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ELEMENTARY CALCULUS OF
PROBABILITY

§ 9. The Probability Implication

The investigation of the concept of probability begins with an analysis of
e logical structure of probability statements. The problem, which so far
ks not been given sufficient attention in the mathematical calculus of prob-
sbulity, is amenable to precise solution with symbolic methods. Symbolic
Iogie has devised means of characterizing the logical form of a statement
wikhout regard to its content; these methods can be extended to include a
disracterization of probability statements. The formalization of the prob-
shility statement, in fact, is one of the first objectives in the philosophy of
pwbability.

To consider a typical probability statement: when a die is thrown, the
appearance of face 1 is to be expected with the probability }. This statement
Bas the logical form of a relation. It is not asserted unconditionally that face 1
will appear with the probability %; the assertion, rather, is subject to the
emadition that the die be thrown. If it is thrown, the occurrence of face 1
m to be expected with the probability %; this is the form in which the prob-
ability statement is asserted. No one would say that the probability of finding
s die on the table with face 1 up has the value %, if the die had not been
@wown. Probability statements therefore have the character of an implica-
i ; they contain a first term and a second term, and the relation of prob-
ahilkty is asserted to hold between these terms. This relation may be called
oubability implication. It is represented by the symbol

=
P

This is the only new symbol that the probability calculus adds to the symbols
of the calculus of logic. Its connection with logical implication is indicated
By the form of the symbol: a bar is drawn across the sign of logical implica-
. Whereas the logical implication corresponds to statements of the kind,
“M ¢ is true, then b is true”, the probability implication expresses statements
of the kind, “If ¢ is true, then b is probable to the degree p”’.

The terms between which the probability implication holds are usually
wmmts. Let x be the event, “The die is thrown”, and y the event, “The die
“am come to rest on the table’”’; then a probability implication between the
W events is asserted. We recognize at once that this requires a more exact
Semalstion, We speak of a definite probability only when the event is char-

[45]



46 ELEMENTARY CALCULUS OF PROBABILITY

acterized in a certain manner, namely, as an event y in which face 1 is up.
This means that the event y is regarded as belonging to a certain class B.
We are dealing with a class, since the individual features of the event y are
disregarded in the statement. It does not matter on what part of the table
the die lies, or in which direction its edges point; only the attribute of having
face 1 up is considered. Thus the event y is characterized only as to whether
it can be said to belong to the class B. The same applies to the event z, since
we do not consider with what force the die is thrown or what angular momen-
tum is imparted to it; we demand only that x be a throw of the die, that it
belong to a certain class A. Therefore we write the probability statement

in the form tedsyeB (1)
P

This formulation, however, requires modification. We must express the
fact that the elements of the classes are given in a certain order, for instance,
in the order of time. In other words, the event z belongs to the discrete
sequence of the events 21, @5, . . . z; . . ., while at the same time the event
y belongs to a corresponding sequence ¥1, %2, . . . ¥; . . . There is a one-one
correspondence between the elements of the two sequences, expressed by
equality of subscripts, and we assert only a probability implication between
the corresponding elements z;, ¥;, so that we write, instead of (1),

;€A >y;¢B (2)
F4

The coordination of the event sequences is necessary for the following reason.
We do not wish to say that the probability implication holds, for instance,
between the event z; of throwing the die and the event y.y of obtaining a
certain result. When we merely state that the event z, of throwing the die
occurs, we have not yet asserted that the event z;; of throwing the die will
also oceur and that, therefore, a probability for the occurrence of the event
Yiv1 exists. ‘

However, even (2) does not completely represent the form of the prob-
ability statement; we must add the assertion that the same probability im-
plication holds for each pair z;, y;. This generalization is expressible by two
all-operators, meaning, “for all z; and for all y,”. Using an abbreviation,
we can reduce the two all-operators to one by placing only the subscript ¢
in the parentheses of the operator. Thus the probability statement is written

(@) (e A >y B) 3)

This expression represents the final form of the probability statement: The
probability statement is a general implication between stalemenis concerning a
class membership of the elements of certain given sequences.
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To illustrate this formulation of the probability statement: a relation of
the kind described is employed in dealing with the probability of a case of
influenza leading to death. We do not speak unconditionally of the prob-
ability of the death of the patient, but only of the probability resulting from
the fact that he has contracted influenza. Here again are two classes—the
class of influenza cases and the class of fatal cases—and the probability
implication is asserted to hold between them. If z; is interpreted as a result
of medical diagnosis, A as an influenza case, y; as the state of the patient
after one week of illness, and B as the death of the patient, then this example
of a probability statement from the field of medicine has the form (3).

Another example is the probability of hitting a target during a rifle match.
Here z; represents the single shot, y; the hit scored at the target, B the class
of hits within a certain range, and A the class to which the rifleman belongs
according to his ability. The probability of a hit will be different according
to the contestant’s degree of skill. Here again the probability is determined
only when the classes A and B are chosen.

An example from physics is the bombardment of nitrogen by a-rays,
or helium nuclei. There is a certain probability that a helium nucleus will
eject a hydrogen nucleus from the nitrogen atom. Let A represent the class
of a-rays, x; the hit of an individual helium nucleus, and y; the event
produced by it. The event results in the occasional emission of a hydrogen
nucleus, that is, it belongs to the class B. Although it is not possible to observe
directly the causal connection between the helium nucleus and the released
hydrogen nucleus, we assume, nevertheless, a one-one correspondence between
z; and y,. Using a very weak radioactive preparation that rarely emits helium
nuclei, we can employ the temporal coincidence observed for the a-rays
and the hydrogen rays as a criterion of the correspondence. -

In the previous examples, z; and y, stand in the relation of cause to effect,
but other instances can easily be found in which y; represents the cause and
z, the effect. In this case we carry out a reverse inference, from the effect to
the probability of a certain cause, for example, in investigating the cause of
a cold. And there are other examples for which the relation x; to ¥, is of a still
different type. There exists a probability that a certain position of the barome-
ter indicates rain, but there is no direct causal connection between the two
events. In other words, one is not the cause of the other. Rather, the two
events are effects produced by a common cause, which leads to their concat-
enation in terms of probabilities. It is easily seen that these examples also
conform to the logical structure of (3). !

The analysis presented shows that the probability implication can be re-
zarded as a relation between classes. The class A will be called the reference
class; the class B, the attribute class. It is the probability of the attribute B
that is considered with reference to A. It must be added, however, that the
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probability relation between the two classes A and B is determined only
after the elements of the classes are put into a one-one correspondence and
ordered in sequences. For instance, the probability implication holding be-
tween the birth and the subsequent death of an infant—the rate of infant
mortality—differs from one country to another, that is, it differs according
to the sequence of events for which the statistics are tabulated. Even for an-
individual die there exists a particular pair z;y; of sequences, and it is an
assertion derived from experience that the probability remains the same for
different dice. Therefore, strictly speaking, the probability implication must
be regarded as a three-term relation between two classes and a sequence pair.
The pair of sequences provides the domain with respect to which the prob-
ability implication assumes a determinate degree. Later the conception is
extended to combinations of more than two sequences. The significance of
the order of sequences is the subject of chapter 4.

Because of the equivalence that exists between classes and propositional
functions, formula (3) may be expressed in a somewhat different way. Ac-
cording to (2, §7), we may use instead of the statement xe¢ A the corre-
sponding propositional functional f(z) and, similarly, instead of y e B, the
corresponding propositional functional g(y). Then we must express the one-one
correspondence between the sequences of z and y by a one-one functional
e(z,y) in order to determine for each z the corresponding value y. Thus (3)

assumes the form
@) WIS () - e(z,y) . 9] 4)

In this form it is not necessary to employ the subseript ¢, if the order of the
elements is regarded as understood.

A special kind of probability implication is included in the general form
(3) or (4). It may happen that the sequences coincide and that the elements
z; and y; are identical. The function e(x,y) then reduces to the identity
relation. We thus obtain, instead of (3) and (4),

(i) (i€ B > z; ¢ By »)
(z) [f(x) > g(x)] (6)

Since it refers to a probability implication within the same sequence, this
form will be called an internal probability implication. It is employed in many
important problems of probability, particularly in social statistics. Examples
are the probability that an inhabitant of Bavaria suffers from goiter, or that
a new-born baby is a boy. In such cases x; is not represented by an event
but by a person or an object that may possess the two properties B and
B, simultaneously. In more strictly statistical applications, the internal form
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of the probability statement prevails to so high a degree that it is usually
made the basis of the probability calculus. Yet it would not be advisable to
restrict the probability statement to this special form, since there are numerous
other cases in which the more general types (3) or (4) are used. In particular,
the application of the probability concept to the causal connection of events
would be impossible if it were not based on the more general form of the
probability statement as given above.

§ 10. The Abbreviated Notation

The form of the probability statement as given in (3, § 9) is rather compli-
eated. An abbreviated notation, therefore, will be used for the development
oi the calculus of probability. Abbreviation is possible because certain prop-
erties of formula (3, § 9) occur in all probability statements in a similar man-
per, and can be suppressed in a simplified notation.

The probability statement has been written, so far,

(@) (@i A >y;eB) 0y

This formula will be abbreviated to the form
(A = B) (2
b4

The transition from the abbreviated to the detailed notation is controlled by
zhe following rule:

RULE OF TRANSLATION. For every capital letter K substituie the expression
z. ¢ K, using for different capital letters different variables x;, y; . . . , with the
ruiaeript v, but the same variable x; for the capital letters Ky, K, . . . . In front
i all parentheses containing capital letters place the symbol 1 within an all-
fmerator.

The method of abbreviation, as is seen from the rule, amounts to leaving
art the specification of the sequence pair, an omission that is permissible
Tecause in probability statements the elements of the sequence pair never
aeeur as free, but always as bound, variables. In the abbreviated notation,
parentheses play the part of the all-operator; therefore, brackets must be
wred if generalization is not to be indicated. Furthermore, the difference
petween the two kinds of negation that exist for general statements is ex-
sressed as follows: in one case the negation bar is placed only above the
expression written within parentheses; in the other it is extended above the
mrentheses. We thus define

(A>B) = ps (1) (x,-eA-i-y.-eB) 3)

(A4=B) = s (i) @ied>yieB) 4)
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The use of parentheses for the expression of the generalization applies also
to formulas not containing the sign of the probability implication, and allows
us to go from a class to a statement. Thus, .4 D B is a class, and (4 D B)
is a statement; according to the rule of translation, this statement has the
form (20b, §7) and is therefore identical with A ¢ B. Adding parentheses
to a class symbol means, in this notation, that the class is identical with the
universal class and thus leads to the meaning expressed explicitly in (24, § 7).

If compound classes are used, like the class A J B, the rule of translation
leads to the simple result: different capital letters mean narrower couple
classes; equal capital letters with different subscripts mean simple classes.
Couple classes containing implication or equivalence signs are interpreted
by analogy with (13 and 14, § 7). The subscripts headed by circumflexes
are dispensable for couple classes because their function is taken over by
the difference of the capital letters. Class inclusion for different capital letters,
i.e., for narrower couple classes, means a relation similar to the one illus-
trated in figure 3, § 7, for which the two circles are drawn in different planes,
one on top of the other; corresponding points represent the couples of ele-
ments. Since for all practical purposes the narrower couple classes behave
like simple classes, it is permissible to forget about the distinction for tech-
nical manipulations. The treatment of the general probability implication is
technically not different from that of the internal probability implication.

A further abbreviation may be introduced. For many applications, par-
ticularly in mathematical calculations, we must solve the probability impli-
cation (2) for the degree p. We denote the degree p by P(A,B), reading this
symbol as “the probability from A to B’. Some writers call this “the relative
probability of B with respect to A”’. But in the present notation, the natural
order, from the known to the unknown element of the relation, is used, thus
introducing the same order of terms that is used in the implication @ Jb.
The expression ‘‘probability from A to B’ has the same grammatical form
as the geometrical expression “distance from A to B”, which also designates
a relation. The order shows clearly that probabilities are treated as relations,
in correspondence with the definition given in § 9. The calculus of probability
in its usual form includes absolute as well as relative probabilities. The word
“absolute’” must be interpreted merely as an abbreviated notation, applying
when the first term, the reference class, is dropped as being understood.
Thus when it is said that there is the absolute probability % for a face of the
die, it is understood that the reference class is represented by the throwing
of the die. This suppression of a first term has led to some confusion.

Instead of (2), then, the equation is written

P(A,B) =p
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The p-symbol is a numerical functor, that is, a functional variable the special
values of which are numbers.! It leads to statements only when it is used
within mathematical equations. The P-symbol need not be considered as a
primitive symbol; it can be reduced to the symbol of the probability impli-
cation by the definition

[P(4,B) = pl = ps (4 2 B) (5)

The symbol P(A,B) itself is not defined—only the expression P(4,B) = p.
This is permissible since the symbol P(4,B) never occurs alone, but only in
such equations. Thus a mere definition in use is given for P(4,B). The equality
sign used with this symbol represents arithmetical equality, i.e., equality
between numbers. In the foregoing account of symbolic logic the sign was
not explained because the rather complicated connection between logic and
arithmetic could not be demonstrated. It may suffice to say that mathematical
equality can be reduced to the basic logical operations.? The negation of a
statement of mathematical equality is denoted by the inequality sign #.
The notation by means of the P-symbol is called mathematical notation; that

in terms of the 5--symbol, implicational notation.
?

Another abbreviation is now introduced. Sometimes we omit the statement
of the degree of probability and write

(4 = B) (6)

This relation is called indeterminate. probability implication. Since it is not
permissible simply to drop one constituent within a formula, a definition
must be used to connect (6) with the symbols previously defined:

(A= B) =p; (3p) (4 —’}B) @)

The abbreviation (6) therefore means, ‘“There is a p such that there exists
between A and B a determinate probability implication of -the degree p”.
Passing from (6) to the detailed notation we obtain, according to the rule

of translation, (A>B) =p; (D) () (z:eA 3— y; € B) (8)

The all-operator is placed after the existential operator, so that (8) represents
the stronger form in the sense of (9, § 6).
The value p is often written within separate parentheses behind the prob-

sy impliestion’: 39 (42 B).@ = p) ©)

I Bee ESL, p. 312.
21t is an identity of classes of a higher type. See ibid., § 44.
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This is merely a more convenient way of writing and has the same meaning
as (2). We need this form because we shall later obtain for the probability
degree p expressions that are too involved to be written as subscripts of the
symbol of the probability implication. The resulting parentheses in the ex-
pression (¢ = p) do not indicate an all-operator for the detailed notation
because they do not contain capital letters.

The abbreviations given in this section will be useful in the following pres-
entation of the theory of probability. In particular, it is an advantage that
even in the abbreviated notation the symbols of the propositional operations
can be manipulated according to the rules of the propositional caleulus,
although these symbols are placed between class symbols (that is, between
capital letters) and thus represent class operations. This is possible because
of the isomorphism of the two caleuli (see § 7).

§ 11. The Rule of Existence

The formal structure of probability statements hias been explained, but nothing
has been said so far about their meaning. The laws of the probability impli-
cation can be completely developed, however, without interpretation. Dis-
cussion of the problem of interpretation will be deferred to a later section.

As a consequence, a method cannot yet be provided whereby we can deter-
mine whether, if two classes are given, a probability implication holds between
them; in other words, we cannot yet ascertain the existence of a probability
implication. However, this impossibility need not disturb us at this point.
We assume the existence of some probability implications to be given; and
we deal only with the question of how to derive new probability implications
from the given ones. This operation exhausts the purpose of the probability
calculus.

The existence of a probability implication I regard, in general, as a syn-
thetic statement that cannot be proved by the caleulus. The calculus can
only transfer the existence character; with its help we can infer, from the
known existence of certain probability implications, the existence of new ones.
The property of transference by the calculus is, in part, directly expressed
by the form of the axioms; some of the axioms, such as 1r and 1v, directly
assert the existence of new probability implications if certain others are given.
However, these particular cases of transference do not suffice; for the transfer
property will be required in a more general manner, as will be seen later. We
must be able to assert that whenever the numerical value of a probability
implication is determined by given probability implications, this probability
implication does exist. It will become obvious (§ 17) that this existence is
not self-evident, but must be asserted separately. The following postulate is
therefore introduced.
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RuLe oF Bx1STENCE. If the numerical value p of a probability implication
(A > B), provided the probability implication exists, is determined by given
P

..
probgbility tmplications according to the rules of the calculus, then this probability
imphtation (A 5 B) exists.

r

The rule of existence is not an axiom of the calculus; it is a rule formulated
in the metalanguage, analogous to the rule of inference or the rule of substi-
tution (see § 5). It must be given an interpretation even in the formal treat-
ment of the calculus. There must exist a formula that can be demonstrated
in the calculus and that expresses the probability under consideration as a
mathematical function of the given probabilities, with the qualification that
the function be unique and free from singularities for the numerical values
used. This is what is meant by the expression, ‘“‘determined according to
the rules of the calculus”.?

§ 12. The Axioms of Univocality and of Normalization

From the discussion of the logical form we turn to the formulation of the
zws of the probability implication. As explained above, an interpretation
I probability is not required for this purpose. The laws will be formulated
=s a system of axioms for the probability implication—that is, as a system
« logical formulas that, apart from logical symbols, contains only the symbol
+f the probability implication. Among the logical symbols, the logical impli-
=ation occurs, and is thus used in formulating the laws of the probability
==plication.

The system to be constructed is called the system of axioms of the prob-
zoiity caleulus. The name is justified by the fact that it is possible to derive
=om these axioms the formulas that are actually used in all applications of

2z probability caleculus. When, at a later stage, an interpretation of prob-
ezt is presented by means of statements about statistical frequencies, it
% 2e possible to give another foundation to the axioms, showing that they
== derivable from the given interpretation of probability. For the present,
wsw=ver, no use is made of the connection between probabilities and fre-
gezcies; instead, the axiom system is regarded as a system of formulas by
wzrz the properties of the probability concept are determined. By this
arw=iure the axiomatic system of the probability calculus assumes a func-
e comparable to that of the axiomatic system of geometry, which, in a
am=r way, determines implicitly the properties of the basic concepts of
z=i==iry. that is, of the concepts “point”’, “line”, “plane’”; and so on (see § 8).

- Tz« rule of existence can be replaced only incompletely by axioms. See footnote, p. 61.
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We begin with the first two groups of axioms:
I. UnivocaLiTy ( # ) d[(A ?B)'(A aq-B)E A)]

L

II. NORMALIZATION ¢ (A>B)>(3p)(A=>B).(p=1)
2. A).(4>B)3(p 2 0)

Group 11 will be discussed first. The degree of probability is asserted by
1,2 to be a positive number, including 0 as an extreme case. That p cannot
be greater than 1 is not incorporated into the axioms because it will be de-
rived as a theorem in § 13. The normalization to values in the interval from
0 to 1, end points included, is restricted to the case where the class A is not
empty. The condition is expressed by the term (4), which means, according
to the rule of translation (see p. 49), (i)(z;eA), or, what is the same,
(3%)(z; € A). The significance of this condition will be explained presently.

Axiom 11,1 establishes a connection between the logical implication and
the probability implication. Whenever a logical implication exists between
A and B, there exists also a probability implication of the degree 1; the
converse does not hold, however. It follows from a simple consideration that
the reverse relation cannot be maintained. For the demonstration we use the
formula corresponding to 11,1:

(ADB)3(3P)(A;-:B)-(P=0) (1)

the necessity of which seems clear, though the exact derivation will be given
later.

Formula (1) states that whenever an impossibility exists, a probability
implication of the degree 0 exists also. For this case it is easy to illustrate
why the reverse condition cannot be required. For instance, if we prick a
sheet of paper with a needle, the probability (at least for a mathematical
idealization of the problem) of hitting a given point is equal to 0; nevertheless
a certain point is hit each time. Thus the probability 0 does not entail impos-
sibility. Consequently, in order to remain free of contradictions, we must
assert that certainty does not follow from the probability 1. Rather, certainty
and the probability 1 stand in the relation of & narrower to a more compre-
hensive concept; certainty is a special case of the probability 1 (see § 18).

The relation of the two concepts is thus made clear in a very simple man-
ner; the mysterious conception, which is occasionally voiced, that certainty
and the probability 1 are incomparable concepts is untenable. On the con-
trary, the relation between the logical and the probability implication as
expressed by 11,1 represents an important relation holding between the two
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eoncepts, which connects the logic of the probability implication with classical
Eﬁ% this point the axiom system of probability differs from that of

. The concepts ‘“‘point”, “line”’, “plane”’, and so on, occurring in

, are of a type different from that of logical concepts; for that
respon they can never assume the meaning of logical concepts, even for a
special case.

The formulation of the univocality axiom 1 is clarified by the preceding
remarks on the connection of the logical and the probability implication. It is
obvious that the univocality of the degree of probability must be demanded.
At first sight we might try to formulate univocality by

- A =R L0 @)

However, this formula leads to contradictions. They result from the fact that
m 1.1 the logical implication was considered to be a special case of the prob-
shility implication. Certain properties of the logical implication prevent the
sszertion of (2) with complete generality. This is due to an above-mentioned
property of the logical adjunctive implication, according to which a false
proposition implies any proposition. In logic this fact is expressed by the

reduciio ad absurdum (43B).(42B) = (A) @)

Formula (3) is a generalization of (1g, § 4). It is proved by transforming the
k=it side of (3) by means of (6a, § 4), applying (4¢, § 4) and using (5d and
3¢, §4). Addition of the parentheses, meaning extension to an all-statement,
& of course always permissible for tautologies. Logic thus admits an am-
biguity of logical implication, but this case is restricted to the condition (4).
The ambiguity is transferred to the probability implication, since (3) with
.1 and (1) lead to the relation

A)>@3p) (EIQ)(A;}B)-(A?B)-(IJ=1)'(q=0) (4)

In case of (A) being true, the right side of the formula is valid, in contra-
diction to (2). Instead of (2) we therefore write axiom 1, which brings the
ambiguity of the probability implication into a form analogous to the ambigu-
zy of logical implication. The condition p # ¢ must be written in front of 1,
snce the expressions in brackets, contrary to (3), do not show whether we
sre dealing with different probability degrees.

In order to clarify 1, it may be remarked that this axiom has the same
meaning as the following implications:

(A—’}B)-(A—?B)-(P¢Q)D(ﬁ) ()

(A)>(4 > B).(A>B) (6)
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These two formulas result when formula (7a, §4) is used to dissolve the
equivalence in 1 into implications going in both directions. In this case the
expression (p 5 ¢) is dropped at the left side of (6); the condition is redun-
dant because (6) holds likewise if the condition is not satisfied, that is, if

P = ¢. From (6) is derived (4d)> (A = B) &

Since p can be chosen completely at random, the formula states that for the
case (A) any degree of probability may be asserted to hold between 4 and B.
Formula (7) goes beyond (4) so far as it extends the ambiguity to any chosen
degree of probability, including even values greater than 1 or smaller than 0.2

The ambiguity thus admitted is harmless because it applies only to the
case in which the first sequence does not contain a single element z; belonging
to the class A. This follows because, according to the translation rule,

(A) = oy @)(zie A) 8)

In the case (4), therefore, the probability cannot be used to determine expec-
tations of the events B because the event A is never realized, and so the plu-
rality of values cannot lead to practical inconveniences. It seems reasonable,
in such a case, to consider the probability implication between A and B with
respect to the sequence pair z;y; as not defined at all and, therefore, to allow
the assertion of any value for the degree of probability. This generalization
of the probability concept extends it beyond practical needs; the extension
is required because we wish to incorporate in the probability concept—as a
special case—the logical implication as it is formulated in symbolic logic. The
univocality, however, is always guaranteed if at least a single element z; of
the sequence belongs to the class A; it does not matter whether the corre-
sponding y; belongs to the class B. For, using the tautological equivalence
provided by the propositional calculus,

abdle=abVec=aVbVvec=avVevb=a.cvb=a.cdb )
and substituting for a: (A = B).(4 > B)
» ']
for b: (p # q)
for ¢: (4) (10)
we derive from (5) the formula
(4> B).(4>B).A)>0 =0 (1n)

1 The latter extension is necessary because otherwise the system of axioms would lead to
contradictions, as J. C. C. McKinsey and S. C. Kleene have pointed out. See my note on
probability implication in Bull. Amer. Math. Soc., Vol. 47, No. 4 (1941), p. 265. It is for this

reason that in this article I introduced for axiom 11,2 the condition (A4), which the German
edition of this book does not contain.

£
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When the double negation is removed and the translation rule (p. 49) and
{ormula (13, § 6) are applied, we obtain

(A-;-:B).(A?;B).(ai) (z:ed)d(@ =9 (12)

This means that the univocality of the degree of probability is guaranteed
< there is at least one element z; that belongs to the class A.

It is a result of the axioms 1 and 11 that the probability implication assumes
zze function of an extension of logical implication, the general implication
mtroduced in (3, § 6). The latter is to be regarded as a special case of a prob-
sbility implication, as we may recognize particularly from the form (6, § 9).
This conception permits a more precise formulation of the concept of physical
Lsw, which was interpreted above as a general implication (§6). Closer in-
spection reveals that general implications that are absolutely certain can
zzcur only if they are tautologies. The uncertainty of synthetic implications
ariginates from the fact that any conceptual formulation of a physical event
r=presents an idealization; the application of the idealized concept can possess
znly the character of probability (p. 8). The expression, ‘“It follows according
%o a physical law”’, must therefore be represented, strictly speaking, not by
s general implication but by a probability implication of a high degree

see § 85). Upon this fact rests the great importance of the probability impli-
=ztion: all laws of nature are probability implications.

There is an important difference between logical implication and prob-
zbility implication. To the general implication (A 3 B) corresponds an indi-
widual implication a D b, as defined by the truth tables 1B (§ 4). For prob-
ability implication such an individual relation is not used; the expression
A > B, therefore, need not be considered as a meaningful expression. Only

P

in a fictitious sense can the degree of probability, holding for the entire
sequence, be transferred to the individual case. Like the meaning of an indi-
+idual connective implication of the synthetic kind (see § 6), that of an indi-
+idual probability implication is constructed by a transfer of meaning from
tne general to the particular case. This transfer makes understandable why a
frequency interpretation of the degree of probability. can be applied to single
=vents, though only in a fictitious sense. The problem will be considered
lster (see § 72).

§ 13. The Theorem of Addition

A well-known theorem of the probability calculus is that the probability of a
sgical sum is determined by the arithmetical sum of the individual prob-
sbilities, provided the events are mutually exclusive. For instance, the prob-
sbility of obtaining face 1 or 2 by throwing a die is calculated to be t+1=32.
For the addition it is essential that only one of the two faces can lie on top;
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otherwise this manner of calculating would be unjustified. The theorem is
usually called the theorem of addition, and it must now be formulated as an
axiom.

The condition of exclusion could be written in the form (B 3 C), but it is
sufficient to use the weaker statement

(4.B30) (1a)

which can be derived from (B > C), whereas the latter formula is not derivable
from (1a). Although (le) appears to be nonsymmetrical with respect to B
and C, this is actually not so; for, because of (6a and 5a, § 4), formula (1a)

is equivalent to (4.2 B) (1b)

By the use of (1a) the theorem of addition may be written as follows:

III. THEOREM OF ADDITION
(A>B).(A>0C).(A.BYO)>@3NA>BvC).r =p +¢)
P q r

The addition theorem is a formula that expresses the transfer property of
the calculus: it states a rule according to which the character of existence
is transferred. It asserts the existence of the probability implication for the
logical sum, if the individual probability implications are given. Nonetheless,
we recognize the indispensability of the rule of existence (§ 11). For it is the
existence rule that permits us to reverse the addition theorem; with its help
we can derive the theorem

(A5B).(A>BV().(4.BX0)239A>C).(g=r—p) )

This theorem cannot be obtained from axiom 111 alone, since the latter asserts
existence only if the individual probabilities are given. The implicans of (2)
differs from that of the axiom in that it contains only one individual prob-
ability and, moreover, the probability of the logical sum. Yet we recognize
that the degree ¢ of the probability implication, stated on the right side of (2),
is determined by the addition theorem, provided this probability implication
exists. Because of the univocality axiom 1, the probability g, if it exists, must
assume a value that, when added to p, furnishes the value r, that is, ¢ = r — p.
Now we can apply the existence rule, and the existence of the probability

implication (4 =- C) can be asserted.

q
The form of the relation (2) makes it clear that axiom 111 can be only par-
tially reversed. The existence of the probability of the logical sum is not
sufficient for the reversal; one of the two individual probabilities must also
be given. Otherwise the degree of probability, ¢, would be undetermined, and
the existence rule would not be applicable. The restricting condition is neces-
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sary because otherwise it would be possible to infer quite generally (4 > C),

q
that is, the existence of a probability implication for any event. The feriium
non datur (le, §4) and the formula (37r) (45 C vC).(r = 1), which is

obtained from it by the help of (8¢, § 4) and axiom 11,1, would give this result.
The unwarranted generalization is made impossible by the existence rule,
which demands that the probabilities under consideration be determined by
those given.

The idea expressed in (2) is of great importance in the logical construction
of the probability calculus. It is the validity of reversed formulas like theorem
{2) and thus of the existence rule upon which rests the possibility of operating
with numerical values of probabilities according to the rules of algebra.
When we no longer incorporate the condition of exclusion into the formula,
stating it only in the context, we may write, introducing the P-notation,

P(4,BVC) = P(4,B) + P(4,C) @)

With this way of writing we express the fact that the rules by which mathe-
matical equations are manipulated can be applied to probability formulas.
Thus it is permissible to proceed from (3) to the formula

P(A,C) = P(4,BVC) — P(4,B) )

The admissibility of this step is expressed in theorem (2). We recognize that
the mathematical symbolization of the probability calculus is made possible
by a particular property of this calculus, a property that requires a special
formulation. The property is expressed by the rule of existence in combina-
tion with the axiom of univocality.

Certain difficulties arise from the fact that we cannot incorporate into the
mathematical symbolization the condition of exclusion, presupposed for (3)
and (4), but must add it verbally. A formula that is not dependent on condi-
tions to be added in the context will be developed later (see § 20).

A remark must be made concerning the univocality of the P-symbol.
Since univocality of a probability P(A4,B) is restricted to the case that A is
not empty, the P-symbol has only in this case the character of a numerical
Functor, a number variable determined by the argument in parentheses. In
order to make equations like (3) hold also in the case of an empty class A,
the convention is introduced that such equations then represent exristential
galements of the form, “There is a numerical value for the dependent prob-
ability that satisfies the equation when the independent probabilities are
given”. For instance, (3) states for an empty class A that, if for P(A4,B) and
P A,C) any values are given, there is a probability value among those holding
for P(4,B Vv C) that satisfies (3). All equations, in this case, will represent
trivial statements, because, if A is empty, a probability with A in the first
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term will have all real numbers as its values; the existential statement will
therefore be trivially satisfied. The advantage of this convention is that it
allows us to drop, for probability equations, the condition stating that A is
not empty. The equations also hold in the contrary case, but then they say
nothing. For the implicational mode of writing, no such convention is needed,
since axiom 111 and formula (2) are existential statements and lead to univocal
values of the probabilities only if A4 is not empty. The convention as to the
P-symbol is therefore in agreement with the rule of trapslation (p. 49).

In the greater part of this book the mathematical notation will be employed.
Except in this section and the next, the axioms formulated in the implica-
tional notation will no longer be used as a basis for further derivations. Their
place will be taken by theorems in the P-notation, derived from them. The
transition to the P-notation restricts the logical operations to the inner part
of the P-symbols. Supplementary remarks will be made in the context when-
ever other restricting conditions, on which the validity of the formulas
depends, are added.

We now derive a few theorems that have been used in the preceding section.
Because of the tertium non datur, the formula (A D BV B) is always true,
and we obtain the general formula

(3r)(A>BVB).(r=1) (5)

or, in the P-notation. P(ABVB) =1 59

We may therefore add formula (5) to (4 = B). The conditions of theorem (2)
p -
are satisfied if we substitute B for C, since (A.B 2 B) also is always valid.
We thus obtain the theorem
(A—:;B)D(E!u)(A?B)-(u=1—P) (6)

In the P-notation the theorem is written
P(A,B) + P(4,B) = 1 @)
This formula is called the rule of the complement.
We can now demonstrate that the probability degree, for which we postu-
lated in 11,2 only the nonnegative character, can never become greater than 1.
We can complement the term B by its negation to constitute a complete

disjunction. Considering the fact expressed in 11,2 that both probabilities
occurring in (7) cannot be negative, we obtain from (7) the relation

0=P4,B)=1 )
Furthermore, we have from 11,1 and (6) the theorem
(A>B)>(3p) (4 —33)-(10 =0) )

£
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The mathematical symbolization of the caleulus of probability may be
illustrated by another problem. Given the three classes B;, Bs, B;, which are
mutually exclusive but do not form a complete disjunction, and given the
three probabilities

P(A,BiVB;) P(A,B.VB;) P(A,B3;VB) (10)
we wish to infer from them the existence of the three individual probabilities
P(A,B)) P(A,B;) P(A,Bs) (11)

Theorem (2) is not applicable, because none of the individual probabilities
is known to exist. However, we obtain from the addition theorem the equations

P(A,B)) + P(A4,Bs) = P(A,B1VBy)
P(A,B,) + P(A,B;) = P(A,B:VB;) (12)
P(A,B;) + P(A,B)) = P(A,B;VB))
They can be solved for the individual probabilities:
P(A,B)) = 3[P(A,B.VB,) + P(A4,B;V B,) — P(A,B, V B3)]
P(A,B;) = 3[P(A,B;V By) + P(A,B: V B3) — P(4,B;V By)] (13)
P(A,B;) = 3P(A,Bs;VBy) + P(4,B;V B;) — P(A,B1V By)]

The three individual probabilities (11) are therefore determined according
to (13) by the or-probabilities (10); and it follows from the rule of existence
that when (10) is given, the existence of (11) is also assertable. Owing to the
rule of existence, we can apply, in the calculus of probabilities, the procedure
of eliminating unknown quantities from a system of equations and use it to
£nd new existing probabilities. Probability equations, therefore, determine
existence, that is, the existence of any of the probabilities occurring in an
eguation is secured if all the other probabilities are known to exist.!

§ 14. The Theorem of Multiplication

The fourth and last group refers to an axiom that determines the probability
of a combination of terms. It is a well-known theorem of the probability
calculus that the probability of a combination—that is, the probability of a

* I am indebted to E. Tornier for having called my attention to the fact that the problem
formulated in (10) and (11) cannot be solved by means of the formulas given in my paper on
B bility published in Math, Zs., Vol. 34 (1932}, p. 568. In that article T did not use the
=w=tence rule, but gave special reversal azioms that permitted the derivation of such theo-

ns as (2) and thereby, the application of the ealeulus of algebraic equations. But it turned
: that, in this system, the existence-determining charaeter is not alwms conserved when

Var .ablea are eliminated. Equations (12) determine existence for my former system also, but
=gustions (13) do not have this property. This fact led me to replace the reversal axioms by
the rule of existence.
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logical product—is represented by the arithmetical product of certain indi-
vidual probabilities. This is the multiplication theorem of the proba,blhty
calculus. The theorem is formulated by the following axiom:

IV. THEOREM OF MULTIPLICATION

(A>B).(A.B>C)2@Qw) (A>B.C).(w=p - u)

For the first time we deal with probability expressions in which the prob-
ability implication refers to three different classes, two of them occurring
either in the first or in the second term. This does not cause any difficulty,
because the translation rule (p. 49) determines the transition to the detailed
notation for formulas of this kind also. In this case the domain of the prob-
ability implication is a triplet of sequences.

By a procedure of the kind used for the theorem of addition we can derive
the converse of the multiplication theorem. We obtain two different conver-
sions, since the three events 4,B,C do not occur symmetrically in 1v, whereas
11 is symmetrical with respect to B and C:

(A5 B).(A5B.C)3(3w) (A.BaC).(u=%U) 6y

(A.B?C).(A?U-B.C)D(ap) (A?-B).(p=%) 2

The proof of the theorems is based on the rule of existence, which applies
because it can be demonstrated that the probability implications oceurring
on the right in (1) and (2) are determined by those on the left. Because of
theorems (1) and (2), axiom 1v can be replaced by the more comprehensive
formula, written in the P-notation,

P(A,B.C) = P(4,B) - P(A.B,C) ' 3)

Theorems (1) and (2) mean that formula (3) can be solved according to the
rules for mathematical equations for each of the individual probabilities
occurring. Here again it is seen that the mathematical formalization of the
probability calculus depends on the validity of the existence rule, as ex-
plained in §13.

Formula (3) is always true and does not require any restricting condition
to be added verbally in the context, as was necessary for (3, § 13). Formula
(3) will therefore be used in further discussion of the theorem of multiplica-
tion, without going back to axiom 1v. The form selected here for theorem (3),
characterized by the occurrence of three classes and of a term having two
classes in the place of the reference class, has long been applied in the British
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and the American literature.! It has been used in the axiomatic construction
in this work because only in this form is the axiom always correct. The
probability from A to the logical product B.C can be calculated only if the
probability from A to B as well as that from A.B to C is given.

In mathematical presentations the probability P(A .B,C) is usually called
“the relative probability of C with respect to B”. This notation does not
seem advisable because all probabilities are relative, and, furthermore, be-
cause the probability under consideration cannot be characterized by B and C
alone but requires class 4 also.

For example, the probability that a person suffering from diphtheria sub-
sequently contracts nephritis and dies is represented by a probability of the
form P(A,B.C), A denoting diphtheria; B, nephritis; and C, death. The
probability is calculated as the product of the probability that a person
suffering from diphtheria contracts nephritis, and the probability that a per-
son dies who gets nephritis after having had diphtheria. The latter prob-
ability is different from the one that a person suffering from nephritis will
die, since a patient who has had diphtheria is weakened and therefore is in
greater peril of losing his life. This consideration shows why the last prob-
ability occurring in (3) must be characterized by three classes.

Another example is the probability that a thunderstorm follows a hot
summer day with a subsequent change in the weather, which splits up into
the product of two probabilities: the probability that a thunderstorm will
follow a hot day and the probability that a change in the weather will follow
a thunderstorm that was preceded by a hot day. The second probability is
smaller than the probability that any thunderstorm brings with it a change
in the weather, because the convective thunderstorms produced by local heat
conditions usually do not result in a change in the weather, in contradistine-
tion to frontal thunderstorms. The example illustrates once more the necessity
of characterizing by three classes the probability that occurs in the last
term of (3). X

It must be regarded as a special case if two classes suffice for this term—
a case arising when the actual three-class probability is equal to a certain
two-class probability. Such specialization results if

P(A.B,C) = P(4,0) )
Then (3) assumes the form of the special theorem of multiplication:
P(A,B.C) = P(A,B) - P(A,0) (5)

! In 1878 the form was used by C. 8. Peirce. See his Collected Papers (Cambridge, Mass,,
1832), Vol. II, p. 415. J. M. Keynes also employed the form in A Treatise on Probability
I.oncion, 1921), chap. x1, p. 6. The use of relative probabilities for the determination of de-
pendent events is, of course, much older, P. 8. Laplace gives a corresponding rule in his Essat
ohilosophique sur les probabilités (Paris, 1814), chapter on ‘‘Principes généraux, quatriéme
p—rlnci[l)e." JEut he uses only two classes, my classes B and C, suppressing the general refer-
ence class A.
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The condition (4) is paraphrased by the statement: the events B and C are
mutually independent with respect to A (see also § 23). For example, the prob-
ability that a sudden gust of wind will capsize two sailboats is obtained as
the product of the probability that the wind overturns one boat by the cor-
responding probability concerning the other boat. The two probabilities need
not be the same, since the two sailboats may be of different construction.
It is, however, necessary for (5) that the probability of the second boat’s
turning over be independent of whether the first boat turns over.

Another specialization of (3) is obtained if 4 can be represented as the
product of two events A; and A4, such that

P(A,.A,,B) = P(A,,B) P(A,.4:.B,C) = P(A;.B,C) (6)
In this case (3) leads to
P(A,.4,,B.C) = P(A,B) - P(4,.B,C) (7)
If we add the specialization analogous to (4)
P(A;.B,C) = P(4,,0) (8)
0 OOt P(A1.43,B.C) = P(A4,B) - P(4,.0) ©)

This case may be illustrated by the throwing of two dice: A, refers to the
throwing of one die and A, to the throwing of the other. However, (9) would
not be permissible without the conditions (6) and (8).

A third specialization results if

P(A.B,C) = P(B,C) (10)
P(A,B.C) = P(4,B) - P(B,C) 11)

Examples of this kind occur in certain causal chains: A may be represented
by the occurrence of a storm; B, the falling of a tree; C, an accident caused
by the falling tree. For the application of (11), however, we must inquire in
each case whether (10) is satisfied.

The preceding discussion reveals that specializations of the multiplication
theorem—some of which are used as axioms in representations of the prob-
ability calculus—do not provide formulas that are always true. They result
from the general form (3) only for special cases. The latter are characterized
by the equality of certain probabilities having different references classes,
as stated in (4), (6), (8), (10). It follows that the question whether one of the
special forms of the multiplication theorem can be applied is reduced to a
question of the same type as that of how to determine the numerical value
of a probability. It is always known whether two probabilities are equal
when the probabilities themselves are known. Using the general form (3),
or the form of axiom 1v, for the theorem of multiplication eliminates certain

Then (3) becomes
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logical difficulties that were connected with this theorem in the history of the
anlculus of probability.

§ 15. Reduction of the Multiplication Theorem
to a Weaker Axiom



