CHAPTER VII
THE SYSTEM OF MODAL LOGIC

§ 46. The matrix method

.FOR a full understanding of the system of modal logic expounded
in this chapter it is necessary to be acquainted with the matrix
method. This method can be applied to all logical systems in
which truth-functions occur, i.e. functions whose truth-values
depend only on the truth-values of their arguments. The classical
calculus of propositions is a two-valued system, i.e. it assumes two
truth-values, ‘truth’denoted here by 7, and ‘falsity’ denoted by o.
According to Philo of Megara an implication is true, unless. it
begins with truth and ends with falsity. That means in symbols
that Crr = Cor = Coo = 1, and only Cro = o. Obviously the
negation of a true proposition is false, i.e. N7 = o, and the nega-
tion of a false proposition true, i.e. No = 1. It is usual to present
these symbolic equalities by means of ‘truth-tables’ or ‘matrices’,
as they are called. The two-valued matrix M1 of C and N may
be described as follows: the truth-values of C are arranged in
rows and columns forming a square, and are separated by a line
from the left margin and the top. The truth-values of the first
argument arc put on the left, those of the second on the top,
and the, truth-values of C can be found in the square, where
the lines which we may imagine drawn from the truth-values
on the margins of the square intersect one another. The matrix
of N is easily comprehensible.
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By means of this matrix any expression of the classical calculus
of propositions, i.e. of the C-N-p-calculus, can be mechanically
verified, i.e. proved when asserted and disproved when rejected.
It suffices for this purpose to put the values r and o in all possible
combinations for the variables, and if every combination reduced
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according to equalities stated in the matrix gives I as final result,
the expression is proved, but if not, it is disproved. For example,
CCpgCNpNyg is disproved by M1, since when p = 0 and ¢ = 1,
we have : CCorCNoNT = CrCro= C1o = o. By contrast, CpCNpq,
one of our axioms of our C-N-p-system,! is proved by Mi,

because we have:

For p = 1, q = 1: CICN11 = C1Cor = C11
» p =1,q =0:CICNio = C1Coo = C11
., p =0,q =1:CoCNor = CoCr1 = Cor =
» p =0,q = 0: CoCNoo = CoCro = Coo =
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In the same way we can verify the other two axioms of the
C-N-p-system, CCpgCCqrCpr and CCNppp. As M1 isso constructed
that the property of always yielding 7 is hereditary with respect
to the rules of substitution and detachment for asserted expres-
sions, all asserted formulae of the C-N-p-system can be proved by
the matrix M1. And as similarly the property of not always
yielding 7 is hereditary with respect to the rules of inference for
rejected expressions, all rejected formulae of the C-N-p-system
can be disproved by M1, if p is axiomatically rejected. A matrix
which verifies all formulae of a system, i.e. proves the asserted
and disproves the rejected ones, is called ‘adequate’ for the
system. M1 is an adequate matrix of the classical calculus of
propositions.

M is not the only adequate matrix of the C-N-p-system. We
get another adequate matrix, M3, by ‘multiplying’ M1 by itself.
The process of getting M3 can be described as follows:

First, we form ordered pairs of the values r and o, viz.: (1, 1),
(1,0), (0, 1), (0,0); these are the elements of the new matrix.
Secondly, we determine the truth-values of C and NV by the

equalities
() C(a, b)(c, d) = (Cac, Cbd),
(z) N(a, b) = (Na, Nb).

Then we build up the matrix M2 according to these equalities;
and finally we transform M2 into Mg by the abbreviations:
(1, 1) = 1, (1,0) = 2, (0, I) = 3, and (0, 0) = o.

! See p. 8o.
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C | (1) (1,0) (0,1) (0,0) | N Clrzzo| N
(1) | (1) (1,0) (0,1) (0,0) | (6,0) 1|z1230]0
(,0) | (1, 1) (1,1) (0,1) (0,1) | (0,1) 2|17133]|3
(0, 1) | (1, 1) (r,0) (1,1) (1,0) | (r,0) 3|12712]|2
(0,0 | (1,1) (1,1) (r,1) (1,1) | (1) o|rr1711|71

M2 Mg

Symbol 7 in M3 again denotes truth, and o falsity. The new
syn}bols 2 _and 3 may be interpreted as further signs of truth and
falsity. This may be seen by identifying one of them, it does not
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matter which, with 7, and the other with 0. Look at My, where
2 = 1,and 3 = 0. The second row of M4 is identical with its first
row, and the fourth row with its third; similarly the second
column of My is identical with its first column, and the fourth
column with its third. Cancelling the superfluous middle rows
and columns we get M1. In the same way we get M1 from M;s
where 2 =0 and 3 = 1.

Mg is a four-valued matrix. By multiplying Mg by M1 we get
an eight-valued matrix, by further multiplication by M1 a sixteen-
valued matrix, and, in general, a 2n-valued matrix. All these
matrices are adequate to the C~N—p-system, and continue_to be

adequate, if we extend the system by the introduction of variable
functors.

§ 47. The C-N-8—p-system

We have already meét two theses with a variable functor 8: the
principle of extensionality CQ pgC8p8¢, and the thesis C3pCsNpdq.
As the latter thesis is an axiom of our system of modal logic, it is
necessary to explain thoroughly the C-N-p-system extended by §
which I call, following C. A. Meredith, the C-N-8—p-system.

This is the more necessary, as systems with § are almost unknown
even to logicians.
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The introduction of variable functors into propositional logic
is duc to the Polish logician Le$niewski. By a modification of his
rule of substitution for variable functors I was able to get simple
and elegant proofs.! First, this rule must be explained.

I denote by 8 a variable functor of one propositional argument,
and I accept that 8P is a significant expression provided P is a
significant expression. Let us see what is the meaning of the
simplest significant expression with a variable functor, i.e. 3p.

A variable is a single letter considered with respect to a range
of values that may be substituted for it. To substitute means in
practice to write instead of the variable one of its values, the same
value for each occurrence of the same variable. In the C-N-p-
system the range of values of propositional variables, such as p
or ¢, consists of all propositional expressions significant in the
system ; besides these two constants may be introduced, r and o,
i.c. a constant true and a constant false proposition. What is the
range of values of the functorial variable §?

It is obvious that for § we may substitute any value which gives
together with p a significant expression of our system. Such are
not only constant functors of one propositional argument, as, e.g.
N, but also complex expressions working like functors of one
argument, as Cg or CCNpp. By the substitution 8/Cq we get from
8p the expression Cgp, and by 8/CCNpp the expression CCNppp.
1t is evident, however, that this kind of substitution does not
cover all possible cases. We cannot get in this way either Cpq or
(pCNpg from 8p, because by no substitution for 8 can the p be
removed from its final position. Nevertheless there is no doubt
that the two last expressions are as good substitutions of &p, as
Cyp or CCNppp, since 8p, as I understand it, represents all sig-
nificant expressions which contain p, including p and 8 itself.

I was able to overcome this difficulty by the following device
which I shall first explain by examples. In order to get Gpg from
8¢ by a substitution for 8 I write §/C’¢, and I perform the substitu-
tion by dropping & and filling up the blank marked by .an
apostrophe by the argument of 8, i.e. by p. In the same way I get
from 8p the expression CpCNpg by the substitution §/C’CN’g. If
more than one 8 occurs in an expression, as in C8pC8Npdq, and 1
want to perform on this expression the substitution §/C’r, I must

' See Jan Lukasiewicz, ‘On Variable Functors of Propositional Arguments’,
Proceedings of the Royal Irish Academy, Dublin (1951), 54 A 2.
(1L M
)
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everywhere drop the &8’s and write in their stead C’r filling up the
blanks by the respective arguments of 8. I get thus from §p—Cpr,
from 8Np—CNpr, from 8¢—Cgr, and from the whole expression—
CCprCCNprCqgr. From the same expression C8pCSNpdq there
follows by the substitution 8§/C” the formula CCppCCNpNpCyq.
The substitution §° means that § should be omitted; by this
substitution we get for instance from C8pC8Npdq the principle of
Duns Scotus CpCNpg. The substitution §/8’ is the ‘identical’
substitution and does not produce any change. Speaking gener-
ally, we get from an expression containing 8’s a new expression by
a substitution for 8, writing for & a significant expression with at
least one blank, and filling up the blanks by the respective argu-
ments of the 8’s. This is not a new rule of substitution, but merely
a description how the substitution for a variable functor should be
performed.

The C-N-8—p-system can be built up on the single asserted
axiom known already to us:

51. CopCENpSq,
to which the axiomatically rejected expression p should be added
to yield all rejected expressions. C. A. Meredith has shown (in an
unpublished paper) that all asserted formulae of the C-N-p-
system may be deduced from axiom 51.! The rules of inference
are the usual rule of detachment, and the rules of substitution for
propositional and functorial variables. To give an example how
these rules work I shall deduce from axiom 51 the law of identity
Cpp. Compare this deduction with the proof of Cpp in the
C-N-p-system.?

51. 8/, g/p X 53
53. CpCNpp

51. 8/CpCNY’, g/ Np X C53-54
54. CCpCNpNpCHCNpNp

51. 8/, g/Npx 55

t C. A. Meredith has proved in his paper ‘On an Extended System of the Pro-
positional Calculus’, Proceedings of the Royal Irish Academy, Dublin (1951), 54 A 3,
that the C-0-8—p-calculus, i.e. the calculus with C and O as primitive terms and
with functorial and propositional variables, may be completely built up from the
axiom C3308p. His method of proving completeness can be applied to the C-N-3—p-
system with C8pC8Np8g as axiom. In my paper on modal logic quoted p. 133, n. 2,
I deduce from axiom 51 the three asserted axioms of the C-N-p-system, i.e.
CCpgCCqrCpr, CCNppp, CpCNpg, and some important theses in which § occurs,
among others the principle of extensionality. 2 See p. 81.
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55. CpCNpNp

55- pICPCNpNp X C55-56
n0. CNCpCNpNpNCpCNpNp
51. 8/C”, p|CpCNpNp, ¢lp < C54-C56-57

57 (pp.

I should like to emphasize that the system based on axiom 51 is
much richer than the C-N-p-system. Among asserted conse-
(juences containing 8 there are such logical laws as CCpgCCqpCpdg,
CSCpqCepdq, C8CpgChdq, all very important, but unknown to
alimost all logicians. The first law, for instance, is the principle of
extensionality, being equivalent to CQ pgCépdq, the second may
be taken as the sole axiom of the so-called ‘implicational’ system,
the third as an axiom of the so-called ‘positive’ logic. All these
laws can be verified by the matrix method according to a rule
given below.

In two-valued logic there exist four and only four different
lunctors of one argument, denoted here by V, S, ¥, and F (see
matrix M6).
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For the verification of 8-expressions the following practical rule
duc in substance to Le$niewski is sufficient : Write for 8 successively
the lunctors ¥, S, N, and F, then drop S, transform Vo into Cpp,
and v into NCpp. If you get in all cases a true C—N-formula, the
expression should be asserted, otherwise it should be rejected.
Pixample: C5CpgC8pdg must be asserted, because we have:

CSCpqeCSpSq = CCpqCpq, CNCpgCNpNg,

CVCpqCVpVq = CCppCCopCop, CFCpaCFpFg — CNCHpCNCppNChp.
(CpgCspSq must be rejected, for COpgCNpNy is not a true C-N-
formula. We see thus that all expressions of the C-N¥-8—p-system
are casily proved or disproved by the matrix method.

§ 488, 8- Definitions

‘T'he functor 8 may be successfully employed to express defini-
tions. ‘T'he authors of the Principia Mathematica express definitions

]
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by a special symbol consisting of the sign of equality ‘=" that
connects the definiens with the definiendum, and of the letters ‘Df’
put after the definition. According to this method the definition
of alternation would run thus:

CNpg = Hpg  Df,

where CNpq (‘If not p, then ¢°) is the definiens, and Hpq (“either p
or ¢’) the definiendum.' The symbol ‘. =. Df’ is associated with a
special rule of inference allowing the replacement of the definiens
by the definiendum and vice versa. This is the merit of this kind of
definition : the result is given immediately. But it has the defect of
increasing the number of primitive symbols as well as of rules
of inference which should be as small as possible.

Lesniewski would write the same definition as an equivalence
thereby introducing into his system no new primitive term to
express definitions, because for this very purpose he chose
equivalence as the primitive term of his logic of propositions
enlarged by functorial variables and quantifiers, and called by
him ‘protothetic’. This is the merit of his standpoint. On the
other hand he cannot immediately replace the definiens by the
definiendum or conversely, because equivalence has its own rules
which do permit such replacements.

In our C-N-8—p-system equivalence is not a primitive term;
hence it must be defined, but cannot be defined by an equivalence
without a vicious circle. We shall see, however, that it is possible
to express definitions by C and 8 in a way which preserves the
merits of both standpoints without having their defects.

The purpose of a definition is to introduce a new term which as
a rule is an abbreviation of some complex expression consisting
of terms already known to us. Both parts of the definition, the
definiens as well as the definiendum must fulfil certain conditions in
order to yield a well-formed definition. The following four con-
ditions are necessary and sufficient for definitions of new func-
tions introduced into 6ur system: (@) The definiens as well as the
definiendum should be propositional expressions. (b) The definiens
should consist of primitive terms or of terms already defined by
them. (c) The definiendum should contain the new term introduced
by the definition. (d) Any free variable occurring in the definiens

' T usually denote alternation by A4, but this letter has already got another
meaning in my syllogistic.
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should occur in the definiendum, and vice versa. It is easil}/ seen
that, c.g. CNpq as definiens and Hpq as definiendum comply with the
four above conditions.

.t us now denote by P and R two expressions that fulfil .the
conditions (a)-(d), so that one of them, it does not matter Wth}},
may be taken as the definiens, and the other as the definiendum. It is
supposed that neither of them contains . I say that the asserted
expression C8PSR represents a definition. For instance:

58, CSCNpgSHpq

represents the definition of alternation. Acc_ording to 58 any
expression containing CANpg may be immediately transformed
into another expression in which CNpg 1s replaced by Hpg. As
example we may take the principle of Duns Scotus:

79- CpCNpy,
from which we can get the law CpHpg, i.e. in words: ‘If p, then
cither p or ¢, by the following deduction:
58. 8/Cp’ X C59-60
Go. CpHpg.
I we want to apply our definition to the principle of Clavius:
G1. CCNppp,
we must first put p for ¢ in 58 getting thus:

58. ¢/px62
G2. CSCNppSHpp
62. 8/C’px C61-63
6. CHppp.
(Formula 63 states: ‘If either p or p, then #’, and is one of the
*primitive propositions’ or axioms accepted by_thc authors’ of.the
Ivincipia Mathematica. They rightly call this axiom the ‘principle

of tautology’, as it states that to say the same (radro Aéyew) twice,
‘poov p'yis to say simply P’ The principle of Duns Scotus, for
instance, is not a tautology in any reasonable sense.)

"T'he converse implication of 58 CSHpqSCN'pq, which ena?lcs us
to veplace Hpg by CNpq is given together w1Fh the first. We can
prove, indeed, using only the rules of substitution and detachment

the (ollowing peneral theorem:
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(C) If P and R are any significant expressions not containing
3, and C3PSR is asserted, then CSRSP must be asserted too.
The proof’:

(D) CSPSR
(D) 8/C8Px (E)
(E) CCSPSPCSRSP
(D) 8/CCSPS’CSRSP X (F)
(F) CCGSPSPCSRSPCCSPSRCSRSP
(F) x C(E)-C(D)~(G)
(G) CSRSP.

If therefore P and R do not contain §, and one of them may be
interpreted as definiens and the other as definiendum, then it is clear
that any asserted expression of the form CSPSR represents a
definition, as P may everywhere be replaced by R, and R by P,
and this is just the characteristic property of a definition.

§ 49. The four-valued system of modal logic

Every system of modal logic ought to include as a proper part
basic modal logic, i.e. ought to have among its theses both the
M-axioms CpMp, *CMpp, and *Mp, and the L-axioms CLpp,
*CpLp, and *NLp. It is easily seen that both M and L are dif-
ferent from any of the four functors V, S, W, and F of the two-
valued calculus. M cannot be V, for Mp is rejected—whereas
Vp = Cpp is asserted, it cannot be S, for CMpp is rejected—
whereas CSpp = Cpp is asserted, it cannot be either N or F, for
CpMp is asserted—whereas CpNp and CpFp = CpNCpp are re-
jected. The same is true for L. The functors M and L have no
interpretation in two-valued logic. Hence any system of modal
logic must be many-valued.

There is yet another idea that leads to the same consequence.
If we accept with Aristotle that some future events, e.g. a sea-
fight, are contingent, then a proposition about such events
enounced today can be neither true nor false, and therefore must
have a third truth-value different from r and 0. On the basis of
this idea and by help of the matrix method with which I became
acquainted through Peirce and Schréder I constructed in 1920
a three-valued system of modal logic developed later in a paper
of 1930." I see today that this system does not satisfy all our

! Jan Lukasiewicz, ‘O logice tréjwartosciowej’, Ruch Filozoficzny, vol. v, Lwéw
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intuitions concerning modalities and should be replaced by the
system described below. ‘

I am of the opinion that in any modal logic the classical ca.llculus
of propositions should be preserved. This calculus has hlthe.rto
manifested solidity and usefulness, and should not be set aside
without weighty reasons. Fortunately enough the classical calculus
of propositions has not only a two-valued matrix, but also many-
valued adequate matrices. 1 tried to apply to modal logic the
simplest many-valued matrix adequate to the C-N-8—p-system,
i.c. the four-valued matrix, and succeeded in obtaining the
desired result.

As we have seen in § 46, the matrix M2 whose elements are
pairs of values 1 and o follows for ¥ from the equality:

() M, b) = (Na, Nb).

I'he expression ‘(Na, Nb)’ is a particular case of the general form
(ea, Lb) where € and { have as values the functors V,S,N,and F
of the two-valued calculus. As each of the four values of € can be
combined with each of the four values of {, we get 16 combina-
tions, which define 16 functors of one argument of the four-
valued calculus. I found among them two functors, either of
which may represent M. Here I shall define one of them, the
other I shall discuss later.

(«) M(a,b) = (Sa, Vb) = (a, Cbb).

On the basis of («) I got the matrix M7 for M which I transforn.led
into the matrix M8 by the same abbreviations as in § 46, viz.:
(r, 1) =1, (I,O) =2, (0’ I) =3 and (Oa 0) = 0.

Having thus got the matrix of M I chose C, N, and M as

{1020). Jan Lukasiewicz, ‘Philosophische Bemerkungen zu mehrwertigen Systemen
dew Aussagenkalkiils’, Comptes Rendus des Stances de la Socidté des Sciences et des Lettres
de Varsovie, vol. xxiii, cl. 3 (1930).
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primitive terms, and based my system of modal logic on the
following four axioms:

51. CSpCSNpSq 4. CpMp  *s5. CMpp  *7. Mp.

The rules of inference are the rules of substitution and detach-
ment for asserted and rejected expressions.
Lp is introduced by a 8-definition :

64. CSNMNpSLp.

That means: ‘NMNp’ may be everywhere replaced by ‘Lgp’, and
conversely ‘Lp” by ‘NMNp’.

‘The same system of modal logic can be established using C,
N, and L as primitive terms with the axioms:

51. GopCdNpdg 3. CLpp  *6. CpLp  *8. NLp,
and the 3-definition of M:
65. CONLNpSMp.
Mg represents the full adequate matrix of the system :
Clr230|N ML

1|rz3o0l|lo|1|2

2|lr133|3|1|2

3|lrezrzlz2|3glo

o|lrrrr|r|sgfo
Mg

I hopé that after the explanations given above every reader will
be able to verify by this matrix any formula belonging to the
system, i.e. to prove asserted formulae, and to disprove rejected
ones. )

It can be proved that the system is complete in the sense that
every significant expression belonging to it is decidable, being
either asserted or rejected. It is also consistent, i.e. non-contra-
dictory, in the sense that no significant expression is both
asserted and rejected. The set of axioms is independent.

I should like to emphasize that the axioms of the system are
perfectly evident. The axiom with § must be acknowledged by all
logicians who accept the classical calculus of propositions; the
axioms with M must also be accepted as true; the rules of in-
ference are evident too. All correctly derived consequences of the

§49 THE FOUR-VALUED SYSTEM OF MODAL LOGIC 169

system must L€ admitted by anyone who accepts the axioms and
the rules of inference. No serious objection can be maintained
against this system. We shall see that this system refutes all false
imferences drawn in connexion with modal logic, explains the
difliculties of the Aristotelian modal syllogistic, and reveals some
unexpected logical facts which are of the greatest importance for

philosophy.

§ 50. Necessity and the four-valued system of modal logic

Two major difficulties were stated at the end of Chapter VI:
the first was connected with Aristotle’s acceptance of asserted
apodeictic propositions, the second with his acceptance of asserted
contingent propositions. Let us solve the first difficulty.

If all analytic propositions are regarded as necessarily true,
then the most typical analytic proposition, the principle of
identity Fxx, must also be regarded as necessarily true. This leads,
as we have seen, to the false consequence that any two individuals
are necessarily identical, if they are identical at all.

'This consequence cannot be derived from our system of modal
logic, because it can be proved that in this system no apodeictic
proposition is true: As this proof is based on the law of exten-
sionality CCpgCLpLq, we must first show that this law results from
our system.

A consequence of axiom 51 runs thus:

66. C8CpqCspdg.

I'rom 66 there follows by the substitution §/34° the formula :

67.. CMCpgCMpMyq,
and from 67 we get by CCpgMCpgq, a substitution of axiom 4, and
by the hypothetical syllogism the stronger M-law of exten-
sionality :

19. CCpgCMpMy.

The stronger L-law of extensionality CCpqCLpLg is deducible
from 19 by transposition. The problem left undecided in § 42,
which interpretation of the Aristotelian laws of extensionality,
the stronger or the weaker one, should be admitted, is thus solved
in favour of the stronger interpretation. The proof that no
apodeictic proposition is true will now be given with full pre-
cision.
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The premisses:
*6. CpLp
18. CCpgCLpLq
33. CCpCqrCqCpr
68. CCCpgrCyr.

The deduction:

68. r/CLpLg x C18-69
69. CqCLpLq

33- p/4, q/Lp, r/LgX C69—70
70. CLpCqLq

70. play qp X C*71-*6

*71. La,

The Greek variable o requires an explanation. The consequent of
70, CgLg, which means the same as the rejected expression CpLp,
permits according to our rules the rejection of the antecedent Lp,
and any substitution of Lp. This, however, cannot be expressed by
*Lp, because from a rejected expression nothing can be got by
substitution; so, for instance, Mp is rejected, but MCpp—a
substitution of Mp—is asserted. In order to express that the
antecedent of 7o is rejected for any argument of L, I employ Greek
letters calling them ‘interpretation-variables’ in opposition to
the ‘substitution-variables’ denoted by Latin letters. As the pro-
position « may be given any interpretation, *La represents a
general law and means that any expression beginning with L,
i.e. any apodeictic proposition, should be rejected.

This result, *La, is confirmed by the matrix for L which is
constructed from the matrices for ; and M according to the
definition of L. Anyone can recognize from a glance at Mg that
L has only 2 and o as its truth-values, but never 1.

The problem of false consequences resulting from the applica-
tion of modal logic to the theory of identity is now easily solved.
As L¥xx cannot be asserted, being an apodeictic proposmon itis
not possible to derive by detachment from the premiss:

(ty CFxyCLFxxLfxy or  CLFxxCFxyL fxy

the consequence: (v) CjxyLjxy. It can be matrically proved
indeed that (¢) must be asserted, giving always 7, but (v) should be
rejected. Since the principle of identity Fxx is true, i.e.’ fxx = 1,
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we get Lfxx = 2, and CfxyCLJxxLjxy = CixyC2Lfxy. Fxy
may have one of the four values, I, 2, 3, or o:

Il 7xy = 1, then CfxyC2Lfxy = CrC2Lli = CrC22 = C1r = 1,
w Jx =2, ,, CfxCeLfxy = C2C2L2 == C2C22 = C21 = 1,
» J =3, CioleLixy = (3C2L3 = (3C20 = (33 =1,

w Jxy =0, ,, CfxyC2L¥xy = CoC2Lo = CoC20 = Co3 = 1I.

Hence (¢) is proved since the final result of its matrical reduction
is always 7. On the contrary, (v) is disproved, because we have
for Jxy = 1r: CfxpLfxy = CiL1 = Cr2 = 2.

A pleasing and instructive example of the above difficulty has
been given by W. V. Quine who asks what is wrong with the
following inference :!

(a) The Morning Star is necessarily identical with the
Morning Star;

(b) But the Evening Star is not necessarily identical with the
Morning Star (being merely identical with it in fact) ;

(¢) But one and the same object cannot have contradictory
properties {(cannot both be 4 and not be 4);

(d) Therefore the Morning Star and the Evening Star are
different objects.

Given ny system the solution of this difficulty is very simple.
T'he inference is wrong, because the premisses (a) and () are not
true and cannot be asserted, so that the conclusion (d) cannot be
inferred from (@) and (§) in spite of the fact that the implication
((a)((b)(d) 1s correct (the third premiss may be omitted being
true). The aforesaid implication can be proved in the follow-
ing way:

et x denote the Morning Star, and y the Evening Star; then
(a) is L7xx, (b) is NLJyx which is equivalent to NLJFxy, as
identity is a symmetrical relation, and (d) is N7xy. We get thus
the tormula CLFxxCNLJxyNjxy which is a correct transforma-
tion of the true thesis (¢).

The example given by Quine can now be verified by our four-
vitlued matrix thus: if #” and ‘9’ have the same meaning as
belove, then Jxx = Jxy = 1; hence Lfxx = Lfxy = L1 = 2,

* 1 o this exaunple in the mimeographed Logic Notes, § 160, edited by the
Deprtinent of Philosophy of the Canterbury University College (Christchurch,
N.7.), atnt aent to me by Professor A. N. Prior.
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NLjxy = N2 = 3, and Njxp = N1 =0, so that we have
according to CL7xxCNL fxyNjxy: C2C30 = C22 = 1. The impli-
cation is true, but as not both its antecedents are true, the con-
clusion may be false.

We shall see in the next chapter that a similar difficulty was at
the bottom of a controversy between Aristotle and his friends,
Theophrastus and Eudemus. The philosophical implications of
the important discovery that No apodeictic proposition is true will be
set forth in § 62.

§ 51. Twin possibilities
I mentioned in § 49 that there are two functors either of which

may represent possibility. One of them I denoted by A and
defined by the equality:

(o) M(a, b) = (Sa, Vb) = (a, Cbb),
the other I define by the equality:
(8) Wia,b) = (Va, Sb) = (Caa, b),

denoting it by I which looks like an inverted M. According to
this definition the matrix of W is M1o, and can be abbreviated
to Mi1. Though W is different from M it verifies axioms of the
same structure as M, because GpWp is proved by Mr1, like
CpMp by M8, and *CWpp and *Wp are disproved by Mr1, as
*CMpp and *Mp are by M8. I could have denoted the matrix of
W by M.
b w W

(1, 1) | (1, 1) Iz
(r,0) | (1,0) 2 |2
(0, 1) | (2, 1) 3|1
(0,0) | (1,0) o|z2

10 Mir

It can further be shewn that the difference between M and W
is not a real one, but merely results from a different notation. It
will be remembered that I got M3 from M2 by denoting the pair
of values (1, 0) by 2, and (o, 1) by 3. As this notation was quite
arbitrary, I could with equal justice denote (r,0) by 3, and
(0, 1) by 2, or choose any other figures or signs. Let us then
exchange the values 2 and 3 in Mg, writing everywhere 3 for 2,
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and 2 for 3. We get from Mg the matrix Mi12, and by rearrange-
ment of the middle rows and columns of M12, the matrix M13.

Clr230|N[M|L

1|r1230|0|1|2

2|lr11r33\|3|1|2

3lr2r1r2|2|3]0

olrrrr|r|sg|o

Mo
Clrgz2o|N|-]|- Clrzzo0|N|-|~-
r1|rgz20lo0|1|3 r|rz23o0l|o|1|3
glrrz2z2|2|1|3 = 2|1133|[3|2]|0
2|l1313|3|2]o0 glrezrz|z2|r|3
o|lrrrr|r|zfo olrrrrjr|z2|o
Mi2 Mig

Il we compare Mg with M13, we see that the matrices for ¢ and
N remain unchanged, but the matrices corresponding to M and
1. become different, so that I cannot denote them by M and L.
"T'he matrix in M13 corresponding to. M in Mg is just the matrix
of 1. Nevertheless M 13 is the same matrix as Mg, merely written
in another notation. W represents the same functor as M, and
must have the same properties as M. If M denotes possibility, then
I does so too, and there can be no difference between these two
posstbilities.

In spite of their identity M and W behave differently when they
both occur in the same formula. They are like identical twins
who cannot be distinguished when met separately, but are
instantly recognized as two when seen together. To perceive this
let us consider the expressions MWp, WMp, MMp, and WWp.
I M is identical with W, then those four expressions should be
identical with each other too. But they are not identical. It can
he proved by means of our matrices that the following formulae
are asserted :

2. MWp and 73. WMp,

for Wp has as its truth-values only 1 or 2, and Mr as well as
Mz — r; similarly Mp has as its truth-values only r or 3, and
both Wr = r and W3 = 1. On the other hand it can be proved
that the formulae:
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74. CMMpMp  and  75. CWWpIWp

are asserted, and as both Mp and Wp are rejected, MMp and
WWp must be rejected too, so that we have:

*26. MMp  and  *77. WWWp.

We cannot therefore, in 72 or 73, replace M by W or W by M,
because we should get a rejected formula from an asserted one.
The curious logical fact of twin possibilities (and of twin
necessities connected with them), which hitherto has not been
observed by anybody, is another important discovery I owe to my
four-valued modal system. It is too subtle and requires too great
a development of formal logic to have been known to ancient
logicians. The existence of these twins will both account for
Aristotle’s mistakes and difficulties in the theory of problematic
syllogisms, and justify his intuitive notions about contingency.

§ 52. Contingency and the four-valued system of modal logic

We know already that the second major difficulty of Aristotle’s
modal logic is connected with his supposing that some contingent
propositions were true. On the ground of the thesis:

52. CK8pSNpdq,

which is a transformation of our axiom 51, we get the following
consequences :
2 52. 8/M, pla, q[p X 78
78. CKMoMNaMp
78. C*79-*7
*29. KMaMNa.

This means that 79 is rejected for any proposition «, as « is here
an interpretation-variable. Consequently there exists no « that
would verify both of the propositions: ‘It is possible that «’ and
‘It is possible that not «’, i.e. there exists no true contingent pro-
position T, if Tp is defined, with Aristotle, by the conjunction
of Mp and MNp, i.e. by: :

80. CSKMpMNpSTp.

This result is confirmed by the matrix method. Accepting the
usual definition of Kpg:

81. CSNCpNgsKpq
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we get for K the matrix M14, and we have:
Klrzzgo0 For p = 1: KMpMNp = KM1MN1 = KiMo = Kig = 3

r|rz30 5 D=2t D = KM2MN2 = KiMg = K13 =3
2|2z200 »w D=3 = = KM3MN3g = K3M2 = K3r = 3
313030 » p=o0: ] = KMoMNo = K3Mr = K31 = 3.
0|loo0ooo

Mig

We see that the conjunction KMpMNp has the constant value 3,
and is therefore never true. Hence Tp = 3, i.e. there exists no
truc contingent proposition in the sense given by definition 8o.

Aristotle, however, thinks that the propositions ‘It is possible
that there will be a sea-fight tomorrow’ and ‘It is possible that
there will not be a sea-fight tomorrow’ may both be true today.
Thus, according to his idea of contingency, there may be true
contingent propositions.

There are two ways of avoiding this contradiction between
Aristotle’s view and our system of modal logic: we must either
deny that any propositions are both contingent and true, or
modify the Aristotelian definition of contingency. I choose the
sccond way, making use of the twin types of possibility discovered
above.

Tossing a coin we may throw either a head or a tail; in other
words, it is possible to throw a head, and it is possible not to throw
a head. We are inclined to regard both propositions as true. But
they cannot be both true, if the first ‘possible’ is denoted by the
same functor as the second. The first possibility is just the same
as the second, but it does not follow that it should be denoted
in the same way. The possibility of throwing a head is different
from the possibility of not throwing a head. We may denote the
one by M, and the other by W. The proposition with the affirma-
tive argument ‘It is possible that p” may be translated by Mp, the
proposition with the negative argument ‘It is possible that not
by 1WA or the first by Wp, and the second by MNp. We get thus
two functors of contingency, say X and 7, defined as follows:

o, CSKMpWANpsXp  and 83, CSKWpMNpSYp.

[t iv impossible to translate these definitions into words, as we

have no names for the two kinds of possibility and contingency.
Let us call them “M-possible’ and ‘W-possible’, ‘X-contingent’
and *V-contingent’. We may then roughly say that ‘p is X-con-
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tingent’ means ‘p is M-possible and Np is W-possible’, and “p is
Y-contingent’ means ‘¢ is W-possible and Np is M-possible’.

From definitions 82 and 83 We can derive the matrices of X
and 7. We get:

For p = r:
Xt = KMiWN1 = KiWo = K1z = 2; 1 — KWiMNr — KiMo — Kig= 3.
Forp ==2:
Xz = KM2WNz = KiW3 = Kir = 1; Yo — KW2MNz — KaM3 = K23 = o.
Forp = 3:
X3 = KMgWN3 = K3Wz = K32 =0; 73 = KW3MN3 = KiMe = Kir = 1,
For p = o:
Xo = KMoWNo = K3Wr = K31 = 3; Yo = KWoMNo = K2Mr = Kor = .
p|X|T
ri 213
2|11 \|o
3|01
0|32
Mij

Matrix M15 shows that Xp as well as ¥p turns out to be true for
some value of p: Xp for p = 2, ¥p for p = 3. Now it has been
proved that KMpMNp has the constant value 3; similarly it can
be shown that KWpWANp has the constant value 2. We get thus
two asserted formulae :

84. XEWPpWNp and 85. ¥ KMpMNp.

This means that there exists in our system a true X-contingent and
a true al-contingent proposition. We can accommodate con-
tingency in Aristotle’s sense within our four-valued modal logic.

It also follows from M15 that the X-contingency and the 7-
contingency are twins. If we replace in Mis 2 by 3, and 3 by 2,
X becomes 7, and ¥ becomes X. Nevertheless X is different from
%, and more different than M is from W, because the propositions
Xp and ¥p are contradictory. It can be easily seen by M15 that
the following equalities hold :

() Xp = YNp = N1p"  and (6) ¥p = XNp = NXp.
The laws of contradiction and of the excluded middle are true for
Xp and 2p, i.e. we have:

86. NKXp1p and 87. HXpYp.

This means: no proposition can be both X-contingent and 7-con-
tingent, and any proposition is either X-contingent or ¥-con-
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tingent. The negation of an X-contingent proposition is a
Y-contingent proposition, and conversely the negation of a
Y-contingent proposition is an X-contingent proposition. This
sounds like a paradox, because we are accustomed to think that,
what is not contingent is either impossible or necessary, relating
the impossible and the necessary to the same kind of possibility.
But it is not true to say that, what is not X-contingent is either M-
impossible or M-necessary; it should rather be said that, what is
not X-contingent is either M-impossible or W-necessary, and
that being either M-impossible or W-necessary is equivalent to
being Y-contingent.

The same misunderstanding lies at the bottom of the contro-
versy about the thesis:

88. CKMpMgMKpq

which is asserted in our system. C. I. Lewis in some of his modal
systems accepts the formula:

89. CMKpqKMpMy,

but rejects its converse, i.e. 88, by the following argument ! ‘If it
is possible that p and ¢ are both true, then p is possible and ¢ is
possible. This implication is not reversible. For example: it is
possible that the reader will see this at once. It is also possible
that he will not see it at once. But it is not possible that he will
both sce it at once and not see it at once.’ The persuasiveness of
this argument is illusory. What js meant by ‘the reader’? If an
individual reader, say R, is meant, then R either will see this at
once, or R will not see this at once. In the first case the first pre-
miss ‘It is possible that R will see this at once’ is true; but the
second premiss is false, and how can a false proposition be
possibly true? In the second case the second premiss is true, but
the first is false, and a false proposition cannot be possibly true.
The two premisses of the formula 88 are not both provable, and
the formula cannot be refuted in this way.

I again by ‘the reader’ some reader is meant, then the pre-
misses ‘1t is possible that some reader will see this at once’ and ‘It
1 possible (hat some reader will not see this at once’ may be both

true, but in this case the conclusion ‘It is possible that some

YO L Lewn and G HL Langford, Symbolic Logic, New York and London (1932),
Po1hy,
[hUY] N
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reader will see this at once and some reader will not see this at
once’ is obviously also true. It is, of course, not the same reader
who will see this and not see this at once. The example given by
Lewis does not refute formula 88; on the contrary it supports its
correctness.

It seems, however, that this example has not been properly
chosen. By the addition of the words ‘at once’ the premisses have
lost the character of contingency. Saying that the reader will see
this, or not, ‘at once’, we refer to something which is decided at
the moment of seeing. The true contingent refers to undecided
events. Let us take the example with the coin which is of the same
sort as Aristotle’s example with the sea-fight. Both examples con-
cern events that are undecided at present, but will be decided in
the future. Hence the premisses ‘It is possible to throw a head’
and ‘It is possible not to throw a head’ may at present be both
true, whereas the conclusion ‘It is possible to throw a head and
not to throw a head’ is never true. We know, however, that con-
tingency cannot be defined by the conjunetion of Mp and MNp,
but either by Mp and WANp or by Wp and MNp, so that the
example quoted above does not fall under the thesis 88. It cannot
therefore disprove it. This was not known to Lewis and the other
logicians, and on the basis of a wrong conception of contingency
they have rejected the discussed thesis.

§ 53. Some further problems

Although the axioms and the rules of inference of our four-
valued system of modal logic are perfectly evident, some con-
sequences of the system may look paradoxical. We have already
met the paradoxical thesis that the negation of a contingent
proposition is also contingent ; as another thesis of this kind I may
quote the law of ‘double contingency’ according to which the
following formulae are true:

go. QpXXp and | 91. QpY7p.

The problem is to find some interpretation of these formulae
which will be intuitively satisfactory and will explain away their
apparent oddness. When the classical calculus of propositions
was only recently known there was heated opposition to some of
its principles too, chiefly to CpCgp and CpCNpq, which embody
two logical laws known to medieval logicians and formulated by
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them in the words: Verum sequitur ad quodlibet and Ad falsum
sequitur quodlibet. So far as I see, these principles are now uni-
versally acknowledged.

At any rate our modal system is not in a worse position in this
respect than other systems of modal logic. Some of them contain
such non-intuitive formulae, as:

*92. QMNMpNMp

where a problematic proposition ‘It is possible that p is impossible’
is cquivalent to an apodeictic proposition ‘It is impossible that p’.
Instead of this odd formula which has to be rejected we have in
our system the thesis:

93. OQOMNMpMANp which together with

94. QMMpMp
cnables us to reduce all combinations of modal functors consisting
of M and N to four irreducible combinations known to Aristotle,
viz. M = possible, NM = impossible, MN = non-necessary,
and NMN = necessary.

'The second problem concerns the extension of the four-valued
modal logic into higher systems. The eight-valued system may
serve as an example. We get the matrix Mi16 of this system by
multiplying the matrix Mg by the matrix M1. As elements of the
new matrix we form the pairs of values: (1, 1) =1, (1,0) = 2,
("71)—3,(2 0)_4)(3s ) 5)(3’ ) (0 I)_7:(0 0)_0
and then we determine the truth-values of C, N, and M accord-
ing to the equalities (), (2), and ().

S

Clr2345670

2345670
1335577
2125656
1115555
2341234
1331133
2Ir5r21rIr2rI2
I rrriririrI

M16

Figure 1 denotes, as usually, truth; o falsity ; and the other figures
are intermediate values between truth and falsity. If we
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attentively consider the matrix M16 we shall find that the second
row of C isidentical with the column of M. This row consequently
represents the matrix of possibility. In the same way all the other
rows of C, except the first and the last, represent some kinds of
possibility. If we denote them by M, to M,, we can state that
M, for 2 < i < 7 satisfies all the axioms of possibility, viz.

95. GpM;p, *96. CM; pp, *97. M, p.

Among these different kinds of possibility there are some
‘stronger’ and ‘weaker’; because we have, for instance, CM, pM, p
or CM; pM, p, but not conversely. We may say therefore that in
eight-valued modal logic there exist possibilities of different
degrees. I have always thought that only two modal systems are
of possible philosophic and scientific importance: the simplest
modal system, in which possibility is regarded as having no
degrees at all, that is our four-valued modal system, and the X,-
valued system in which there exist infinitely many degrees of
possibility. It would be interesting to investigate this problem
further, as we may find here a link between modal logic and the
theory of probability.

CHAPTER VIII
ARISTOTLE’S MODAL SYLLOGISTIC

ArisToTLE’s modal syllogistic has, in my opinion, less importance
in comparison with his assertoric syllogistic or his contributions
to propositional modal logic. This system looks like a logical
exercise which in spite of its seeming subtlety is full of careless
mistakes and does not have any useful application to scientific
problems. Nevertheless two controversial questions of this syllo-
gistic are worth studying, chiefly for historical reasons: the
(question of syllogisms with one assertoric and one apodeictic
premiss, and the question of syllogisms with contingent premisses.

§ 54. Moods with two apodeictic premisses

Aristotle deals with modal syllogisms after the pattern of his
assertoric syllogistic. The syllogisms are divided into figures and
moods, some moods are accepted as perfect and these need no
proof as being self-evident, the imperfect moods are proved by
conversion, reductio ad absurdum, or by ‘ecthesis’, as it is called.
‘The invalid moods are rejected by interpretation through con-
crete terms. It is strange that with one exception Aristotle makes
no use of his theorems of propositional modal logic. We shall see
that this would yield in several cases better and simpler proofs
than those given by him.

The laws of conversion for apodeictic propositions are ana-
logous to those for assertoric ones. The following theses are
accordingly true: ‘If it is necessary that no & should be an g, it is
necessary that no a should be a &, in symbols:

o, CLEbaLEab,
and ‘If it is necessary that every b or some b should be an g, it is
necessary that some a should be a #°, in symbols:

gy, Cl.Abal.lab and 100. CLIbaLlab.1

T'he proofs given by Aristotle are not satisfactory.? He did not see

odn iy, 2002 el pév yap dvdykn 10 A T4 B pndevi dmdpyew, dvdyin xal 76
oo o pogheni dnidpyew. —32 € 8¢ €€ dvdynns 16 A mavrl 4 Twi 7 B dmdpyer, xai
ed Hoed v A dvdyy ordpyew.

¢t CEL A Decker, loc, ait., p. go.
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that the laws g8-100 may be immediately deduced from the
analogous laws of the assertoric syllogistic by means of the
theorem

18. CCpgCLpLy.

For instance, from 18, by putting Eba for p and Eab for ¢, we get
the assertoric law of conversion in the antecedent, hence we can
detach the consequent, i.e. law g8.

Syllogisms with two apodeictic premisses are, according to
Aristotle, identical with assertoric syllogisms, except that the sign
of necessity must be added to the premisses as well as to the con-
clusion.” The formula for the mood Barbara will accordingly run:

101. CKLAbaL AcbLAca.

Aristotle tacitly accepts that the moods of the first figure are per-
fect and need not be proved. The moods of the other figures,
which are imperfect, should be proved according to the proofs
of assertoric syllogisms except Baroco and Bocardo, which are
proved in the assertoric syllogistic by reductio ad absurdum, and
should here be proved by ecthesis.2 Once again, for all these
proofs it would be easier to use theorem 18, as will appear from
the following example.

By means of the laws of exportation and importation, CCKpgr-
CpCqr and CCpCqrCKpgr, it can be shown that 15, the assertoric
mood Barbara, is equivalent to the formula:

1022 CAbaCAcbAca.

This purely implicational form is more convenient for deriving
consequences than the conjunctional form. According to the

thesis 3 CLpp we have:
103. CLAbaAba,

and from 103 and 102 we get by the hypothetical syllogism :
104. CLAbaCAcbAca.

On the other hand we have as substitution of 18:

Y An. pr. 1. 8, 29P35 éni pév odv Tdv dvaykalwv oxeddv dpoiws Exer kal éml tév
vmapxdvrwy weavrws yap Tillepdvav TGy Spwy &v Te TG Ymdpyew Kkai T €€ dvdyrps
vmdpyew 4 py dmdpxew €orar e kal ovk €orar cvAdoyiopds, mhjy Swoloer TG mpoo-
xeiobac Tols Gpois 76 €f dvdywns Vmdpyew § ui vmdpyew.

2 Ibid. 3023-14.
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105. CCAcbAcaCLAcbLAca,

and from 104 and 105 there follows the consequence :
106. CLAbaCLAchbLAca,

which is equivalent to ro1. All the other syllogistic moods with
two apodeictic premisses can be proved in the same way without
new axioms, laws of conversion, reductio ad absurdum, or arguments
by ccthesis.

§ 55. Moods with one apodeictic and one assertoric premiss*

Syllogistic moods of the first figure with one apodeictic and one
assertoric premiss are treated by Aristotle differently according
to which premiss, the major or the minor, is apodeictic. He says
that when the major is apodeictic and the minor assertoric we
getan apodeictic conclusion, but when the minoris apodeictic and
the major assertoric we can have only an assertoric conclusion.?
‘I'his difference will be made clear by the following examples of
the mood Barbara. Aristotle asserts the syllogism : ‘Ifit is necessary
that cvery & should be an g, then if every ¢ is a 4, it is necessary
that every ¢ should be an a.” He rejects, however, the syllogism :
‘If cvery b is an a, then if it is necessary that every ¢ should be a 4,
it is necessary that every ¢ should be an a.” In symbols:

(¢) CLAbaCAcbLAca is asserted,
({) CAbaCLAcbLAca 1s rejected.

Aristotle considers the syllogism () as self-evident. He says:
‘Since every b is necessarily an a or not an a, and ¢ is one of the
bs, it is evident (davepdv) that ¢ too will be necessarily an a or
not an a.’3 For reasons that will be explained later it is difficult
to show this by examples. But the following picture will perhaps
make the syllogism () more acceptable to intuition. Let us

' €t ]. Lukasicwicz, ‘On a Controversial Problem of Aristotle’s Modal Syllo-
wist', Dominican Studies, vol. vii (1954), pp. 114-28.

Yodn proae g, goti5-25 cvpBaiver 8¢ mote xal tiis €répas mpordoews dvayxalas
oy dvnywaior yheollac rév ovdoytapdy, mhijv oly dmorépas Eruyer, dA\d Tiis mpos 76
peblov dwporv, olov el 76 pév A vé B €€ dvdywys el Anmrac Smdpyov ) p1) dmdpyor, 76 §¢
v T imdpyor povor: oirews yap eldnppévwr Tév mpordaewy & dvdysns 76 A v T’
Gwipden d) oy dmdpfe. (Here follows the sentence quoted in the next note.) e 8¢ 76
plie AR gy duri dvaynaior, 76 8¢ BIT dvayxafor, obx éorai 76 aupnépaopa dvayxaior.
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imagine that the"expression LAba means: ‘Every & is connected
by a wire with an a.” Hence it is evident that also every ¢ (since
every ¢ is a b) is connected by a wire with an g, i.e. L4ca. For
whatever is true in some way of every b, is also true in the same
way of every ¢, if every ¢ is a 6. The evidence of the last proposition
is beyond any doubt.

We know, however, from Alexander that the evidence of the
syllogism (€) which Aristotle asserted, was not convincing enough
for his friends who were pupils of Theophrastus and Eudemus.*
As opposed to Aristotle, they held the doctrine that if either pre-
miss is assertoric the conclusion must be so, just as if either pre-
miss is negative the conclusion must be so and if either premiss is
particular the conclusion must be so, according to a general rule
formulated later by the scholastics: Peiorem sequitur semper con-
clusio partem.

This argument can be easily refuted. The syllogism (e) is
deductively equivalent to the problematic mood Bocardo of the
third figure: ‘Ifit is possible that some ¢ should not be an a, then
if every ¢ is a b, it is possible that some & should not be an a.” In
symbols::

(n) CMOcaCAcbMOba.

Syllogism (n) is as evident as (). Its evidence can be illustrated
by examples. Let us suppose that a box contains ballots numbered
from 1 to go, and let ¢ mean ‘number drawn from the box’, &
‘evert number drawn from the box’, and a ‘number divisible by
3’. We assume that in a certain case five even numbers have been
drawn from the box, so that the premiss: ‘Every number drawn
from the box is an even number drawn from the box’, i.e. Ach, is
factually true. From this we can safely infer that, if it is possible
in our case that some number drawn from the box should not be
divisible by 3, i.e. MOca, it is also possible in our case that some
even number drawn from the box should not be divisible by 3,
i.e. MOba.

Aristotle accepts the syllogism (3} and proves it by a reductio

! Commenting on the passage quoted in n. 2, p. 183, Alexander says 124. 8 o¥ros
peév ofrws Myer. of 8¢ ye éraipor adrob of mepl EGSnudv v xai Oeddppagrov oly odrws
Aéyovar, dAXd daow év mdoais Tais é£ dvaykalas Te xal vmapyovans ovlvylwus, éav
daw ouykelpevar ovAdoyiorikds, vndpyov yiveaBar 16 cupmépaoua . . . 17 & Edarrov
elvac 76 dmdpyov 706 dvayxalov.
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ad absurdum from the syllogism (€}.” He does not, however, deduce
(¢) from (n), though he certainly knew that this could be done.
Alexander saw this point and explicitly proves (e) from (y) by a
reductio ad absurdum saying that this argument should be held as
the soundest proof'in favour of Aristotle’s doctrine.? As according
to him Aristotle’s friends accept the syllogism () which fulfils
peiorem rule, and (e) is deducible from (), they cannot reject (e)
on the ground of this rule, which becomes false when applied to
modalities.

We shall see in the next Section that there was yet another
argument raiscd by Theophrastus and Eudemus against syllogism
(¢) which could not be refuted by Alexander, as it stands or falls
with an Aristotelian argument. In spite of Alexander’s talk about
the ‘soundest proof’ one feels that some doubt is left in his mind,
for he finally remarks after having presented several arguments
in support of Aristotle’s opinion, of which the argument quoted
above is the last, that he has shown with greater rigour in other
works which of those arguments are sound and which are not.3
Alcxander is referring here to his work ‘On the Disagreement
concerning Mixed Moods between Aristotle and his Friends’,
and to his ‘Logical Scholia’.# Unfortunately both works are lost.

Our times have seen a revival of this controversy. Sir David
Ross, commenting on syllogism (¢) and its proof from syllogism
(), states decidedly :5 ‘Yet Aristotle’s doctrine is plainly wrong.
For what he is seeking to show is that the premisses prove not only
that all C is A, but also that it is necessarily A, just as all B is

' An. pr 1. 21, 39 33-39 urrapxe'rw yap 76 wév Baavrirod I, 76 8¢ A evSexzaﬁw Tl
o I° H"I uwapxsw avaym] én 7o A evﬁexeaem TwiTH B p.'r] vwapxsw €l 'yap mavTi TG
B 16 A dmdpye €€ dvdyxns, 16 8¢ B mavri 78 I keirar dmdpyew, 76 A mavri vép I' é¢
dvdykns vndpfer TobTo yap dédeuctar wpéfepov. AN’ Dménetto Twi évdéyeolar py)
dwidpyew.
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necessarily A, i.e. by a permanent necessity of its own nature;
while what they do show is only that so long as all Cis B, it is A,
not by a permanent necessity of its own nature, but by a tempo-
rary necessity arising from its temporary sharing in the nature
of B

This argument is a metaphysical one, as the terms ‘nature of
a thing’ and ‘permanent necessity of its nature’ belong to meta-
physics. But behind this metaphysical terminology a logical
problem is hidden which can be solved by our four-valued modal
logic. Let us now turn to the syllogism rejected by Aristotle.

§ 56. Rejected moods with one apodeictic and one assertoric premiss

Syllogism ({) is as evident as syllogism (e). It is strange that
Aristotle rejects the syllogism

(2) CAbaCLAcbLAca,

though it is clear that this syllogism is on the same footing as the
asserted syllogism (e). In order to show its evidence let us employ
the same picture as before. If LAcbh means that every ¢ is connected
by a wire with a 4, and every 4 is an g, i.e. Aba, it is evident that
every ¢ is connected by a wire with an a, i.e. LAca. Speaking
generally, if every 4 is an a, then if every ¢ is connected with a &
in any way whatever, it must be connected with an 4 in just the
same way. This seems to be obvious.

The >most convincing argument that syllogism ({) is sound
results from its deductive equivalence with the problematic
mood Baroco of the second figure:

(6) CAbaCMOcaMOch, in words:

‘If every b is an g, then if it is possible that some ¢ should not be
an g, it is possible that some ¢ should not be a 4.’ This can be
illustrated by an example. Let us turn to our box from which five
numbers have been dratn, and let us suppose that every even
number drawn from the box (b) is divisible by 3 (a), i.e. 4ba.
From this factual truth we can safely infer that, if it is possible
that some number drawn from the box (¢) should not be divisible
by 3, i.e. MOca, it is also possible that some number drawn from
the box should not be an even number, i.e. MOcb. This syllogism
seems to be perfectly evident. In spite of its seeming so Aristotle
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disproves syllogism ({), first by a purely logical argument which
will be considered later, and then by the following example:
l.ct ¢ mean ‘man’, b ‘animal’, and « ‘being in movement’. He
accepts that the proposition ‘Every man is an animal’ is neces-
sarily true, i.e. LAch; but it is not necessary that every animal
should be in movement, this may be only accepted as a factual
truth, i.e. Aba, and so it is not necessary that every man should
be in movement, i.e. LAca is not true.!

Aristotle’s example is not convincing enough, as we cannot
admit as a factual truth that every animal is in movement. A
better example is provided by our box. Let ¢ mean ‘number
drawn from the box and divisible by 4’, & ‘even number drawn
from the box’, and a ‘divisible by 3°. Aristotle would agree that
the proposition ‘Every number drawn from the box and divisible
by 4 is an even number drawn from the box’ is a necessary truth,
i.c. LAcb, while the premiss ‘Every even number drawn from the
box is divisible by 3’ can be only accepted as a factual truth, i.e.
Aba, and the conclusion ‘Every number drawn from the box and
divisible by 4 is divisible by 3’ is also only a factual truth, i.e.
Aca, and not LAca. The ‘nature’ of a number drawn from the box
and divisible by 4 does not involve any ‘permanent necessity’ for
it to be divisible by 3.

It would seem, therefore, that Aristotle is right in rejecting
syllogism ({). The matter, however, becomes complicated, for it
can be shown that just the same argument can be raised against
syllogism

() CLAbaCAchbLAca.

This was seen by Theophrastus and Eudemus who refute (e)
using in another order the same terms which were applied by
Aristotle for disproving ({). Let 4 mean ‘man’, a—‘animal’, and
¢—‘being in movement’. They agree with Aristotle that the pro-
position ‘Every man is an animal’ is necessarily true, i.e. LAba,
and they accept as factually true that ‘Everything in movement
is a man’, i.e. Acb. The premisses of () are thus verified, but it is
obvious that the conclusion ‘Everything in movement is an
animal’; i.e. Aca, is not necessarily true.? This example is as

' An. pr. 1. 9, 30228 éri kal éx TV Spwv pavepov ST obk éoTar TO cuumépacua
dvayxaiov, olov €l 16 pév A ein xlvnois, 76 8¢ B {dov, éd’G 8¢ 76 I' dvfpwmos: {GHov
piv yap 6 dvlpwmos éf dvdynns ot xwveiTaw 8¢ 70 LBov odk é¢ dvdykys, 00’ ¢ dvBpwmos.
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unconvincing as the corresponding one in Aristotle, for we can-
not admit that the premiss Acb is factually true.

We can give a better example from our box. Let 4 mean ‘num-
ber divisible by 6°, a—‘number divisible by 3’, and ¢—‘even
number drawn from the box’. Aristotle would accept that the
proposition ‘Every number divisible by 6 is divisible by 3’ is
necessarily true, i.e. LAba, but it can be only factually true that
‘Every even number drawn from the box is divisible by 6, i.e.
Ach, and so it is only factually true that ‘Every even number
drawn from the box is divisible by g, i.e. Aca. The propositions
Ach and Aca are clearly equivalent to each other, and if one of
them is only factually true, then the other cannot be necessarily
true.

The controversy between Aristotle and Theophrastus about
moods with one apodeictic and one assertoric premiss has led us
to a paradoxical situation: there are apparently equally strong
arguments for and against the syllogisms (¢) and (). The con-
troversy shown by the example of the mood Barbara can be
extended to all other moods of this kind. This points to an error
that lurks in the very foundations of modal logic, and has its
source in a false conception of necessity.

§ 57. Solution of the controversy

The paradoxical situation expounded above is quite analogous
to thedifficulties we have met in the application of modal logic
to the theory of identity. On the one hand, the syllogisms in
question are not only self-evident, but can be demonstrated in
our system of modal logic. I give here a full proof of the syllogisms
(€) and () based among others on the stronger L-law of exten-
sionality known to Aristotle.

The premisses:

3. CLpp
18. CCpgCLpLq

24. CCpgCCqrCpr
33. CCpCqrCqCpr
102. CAbaCAchAca.

a gy ) o . \ ;o , Vo
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The deduction:

18. p/Aba, q/Acax 107
107. CCAbaAcaCLAbaLl Aca

33. p/dba, q/Ach, r|Acax C102—108
108. CAcbCAbaAca

24. p/Ach, q/CAbaAca, r/CLAbaLAcax C108-C107-109
109. CAcbCLAbaL Aca

33. plAch, q/LAba, r/LAcax C1o9-110
110. CLAbaCAcbLAca (€)

18. p/Ach, g/Acax 111
111. CCAcbAcaCLAcbLAca

24. plAba, q/CAcbAca, r[CLAcbLAcax Cio2—-Cr11-112
112. CAbaCLAcbLAca (0.

We see that the syllogisms (¢) and ({) denoted here by 110 and
112, are asserted expressions of our modal logic.

On the other hand, we get the thesis 113 from 110 by the sub-
stitution 4/a, and the thesis 114 from 112 by the substitution &/c
and commutation of the antecedents:

113. CLAaaCAcal Aca 114. CLAccCAcal Aca.

Both theses have in the consequent the expression CAcal Aca, i.e.
the proposition ‘If every ¢ is an g, then it is necessary that every ¢
should be an ¢’. If this proposition were asserted, all true uni-
versally-affirmative propositions would be necessarily true which
is contrary to intuition. Moreover, as CAcaLAca is equivalent to
CNLAcaNAca, and Aca means the same as NOca, we should have
CNLNOcaNNOca or CMOcaOca. This last proposition which
means ‘If it is possible that some ¢ should not be an a, then some
¢1s not an &’ is not true, for it is certainly possible that a number
drawn from the box should not be even ; so that, if the proposition
is true, every set of drawings would contain an odd number—
a result plainly contrary to the facts.

The expression CAcaLAca must be therefore rejected, and
we get:

*115. CAcaLAca,

from which there follows according to our rules for rejected
expressions the consequence :
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113. X C*116-*115
*116. LAaa.

The apodeictic Aristotelian law of identity must be rejected
like the apodeictic principle of identity L fxx. This is conformable
to our general view according to which no apodeictic proposition
is true. The consequent of 113, i.e. CAcaLAca, cannot be detached,
and the incompatibility between the acceptance of true apodeictic
propositions and the assertion of the stronger L-law of exten-
sionality is solved in favour of the law of extensionality. I do not
believe that any other system of modal logic could satisfactorily
solve this ancient controversy.

I mentioned earlier that Aristotle tries to refute the syllogism
(£) not only by examples, but also by a purely logical argument.
Asserting that the premisses Aba and LAch do not give an apo-
deictic conclusion he says: ‘If the conclusion were necessary,
there would follow from it by a syllogism of the first or the third
figure that some & is necessarily an a; but this is false, because
b may be such that possibly no 4 is an a.’t Aristotle refers here to
the apodeictic moods Darii and Darapti, since from (Z) combined
with either of these moods we can derive the consequence
CAbaCLAcbLIba. The proof from Darapti runs:

117. CCpCqrCCrCqsCpCys

112. CAbaCLAcbLAca (O

118. CLAcaCLAcbLIba (Darapti)

117. p/Aba, q/LAch, r/LAca, s|LIbax C112-C118-119

119. CAbaCLAcbLIba.

The proof from Darii gives the same consequence, but is more
complicated. Aristotle seems to disregard the premiss LAcbh, and
interprets this consequence as a simple implication :

*120. CAbaLlba,

which is obviously falsevand must be rejected. Or perhaps he
thought that LAcb could be made true by a suitable substitution
for ¢ and dropped. If so he was wrong and his proof is a failure.
We see besides by this example how difficult it is to confirm the
validity of such theses, as 119, 112, or 110, through terms yielding
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some would-be true apodeictic premisses. As many logicians
believe that such propositions are really true, it is impossible to
convince them of the validity of those syllogisms by examples.

Concluding this discussion we may say that Aristotle is right
in asserting (e), but wrong in rejecting ({). Theophrastus and
Eudemus are wrong in both ways.

§ 58. Moods with possible premisses

The Aristotelian theory of problematic sylloglsms displays a
very strange gap: moods with possible premlsses are entirely
neglected in favour of moods with contingent premisses. Accord-
ing to Sir David Ross, ‘Aristotle always takes év8éyerac in a premiss
as meaning ‘‘is neither impossible nor necessary’” ; where the only
valid conclusion is one in which évdéyerar means ‘‘is notimpossible”,
he is as a rule careful to point this out’.! Aristotle, indeed, seems
to be careful to distinguish the two meanings of év8éyeaflar when
he says, expounding for instance the moods with two problematic
premisses of the first figure, that év8éyeofar in these moods should
be understood according to the definition he has given, i.e. as
‘contingent’, and not in the sense of ‘possible’. He adds, however,
that this is sometimes overlooked.? Who may have overlooked
this ? Aristotle himself, of course, or some of his pupils just because
of the ambiguity of the term évééyesfar. In the De Interpretatione
évdexdpevoy means the same as Svvardv,3 while in the Prior Ana-
Iytics it has two meanings. It is always dangerous to use the same
word in two meanings which may be unconsciously confused; as
also to use two different words with the same meaning. Aristotle
sometimes says éyywpei instead of évdéyerar, and also uses the
latter in two meanings.* We cannot be always sure what he
means by évdéyerar. The ambiguity of this term probably con-
tributed to the controversies between himself and his friends
Theophrastus and Eudemus. It is therefore a pity that he did not
treat moods with possible premisses separately before introducing
contingency. We shall supply this deficiency which has hitherto
escaped the notice of scholars.

' W, D. Ross, loc. cit., p. 44; see also the table of the valid moods, facing
. 286,
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Let us first consider the laws of conversion. Aristotle begins the
exposition of these laws in Book I, chapter g of the Prior Ana-
Iytics with the statement that the term év8éyeoflar has several
meanings. He then says, without explaining the various meanings
of this term, that the laws of conversion of affirmative propositions
are the same for all kinds of évdéxecfar, but those of negative
propositions differ. He states explicitly that the problematic
propositions ‘Every 4 may be an ¢’ and ‘Some b may be an &’ (I
use the word ‘may’ to cover both kinds of the problematic pro-
position) are convertible into the proposition ‘Some a may be a &’
which gives for possibility the formulae:

121. CMAbaMIab and 122, CMIbaM]Iab.

The law of conversion for universally-negative propositions is
explained only by examples from which we may infer the formula:

128. CMEbaMEab.

It is tacitly assumed that particularly-negative possible proposi-
tions are not convertible.! We see from this that the laws of con-
version of possible propositions are somewhat negligently treated
by Aristotle. He apparently does not attach any great importance
to the concept of possibility.

Formulae 121-3 are correct and are easily deducible from the
analogous laws of conversion for assertoric propositions by means
of the theorem:

19. CCpqCMpMy.

The same theorem, i.e. the stronger M-law of extensionality,
enables us to establish the whole theory of syllogisms with pos-
sible premisses. By means of the classical calculus of propositions
we get from 19 the formulae:

124. CCpCarCMpCMgMr and 125. CCpCqrCHCMqgMy.

Formula 124 yields moods with two possible premisses and a
possible conclusion: we merely have to add the mark of possi-
bility to the premisses and to the conclusion of valid assertoric

T An. pr. i. 8, 25237-P14 énedy) modayxds Aéyerar 16 évdéyeolar, . . . év pév Tois
katadarixois duolws éfer xard Ty dvriotpodiy €v dmacw. € yap 16 A mavri 4 Twi
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moods. So, for instance, we get according to 124 from the asser-
toric mood Barbara by the substitution p/Aba, q/Ach, r/Aca the
syllogism :

126. CMAbaCMAcbMAca.

Formula 125 yields moods with one assertoric and one possible
premiss, it does not matter which, e.g.

1297. CAbaCMAchMAca 128. CMAbaCAcbM Aca.

The system is extremely rich. Any premiss may be strengthened
by replacing the assertoric or problematic proposition by the
corresponding apodeictic proposition. Beésides, there are moods
with one problematic and one apodeictic premiss which yield
apodeictic conclusions according to the formula:

129. CCpCqrCMpCLqLy.
Thus we have, for instance, the mood :
130. CMAbaCLAcbLAca

which is contrary to the peiorem rule accepted by Theophrastus
and Eudemus.

I think that Aristotle would have accepted—not, of course,
the last syllogistic mood—but the moods with possible premisses,
in particular 126 and 128. There is, indeed, in the Prior Analytics
an interesting introductory remark to the theory of problematic
syllogisms which, in my opinion, may be applied to possibility as
well as to contingency. Aristotle says that the expression ‘Of any-
thing, of which 4 is predicated, a may be predicated’ has two
meanings the best translation of which seems to be this: ‘For all ¢,
if everycis a b, then every ¢ may be an o’, and ‘For all ¢, if every ¢
may be a b, then every ¢ may be an a’. Then he adds that the
expression ‘Of anything, of which & is predicated, « may be
predicated’ means the same as ‘Every 4 may be an ¢’.! We have
thus two equivalences: ‘Every 4 may be an ¢’ means either ‘For
all ¢, if every ¢ is a b, then every ¢ may be an a’, or ‘For all ¢, if
cvery ¢ may be a b, then every ¢ may be an a’. If we interpret
‘may’ in the sense of possibility, we get the formulae:

,' An. pr. i. 13, 3227 76 ydp, ‘ab’ of 76 B, 76 A &vdéyeofar’ Tovrwy ompalve
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131. QMAballcCAcbMAca and 132. QMAballcCMAcbMAca

which are true in our system of modal logic, and from which the
moods 128 and 126 are easily deducible. If, however, ‘may’ is
interpreted in the sense of contingency which seems to be the
intention of Aristotle, then the formulae given above become
false.

§ 59. Laws of conversion of contingent propositions

Continuing his exposition of the laws of conversion of modal
propositions Aristotle says at the beginning of the Prior Analytics
that universally-negative contingent propositions are not con-
vertible, whereas particularly-negative ones are.!

This curious statement demands careful examination. I shall
first discuss it critically not from the point of view of my modal
system, but from that of the basic modal logic accepted by
Aristotle and all logicians.

According to Aristotle, contingency is that which is neither
necessary nor impossible. This meaning of the contingent is
clearly implicit in the somewhat clumsy definition of Aristotle,
and is expressly corroborated by Alexander.? Let us repeat in
order to ensure complete clearness: ‘p is contingent—means the
same as—p is not necessary and p is not impossible’, or in symbols:

48. QTPpKNLpNLNp.
This foarmula is obviously equivalent to the expression:
50. QTpKMpMNp,

i.e. the contingent is both capable of being and capable of not
being. .

Formulae 48 and 50 are quite general and applicable to any
proposition p. Let us apply them to the universally-negative pro-
position Eba. We get from 50:

133. QTEbaKMEbaMNEba.

As NEba is equivalent to Iba, we also have:

I An. pr.i. 3, 2514 (continuation of the text quoted in n. 1, p. 192) doa 8¢ 7& s
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134. QTEbaKMEbaMIba.

Now we can derive from the laws of conversion ;

123. CMEbaMEab and 122. CMIbaMlIab

that MEba is equivalent to MEab, and Mlba to Mlab; hence we
have:

135. QKMEbaMIbaKMEabMIab.

The first part of this formula KMEbaMIba is equivalent to TEba,
the second KMEabMlab to TEab; so we get the result:

136. QTEbaTEab.

This means that contingent universally-negative propositions are
convertible.

How was it possible for Aristotle not to see this simple proof,
when he had all its premisses at his disposal? Here we touch on
another infected portion of his modal logic, even more difficult to
cure than the wound which his ideas about necessity inflicted on
it. Let us see how he tries to disprove formula 136.

Aristotle states quite generally that contingent propositions
with opposite arguments are convertible with one another in
respect of their arguments. The following examples will explain
this not very clear formulation. ‘It is contingent that 4 should be
an &’ is convertible with ‘Itis contingent that & should not beana’;
‘It is contingent that every & should be an @’ is convertible with
‘It is contingent that not every & should be an a’; and ‘It is con-
tingent that some 4 should be an @’ is convertible with ‘It is contin-
gent that some 4 should not be an a’.! This kind of conversion I
shall call, following Sir David Ross, ‘complementary conversion’.2

Aristotle would assert accordingly that the proposition ‘It is
contingent that every 4 should be an a’ is convertible with the
proposition ‘It is contingent that no b should be an @’, in symbols:

() QTAbaTEba (asserted by Aristotle).
This is the starting-point of his proof, which is performed by

U An. pr. i. 13, 32229 ovuBalver 8¢ mdoas Tds kard 16 évdéyeabor mpordoes dvri-
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reductio ad absurdum. He argues in substance thus: If TEba were
convertible with TEab, then TAba would be convertible with
TEab, and as TEab is convertible with TAab, we should get the
false consequence:

() QTAbaTAch

What should we say to this argument? It is quite obvious that
the definition of contingency adopted by Aristotle entails the
convertibility of contingent universally-negative propositions.
Consequently the disproof of this convertibility must be wrong.
Since it is formally correct, the error must lie in the premisses,
and as there are two premisses on which the disproof is based, the
asserted formula (1), and the rejected (i), then either it is wrong
to assert (i) or it is wrong to reject («). This, however, cannot be
decided within basic modal logic.

Within those limits we can merely say that the truth of the
asserted formula (¢) is not justified by the accepted definition of
contingency. From the definition :

50. QTpKMpMNp
we get by the substitution p/Np the formula Q TNpKMNpMNNp,

and as MNNp is equivalent to Mp according to thesis g of basic
modal logic, we have:

137. QTNpEMpMNp.

From 50 and 137 there results the consequence:
138. QTpTNp,

and applying this consequence to the premiss Eba we get :
139. QTEbaTNEba  or 140. QTEbaTIba,

as NEba means the same as Jba. We see that QTEbaTlba is
Justified by the definition of contingency, but that Q TEbaTAba is
not. This last formula has been accepted by Aristotle by a mistake.

We shall understand ths error better if we examine Aristotle’s

(rejected by Aristotle).!
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'\ -~ ) AY n A r3 ‘v \ -~ L3 4 » -~
pndevi 76 A. xelobw yap Tolito, Kai évdexéobw 76 B undevi 74 A dmdpyew. odkodv
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¢ s , \ o Y Ve . Ve \ y -
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&déxouro Td A Smdpyew. rodro 8¢ eddost ob yap el 168¢ Tdde mavri dvdéyerar, Kai
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refutation of an attempt to prove the law of conversion for TEba
by reductio ad absurdum. This attempt reads : if we suppose that it is
contingent that no 4 should be an g, then it is contingent that no a
should be a 4. For if the latter proposition were false, then it would
be necessary that some a should be a 4, and hence it would be
necessary that some b should be an e which is contrary to our sup-
position.! In symbols: If 7Eba is supposed to be true, then TEab
also must be true. For from NTEab would result Llab, and con-
sequently LIba, which is incompatible with the supposition TEba.

Refuting this argument Aristotle rightly points out that Llab
does not follow from NTEab.> We have, indeed, according to 48
the equivalence:

141. QTEabKNLEabNLNEab  or

142. QTEabKNLEabNLIab.

Thus for NTEab, applying Q NKNpNgHpg, i.e. one of the so-called
‘De Morgan’s laws’,? we have the formula:

143. QNTEabHLEabLIab.

It can be seen that by means of 143 and the thesis CCHpgrCgr we
can derive NTEab from Llab, but the converse implication does
not hold, since from NTEab we can derive only the alternation
HLEabLIab from which, of course, Llab does not follow. The
attempted proof is wrong, but it does not follow that the conclu-
sion which was to be proved is false.

One point in this reduction deserves our attention: it is
apparent that instead of 143 Aristotle accepts the formula:

(A) QNTEabHLOabLlIab

which is not justified by definition 48. Similarly for the case of
NTAab he adopts the formula :4

Y An. pr. i. 17, 3729 dAXé pijy 038° ék Toi dduvdTov Seixbrjoera dvriaTpédov, olov €l
7 dfidoeey, émel Pebdos 70 vdéxeafar 16 B & A undevi Smdpyew, dAnlbés 16 py
dvddxeabar pndevi (ddais yip xal dnddacis), el 8¢ Tobr’, dAnbés é¢ avdyxys rwird A
dndpyew: date kai 76 A Twi 7& B- 1ob710 8’ dSUvaTov.

2 Ibid. 3714 (continuation of the foregoing note) o0 ydp €l u7 évdéyerac undevi vé
B v A, dvdyxn Tl dmdpyew, 16 yap ui évdéxeofar undevi Suxds Aéyerar, 76 peév el éf
dvdyrns Tl dmdpyer, 76 8’ €l é§ dvdyxns Twi uy dndpyer.

3 These should properly be called Ockham’s Laws, for so far as we know,
Ockham was the first to state them. See Ph. Boehner, ‘Bemerkungen zur Geschichte
der De Morganschen Gesetze in der Scholastik’, Archiv fiir Philosophiz (September
1951), p. 115, n.

S An. pr. i 17, 3724 76 évdéxealar mavri Smdpyew 16 ' € dvdyxys Twi Umdpyew
dvrixerat xal 70 €€ dvdykns Twi py) tmdpyew.
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() QNTAabHLOabLIab

which, again, is not justified by 48, whereas the correct formula
runs:

144. QNTAabHLOabLAab.

From (A) and (u) Aristotle may have deduced the equivalence
QNTAabNTEab, and then (i), which is not justified by his
definition of contingency.

§ 60. Rectification of Aristotle’s mistakes

Aristotle’s theory of contingent syllogisms is full of grave mis-
takes. He does not draw the right consequences from his definition
of contingency, and denies the convertibility of universally-
negative contingent propositions, though it is obviously admissible.
Nevertheless his authority is still so strong that very able logicians
have in the past failed to see these mistakes. It is obvious that if
somebody, Albrecht Becker for example, accepts the definition

48. QTPKNLPNLNY

with p as propositional variable, then he must also accept the
formula:

141. QTEabKNLEaNLNEab

which is derived from 48 by the substitution p/Eab. And
since by valid logical transformations formula 141 yields the
thesis ~

143. QNTEabHLEabLIab,

he must also accept 143. Yet Becker rejects this thesis in favour of
‘structural formulae’—a product of his imagination.!

The remarks of the foregoing section were written from the
standpoint of basic modal logic which is an incomplete system.
Let us now discuss our problem from the point of view of four-
valued modal logic.

From the Aristotelian definition of-contingency we obtained
the consequence 138, Q7pTNp, from which we may deduce
the implication :

! See A. Becker, loc. cit., p. 14, where formula T11 = 48 written in another
symbolism, but with the propositional variable p, is accepted, and p. 27 where
formula 143 is rejected.
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145. CTpTN.

Now we get from the premisses:
51. C8pCNpdq (axiom of the C-N-8-p-system)
146. CCpCqrCCpgCpr (principle of Frege)
the conseguences:
5. 8/T X 147
147. CTpCTNpTq
146. p|Tp, )/ TNp, r/Tqgx Crg7-C145-148
148. CTpTy,

and as the converse implication CT¢7p is also true, as may be
proved by the substitutions p/¢ and ¢/p in 148, we have the
equivalence :

149. QTpTy.

From 149 we get by substitution first the law of conversion 136
QTEbaTEab, then formula (i) Q7TAbaTEba which Aristotle
asserts, and formula (x) Q TAbaTAab which he rejects. We can
now determine where the flaw in Aristotle’s disproof of the law of
conversion is: Aristotle is wrong in rejecting ().

Formula QTpTg¢ shows that the truth-value of the function Tp
is independent of the argument p, which means that 7 is a con-
stant. We know, in fact, from § 52 that KMpMNp which is the
definiens of Tp has the constant value 3, and therefore Tp also has
the constant value 3 and is never true. For this reason 7p is not
suitable to denote a contingent proposition in Aristotle’s sense,
since he believes that some contingent propositions are true.
Tp must be replaced by Xp or ¥, i.e. by the function ‘p is X-con-
tingent’ or its twin ‘p is Y-contingent’. I shall take into con-
sideration merely X-contingency, as what is true of X-contingency
will also be true of Y-contingency.

I'irs(, 1 should like to state that the convertibility of universally-
negative contingent propositions is independent of any definition
ol contingency. As Eba is equivalent to Eab, we must accept the
formula

150, CSIchadEab

according to the principle of extensionality CQ pgC8p8¢, which
results rom our axiom 51. From 150 we get a true statement for
any value of' 8 hence also for 8/X°:

L]
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151. CXEbaXEab.

Alexander reports that Theophrastus and Eudemus, unlike
Aristotle, accepted the convertibility of universally-negative con-
tingent propositions,! but says in another passage that in proving
this law they used reductio ad absurdum.? This seems doubtful, for
the only correct thing Aristotle had done in this matter was to
refute the proof of convertibility by reductio, a refutation which
cannot have been unknown to his pupils. Reductio can be used to
prove, from CLIbaLlab, the convertibility of universally-nega-
tive propositions when they are possible (that is, to prove
CMEbaMEab), but not when they are contingent. Another proof
is given by Alexander, continuing the former passage, but he
scarcely formulates it clearly enough. We know that Theo-
phrastus and Eudemus interpreted universally-negative premisses,
Eba as well as Eab, as denoting a symmetric relation of discon-
nexion between & and 4,2 and they may have argued accordingly
that if it is contingent for b to be disconnected from g, it is also
contingent for 4 to be disconnected from 4.4 This proof would
conform with the principle of extensionality. At any rate, Theo-
phrastus and Eudemus have corrected the gravest mistake in
Aristotle’s theory of contingency.

Secondly, it follows from the definition of X-contingency:

82. CSKMpWNpSXp

that the so-called ‘complementary conversion’ cannot be ad-
mitted. QZpTNp is true, but QXpXNp must be rejected, because
its negation, i.e.:

152. NQXpXNp

is asserted in our system as can be verified by the matrix method.
It is therefore not right in our system to convert the proposition

¥ Alexander 220. 9 @cddpaoros pévroc kai Ebdnpos . . . dvriorpédew daai xai Ty
xabfddov dmodariciy (scil. évdexouévmy) adrf), domep dvréarpede xal 7 vmdpyovea
xafddov dmodariky kai 1) dvaykaia. .

2 Ibid. 223. 3 8dfew Tioi Bid ye Tis €ls dddvarov dmaywyijs dvvacbar Selxvvalbar 4
xaldlov dmodartiny) évdexopévny dvriarpédovoa. T abrh Seifer xal of éraipor adrod
xéxpyrrac.

3 See ibid. 31. 4-10.

4 Ibid. 220. 12 67 8¢ dvriorpéder, Sewxviow odrws € 76 A 13 B évdéyerar
pndevi, xai 76 B 176 A dvdéxerar undevi. émel yap évdéyerar 16 A 7@ B pydevi, dre
évdéxerar umdevi, rére évdéxerar dmelebybar 76 A mdvrwy Tév 10l B €l 8¢ TobT’, éoTar
767€ Kai 76 B 106 A dmelevyuévor € 8¢ Todro, xal 76 B 1 A évdéxerar pndevl.
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‘It is contingent that every b should be an &’ into the proposition
‘Tt is contingent that some & should not be an &’, or into the
proposition ‘It is contingent that no 4 should be an @’, conver-
sions which Aristotle accepts without any justification.! I think
that Aristotle was led to a wrong conception of ‘complementary
conversion’ by the ambiguity of the term ‘contingent’ (évSeyd-
pevov). He uses this term in the De Interpretatione as a synonym of
the term ‘possible’ (Svvardv),? and continues to use it thus in the
Prior Amalytics, although the phrase ‘It is contingent that p” has
there got another meaning, viz. ‘It is possible that p and it is
possible that not p’. If we replace in the last phrase the term
‘possible’ by the term ‘contingent’, as Aristotle apparently does,
we get the nonsense that ‘It is contingent that p” means the same
as ‘It is contingent that p and it is contingent that not p’. So far
as I know, this nonsense has hitherto not been observed by any-
body.

Thirdly, it follows from definition 82 that Xp is stronger than
Mp, because we have the thesis:

153. CXpMp,

but not conversely. This thesis is important, because it enables us
to retain, with a little correction, a large number of syllogisms
with contingent premisses, in spite of the serious mistakes made by
Aristotle.

§ 61. Moods with contingent premisses

There is no need to enter into a detailed description of the
syllogistic moods with contingent premisses, as Aristotle’s defini-
tion of contingency is wrong and his syllogistic should be rebuilt
according to the correct definition. This, however, does not seem
to be worth while, for it is very doubtful whether a syllogistic with
contingent premisses will ever find a useful application. I think
that the following general remarks will be sufficient.

First, it may be shown that all the Aristotelian moods with a
contingent conclusion are wrong. Let us take as an example the
mood Barbara with contingent premisses and conclusion, i.e.
the mood

*154. CXAbaCXAcbXAca.

' Seen. 1, p. 195. ? Seen. 1, p. 134.
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This mood though accepted by Aristotle’ must be rejected. Take
Aba and Acb as false, and Aca as true. These conditions fulfil the
assertoric mood Barbara, but from 154, applying the matrices
Mg and Mis, we get the following equations: CXoCXoXr1 =
C3C32 = (32 = 2. Similarly mood

*155. CXAbaCAcbXAca

also accepted by Aristotlez must be rejected, since, for 4ba = o,
and Ach = Aca= 1, we have: CXoCrXr= (C3Cr2= (32= 2. It
was just these two moods that I was referring to when I said at
the end of § 58 that formulae 131 and 132, which Aristotle asserts,
became false, if we interpreted évdéyecfor as ‘contingent’. It may
be said too that formulae 154 and 155 become true, if for X is put
T, but T-contingency is a useless concept.

Secondly, all the moods got by complementary conversion
should be rejected. I shall show by an example how Aristotle
deals with this sort of mood. He applies to 154 the formula

*156. QXAbaXEba

which should be rejected (take Aba = 1, and Eba = 0), and gets
the following moods:

*157. CXAbaCXEcbXAca
*158. CXEbaCXEchXAca

which must be rejected too.3 To show this, it suffices to choose the
terms a, b, and ¢ of 157 in such a way that 4ba = Ecb = o, and
Aca = 1, and those of 158 in such a way that Eba = Ec¢b = o,
and Aca = 1. We then have in both cases: CXoCXoXr =
C3C32 = (32 = 2. )

It seems that Aristotle does not put much trust in these moods,
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because he does not call them syllogisms at all. He merely says
that they can be reduced to syllogisms by means of comple-
mentary conversion. But moods reduced by the ordinary con-
version are called by him syllogisms; why does he make a
difference between ordinary and complementary conversion, if
both kinds of conversion are equally valid ?

Light upon this question is thrown by Alexander who, com-
menting on this passage, refers to a very important remark of his
master on two ontological meanings of contingency: ‘In one
sense ‘‘contingent’ means ‘‘usual (éni 76 oY) but not necessary”
or ‘“‘natural”, e.g. it is contingent that men should go grey; in
another sense it is used of the indefinite, which is capable of being
thus and of not being thus, orin general of that which is by chance.
In either sense contingent propositions are convertible with
respect to their contradictory arguments, but not for the same
reason : ‘“‘natural’” propositions because they do not express some-
thing necessary, ‘‘indefinite” propositions because there is not, in
their case, a greater tendency to be more thus than not thus.
About the indefinite there is no science or syllogistic demonstra-
tion, because the middle term is only accidentally connected with
the extremes; only about the “‘natural” are there such things, and
most arguments and inquiries are concerned with what is con-
tingent in this sense.’

Alexander discusses this passage: his idea seems to be that, if
we take any scientifically useful syllogism the premisses of which
arc contingent in the sense of ‘usual’ (éni 76 7oAd) or even ‘most
usual’ (éri 70 mAeioTov), then we get premisses and a conclusion
which are indeed contingent but are very seldom (én’ éAarrov)
realized : such a syllogism 1s useless (dypno7os). Perhaps this is
why Aristotle refuses to call what is so obtained a syllogism.2

U An proi. 13, 32%4-21 76 évdéxeafar kata 8vo AMéyerar Tpdmous, €va uév 76 Ws émi 76
noAD yiveaflar kal Siadelmew 76 dvayxaiov, olov 76 moAwbobar dvlpwmov . . ., § SAws 76
nefunds Ondpyew ..., dAAov 8¢ T6 dépLoTov, 6 Kal olTwS Kal w1 oUTWs SuvaTdy, . . .9 CAws
16 dno riyys ywouevor. —(P13) dvrioTpéder pév odv kai kard Tas dvrikeuévas
npordods dndrepor TV evdexoudvawy, ob uny TOV avTdv ye Tpdmov, dAXa 1o uév meduxos
elvac v oy &L dvdyxms vmdpyew . . ., 76 8’ ddpiaTov TH undév udAdov ovtws 7 éxelvws.
Suvreipn dd wal oudoyiopds dmodetkTinds TGY pév doploTwy obk €T Sia T6 draxTov
elvas o puduor, vaw 8¢ medukdTwy €T, kal axedov ol Adyor kai al oxéfes ylvovrar mepi
Taw 0BT Croe Yo,

t Alexander thg, 1 roH ydp ds éml T6 mAeloTov dmodatikd évdexopévaw To ém'
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Jup xproyeor T Cxer, s abtos mpoelme. 8o kai époluev Tavras tas ovluylas . . .
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This point, more than any other, reveals a capital error in
Aristotle’s syllogistic, viz. his disregard of singular propositions.
It is possible that an individual, £, should be going grey while
growing older, indeed this is probable, though not necessary,
since it is the natural tendency to do so. It is also possible, though
rather improbable, that £ should not be going grey. What
Alexander says about the different degrees of possibility is true
when applied to singular propositions but becomes false when
applied to universal or particular propositions. If there is no
general law that every old man should go grey, because this is
merely ‘usual’ and some old men do not go grey, then, of course,
the latter proposition is true and therefore possible, but the
former is simply false, and from our point of view a false pro-
position is neither possibly nor contingently true.

Thirdly, from a valid mood with possible premisses we can get
other valid moods by replacing a possible premiss by the corre-
sponding contingent one. This rule is based on formula 153 which
states that Xp is stronger than Mp, and it is obvious that any
implication will remain true, if one or more of its antecedents is
replaced by a stronger antecedent. So we get, for instance, from

126. CMAbaCMAcbMAca the mood 159. CXAbaCXAcbMAca

and from

128. CMAbaCAcbMAca the mood 160. CXAbaCAcbMAca.

Comparing the rejected moods 154 and 155 with the asserted
moods 159 and 160, we see that they differ only by the substitu-
tion of M for X in the conclusion. If we examine the table of
Aristotelian syllogistic moods with problematic premisses, given
by Sir David Ross,! we shall find it a useful rule that by this
small correction, M in the conclusion, instead of X, all those
moods become valid. Only the moods obtained by comple-
mentary conversion cannot be corrected, and must be definitively

rejected.

axpna’fovs 7€ xai davAdoyiarous elvat. —10 iows 8¢ kai adros ToiiTo vopdpevos elme
T8 “} ob yiverar ouMoyiauds’. Cf. W. D. Ross’s paraphrase of this passage, loc. cit.,
p. 326.

T W. D. Ross, loc. cit., facing p. 286 ; in the conclusion the index ¢ should every-
where be replaced by p.
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§ 62. Philosophical implications of modal logic

It may seem that the Aristotelian modal syllogistic, even when
corrected, has no useful application to scientific or philosophic
problems. But in reality, Aristotle’s propositional modal logic is
historically and systematically of the greatest importance for
philosophy. All elements required for a complete system of modal
logic are to be found in his works: basic modal logic and the
theorems of extensionality. But Aristotle was not able to combine
those elements in the right way. He did not know the logic of
propositions which was created after him by the Stoics; he tacitly
accepted the logical principle of bivalence, i.e. the principle that
every proposition is either true or false, whereas modal logic can-
not be a two-valued system. Discussing the contingency of a
future sea-fight he comes very near to the conception of a many-
valued logic, but he lays no stress on this great idea, and for many
centuries his suggestion remained fruitless. Owing to Aristotle I
was able to discover this idea in 1920 and to construct the first
many-valued system of logic in opposition to the logic, hitherto
known, which I called ‘two-valued logic’ thus introducing a
term now commonly accepted by logicians.!

Under the influence of Plato’s theory of ideas Aristotle de-
veloped a logic of universal terms and set forth views on necessity
which were, in my opinion, disastrous for philosophy. Proposi-
tions which ascribe essential properties to objects are according
to him not only factually, but also necessarily true. This erroneous
distinction was the beginning of d long evolution which led to the
division of sciences into two groups : the a priori sciences consisting
of apodeictic theorems, such as logic and mathematics, and the
a posteriori or empirical sciences consisting chiefly of assertoric
statements based on experience. This distinction is, in my opinion,
false. There are no true apodeictic propositions, and from the
standpoint of logic there is no difference between a mathematical
and an empirical truth. Modal logic can be described as an
extension of the customary logic by the introduction ofa ‘stronger’

! See J. Lukasiewicz, ‘Logika dwuwartofciowa’ (Two-valued Logic), Przeglad
Filozoficzny, 23, Warszawa (1921). A passage of this paper concerning the principle
of bivalence was translated into French by W. Sierpifiski, ‘Algébre des ensembles’,
Monografie Matemagyczne, 23, p. 2, Warszawa-Wroclaw (1951). An appendix of my
German paper quoted in n. 1, p. 166, is devoted to the history of this principle
in antiquity.
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and a ‘weaker’ affirmation; the apodeictic affirmation Lp is
stronger, and the problematic Mp weaker than the assertoric
affirmation p. If we use the non-committal expressions ‘stronger’
and ‘weaker’ instead of ‘necessary’ and ‘contingent’, we get rid
of some dangerous associations connected with modal terms.
Necessity implies compulsion, contingency implies chance. We
assert the necessary, for we feel compelled to do so. But if La is
merely a stronger affirmation than «, and « is true, why should
we assert La? Truth is strong enough, there is no need to have
a ‘supertruth’ stronger than truth.

The Aristotelian a priori is analytic, based on definitions, and
definitions may occur in any science. Aristotle’s example ‘Man
is necessarily an animal’; based on the definition of ‘man’ as a

‘two-footed animal’, belongs to an empirical science. Every
science, of course, must have at its disposal an exactly constructed
language and for this purpose well-formed definitions are indis-
pensable, as they explain the meaning of words, but they cannot
replace experience. The analytic statement ‘I am an animal’
made by a man—analytic because ‘animal’ belongs to the essence
of man—conveys no useful information, and can be seen to be
silly by comparison with the empirical statement ‘I was born the
215t December 1878, If we want to know what the ‘essence’ of
man is—if there is such a thing as ‘essence’ at all—we cannot rely
on the meanings of words but must investigate human individuals
themselves, their anatomy, histology, physiology, psychology,
and so on, and this is an endless task. It is not a paradox to say
even today that man is an unknown being.

The same is true for the deductive sciences. No deductive
system can be based on definitions as its ultimate fundamentals.
Every definition supposes some primitive terms, by which other
terms may be defined, but the meaning of primitive terms must
be explained by examples, axioms or rules, based on experience.
The true a priori is always synthetic. It does not arise, however,
from some mysterious faculty of the mind, but from very simple
experiments which can be repeated at any time. If I know by
inspection that a certain ballot box contains only white balls, I
can say a priori that only a white ball will be drawn from it. And
if the box contains white and black balls, and two drawings are
made, I can foretell a priori that only four combinations can pos-
sibly occur: white-white, white-black, black-white, and black-
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black. On such experiments the axioms of logic and mathematics
are based ; there is no fundamental difference between a priori and
a posteriort sciences.

While Aristotle’s treatment of necessity is in my opinion a
failure, his concept of ambivalent possibility or contingency is an
important and fruitful idea. I think that it may be successfully
applied to refute determinism.

By determinism I understand a theory which states that if an
event E happens at the moment ¢, then it is true at any moment
earlier than ¢ that £ happens at the moment ¢ The strongest
argument in defence of this theory is based on the law of causality
which states that every event has a cause in some earlier event.
If so, it seems to be evident that all future events have causes
which exist today, and existed from eternity, and therefore all are
predetermined. _

The law of causality, however, understood in its full generality
should be regarded as merely a hypothesis. It is true, of course,
that astronomers, relying on some laws known to govern the
universe, are able to predict for years in advance the positions
and motions of heavenly bodies with considerable accuracy. Just
at the moment I finished writing the previous sentence a bee flew
humming past my ear. Am I to believe that this event too has
been predetermined from all eternity and by some unknown laws
governing the universe? To accept this would look more like
indulging in whimsical speculatlon than relying on scientifically
verifiable assertions.

But even if we accept the law of causality as generally true, the
argument given above is not conclusive. We may assume that
cvery event has a cause, and nothing happens by chance, yet the
chain of causes producing a future event, though infinite, does
not reach the present moment. This can be explained by a mathe-
matical analogy. Let us denote the present moment by o, the
moment of the future event by 1, and the moments of its causes
by fractions greater than 1. As there exists no smallest fraction
greater than 1, every event has a cause in an earlier event, but
the whole chain of these causes and effects has a limit at the
moment %, later than o.

We may therefore assume that the Aristotelian sea-fight of
tomorrow, though it will have a cause which itself will have cause
and so on, does not have a cause today. Similarly we may assume
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that nothing exists today which would prevent there being a sea-
fight tomorrow. If truth consists in the conformity of thought to
reality, we may say that those propositions are true today which
conform with today’s reality or with future reality in so far as that
is predetermined by causes existing today. As the sea-fight of
tomorrow is not real today, and its future existence or non-
existence has no real cause today, the proposition ‘There will be
a sea-fight tomorrow’ is today neither true nor false. We can only
say: ‘There may be a sea-fight tomorrow’ and ‘There may not
be a sea-fight tomorrow’. Tomorrow’s sea-fight is a contingent
event, and if there are such events, determinism is refuted.

INDEX

A4, constant functor, means ‘all—is’ or ‘belongs to all’, pp. 14, 77.

Aaa, axiom, p. 88; syllogistic law of identity independent of other theses, p. 45;
compared with the propositional law of identity, p. 48; used by Aristotle in a
demonstration but not stated explicitly, p. 149, n. 1.

Aab, means ‘all a is b’ or ‘b bélongs to all &', p. 7.

ab esse ad posse valet consequentia, known to Aristotle but not formulated explicitly,
pp. 135-6, n. 1.

ab oportere ad esse valet consequentia, known to Aristotle but not formulated explicitly,
p. 135.

ad falsum sequitur quodlibet, p. 179.

advvarov, impossible, p. 134.

Aenesidemus, pp. 58, 59, n. I.

affirmation, ‘stronger’ and ‘weaker’, pp. 205-6.

Alexander, on definition of the premiss, p. 4, n. 4; on indefinite premisses, p. 5,
n. 2; on variables, p. 8, n. 2; validity of moods not dependent on the shape of
variables, p. g, n. 2; his proof of conversion of the E-premiss, p. 10, n. I; on
non-methodically conclusive arguments of the Stoics, p. 15 n. ; on formulations
of the syllogisms with ‘to belong’ and ‘to be’, p. 17, n. 3; on the formalism of
the Stoics, p. 19 n.; knows the law of identity Aaa, p. 20, n. 1; quotes syllo-
gisms as rules of inference, p. 21 n.; on Theophrastus’ addition of five moods
to the first figure, p. 27, n. 2; his definition of the first figure different from the
Aristotelian, p. 27, n. 4; does there exist in the second figure a major and a
minor term ¢doe?, p. 31, nn. 1—2; his polemic against Herminus’ definition
of the major term, p. 31, n. 3; his own definition of the major term, p. 32, n. 1;
bBéois of terms in the three figures, p. 33, nn. 3-5; calls perfect syllogisms
dvamédeucror, p. 43, 0. 2 ; on equivalence of Oab and NAab, p. 46, n. 2 ; explains
proof by ecthesis of the conversion of the J-premiss, p. 6o, n. 2; ascribes per-
ceptual character to proofs by ecthesis, p. 60, n. 3; his criticism of the proof of
Darapti by ecthesis, p. 63, nn. 2-3; on the proof of Bocardo by ecthesis, p.
66 n.; ascribes the ‘synthetic theorem’ to Aristotle, p. 65 n.; misunderstands
rejection, p. 68, n. 1; his polemic dgainst Herminus on rejection, p. 70, n. 1;
on the difference of the categorical and hypothetical premisses, p. 132 n.;
states a general rule that existence implies possibility but not conversely, p.
136, n. 2; says that necessity implies existence but not conversely, p. 136, n. 4;
assimilates Aristotelian definition of contingency to that of possibility, p. 141 n. ;
his definition of possibility discussed on the ground of the L-basic modal logic,
p. 141 ; on syllogistic necessity, p. 144, n. 7; acquainted with the logic of the
Stoic-Megzaric school, p. 147; his interpretation of the necessary implication,
p- 147 n.; quotes Theophrastus on the meaning of necessity, p. 151, n. 2 on
the Aristotelian distinction between simple and conditional necessity, pp. 151,
152, . 1; his definition of contingency, p. 155, n. 1, 194; on the controversy
concerning moods with mixed premisses, pp. 184 n., 185, nn. 2—4, 187, n. 2;
his lost writings, p. 185, n. 4; on Theophrastus' doctrine concerning the con-
vertibility of universally-negative contingent propositions, p. 200, nn, 1-4; on
Aristotle’s doctrine concerning two ontological meanings of contingency,
p. 204, n. 2.

dpecos mpéraos, see immediate premiss,

Ammonius, on relation of logic to philosophy, p. 13 n.; scholium preserved with
his fragmnents, p. 39.

6307 P
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dvayxaiov, necessary, p. 134.

dvdyxn, see syllogistic necessity.

analytic propositions, defined, p. 149; cannot be regarded as necessary, p. 151.

Analytics, Prior, a hypothesis of Bochenski, p. 27; modal syllogistic probably in-
serted later, p. 131 n.; a hypothesis of Gohlke, p. 133.

and, propositional functor denoting conjunction, pp. 14, 77.

anerkennen, Brentano’s distinction of ‘anerkennen’ and ‘verwerfen’, p. 94 n.

antecedent of an implication, p. 78.

dmaywy?) els 76 ddvvarov, see reduction ad impossibile.

apodeictic principle of identity, its consequences, pp. 149-50.

apodeictic propositions, defined, p. 134.

a priori, the distinction between the a priori sciences and the g posteriori sciences dis-
cussed and criticized, pp. 205-7.

Apuleius, censured by Waitz for changing the order of premisses, p. 33, n. 1.

dpa, see therefore.

arguments, by substitution, p. 10; non-methodically conclusive of the Stoics,
p. 15 n.; é dmobéoews, p. 57.

Aristotle, formulates all syllogisms as implications, pp. 2, 20-21, 138; his definition
of ‘premiss’, p. 3, n. 3; his definition of ‘term’, p. 3, n. 5; épos different from
Begriff and definition (dpitouds), p. 3, n. 6; his division of premisses, p. 4, n. 1;
his definition of universal and singular terms, p. 4, n. 2; treats indefinite pre-
misses like particular, p. 5, n. 1; omits empty and singular terms in the syllo-
gistic, p. 4; why he omits singular terms, pp. 5-7; his division of things a
division of terms, p. 6; his logic not influenced by Plato’s philosophy, p. 6;
introduces variables into logic, p. 7; his term for syllogistic necessity corre-
sponds to a universal quantifier, pp. 11, 87, 144~5; his logic formal logic, pp.
12-14 ; not infected by psychology, p. 13; not formalistic, p. 16; his formula-
tions of syllogisms often inexact, p. 18; examples of inexactness, p. 18, n. 1;
his division of syllogistic figures, p. 23, n. 1; accepts as principle of division the
position of the middle term in premisses, p. 23, n. 2 ; omits in his diyision the
moods of the fourth figure, p. 23; knows and accepts all the moods of the
fourth figure, pp. 25, n. 2, 26 n.; gives practical indications how to find
premisses for a given conclusion, p. 24 n. ; defines wrongly the middle, major,
and minor terms in the first figure, p. 28, nn. 1-2; gives a correct definition of
the middle term for all figures, p. 29 n.; does not fix the order of premisses,
PP- 33, 34, nn. 1-8; accepts the perfect moods of the first figure as axioms,
P. 44; does not state the dictum de omni et nullo as the principle of syllogistic,
p- 47; reduces all imperfect moods to the universal moods of the first figure,
P- 45, n. 2; this reduction means proof, p. 44; his theory of proof unsatis-
factory, p. 44; uses laws of propositional logic intuitively in proving the
imperfect moods, p. 49; knows the law of transposition, p. 49, n. 3; and the
law of hypothetical syllogism, p. 49, n. 4; erroneously rejects a thesis of pro-
positional logic, p. 50, n. 1; his proofs by conversion imply laws of proposi-
tional logic, pp. 51-54; his usually given proofs of Baroco and Bocardo
unsatisfactory and not proofs by reductio ad impossibile, pp. 54—55; his charac-
terization of the proofs by reductio ad impossibile, p. 55 n. ; gives correct proofs of
Baroco and Bocardo implying laws of propositional logic, p. 57, n. 3; does not
understand arguments é¢ dmobéoews, p. 58; gives proofs by ecthesis for the
conversion of the I-premiss, p. 60, n. 1; for Darapti, p. 63, n. 1; for Bocardo,
p- 64 n.; his proofs by ecthesis may be explained by existential quantifiers,
pp- 61-66; rejects invalid syllogistic forms by exemplification through con-
crete terms, p. 67, n. 2; employs a rule of rejection, p. 70, n. 2; his syllogistic
misrepresented by some mathematical logicians, p. 130; why his modal logic
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little known, p. 133; his modal syllogistic has many faults, p. 133; it pre-
supposes a modal logic of propositions, p. 133; his four modal terms, p. 134;
mistakenly asserts that possibility implies non-necessity, p. 134 n. ; accepts that
necessity implies possibility, p. 134 ; gives correctly the relation of possibility
to necessity, p. 135, n. 3, and that of necessity to possibility, p. 135, n. 4 ; knows
two scholastic principles of modal logic but does not formulate them, pp.
135-6 ; presumes existence of asserted apodeictic propositions, pp. 136—7, 143 ;
his laws of extensionality for modal functors, p. 138, nn. 1-3; his proof of the
M-law of extensionality, p. 140 n.; his definition of contingency, pp. 140, 154,
n. 3; distinguishes between simple and conditional necessity, p. 144, n. 1;
mistakenly says that nothing follows necessarily from a single premiss, p. 144,
n. 3; omits the sign of necessity in valid moods, p. 146; his doctrine con-
cerning the necessary connexion between terms, pp. 148-9; his principle of
necessity, pp. 151, n. I, 152, n. 2; his defence of indeterministic view, p. 155,
nn. 2-3; two major difficulties in his propositional modal logic, p. 157; the
difficulties of his modal syllogistic can be explained on the basis of the four-
valued modal system, p. 16g; his acceptance of asserted apodeictic proposi-
tions in the light of the four-valued system of modal logic, pp. 169-70; his
acceptance of asserted contingent propositions in the light of the four-valued
system of modal logic, pp. 1747 ; his modal syllogistic less important than his
assertoric syllogistic, p. 181 ; states laws of convetsion for apodeictic proposi-
tions, p. 181, n. 1; his syllogisms with two apodeictic premisses analogous to
those with two assertoric ones, p. 182, n. 1; his doctrine concerning moods
with one apodeictic and one assertoric premiss, pp. 183-8, and its criticism by
Theophrastus and Eudemus, pp. 1845, 187-8; his controversy with Theo-
phrastus in the light of the accepted modal system, pp. 188-91 ; neglects moods
with possible premisses, p. 191; distinguishes two meanings of évdéyeofar,
P- 191, n. 2; treats laws of conversion for possible propositions with negligence,
p- 192; his introductory remark to thé theory of problematic syllogisms,
p- 193 n. ; denies convertibility of universally-negative contingent propositions,
P- 194, n. 1; his doctrine of ‘complementary conversion’, p. 195, n. 1; his
definition of contingency entails the :convertibility of universally-negative
contingent propositions, p. 196; his doctrine concerning the convertibility of
contingent propositions criticized from the point of view of the basic modal
logic, pp. 194—9; his moods with contingent premisses and conclusion are
wrong, pp. 201-2; his moods by ‘complementary conversion® should be re-
jected, pp. 202, 204 ; erroneously disregards singular propositions, p. 204 ; his
propositional modal logic, in contradistinction to his modal syllogistic, im-
portant for philosophy, p. 205; tacitly accepts the principle of bivalence,
p- 205 ; comes near to the conception of a many-valued logic, p. 205 ; his views
on necessity disastrous for philosophy, p. 205; his definition of contingency
wrong, p. 201, but his concept of contingency fruitful, p. 207.

arithmetical interpretation of syllogistic, pp. 126—9.

arithinctical laws, compared with syllogisms by the Stoics, p. 15.

dpxf, basic truth, p. 44.

amertion, introduced by Frege, accepted in Principia Mathematica, p. 94.

muacrtoric propositions, defined, p. 134.

amociative law of addition, without brackets, p. 78.

Averroes, on Galen’s fourth figure, p. 38.

axiomm, of the theory of deduction, p. 80; of the syllogistic, p. 88; of basic modal
logic, p. 147 ; of the theory of identity, p. 149 ; of the C-N—p~system, verified by a
matrix, p. 159; of the C-N-§—p-system, p. 162; of the C-O-5—p-system,
p. 162 n; of the four-valued system of modal logic, pp. 167-8.
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dtlwpa, Stoic term for proposition, p. 82 n.

Barbara, axiom, p. 88; perfect syllogisth, pp. 44-45; formulated by Aristotle, p. 3;
with transposed premisses and without the sign of necessity, p. 10, n. 5; its
weakness in the system, p. 94; equivalent to a purely implicational formula,
p. 182.

Barbari, thesis, p. 92.

Baroco, thesis, p. 94 ; formulated by Aristotle with transposed premisses, p. 34, N. 73
its unsatisfactory proof by reductio ad impossibile, pp. 55-56 ; how Baroco should
be proved by reductio ad impessibile, p. 56; correct proof given by Aristotle,
p- 57, n. 3; with two apodeictic premisses, should be proved by ecthesis,
p. 182.

basic modal logic, definition of, p. 137; axioms of, p. 137; is an incomplete
modal system, p. 137.

basis, of syllogistic, p. 100; not sufficient without Shupecki’s rule of rejection, p. 101.

Becker, A., pp. 154, . 2, 181, n. 2, 198 n.

Bekker, I., p. 24 n.

belong, Smdpxew, p. 14 n.; used by Aristotle in abstract syllogisms with variables
instead of elvar in concrete examples, p. 17; explanation of this fact by Alex-
ander, p. 17, n. 3.

bivalence, principle of, p. 82; tacitly accepted by Aristotle, p. 205 ; Lukasiewicz on
its history in antiquity, p. 205 n.

Bocardo, thesis, p. 94; formulated by Aristotle with transposed premisses, pp. 34,
64 n.; proved by him by ecthesis, p. 64; its proof by existential quantifiers,
pp. 65-66; the latter proof in symbolic form, pp. 85-86; with two apodeictic
premisses, should be proved by ecthesis, p. 182.

Bochenski, I. M., his hypothesis on composition of the Prior dnalytics, p. 27-

Boehner, Ph,, p. 197, n. 3.

brackets, notation without, pp. 78-79.

Bramantip, thesis, p. 92; called by Aristotle dvrearpappévos aulloyiopnds, pp. 24 .,
25; proved by him, p. 26 n.

C, sign of implication ‘if—then’, p. 78; its two-valued matrix, p. 158; its four-
valued matrix, pp. 160, 168; its eight-valued matrix, p. 179

Camenes, thesis, p. 93; proved by Aristotle, p. 26 n.

Camenop, thesis, p. 93.

Camestres, thesis, p. 93 ; formulated by Aristotle with transposed premisses, p. 34,
n. 6.

Camestrop, thesis, p. 93.

Cartesian principle, ‘cogito, ergo sum’, not a principle but an inference, p. 21.

categorical system, p. 99.

Celarent, thesis, p. 92; perfect syllogism, p. 44.

Celaront, thesis, p. 93.

Cesare, thesis, p. 92.

Cesaro, thesis, p. 93- “

chain, p. 124.

Chrysippus, p. 82 n.

Cicero, p. 82 n.

classical calculus of propositions, should be preserved in any modal logic, p. 167;
some of its principles opposed at first then universally accepted, pp. 178-9;
see also theory of deduction.

Clavius, commentator on Euclid, p. 80; law or principle of, pp. 80, 165.

C-N-3—p-system, explained, pp. 160-3 ; some of its important theses, p. 163 ; method
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of verifying its expressions, p. 163; its single axiom, p. 162 ; its rule of substitu-
tion, pp. 161~2; its rule of definitions, pp. 163-6.

C-N-p-system, how to verify its expressions by means of the matrix method,
pp. 158-9; see also classical calculus of propositions.

C-0-8-p-system, its axiom, p. 162 n.

commutation, law of, pp. 82, 89, 107.

commutative law of conjunction, p. 61 ; formulated in symbols, p. 84.

compound law of transposition, known to Aristotle, pp. 55-57; proved by the
Stoics as rule of inference, p. 59, n. 1.

compound syllogisms of four terms, investigated by Galen, p. 39, n. 3; divided by
him into four figures, p. 40 n,

conjunction, definition of, p. 815 its definition as truth-function, p. 83.

consistency of the syllogistic, proof of, p. 8g.

constant functors, Aristotelian: 4, E, [, 0, p. 77; propositional: C, K, N, p. 78,
Q,pp. 108, 135, n. 5, H, p. 164; propositional of one argument: V, S8, N, F,
p. 163; modal: L, M, p. 134, T, p. 154, W, p. 172, X, Y, pp. 175-6; of
identity: ¥, p. 149.

contingency, defined by Aristotle, pp. 140, 154, 1. 3, 194; defined by Alexander,
p. 155, 0. 1; Aristotle’s definition leads to difficulties, p. 174; X-contingency
and Y-contingency defined within the four-valued modal system, pp. 175-6;
the law of ‘double contingency’, p. 178; two ontological meanings of, dis-
tinguished by Aristotle, p. 203, n. 1; Alexander's discussion of this distinction,
p. 203, n. 2; Aristotelian idea of, fruitful, p. 207.

conversion, complementary, explained, p. 195; cannot be admitted, pp. 200-1.

conversion of apodeictic propositions, analogous to that of assertoric ones, p.
181, n. 1.

conversion of the 4-premiss, thesis, p. g1 ; mistakenly regarded as wrong, p. 130.

conversion of the E-premiss, thesis, p. 91 ; proved syllogistically by Alexander, p. 10.

conversion of the I-premiss, thesis, p. 91 ; proved by Aristotle by ecthesis, p. 6o,
n. 1; proof by existential quantifiers, pp. 61-62; the latter proof in symbols,
pp- 84-85.

conversion of the O-premiss, invalid, p. 11, n. 1.

conversion of the syllogism, p. 57.

Copleston, Fr., 8.J., pp. 1, n. 1, 12.

Couturat, L., p. 126 n.

Cpp, propositional law of identity, different from Aaa, p. 48; deduced within the
C-N-8—p-system, pp. 162-3.

Cpq, implication means ‘if p then ¢, p. 78.

5, variable functor of one propositional variable, its range of values explained,
pp- 161-2.

Darapti, thesis, p. 92; proved by Aristotle by ecthesis, p. 63, n. 1; may be proved
by existential quantifiers, pp. 63-64.

Darii, thesis, p. 91 ; perfect syllogism, p. 44; formulated by Aristotle with trans-
posed premisses, p. 34, . 5.

Datisi, axiom, p. 88; formulated by Aristotle with transposed premisses, p. 34, 1. 3.

3-definitions, explained, pp. 163-6 ; 8-definition of H, p. 164 ; 3-definitions of L and
M, p. 168 8-definitions of X and 7, p. 175.

decision, the problem of, solved for the C-N—p-system of the theory of deduction,
pp- 112-18; for the syllogistic, pp. 120-6.

deduction of syllogistical laws, pp. 91-94.

deductive equivalence, relative to some theses, p. 107; defined, p. 110; different
from ordinary equivalence, p. 110; requires rejection, pp. 109-10.




214 INDEX

definitions, two ways of defining functors, p. 81 in the Principia Mathematica, pp.
163-4; in Leéniewski’s system, p. 164, in the C-N-8—p-system, 164-6 ; sce also
3-definitions.

De Morgan, A, p. 197, n. 3.

derivational line, p. 81.

detachment, rule of, modus ponens of the Stoics, p. 16.

determinism, refutation of, pp. 207-8.

d-expressions, the method of verifying, p. 163.

dictum de omni et nullo, not a principle of syllogistic, p. 46; not formulated by
Aristotle, p. 47.

Dimaris, thesis, p. 92; proved by Aristotle, p. 26 n.

Disamis, thesis, p. g2; formulated by Aristotle with transposed premisses, p. 70.;
proved by him by conversion of the conclusion of Darii, pp. 52-53.

Duns Scotus, law or principle of| pp- 80, 137, 162, 165; his principle is not a
tautology, p. 165.

Suvvardy, possible, p. 134.

E, constant functor, means ‘no—is’ or ‘belongs to no’, pp. 14, 77.

Eab, means ‘no a is &’ or ‘b belongs to no a’, p. 77.

ecthesis, explained by existential quantifiers, p. 61 ; proofs by ecthesis, PpP. 59-67;
perceptual character ascribed to them by Alexander, pp. 60, n. 3, 63, nn, 2-3,
67, n. 1.

Encyclopaedia Britannica, 11th edition, on logic of the Stoics, p. 49.

evdéxeaar, its ambiguous use in Aristotle, p. 191, nn. 2-4.

év8exduevoy, contingent, p. 134, see contingency.

equivalence, of Eab and Nlab, p. 88; different from deductive equivalence, p. 110.

Euclid, employs the law of Clavius, p- 50.

Eudemus, pp. 38, n. ¢, 133, 152, 172, 184 n., 185, 187, 191, 193, 200, n. 1.

Eulerian diagrams, applied to a non-Aristotelian system of syllogistic, p. gg9; to the
problem of undecidable expressions, p. 101,

existential quantifiers, explained, pp. 61, 84; rules of, p. 62; used in proofs by
=cthesis, pp. 61-66.

ex mere negativis nihil sequitur, not generally true, p. 103; connected with Stupecki’s
rule of rejection, p. 103.

exportation, law of, pp. 86, 8g, 182.

exposition, see ecthesis.

expression, significant, p. 80; elementary, p. 103; simple, p. 103.

extensionality, laws of, for modal functors, pp. 138, nn. 1-3, 139, 143, 147 ; general
law of, p. 139; M-law of, proved by Aristotle and by Alexander, pp. 140-3.

factor, principle of the, pp. 52-53.

Felapton, thesis, p. 93; formulated by Aristotle with transposed premisses, p. g, n. 4.

Ferison, thesis, p. 93.

Fesapo, thesis, p. 93; proved by Aristotle, p. 25, n. 2.

Festino, thesis, p. 93; proved by Aristotle, p. 51, n. 1.

figures of the syllogism, division into figures has a practical aim, p- 23 ; description
of the three Aristotelian figures, P- 23, n. 1; position of the middle term in
premisses principle of division into figures, p- 23, n. 2; Maier’s opinion criti-
cized, pp. 36-38.

form, of the Aristotelian syllogism, pp. 1-3; of thought, p. 12; of syllogism as
opposed to its matter, p. 14; consists of number and disposition of variables
and of logical constants, p. 14.

formalism, pp. 15-16.
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fourth figure, omitted by Aristotle, p. 27; its moods accepted by Aristotle, p. 27;

not invented by Galen, p. 41; opinions of Prantl and Maier criticized, pp. 35,
7 .

four-?/alued system of modal logic, its primitive terms, pp. 167-8; its axioms,
p- 168; its rules of inference, p. 168; its adequate matrix, p. 168; some of its
odd consequences, p. 178; a method of extending it into higher systems, pp.
1 0.

Frcge,7?}_.? founder of modern propositional logic, p. 48; introduced assertion into
logic, p. 94.

Fresison, thesis, p. 93; proved by Aristotle, p. 25, n. 2.

functorial propositions, have no subject or predicates, p. 132. N

functors, of syllogistic, 77; modal, 134; variable, introduced into proposm.onal
logic by Leéniewski, p. 161; the meaning of the simplest expression with a
variable functor of one propositional argument, pp. 161-2.

Galen, divided compound syllogisms of four terms into four figures, pp. 38—40.
Gerhardt, p. 151, n. 3. ] ) )
Gohlke, P., his hypothesis concerning the composition of the Prior Analytics, p.

133, n. 1.

H, sign of alternation, ‘cither—or’, its definition, p. 164; its 8-definition, p. 165.'

Herminus, modifies the Aristotelian definition of the major term, p. 31, n. 3; mis-
understands rejection, p. o, n. 1.

homogeneous terms, required by the syllogistic, p. 7.

U7, matter of the syllogism as opposed to its form, p. 14.

vmofdAXew, term used by Philoponus for substitution, p. 8.

hypothetical syllogism, law of, known to Aristotle, p. 49, n. 4; formulated, p. 51;
in symbols, p. 79.

1, constant functor, means ‘some—is’ or ‘belongs to some’, pp. 14, 77.

laa, law of identity, axiom, p. 88.

{ab, means ‘some a is b’ or ‘b belongs to some @’, p. 77. o

identity, laws of, syllogistic Aaz and laa, p. 88 ; propositional, p. 48; principle of,
P- 149; apodeictic principle of, 149 ; axioms of the theory of, p. 149 the law of,
analytic, p. 149; the law of, used by Aristotle in a demonstration, P- 149, 1. 2.

immediate premiss, duecos mpdraais, without a middle term between its subject
and predicate, p. 44.

imperfect syllogisms, moods of the second and third figure, p. 43. )

implication, ‘if p, then ¢', p. 78; defined as truth function b.y Philo of Megara,
pp- 83, 146, 158; its relation to the corresponding rule of inference, p. 22.

importation, law of, pp. 86, 182.

indefinite premiss, pp. 4-5; treated as particular, p. 5, nn. 1-2.

indemonstrable propositions, dvamddecrot, p. 43.

indemonytrable syllogisms of the Stoics, first, p. 19; second and fhird, p- 58.

independence, proofs of independence of the axioms of syllogistic, pp. 8g-9o.

mexactness, of Aristotelian formulations, p. 18, n. 1.

inlerence, not @ proposition, p. 21.
imfinitely many-valued modal system, p. 180.
mterpretation variables, p. 170.

Joannexs Lialus, p.ogg, o1,

A, wign ol conjunction *and’, p. 78; its four-valued matrix, 175.
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Kalbfleisch, K., p. 38.

Kant, I., p. 132.

Kapp, E., p. 1, n. 1; criticizes Prantl, p. 3, n. 6.

Keynes, J. N., on singular propositions, p. 5, n. 3; on the major and minor term,
p. 30 n.; on reduction of syllogisms to the first figure, p. 44; on dictum de omni
et nullo, p. 47.

Kochalsky, p. 59, n. 1.

Kpq, conjunction, means ‘¢ and ¢’, p. 78; its definition by C and N, p. 81 ; defined
as truth function, p. 83.

L, constant functor, means ‘it is necessary that’, p. 134; its matrix in the four-
valued modal system, p. 168.

Laws, of the theory of deduction: of commutation, p. 823 commutative law of
conjunction, p. 61 ; compound law of transpoesition, p. 56; of exportation, pp.
86, 89, 182 ; of importation, 86, 182 ; of hypothetical syllogism, p. 51 ; of iden-
tity, p. 48; of Clavius, pp. 8o, 165; of Duns Scotus, pp. 8o, 137, 162, 165; of
De Morgan or of Ockham, p. 197, n. 3; of the syllogistic: pp. 91-94; of
extensionality for modal functors: in a wider sense, pp. 13g—40; strict,
Pp- 13g-40; with strong interpretation, pp. 139, 147; with weak inter-
pretation, pp. 143, 147; for L and M, with strong interpretation, deduc-
ible in the four-valued system of modal logic, p. 169; of identity: used by
Aristotle but not stated explicitly, p. 149, n. 2; its analytic character, p. 149;
of ‘double contingency’, p. 178; of contradiction and excluded middle for
X-contingency’ and Z-contingency, p. 176.

Leibniz, G. W., his arithmetical interpretation of the syllogistic, pp. 126-9; quotes
a formulation of the principle of necessity, p. 151.

Lesniewski, S., a thesis of his protothetic, p. 156; introduces variable functors into
propositional logic, p. 161; his rule for verifying expressions with variable
functors of propositional arguments, p. 163 ; his method of writing definitions,

. 164.

Lewil.:, C?qu., introduces ‘strict implication’ into symbolic logic, p. 147; his strict
implication differs from Alexander’s necessary implication, p. 147; 2 detail
in his modal systems criticized, pp. 177-8. ‘ .

logic, its relation to psychology, pp. 12-13; to philosophy, p. 13; Aristotelian logic
a theory of the functors 4, E, I, O, p. 14.

logic of propositions, different from the logic of terms, p. 48; invented by the Stoics,
p- 48; in its modern form founded by Frege, p. 48.

Lukasiewicz, J., on axioms of the syllogistic, pp. 46, n. 3, g1 n.; on logic of the
Stoics, p. 48 n.; his system of modal logic, p. 133, n. 2; on variable functors,
p. 161 n.; on a three-valued system of modal logic, p. 166 n.; on a problem of
Aristotle’s modal syllogistic, p. 183, n. 1; on the principle of bivalence,

p. 205 n.

M, constant functor, means ‘it is possible that', p. 134; its matrix in the four-
valued modal system, p. 167; its ‘twin’ functor, pp. 1724.

Maier, H., misunderstands syllogistic necessity, pp. 11, n. 2, 12, n. 13 his philo-
sophic speculations on this subject refuted, pp. 11-12; does not disti_nguish
the Aristotelian syllogism from the traditional, p. 22 n.; accepts the mistaken
definition of Aristotle of the major, minor, and middle term, p. 28, n. 3; re-
gards the order of premisses as fixed, p. 33, n. 2; accepts extensional relations
of terms as principle of division of syllogisms into figures, pp. 36-38; accepts a
fourth figure with only two moods, p. 37; believes in existence of one prin-
ciple of syllogistic, p. 47; does not understand the logic of the Stoics, p. 49;
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does not understand the implication ‘if not-p, then p’, p. 50; accepts Alex-
ander’s interpretation of proofs by ecthesis, p. 60, n. 4; does not understand
proofs of rejection, p. 68.

major term, predicate of the conclusion, p. 32 ; wrongly defined by Aristotle, p. 28,
n. 2; Aristotle’s definition modified by Herminus, p. 31, n. 3; Alexander’s
opinion on this subject untenable, pp. 31-32; classical definition given by
Philoponus, p. 32, n. 2.

material implication, defined by Philo of Megara, pp. 146-7.

matrix, two-valued, for C-N-p-system, p. 158 ; four-valued, for same, p. 160; two-
valued, for the four functors of one argument, p. 163 ; four-valued, adequate,
for C, N, M, L, p. 168 ; four-valued, for W, p. 172; four-valued, for X, p. 175;
four-valued, for X and 7, p. 176; eight-valued, for C, N, M, p. 179.

matrix method, explained, pp. 158-60; known to Lukasiewicz through Peirce and
Schroder, p. 166; method of ‘multiplying’ matrices explained, pp. 159-60.

Meredith, C. A., on number of figures and moods for n terms, p. 42; on extended
systems of the propositional calculus, pp. 160, 162 n.

middle term, wrongly defined by Aristotle for the first figure, p. 28, n. 1; rightly
defined for all figures, p. 29 n.

minor term, subject of the conclusion, p. 32; wrongly defined by Aristotle, p. 28,
n. 2; classical definition given by Philoponus, p. 32, n. 2.

M-law of extensionality, stronger, enables us to establish the theory of syllogisms
with possible premisses, p. 192.

modal functions, p. 124.

modal functors, p. 134; different from any of the four functors of the two-valued
calculus, p. 166; all combinations of, reducible to four irreducible combina-
tions, p. 179.

modal logic, of propositions, presupposed by any modal logic of terms, p. 133; its
fundamental formulae, pp. 134-5; two scholastic principles of, pp. 135-6;
basic, p. 137; four-valued system of, developed, pp. 166-9; three-valued
system of, unsatisfactory, pp. 166 n., 167; eight-valued system of, outlined,
p. 179; infinitely many-valued system of, p. 180.

modal syllogistic, less important than assertoric syllogistic, p. 181; contains mis-
takes, p. 133 ; should be rebuilt, p. 201.

modus ponens, first indemonstrable of the Stoics, p. 19; rule of detachment, pp. 16, 81.

moods, with two apodeictic *premisses, pp. 181-3; with one apodeictic and one
assertoric premiss, pp. 183-6; with possible premisses, neglected in favour of
moods with contingent premisses, p. 191; with one problematic and one
apodeictic premiss, yielding apodeictic conclusions, p. 193; with contingent
premisses, not likely to find a useful application, p. 201; with problematic
premisses, a method of correcting them, p. 204 ; obtained by complementary
conversion, must be rejected.

Mutschmann, p. 59, n. 1.

N, sign of negation ‘it is not true that’ or ‘not’, p. 78.

necessary connexions, of propositions, pp. 143-6; of terms, 148-9.

necessity, its relation to possibility expressed symbolically, p. 135; simple and
conditional, pp. 144, n. 1, 151-2; hypothetical, p. 152 ; Aristotle’s principle of,
pp. 15145 principle of, interpreted as rule, pp. 152—3; Aristotle’s views on,
dinastrous for philosophy, p. 205 ; see syllogistic necessity.

negation, propositional, denoted by odx¢ by the Stoics, p. 78, n. 1.

negative terms, excluded by Aristotle from syllogistic, p. 72.

number of ayllogistic forms and valid moods, p. g6.

number of undecidable expressions, infinite without Stupecki’s rule, p. 103.
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number of valid moods and figures for n terms, p. 42.

0, constant functor, means ‘some—is not’ or ‘does not belong to some’, pp. 14, 77.
Oab, means ‘some a is not &’ or ‘b does not belong to some a’, p. 77.

Ockham, his laws, p. 197, n. 3.

order of premisses, pp. 32-34; not fixed by Aristotle, pp. 32-34.

odx{, propositional negation of the Stoics, p. 78, n. 1.

Oxford Translation of Aristotle’s works, p. vii.

particular, premiss, p. 4; quantifier, see quantifiers.

Peano, G., p. 52.

peiorem sequitur semper conclusio partem, pp. 184, 193.

Peirce, C. S., invented a method of verifying theses of the theory of deduction,
pp- 82, 166.

perfect syllogisms, moods of the first figure, pp. 43-45.

Peripatetics, a syllogism used by them, p. 1; on relation of logic to philosophy,
p. 13 n.; not formalists, p. 16.

Philo of Megara, defined implication as truth function, pp. 83 n., 146-7, 158.

Philoponus, John, on importance of variables, p. 8, n. 3; uses dmofdAew to denote
substitution, p. 8; his definition of the major and the minor term, p. 32, n. 2;
the second figure has a major and minor term by convention, p. 32, n. 3.

Plato, his supposed influence on Aristotle’s logic, pp. 6, 205 ; examples of compound
syllogisms, p. 40.

Platonists, on relation of logic to philosophy, p. 13.

possibility, its relation to necessity expressed symbolically, p. 135; in the four-
valued system of modal logic, represented by ‘twin’ functors, pp. 167, 172;
their four-valued matrices, p. 172; their use for defining contingency, pp.
175-6. :

Prantl7,5C., criticized by Kapp, p. 3, n. 6; does not distinguish the Aristotelian
syllogism from the traditional, pp. 22, 35; his mistaken opinion on the fourth
figure, p. 35, nn. 1, 3; his ignorance of logic, pp. 35-36 ; quotes Averroes, p. 38.

predicate, together with subject matter of the syllogism, p. 14; put by Aristotle in
the first place in abstract syllogisms, p. 3; predicate of conclusion = major
tefm, p. 32; prejudice that every proposition has a subject and a predicate,

. 131,

prcm]:i)ss, :zicﬁncd by Aristotle, p. 3; divided by him into universal, particular, and
indefinite, p. 4.

primitive terms, of the syllogistic, p. 45.

Principia Mathematica, by A. N. Whitehead and B. Russell, pp. 48, 50, n. 2, 51, n. 2,
52, n. 1, 56, n. 2, 61 n., 163, 165.

principle, of division of syllogisms into figures, p. 23 ; of identity, apodeictic, must
be rejected, p. 190; of tautology, p. 165.

Prior, A. N, p. 171 n.

proof, Aristotle’s theory of proof unsatisfactory, p. 44; proofs of syllogistic moods
by conversion, pp. 51-54 ; by reductio ad impossibile, pp. 54—59; by ecthesis, pp.
59-67; how proofs should be performed by reductio ad impossibile, p. 56 ; proof
of decision for the theory of deduction, pp. 112-18; for the syllogistic, pp. 120~
6; of L-law of extensionality, p. 139; proof of CNLNpMp, pp. 141—2; proof of
Cpp in the C-N-3—p-system, pp. 162-3; proof that no apodeictic proposi-
tion is true, pp. 16g—70 ; proof of moods with one apodeictic and one assertoric
premiss, pp. 188-9.

proposition, mpdracs of the Peripatetics, p. 3; dflwpa of the Stoics, p. 82 n.;
Alexander on the difference of categorical and hypothetical propositions,
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p. 132 n.; functorial propositions have no subjects or predicates, p. 132;
apodeictic, p. 134 ; problematic, p. 134 ; assertoric, p. 134 ; analytic, definition
and examples of, p. 149.

propositional function, pp. 94-95.

Q,sign of equivalence, p. 108; means ‘if and only if’, is employed instead of the
usual ‘E’, p. 135, n. 5.

quantified expressions, explained, p. 84.

quantifiers, universal denoted by II, existential or particular denoted by £, p. 84;
rules of existential quantifiers, p. 62; rules of universal quantifiers, p. 86;
universal quantifiers correspond to the syllogistic necessity, pp. 11, 87;
existential quantifiers may explain proofs by ecthesis, pp. 61-66; universal
quantifiers may be omitted at the head of an asserted formula, p. 145.

Quine, W. V., on consequences of the apodeictic principle of identity, p. 150 n.,
his example of the difficulty resulting from the application of modal logic to
the theory of identity, p. 171; solution of the difficulty, pp. 171-2.

RE, rule allowing to replace NI by E and conversely, p. 88.

reductio ad absurdum, see reductio ad impossibile.

reductio ad impossibile, characterized by Aristotle, p. 55 n.; proofs by, pp. 54-59;
unsatisfactory for Baroco and Bocardo, pp. 5455, 182.

reduction of axioms to a minimum, has a predecessor in Aristotle, p. 45.

reduction of syllogistical moods to the first figure, means proof, p. 44; Keynes’s
opinion criticized, p. 44.

reduction to elementary expressions, in the theory of deduction, pp. 111-15; in the
syllogistic, pp. 118-20.

rejected expressions, denoted by an asterisk, pp. g6, 136.

rejection, used by Aristotle by exemplification through concrete terms, p. 67, n. 2;
a rule of rejection stated by him, p. 70, n. 2; its meaning explained, p. ¢6; its
rules, pp. 71-72, 96; how these rules work, pp. 96—97; reasons for its intro-
duction into the theory of deduction, p. 10g.

RO, rule allowing to replace N4 by O and conversely, p. 88.

Ross, Sir David, pp. vii, viii, 8, n. 1, 24 n., 46, n. 1, 47, n. 2, 154, nn. -2, 185,
n. 5, 191, 0. I, 195, n. 2, 203, n. 2, 204 n.

RS, Shupecki’s rule of rejection, p. 104.

rule, ‘o, therefore it is necessary that a’, accepted by some modern logicians, p. 153.

rule for the verification of 8-expressions, p. 163.

rule of detachment—modus ponens of the Stoics, pp. 16, 19, 81.

rule of Stupecki, formulated, pp. 75, 103 ; explained, p. 104 ; employed, pp. 105-6.

rule of substitution for variable functors, explained, pp. 161-2.

rules of inferente, different from propositions, p. 21 ; for asserted expressions: by
substitution, pp. 8o, 88; by detachment, pp. 81, 88; for rejected expressions :
by substitution, pp. 72, g6; by detachment, pp. 71, g6.

Russell, B., p. 1, n. 1; wrongly criticizes Aristotle, p. 1, n. 3; see also Principia
Mathematica.

Scholz, ., p. ix; on Galen’s authorship of the fourth figure, p. 39.

Schrider, F., p. 166.

wea-hght, pp. 152, 155, 175, 178, 207-8.

Sextus Empiricus, quotes a Peripatetic syllogism, p. 1, n. 2; gives the Stoic proof of
the compound law of transposition, p. 59, n. 1; quotes Philo’s definition of
implication, p. 83 n.

Sierpitiski, W., p. 205.
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significant expression, defined inductively, p. 8o.

simple expressions of the syllogistic, rejected, pp. 120~1.

simplification, law of, p. 8g.

singular terms, defined by Aristotle, p. 4, n. 2; why omitted in his syllogistic,
pp- 5-7-

Stupecki, J., proves that the number of undecidable expressions of the syllogistic is
infinite, p. 101 ; states a new rule of rejection, p. 103 ; shows that the Leibniz-
ian arithmetical interpretation of the syllogistic verifies his rule, p. 128 n.; his
paper quoted, p. 76 n.

Solmsen, Fr., his view on conversion of the conclusion refuted, p. 25, n. 1.

square of opposition, not mentioned in the Analytics, pp. 20, 45.

Stoics, on exchange of equivalent terms in syllogisms, pp. 18, 19 n.; their logic
formalistic, p. 19; their logic a logic of propositions, pp. 48, 205; a system of
rules of inference, p. 48; misunderstood by modern commentators, p. 49;
denote variables by ordinal numbers, p. 58, n. 4; use odx{ as propositional
negation, p. 78, n. 1; adopt Philo’s definition of implication, p. 83; state the
principle of bivalence, p. 82 n.; modus ponens, the first indemonstrable syllo-
gism of the Stoics, p. 19; the second and third indemonstrable syllogisms,
p. 58; their proof of the compound law of transposition; the logic of the
Stoic—Megaric school well known to Alexander, p. 147.

aroxeia, letters, variables, p. 8.

strict implication, p. 147.

subject, together with predicate matter of the syllogism, p. 14; put by Aristotle in
the second place in abstract syllogisms, p. 3; subject of the conclusion =
minor term, p. 32 ; propositions without subject or predicate, pp. 44, 131.

substitution, an ancient argument by substitution, p. 10; term used for substitution
by Philoponus, p. 8, n. 3; rule of substitution for asserted expressions, p. 80;
for rejected expressions, pp. 72, 96; for 3-expressions, pp. 161-2.

substitution-variables, distinct from interpretation-variables, p. 170.

syllogism, a Peripatetic, p. 1; in concrete terms given by Aristotle, p. 2 ; form of the
Aristotelian syllogism, pp. 1-3; different from the traditional logically and in
style, p. 3; differently formulated in variables and in concrete terms, p. 17;
compared by the Stoics with an arithmetical law, p. 15; in purely implica-
tional¥orm, pp. 22, 182; in symbolic form, p. 78; modal syllogisms dealt with
by Aristotle after the pattern of his assertoric syllogisms, p. 181.

syllogistic necessity, its sign sometimes omitted by Aristotle, p. 10, n. 5; its meaning
explained on occasion of the invalid conversion of the O-premiss, p. 11;
wrongly explained by Maier, pp. 11-12; corresponds to a universal quanti-
fier, p. 11; proof of this correspondence in symbolic form, pp. 86-87; can be
eliminated from syllogistic laws, pp. 144-5.

symbolic notation, without brackets, pp. 78-79.

synthetic theorem, ascribed by Alexander to Aristotle, p. 65 n.; in symbolic
form, p. 85.

T, constant functor, means ‘it is contingent that’, p. 154 ; not suitable for the pur-
pose of interpreting contingency in Aristotle’s sense, p. 199.

Tarski, A., pp. 78, n. 2, 107 n.

tautology, principle of, p. 165.

term, part of a premiss, p. 3; universal, singular, empty, p. 4; different from
Begriff, p. 3, n. 6; a division of terms, pp. 5-6 ; syllogistic requires homogeneous
terms, p. 7 ; major, minor, and middle term, pp. 28~30.

Theodicee, by Leibniz, p. 151.

Theophrastus, adds the moods of the fourth figure to the first, pp. 27, n. 2, 38, n. 4;
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probably defined the first figure differently from Aristotle, p. 27; makes
corrections to Aristotle’s modal syllogistic, p. 133 ; on the meaning of necessity,
P, 151, n. 2; makes explicit the distinction between simple and conditional
necessity, pp. 151-2; his doctrine concerning moods with mixed premisses,
pPpP- 184 n., 185, 187-8, 191 ; his peiorem rule violated by a modal mood, p. 193;
accepts the convertibility of universally-negative contingent propositions, p. 200,
nn. 1—4.

theorem of reduction, proved for the theory of deduction, pp. 111~15; for syllo-
gistic, pp. 118-20.

theory of deduction, the most elementary part of the logic of propositions, pp. 49,
79-83 ; invented by the Stoics as a system of rules of inference, p. 48; founded
in modern times by Frege, p. 48; placed at the head of mathematics in Prin-
cipia Mathematica, p. 48 ; reasons for introducing rejection into this theory, p. 10g.

theory of identity, axioms of, p. 149; difficulties resulting from the application of
modal logic to the theory of identity explained, pp. 170-1.

theory of probability, may have a link with modal logics, p. 180.

therefore, sign of inference, pp. 2, 21.

#éais, order of terms adopted by Aristotle for the three figures, p. 33, nn. 3-5.

thesis, true proposition of a deductive system, p. 20; different from a rule of in-
ference, p. 21; relation of an implicational thesis to the corresponding rule of
inference, p. 22.

Thomas, Ivo, O.P., p. 149, n. 2.

traditional syllogism, a rule of inference, pp. 21-23 ; different from the Aristotelian,
p- 21; neither true nor false, only valid or invalid, p. 21; weaker than the
Aristotelian syllogism, pp. 22-23.

transposition, law of, known to Aristotle, p. 49, n. 3; its symbolic form, p. 8g;
compound law of transposition, proved by the Stoics, p. 59, n. 1.

Trendelenburg, F. A., does not distinguish the Aristotelian syllogism from the
traditional, p. 22; on the order of premisses, p. 33, n. 2; on the principle of
division of syllogisms into figures, p. 36.

twin contingencies, p. 176.

twin necessities, p. 174.

twin possibilities, explained, pp. 172—4.

Ueberweg, Fr., pp. 36, 39.

undecidable expressions, p. 100; infinite in number, p. 103.

universal premiss, p. 4.

universal term, p. 4.

unumgquodque, quando est, oportet esse, a principle of necessity, p. 151.

utraque si praemissa neget nil inde sequetur, connected with Shupecki’s rule of rejection,

p. 103.
Vailati, G., p. 50, n. 4.

validity, property of inferences and rules of inference, p. 21.
variables, introduced into logic by Aristotle, pp. 7-8; truth of syllogisms does not

depend on shape of variables, p. g, n. 2; identification of variables not known
1o Aristotle, p. g; their extensional relations cannot be determined, p. 29.

verilication of d-cxpressions, explained, p. 163.

verum sequitur ad quodlibet, p. 179.

von Wright, G 1L, p. 153 n.

W, constant functor, its four-valued matrix, p. 172; its relation to its twin functor
M, pp. 172 4 s role in defining contingency, pp. 175-6.
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Waitz, Th., p. vii; does not distinguish the Aristotelian syllogism from the tradi-
tional, p. 22; a textual criticism, p. 24 n.; censures Apuleius for changing the
order of premisses, p. 33, n. I.

Wallies, M., p. 39-

Whitehead, A. N., see Principia Mathematica.

X, constant functor, its four-valued matrix, p. 176; its $-definition, p. 175; its
relation to its twin functor ¥ explained, pp- 175-7-

7, constant functor, its four-valued matrix, p. 176; its 3-definition, p. 175, its

relation to its twin functor X explained, pp. 175-7

Zeller, E., p. 49-




