).(y;cB) (2)
d- l  -  

i - l

Furthermore,lhe relatiue freqnncy F"(A,B) is defined by

tv"(A.B)
F"(A,B):  #- (B)

N"(A)

with the help of the concept of relative frequency, the frequency interpre-
tation of the concept of probability may be formulated:

It tor a sequencn pair x;y; ihe relatiue frequency F"(A,B) goes toward, a Lirruit
p fm n+o , the limit p is called the probability from a to B within the sequence
pajr. In other words, the following coordinative definition is introduced:

P(A,B):,ll: r'"(,4,.B) (b)

No further statement is required coneerning the properties of probability
s€quences. In particular, randomness (see $ 30) need not be postulated.
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$ 17. The Origin of Probability Statements

So long as we regard the probability calculus as a formal calculus by means
of which formulas are manipulated, that is, so long as we do not speak of the
meaning of the formulas, the origin of probability statements presents no
problem. The question whether the individual probability statement is true
or false, then, is not a problem of the calculus, as w&s explained above. The
calculus deals solely with transformations of probability statements; and the
statements of the mathematical calculus, therefore, represent exclusively
tautological implications of the type, "If certain probability implications
(1r, . . . o, exist, then certain other probability implications bu . b" exist
also". I agree here with a conception emphasized by von Mises.

But it would be a shortsighted attitude if mathematicians were induced by
this conception to regard the question of the origin of probability statements
&s unreasonable. With the given definition of the probability calculus, the
question is merely shifted to another field. At the very moment at, which an
interpretation is assigned to the probability statement, there arises the ques-
tion how to know whether, in a given instance, a probability statement holds.
It follows from the nature of the interpretation that the question is equivalent
to the question how to ascertain the existence of a limit of an infinite sequence.

Here an important distinction must be made. First, probability sequences
may be regarded as mathematically given sequences, that is, as sequences
that are defined by a rule. For instance, a probability sequence can be defined
by means of an infinite decimal fraction in which every even number is
regarded as the case B and every odd number as the case E.'Whether such a
sequence has a frequency limit and what the limit is, is a question of purely
mathematical nature to b: answered by means of the usual mathematical
methods. It is important that we have at our disposal such mathematically
given sequences representing the frequency interpretation; on occasion they
will be used as models (see $$ 30 and 66). In the practical application of the
probability calculus, however, they do not play a part.

Second, sequences provided by events in nature may be considered. For
such sequences, which include all practical applications of the calculus of
probability, we do not know a definite law regarding the succession of their
elements. Instead of a defining rule, we have a finite initial section of the
sequence; therefore we cannot know, strictly speaking, toward what limit
such a sequence will proceed. We assume, however, that the observed fre'
quency will persist, within certain limits of exactness, for the infinite rest of
the sequence. This inference, which is called ind'uctiue inference, leads to very
difficult logical problemsl and it will be one of the most important proble-s
of this investigation to find a satisfactory explanation of the iiference. For
the present, howevet, the inference will not be questioned. Suffice it to say
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that the inference is actually used-sometimes under the name a posteriori
ilelanninntion o! a probabiktA-by statisticians as well as in everyday life. We
shall therefore use it, too, in problems of the application of the formulas
constructed.

It may sometimes be expedient, for mathematical re&sons, to imagine a
fictitious observer who can count out an infinite sequence and thus is able to
determine its limit. But the picture serves only to illustrate certain logical
relations and cannot replace the inductive inference where physical reality
is concerned.

To summarize: for the present we shall regard as verifiable an assertion
stating that there exists a probability sequence of a determinate degree of
probability. The verification may be derived either mathematically, from the
flsfining rule of the sequence, or by means of an inductive inference.

The given interpretation will now be used to elucidate some properties of
the axiom system that so far, perhaps, have not been made sufficiently clear.
First, we realize why the existence of an indeterminate probability implica-
tion has been regarded as a synthetic statement requiring empirical proof.
The assertion that there exists a limit of the frequency, even without specifi-
cation of the degree, represents a definite statement that is certainly not
satisfied for every sequence pair xg;. For this re&son the rule of existence is
necessary within our formal system; when interpreted, it expresses the asser-
tion that a limit of the frequency exists in the cases concerned.

Second, we recognize that the indeterminate probability implication
(A + B) states more than the existence of a mere possibility relation, which
we write as (,4:B;.t the added meaning consists in the fact that the first
stat€ment asserts a certain regularity in the repetition of events. YV'hen a die
is thrown upon a table, it is possible that a sudden thunderbolt may happen
simultaneously; but such a statement of possibility does not mean that a
probability implication exists between the two events. I do not, wish to say
that the probability is very small; I mean, rather, that it is not permissible
to assert a definite regularity with respect to the occurrence of thunder when
the die is thrown repeatedly. The illustration will make it clear that the
existence of a probability cannot be inferred from the possibility of an event.
But neither does the converse hold. From (1, $ 12) it is seen that the pos-
sibility of an event cannot be inferred from the existence of a probability.
The probability can be equal to zero, and the probability zero may or may
not represent impossibility. In neither direction does an implication hold
between the two statements (A * B) and (,4 r B). Probability and possibility
are disparate concepts, that is, their extensions overlap.

If we were to assert that a frequency limit must exist for any two repetitive
events observed for a sufficiently long time, we would commit ourselVes to a

t This is the extensional possibility of g 80.
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far-reaching hypothesis. On this assumption it would be possible to drop the
existence rule; but, instead, we should have to introduce into the calculus
an axiom of the form, "For all ,4 and C, (A+ C) is valid". Obviously this
addition would mean an extraordinary extension of the content of the calculus,
with which we do not wish to burden the axiom system.

I therefore consider the assertion of a determinate as well as of an inde-
terminate probability implication to be a synthetic statement, the validity
of which can be ascertained, when physical events are concerned, by means
of statistics in combination with inductive inferences. This method of ascer-
tainment will not be questioned throughout the mathematical part of the
investigation, because the frequency interpretation does not enter into the
content of the probability calculus to be developed. It constitutes only an
illustrative addition and will not be used for the derivation of theorems.

$ 18. Derivation of the Axioms from the
Frequency Interpretation

It will now be shown that all axioms of the calculus of probability can be
derived from the frequency interpretation, that is, they are tautologies if the
frequency definition of probability is assumed.

We start with the univocality axiom r. The case (,{), to which this axiom
refets, signifies that the relative frequency F" assumes the indeterminate
form $, since the summation N" in (3, $ 16) leads to 0 for numerator as well
as denominator. Therefore we also have P(A,B) : 8, that is, the probability
does not possess a determinate value. This result, represents one assertion of
the axiom. If the case (/-) does not hold, however, a defi.nite limit exists;
since there can be only one limit, the other assertion of the axiom is likewise
satisfied. Notice that a limit exists even when only a finite number of elements
r; belong to -4.; the value of the frequency for the last element is then regarded
as the limit. This trivial case is included in the interpretation and does not
create any difficulty in the fulfillment of this or the following axioms.

Axiom rt,l concerns the case in which each element of the form (r; e ,4.)
is followed by an element (A;eB), since this is what the logical implication
asserts. In this case all F' : l, a result following immediately from (3, $ 16),
so that rr,1 is satisfied. The major implication in the axiom can be directed
toward only one side, since the probability I can be obtained, also, if there
are some cases in which cr e A is followed by g; e B. These cases, howevet,
must be distributed so sparsely that the limit F" becomes equal to 1, though
every individual F." may be smaller than 1. An example is given by a compact
sequence r4, accompanied by a sequence B that has a B in all elements whose
subscript i is the square of a whole number but which has a B in all other
elements. Thus the frequency interpretation makes it clear why the probability
1 represents a wider concept than the logical implication.
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This consideration shows also that the probability implication of the degree
p represents a generalization of the general implication of symbolic logic.
Whereas the general implication demands all elements r; e A to be followed
by a yr e B, the probability implication includes the case in which certain
rie A are followed by a Ane ,8, with the qualification, however, that between
the numbers of the elements there must exist a frequency ratio that goes in
the limit toward a determinate value. The probability implication, itself
representing a general implication, therefore constitutes the generalization
of the usual general implication for sequences in which the individual impli-
cation occurs only in a certain number of places. Instead of demanding the
individual implication to be valid without exceptions, we require only a
frequency ratio.

That rr,2 is satisfied follows directly from the fact that the relative fre-
quency F" is a positive number (including 0). The condition, expressed in
(8, S 13), that the probability degree cannot be greater than 1 likewise follows
from the definition of the relative frequency.

We turn now to the addition theorem rrr. In order to prove this axiom, we
form first N"{ A.[B v Cl)F"(A,B vC) = -T{O- (1a)

If (A.B ) i) is valid, this is equal to

N"(A.B) 
-  

N"(A.C)
N"(A) ' N"(1)

and we obtain 
F^(A,B v c) : F^(A,B) + F,(a,c)

The equation remains unchanged in the transition to the
mutually exclusive events we have

P(A,B v C) : P(A,B) + P(A,C) (3)

The exclusion condition suff.ces for the addition of probabilities having the
same first term. We need not presuppose, in such a case, that the terms
B and C belong to the same sequence; this represents a special case for which,
of course, the theorem is also valid.

The given proof can be made clearer by the following consideration. We
write the three sequences below one another, each in one row; however, we
do not write the elements fri Arr z;, but only the classes A, B, C, to which the
elements belong. For the sake of simplicity we shall assume that the sequence
trd consists only of the elements r; e A and thus is compact. We thereby arrive
at the following arrangement:

AAAAAAAA.
BBBBBBBB.
e e cCe e e c.

(1b)

(2)

limit, and for

(4)
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The frequency F"(A,B V C) expresses the relative frequency of the d under
which a B or aC is found. Because of the condition of exclusion, a B and a C
c&n never stand simultaneously under the same d, and thus the relative
frequencies of B and C add up to that of B v C.

The multiplication theorem rv, also, can be derived from the frequency
interpretation. We obtain from (3, $ 16)

Fn(A R n,  -N"(A.B.C) -N"(A.B) .N"(A.B.C)L \ tL,D." t  -  N\A) -  -F-( / ) , . -N;@.Et

:  F"(A,B).F"(A.B,C) (5)

The equation remains valid for the transition to the limit, if the individual
limits exist, and we have with the use of (5, $ 16)

P(A,B.C):  P(A,B).P(A.B,C) (6)

We thus arrive at the general theorem of multiplication (3, $ 14). We now
see why this form, which we used for the theorem, is always valid. Only in
this form does the multiplication theorem represent a tautology in the fre-
quency interpretation.

This proof, too, may be illustrated by a schema as used above:

AAAAAAAA. .  .

BBBBBBBg. . .  (7)
gcegcgcg.. .

The frequency F"(A,B.C) represents the frequency of the couples B.C; the
first of the expressions standing on the right side of (5), F"(A,B), counts
the frequency of. B. Now B selects from the sequence of C's a subsequence,
the elements of which are marked by a lower double bar in (7); this subse-
quence, of course, contains elements C as well as i. The number of elements
of this subsequence is given by i["(/..8); therefore F"(A.B,C) means the
relative frequency of C in the subsequence. The consideration is always appli-
cable: if a term is added before the comma within a probability expression, the
frequency is counted within the subsequence that is selected by this term.
Formula (5) states that the desired frequency of the pair B.C can be repre.
sented as the product of the frequency of B by the frequency of C counted
within the subsequence selected by B.

These considerations lead to an instructive interpretation of the inde.
pendence relation defined in (4, $ 14). The definition

P(A.B,C) : P(A,C) (8)

states that, within the subsequence selected by B from the C-sequ'ence, C has
the same relative frequency as in the main sequence. This characteriz'ition
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reveals the meaning of the independence relation; that B does not influence C
means that a selection by B from the C-sequence does not change the relative
frequency.r For instance, when we throw with two dice and consider,
sithin the sequence produced by the second die, only the subsequence of
throws in which the first die simultaneously gives the result of face 6 lying
up, we shall find, too, the relative frequency $ for any face of the second die.

Finally, it remains to prove that the rule of existence is derivable from the
frequency interpretation. Since each of the axioms represents a tautological
relation between frequencies, which holds strictly even before the transition
to the limit, every probg,bility formula derivable from the axioms will corre.
spond also to a tautological relation between frequenciesl and this relation
rill be strictly valid before the transition to the limit. Every such relation
ean be written in the form 

f* : r(fi . . . f:-r) (g)

In this formula the li stand for frequency expressions of the form

I i  :  F"(AtB) (10)

the subscripts in (9) and (10) indicate the fact that we are dealing here with
frequency quantities that belong to difrerent events A,B . . . . According to
the existence rule, r is a single.valued function, free from singularities at
this place. Passing to the limit n+-, we derive from the laws governing
the formation of a limit that, whenever the /i . . .f*_, go toward limits
pr . . ?^-r, the !| also must approach a limit p-. In other words, the
probability ?m must exist whenever the probabilities pr . . ?-_r exist. This
is the assertion made by the rule of existence.

At the same time we recognize why the existence of a probability is bound
by the condition that it be determined by given probabilities. Assume that
it is unknown in (9) for two quantities, say,f# and !fi_r, whether they go
toward a limit. Then we cannot infer, from the fact that the other quantities
Ii . . ffr_, approach certain limits, that the two residual quantities /fi
and /;_, go toward a limit. For instance, if the probability of a logical sum
is given, the sum /f of the two frequencies

f i+ l t : f {
approaches a limit pg. Yet the individual frequencies /i and /f need not go
toward a limit. A convergence can be inferred only when it is known that,
apart from/f, at least one of the other quantities, sey It, approaches a limit.

This concludes the proof that all the axioms of the probability calculus
follow logically from the frequency interpretation. The result holds not only
for infinite but also for finite sequences, provided that in this case we regard
the limit of the frequency a,s given by the value of. F"(A,B) taken for the,tast

r R. von Mises has made this idea the starting point of his probability theory. See g 30.
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element. All the axioms are satisfied tautologically, and are strictly, not only
approximately, valid even before the transition to the limit.

The given proof guarantees that the frequency interpretation is an admis-
sible interpretation of the theorems derivable from the axiom system. The
interpretation will be applied in the examples used to illustrate the derived
formulas.

$ 19. The Rule of Elimination
'We may now proceed to the derivation of individual theorems of the prob-
ability calculus from the axiom system.

,r$g\/ 
\)a.Ls)

AoaPr \ , .

ris;-- L\

5
Fig. 4. Scheml[",l$ ofelimination,

Many practical cases present the problem of calculating the probability
from.4 to C, when C is linked to ,4, by an intermediate term B and only the
intermediary probabilities are given. Figure 4 may serve to illustrate the
problem.

It represents the diaergent probabilities P(A,B) and P(A,B), having the first
term in common, and the conaergmt probabilities P(A.B,C) and P(/. .B,C),
which possess a common term after the comma. When the divergent and
convergent probabilities are given, it is possible to calculate P(A,C). For this
purpose we use the logical equivalence

(Bviql  .C=C)

and thus obtain the relations

P(A,C) : P(A,[B v B]. C) : P(A,B .C v B .C)

:  P(A,B.C) + P(A,B.C)

In the last equality the addition theorem has been applied because the tems
are mutually exclusive. The use of the multiplication theorem gives the result

p(a,c) : p(a,B) . p(a.B,c) + p(A,B) . p(A.B,c) .*(2)

(1)
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TEft formula is called lhe rule of el;imination. It permits f,[s gliminafion of
r term B that is interpolated between the terms /' and C, and the establish-

'-qt of a direct probability from ,4. to C. The rule of elimination performs
rith repect to probability implication the function that is performed for
th l.-igical implication by its transitivity (81, $ a). But here the logical struc-
re t much more complicated than it is for a transitivity. The elimination
d 8 ean be achieved, according to (2), only when P(A.B,C) is known,
qnrt from P(A,B) and P(A.B,C).The probability P(.4,8) is determined
V L-P(A,B), but P(.4.,8,C) represents an independent probability that is
rn determined by the other quantities written at the right of (2). The
msergent probabilities P(A.B,C) and P(A.B,C; witt be called nonbound
7**abilities, since their sum can be greater or smaller than 1; the divergent
gubabilities P(A,B) and P(A,B) are bounil probabilities, that is, they must
d up to the value 1.

The theorem may be illustrated by an example previously used. Let d
bote a hot summer day; B, the occurrence of a thunderstorm; C, a change
L the rseather. The probability of a change in weather occurring on a hot
&1i can be calculated from the intermediary probability concerning the
tla'rnderstorm; but we must know the probability of the occurrence of a
fuderstorm, the probability of a change in the weather on a hot day after
r thunderstorm has occurred, and the probability of a change in the weather
c. a hot day on which no thunderstorm occurs.

In the frequency interpretation, (2) can easily be made clear: the number
d C's to which a B is coirrdinated, and the number of C's to which a .B is
eodrdinated, add up to the total number of C's.

The rule of elimination contains some interesting special cases. First, we
ma-r have 

P(a.B,c) : P(B,c) (sa)

P(A.B,C) : P(B,C) (3b)

(4)

Then (2) assumes the form

rfe can illustrate this form by choosing for B and -B two bowls that contain
black and white balls in different ratios, and for.4. another bowl containing,
say, numerous tickets on which is written B or B. The ticket drawn from ,4.
decides whether the second draw should be made from B or B. By c we under-
stand the event of a black ball being obtained.

A further specialization results for

P(A.B,C1 : s

P(A,C) : P(A,B) -P(A.B,C)

t t

P(A,C) : P(A,B) .P(B,C) + P(A,B) . P(B,C)

., (5)

(6)
IYe then have
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If the specialization (34) is added, we obtain

P(A,C) :  P(A,B) 'P(B,C) (7)

Only in this very specialized case does the rule of elimination assume the
form of a transitivity, in which the degrees of probability are simply multi-
plied. The case may be illustrated by the example above, with the qualifica-
tion that the bowl .B does not contain any blagk balls. Other examples are
given in causal chains: for instance, when ,4. means the presence of a hot
day in summer; B, the occurrence of a thunderstorm; C, a flash of lightning
hitting a house. In the special case where P(A,B) : I and P(B,C) : 1, the
relation (7) determines also P(4,C): 1;here the condition (5) is no longer
required, since the second term in (2) drops out because of P(.4,.B) : 6.t
These relations are satisfied for logical implications of the form (A ) B) and
(B)C). The relation (3o), too, must hold in this case because with (B:C)
we have also (/. .B ) C). This is why the Iogical implication follows a general
rule of transitivity that is not restricted by any conditions. It is seen, further,
that the transitivity (7), in general, produces a decrease in the degree of
probability. If the intermediary probabilities written at the right in (7) are
smaller than 1, the total probability at the Ieft in (7) will be smaller than any
of the intermediary probabilities. A eorresponding statement cannot be made
for the general case (2) ;here P(A,C) represents a certain mean value between
the other probabilities.

A third specialization results by the assumption

P(A.B,C) :  P(A.B,C) (S)

Introducing this condition into (2) and using the relation P(A,B) + P(A,B)
: 1, we obtain

P(A,C) :  P(A.B,C) :  P(A.B,C) (9)

Comparison with (4, $ 14) shows that this means the independence of B
and C with respect to 24,. In the frequency interpretation, (9) me&ns that if .
the subsequences selected from the C-sequence by B and .8, respectively,
contain C with equal relative frequencies, this flsqusncy is the same as in
the main sequence.

It has been pointed out that P(A.B,C) is not determined by P(A,B) and
P(A.B,C); but (2) states that a determination results if. P(A,C) is added.
This connection is expressed by the solution of (2) for P(A.B,C):

P(A.B,C) -P(A',C) - P(A',B) '  P(A'B',C).
L - P(A,B) s

(10)

t If it ig known that P(B,A) ) 0, even the condition (3a) can be omitted. because this
condition then follows from P(B,C)-: 1. See (6, $ 25).
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The relation shows how a probability containing a negation in the first term
h calculated from the probabilities of nonnegative reference. We must except
tte case P(A,B) : 1, since in this case the value of (10) is indeterminate;
rl;. eondition is also understood for the relations (11), (12), and (14), to be
&iYed presently.

As before, some important special cases must be considered. We see that
Tith

re also have
P(A,C) : P(A.B,C)

P(A.B,C):  P(A.B,C)

(114)

(11b)

(12)

(13)

(14)

(15)

ia eorrespondence to (9); that is, the converse of the relation leading from
S) to (9) is valid. Furthermore, we infer that, if P(A.B,C)) P(A,C), we

have P(,4. .B,C) < P(A,C), and, similarly, if. P(A.B,C) < P(A,C), we have
P'l.B,C)> P(A,C). This result follows because for P(/..B,C): P(A,C)
rle relation (10) supplies P(A .B,C) : P(A,C), and this value is diminished
c increased according as P(A.B,C) is larger or smaller than P(,4.,C).

For mutually exclusive events B and C, that is, P(,4. .B,C) :0, relation
,10) assumes the simple form

p( a.rc)P(A.B,C):  f f i ,n)
-{nother special case arises for

P(A,B): P(A,C)

Then (10) is transformed into

P(A.B,C) P(A,B) P(A,C)
F6En: F@,6: F(Ao

From (10) we can derive two important ine_qualities that restrict the choice
of the probabilities to be given. Since P(,4..8,C) is bound by the normaliza-
tion (8, $ 13), the expression on the right side of (10) must lie between 0 and 1
(with inclusion of the limits). This leads to the two inequalities

L -Li##)- < P(a B,c) <iffi
The inequality on the left side results from transformation of the condition
that (10) must not be greater than 1; the inequality on the right side arises
from a transformation of the condition that the numerator of (10) must not
be smaller than 0. The double inequality is not necessarily satisfied for given
values P(A,B) and P(A,C), even it P(A.B,C) is chosen according to.,!he
normalization (8, $ 13). The relation (15) formulates an additional condi-
tion, which prescribes a naruower domain for P(d.B,C) whenever we have
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L - P(A,C) < P(A,B) or P(A,C) < P(A,B).It, ean be shown that for inde
pendent events B and C, thal is, for P(A.B,C): P(A,C), (15) is alwals
fulfilled.2 It is permissible, therefore, to give two events as independent.
regardless of the values of their probabilities. But if two events are given as
dependent, the degree of dependence must be kept within the limits defined
by (15). The occurrence of such inequalities in regard to the choice of prob
abilities may be compared to the occurrence of similar inequalities in geom-
etry. A triangle, for instance, can be constructed from three given determina-
tions only when their values satisfy certain numerical restrictions. Notice
that the inequalities (15) hold also for the case P(A,B) : 1, which had to
be excepted for (10), since in this case the numerator of (10) must be : 0
in order to make possible a finite value of P(A . B,C), and thus the condition-.
leading to (15) are satisfied. For mutually exclusive events B and C, that is,
P(A.B,C):0, (15) leads to the trivial condition P(A,B) + P(A,C) < l.

We turn now to an extension of the rule of elimination to disjunctions of
more than two terms. There are special kinds of such mang-term d,isjunctions
Br Y . . . v B, that play a particularly important role in the calculus of prob'
abilities: disjunctions that are bolh complete and enclusiue. A disjunction is
called complete if it is true; it then follows that at least one of its terms is true.
A disjunction is called erclusiue if not more than one of its terms is true.
These concepts, as applied to probability sequences, are used in an extended
sense: the disjunction must have these properties for all elements of the
sequence. Thus completeness, in this sense, is formulated by the statement

(Brv.  .  .  vB,) (16)

The parentheses express, according to the convention given in $$ 10, 12, the
condition that the disjunction is true for all elements of the sequence; and it
would be more correct to speak of completeness and exclusiveness with resped
to the sequence. The latter qualification is always understood when the terrns
"completett and "exclusive" are used in probability considerations.

The combination of the two conditions of completeness and exclusiyeness
is expressed by the following r formulas, which are all-statements:3

(Br= Bz. Bt.  .  B,)
(Bz=8, 'E, t  '  .  .8,) (17)

. B,-t)

The equivalence signs of the relations can be conceived as representing two
mutual implications, according to (7a, $ a). The implication running from
left to right expresses exclusiveness; the implication running from right to

i This is easily seen for the right-hand inequality. The proof for the left-hand inequality
follows from the relation (5. $ 23).

3 The exclusive "or" c&nnoi be used to express these conditions, See ESL, p, 45,

(8,= Bt.  Bz
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left expresses completeness. It can easily be shown that statement (16) is
derivable from the relations (17).

For most of the following considerations it will be sufficient if the disjunc-
tions are complete and exclusive with respect to ,4., that is, with respect to the
subsequence selected by A. The symbolic expression is given by the formulas

(18)

From these formulas the statement of completeness relative to ,4. is derivable:

(A)hv.  .  .  vB,) (le)

The condition (18) can be used to replace the stronger condition (17) in all
ceses in which only probabilities containing.4 in the first term are concerned.
Thus when a die is thrown, the six possible results given by the six faces of
the die constitute a disjunction that is complete and exclusive with respect
to the sequence of events r4. represented by the throwing of the die. For the
ske of simplicity, the condition (17) will always be used, leaving the reader
to eonstruct similar proofs on the basis of the weaker condition (18).

The introduetion of many-term disjunctions in the rule of elimination is
nade in the same way as was used for the derivation of (2). Corresponding
to (1), we have the relation

([B'v. . .vB"] .C=C) (20)

Applyng the inference leading to (2), we derive for many-term disjunctions
b dnnded rul,e of eliminat;ian:

P(A,C) : >, p(1.,"r) .  P(A.Bn,C)

Fryure 5 (p. 82) may serve as an illustration. The divergent probabilities
rcain are bound probabilities, so that

ipeq,,nr) :,  (22)
t :1

fo mlid; the convergent probabilities, however, are nonbound.
A schematized example for figure 5 is found in games of chance. Let

Br. . - . B" represent bowls containing black and white balls, each in a different
rrtb. 1u1 C be the drawing of a black ball, and,4. an auxiliary bowl containing
rmerousr tickets, each carrying one of the numbers 1 . . . r. If there are
nre than r tickets in the bowl and each number occurs repeatedly, each
lmber has a determinate probability of being drawn from the bowl. We

(2r)
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draw first from the auxiliary bowl and determine from which of the other
bowls we are to draw next. Repeating the two actions again and again, we
obtain a statistical relation between A and C, the frequency of which is
determined by P(A,C) according to (21).

B

B.
Fig. 5. Schema for extended rule of elimination, according to (21).

Another example results by taking for ,4. the throwing of two dice, for C
the occurrence of face 1 of the second die, for Br the occurrence of face /c of
the first die. Then (21) means that the probability of obtaining I with the
second die can be divided, additively, into the probabilities of the combina-
tions in which this result is accompanied by one side k of the other die.

Both examples represent special cases of (21), namely, cases of such a
kind that, for the first example, P(A.Bo,C) : P(BuC) holds; for the second
example, P(A.Bk,C) : P(A,C). This corresponds to the causal conception
of the problem, according to which, in the first example, Ba is the cause of C:
in the second example, .4 is the cause of C. However, this is irrelevant, to the
treatment of the problem within probability theory; the lines in figure 5
represent probabilities, but not necessarily causal chains. The statement of
the causal relationships requires specific investigation.

$ 20. The General Theorem of Addition

We shall now investigate the question how to calculate the probability of a
disjunction if the terms of the disjunction do not mutually exclude one
another, that is, if we are dealing with a nonexclusive disjunction. If, for
example, two coins are thrown, what, is the probability of obtaining taiL
with either coin, of obtaining at least one event, of tails lying up? A simple
addition would give | + + : l-which obviously is a wrong result. But the
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conditions for applying the addition theorem are not satisfied, because it is
possible to obtain tails simultaneously with both coins. fn order to calculate
the desired probability we must, therefore, transform the question into a
form suitable for the application of the theorem of addition. Several such
methods may be demonstrated.

We can start from the eouivalence

(BvC:B.CvB.evB.C) (1)

which leads to mutually exclusive terms and thus permits us to apply the
theorem of addition:

P(A,B v C) :  P(A,B .@ n.e v B.C)

:P(A,B.C) + P(A,B.e) + p(t,n .q Q)

In the example of the two coins, the formula gives P(,4.,B V C) : t, because
each of the probabilities of the combinations is equal to b . E : L.

In practice, other methods may be used to solve the problem. Occasionally
it is possible, using material thinking (see $ 5), to contract certain steps that
are made separately in the calculus. The following method may be used:
(1) B occurs; then it is immaterial whether or not C also occurs. The prob-
ability for this case is P(A,B). (2) B does not occur; then C must occur.
The probability for this case is P(A,B.C). Since the cases (1) and (2) are
mutually exclusive, the theorem of addition is applicable, and we obtain

P(A,B v C) : P(A,B) + P(A,B.C) (3)

a result that is identical with (2) because of. P(A,B) : P(A,B.C v B.O.
This method difrers from the former one in that the first two cases of the
disjunction (1) are collected in one case by the help of material thinking.
This thinking can also be formalized: in (5e, $ 4) we have a formula that
leads directly to (3).

A third method starts from the equivalence

(BvC=

which leads with (7, $ 13) to the simple result:

P(A,B vC) :  7 -  P(A,B.6) (5)

Here the probability of the opposite case is calculated and then is subtracted
from l. For the example with the two coins, the probability of obtaining
heads with both coins is equal to i .h: t. Because in any other case at
least one event of tails must happen, the desired probability is calculatedr
tobel  - i : t .

-B.C) (4)
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We now establish for such probabilities a fourth formula that seems ver.s
convenient, for technical reasons. It can be derived directly from the calculus
without the aid of material thinking. Because of

P(A,B) :  P(A,B.C) + P(A,B.C)

P(A,C) :  P(A,B.C) + P(A,B.C) (6)

we can write, together with (2), the three formulas

P(A,B vC) :  P(A,B.C) + P(A,B O + P(e,B.C)

0 : - P(A,B C) - P(A,B C) + P(A,B) (7

o -  -  P(A,B.C) + P(A,C) -  P(A,B.C)

Adding the three formulas, we obtain

P(A,B v C) : P(A,B) + P(A,C) - P(A,B.C) (S

This formula is called the general theorem of addition. It is a generalization of
the addition theorem (3, $ 13), applying to nonexclusive terms. In ca-.t
P(A,B C) : 0 it becomes identical with the special theorem of additiot
(3, $ 13). fn contradistinction to the latter, (8) represents an always-true
formula because it is not contingent upon any conditions to be expressei
in the context. The condition of exclusion, which had to be added verball5
to the P-notation (3, $ 13) as a logical condition, is formalized, mathematically
in (8); it is expressed by the case that a mathematical quantity assumes th:
value 0.

In the frequency interpretation, (8) can easily be made comprehensible
In dealing with the nonexclusive cases B and C, the couples B. C will occu:
according to, say, the following schema:

AAAAAA. .  .  .

BBBBBB.. . .  (g

cce e cc. . . .
Adding the frequencies B and C, we shall have counted the couples B C
twice; therefore, to form P(A,B V C), the frequency of the couples B C :-*
to be subtracted once. This fact is expressed in (8).

It need not be expressed as a condition that the probability of the dL-
junction, as given by (8), satisfy the normalization of probabilities; thx
follows from the double inequality (15, $ 19) previously established. After r
simple transformation by means of the theorem of multiplication, the ir
equality on the left side of (15, $ 19) leads to

P(A,B) + P(A,C) - P(A,B.C) < 1 ( 1,-'
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Now the inequality on the right gives the result

P(A,B.C) < P(A,C)

By interchanging B and C we obtain

P(A,B.C) < P(A,B)

Therefore the following inequalities are satisfied:

85.

(1 1)

(r2)

(13)P(A,B vC) > P(A,B)

P(A,B v Cf> P(A,C)

The probability of a disjunction is never smaller and, in general, is even
greater than the probability of its individual terms. Thereby the character
of the disjunction as a logical sum is clearly expressed. Addition of a term
eonnected by "or" signifies an increase in probability, and only in the limiting
crase does the probability remain the same.

Some examples may illustrate the general theorem of addition. The testing
of a mechanical appliance reveals, on the &verage, 2/6 rejections because of
material defects andS/6 rejections because of defects in assembling the parts.
Ifhat is the average rejection on the whole? Ilere the probabilities are given
statistically, as is usual in practice. But we must not assume as total rejec-
non 3/s + 2% : 57o, since the two sources of defect are not, mutually ex-
clusive. An appliance that is faulty because o-f material defects may also
show a defect owing to assembling. We know from experience that we are
dealing here with independent probabilities; thus we can apply the special
theorem of multiplication. The probability of both defects occurring simul-
taneously is given by the product 3% . 2% : 0.06Vo.Then (8) provides as
ayerage frequency for the total rejectio\ 37o + 2% - 0.0670 : 4.94To.

Another example is a firm that sells its products partly through traveling
salesmen and partly through advertisements. The statistics on customers
reveal that 80Vo of all products are sold by salesmen and. 60/6 by advertise-
ments. I4rhat is the percentage of customers won by advertisements as well
as by salesmen? Since here P(/.,8 V C) : 1 (we assume that all products
are sold only in these two ways), it follows that P(A,B.C) : 80% + 6070
- 10070 : 40Vo, that is, 40/e of. the customers are won by both means
together.

Fomula (8) permits a general calculatiou of the or-probability, but in
applying it we must be sure that the case considered possesses the loglpal
structure of the theorem of addition. Mistakes of this kind may be ilIustraied
by two examples that were given by Richard von Misesr with the intention
of showing that the addition must not be carried out uncritically, even for

t Wahrscheinl/ichheit, Stati*tik und, Wahrheit (Berlin and Yienna, 1g28), p. 40.
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mutually exclusive events. He wishes to restrict, the theorem of addition to
events belonging to the same "collective", that is, the same sequence, i\Iy
formulation of the theorem is somewhat more general, since the theorem is
not restricted to events belonging to the same sequence. Instead, another
condition is used, specifying that the probabilities have the same reference
class, or first term. I shall nor,v show that my formulas are applicable to the
examples given by von Mises, and permit the use of the "or" in a reasonable
sense.

Assume that a tennis player has the probability 0.8 of winning in a tourna-
ment in Berlin; he may have the probability 0.7 of rvinning in a tournamentr
played the same day at New York. The events are mutually exclusive; thu-.
one might in-fer that the probability of the player n'inning in the one or i!
the other tournament was given by the addition of t]re probabilities, which
would result in 0.8 + 0.7 : 1.5. This is certainly a nonsensical result.

We are dealing here with a question of interpretation. A problem given ir
conversational language is to be translated into the strict language of the
calculus; one cannot expect unambiguous rules to be available for such s
translation. To assume that the special theorem of addition is applicable
would be to interpret the problem in the form

P(,4.,8) : 0.8 P(A,C) : s.7 P(A,B C) : 0 (11)

A representing the general situation before the tournaments; B, the victor5
in Berlin; C, in New York. It is obvious that the numerical values used il
the interpretation violate the inequality (15, $ 19), because P(A,B .C) : 0
implies P(A.B,C):0, whereas the expression on the left of the inequality
assumes the vaJue $. This illustrates the fact that the condition of exclusion
represents a high degree of dependence and therefore can be combined only
with suitable numerical values of the other given probabilities. It follows that
(1a) is not an admissible interpretation of the problem.

An interpretation that comes closer to what is intended by the formulation
of the problem can be given. We consider the probability 0.8 of winning ia
Berlin as referring to the first term 3r, "ff the player participates in Berlin":
and the probability 0.7 of winning in New York as referring to the first term
Br, "fr the player participates in New York". If C represents "winning", w€
then can set down

P(Br,C) :  9.3 P(Br,C) :9.7 (15)

The two probabilities do not differ by their second term, as do the expres-
sions (4), but by their first term. It is obvious that the probabilities do not
permit the application of formula (8). The general condition .4. holding before
the tournaments take place appears as a reference class in the sense of the
theorem of elimination (fig. 5, p. 82), representing the fact that the player
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may decide to participate in one or the other of the tournaments; and the
condition of exclusion must then be written

P(A,Br.Br) :  g (16)

When we wish to derive from these conditions the probability of winning,
that is, P(A,C), the two further probabilities

P(A,BL) P(4,82) (17)

must be given. This means that the probability of winning depends on the
probabilities of the player deciding, respectively, to participate in New York
or in Berlin.

In this interpretation the problem is solved, since P(A,g-rv Bz.C) : 0,
by the equations

P(A,C) :  P(A, l fuY Bzv hv Bzl.C)

:  P(A,h.C) + P(A,Br.C)

: P(A,B) . P(A.Br,C) + P(A,B,) .  P(A.B2,C)

: P(A,Br) '  P(BIC) + P(A,B.) '  P(82,C) (18)

teeause we may assume (10, $ 14). That we cannot carry out the calculation
numerically is due to the fact that the probabilities (17) are not given, but
tire failure to obtain a solution does not result from an inadmissible use of
',he "or". It is clear, furthermore, that in this interpretation the sum of
P Bt,C) and P(Bz,C) can be greater than 1, since these values represent
ronbound probabilities (see $ 19).

Yon Mises presents another example that is supposed to demonstrate the
rse of an unreasonable "or". Let 0.011 be the probability that a man 40 years
of age will die between his 40th and 41st birthdays; and let the probability
that a man 41 years old marries in that year be 0.009. Both events are exclu-
sre for one individual. If we now want, to find the probability that a man
$) years of age either dies within the current year or marries in the following
,vear, it may occur to us to add the given numbers, thus obtaining the result,
tr.0ll + 0.009 :0.020. Yon Mises is right in asserting that this is a non-
-rr-l,.ical result.

For the conception of the or-probability developed in this section, however,
'.he problem is not meaningless. The probability of a man 40 years old dying
-iris 1-ear or marrying next year can be interpreted to have a definite meaning.
Ii nnrv be expressed statistically: after a lapse of two years, we count among
rj the original quadragenarians those who died within the first year or mar-

-rd 
in the second year. These numbers may indeed be added, in agreement

87
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with (8). However, we must not add the numerieal values given; the second
value cannot be used because it, states, not the probability that a man 40
years of age will marry in his 41st to 42d year, but the probability that a
man 41 years of age will marry in that period. The probabilities are not the
same, because some of the men will have died within the year. The value
0.009, therefore, is to be interpreted as the probability that a man 40 yean
old who reaches his 41st year will marry in his 41st Lo 42d year. This prob
ability is represented by P(A.B,C), if .4 stands for the class of quadra-
genarians, B for the class of deaths among them, and C for the class of men
41 years old who marry. We have, therefore,

P(A,B):  0.011 P(A,B.C) :  0 P(A.B,C):  0.009 (19)

and obtain

P(A,B vC) : P(A,B) + P(A,C)

: P(A,B) + P(A,lB v Bl.C)

: P(A,B) + P(A,B.C) + P(A,B.C)

:  P(A,B) + P(A,B) -P(A.B,C)
: 0.011 + ( l  - 0.011) '  0.009 : 0.0199

This represents the probability that a man 40 years of age either will die
in his 40th to 41st year or will marry in his 41st to 42d year.

In criticizing these examples I do not wish to deny that the probability
calculus of von Mises supplies equally correct solutions. I intend merely to
show that we can dispense with the relatively complicated operations of con-
structing new collectives, which von Mises has introduced, and that the de-'
sired probabilities can be conceived reasonably as or-probabilities.

We shall now derive from the general theorem of addition some conse-
quences for later use. We can ealculate a probability of the form P(A,B I C)
by resolving the implication into B Y C according to (6o, $ 4) and then
applying the general theorem of addition. We obtain

P(A'B ) c) 
:: i';;':',(a,c) - P(a,B c)
: p(A,B) + p(A,C) - P(A,B) . P(A.B,C) (2r)

By the use of (10, $ 19) we arrive at

(20)

P(A,B r C) : |  - P(A,B) + P(A,B) . P(A.B,C) (22)
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In a similar way we obtain for the equivalence, by the dissolution ([B = C]
= lB.C v B.eD, according to (7b, $ 4), and with (10, $ 19),

P(A,B = t' 
:;r|,:"t;r' : !"n,u u,
:  P(A,B) .P(A.B,C) + P(A,B).P(A.B,e)
-  1 -  p(A,B) -  p(a,c)  +2p(A,B) .p(A.B,C)

:1+ P(A,B.C) -  P(A,BvC) (23)

A formula containing an exclusive "or" will now be constructed. According
to (1, $ 4), this operation can be defined as

bAc: ot(byc).6: i

Beeause of the equivalence

(bvc).(6r)  = (bvc).(6ve) =b.e v6.c (25)

re c&n write, using (7b and 7c, $ 4),

bLc:b:c (26)

The symbol of the exclusive "or" can be used also in the class calculus.
Tte class B n C represents, according to (24), the common class of B v C
and B.C,thal is, the part of the joint class of B and C that results by sub-
uacting the common class of B and C. Because of the relation (26) we have

P(A,B AC):  P(A,B: C):1- P(A,B =C) (27)

$lth the use of (23) we obtain, applying (8),

P(A,B 
^C):  

P(A,B) +P(A,C) -zP(A,B.C) (28)

Although we have thus derived a formula dissolving an exclusive "or", the
result shows that it is not possible, for the special theorem of addition, to
climinate the condition of exclusion by the use of a symbol for the exclusive
-oy''. The formula

P(A,B 
^ 

C) : P(A'B) + P(A'C) (29)

b false if it is conceived as holding for all B and C; it holds only if P(A,B.C)
: 0, that is, if B and C are mutually exclusive. But if this condition must
rgein fg added, the introduction of the symbol of the exclusive "or" is useless.
The aim of expressing the addition theorem completely in the mathematical
mtation is achieved, instead, in the general theorem of addition formulated

(24)

in (8).


