CHAPTER V
THE PROBLEM OF DECISION

§ 29. The number of undecidable expressions

I TAkE as the basis of my present investigation the following
fundamental elements of the syllogistic:

(1) The four asserted axioms 1—4.

(2) The rule (a) of substitution and the rule () of detachment
for the asserted expressions.

(3) The two rejected axioms *59 and *59a.

(4) The rule (¢) of detachment and the rule (d) of substitution
for the rejected expressions.

To this system of axioms and rules the theory of deduction must
be added as the auxiliary theory. From the axioms and rules of
assertion there can be derived all the known theses of the
Aristotelian logic, i.e. the laws of the square of opposition,
the laws of conversion, and all the valid syllogistic moods;
on the basis of the axioms and rules of rejection all the invalid
syllogistical forms can be rejected. But, as we have already seen,
this system of axioms and rules does not suffice to describe the
Aristotelian syllogistic adequately, because there exist signifi-
cant expressions, for instance ClabCNAabAba, which can neither
be proved by our axioms and rules of assertion nor disproved
by our axioms and rules of rejection. I call such expressions
undecidable with respect to our basis. Undecidable expressions
may be either true in the Aristotelian logic or false. The expres-
sion ClabCNAabAba is, of course, false.

There are two questions we have to settle on this basis in
order to solve the problem of decision. The first question is, Is
the number of undecidable-expressions finite or not? If it is
finite, the problem of decision is easily solved: we may accept
true expressions as new asserted axioms, and reject false expres-
sions axiomatically. This method, however, is not practicable
if the number of undecidable expressions is not finite. We cannot
assert or reject an infinity of axioms. A second question arises
in this case: Is it possible to complete our system of axioms and
rules so that we could decide whether a given expression had to
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be asserted or rejected? Both these questions were solved by
Stupecki: the first negatively by showing that the number of
undecidable expressions on our basis is not finite, the second
affirmatively by the addition of a new rule of rejection.?

I begin with the first question. Every student of the tradi-
tional logic is familiar with the interpretation of syllogisms
by means of Eulerian circles: according to this interpretation
the term-variables a, b, ¢ are represented by circles, the
premiss Aab being true when and only when the circle a is
either identical with the circle # or is included in 4, and the
premiss Jab being true when and only when the circles 2 and &
have a common area. Consequently the préemiss Eab, as the
negation of lab, is true when and only when the circles a
and b have no common area, i.e. when they exclude each
other. If, therefore, a and b are identical, Jab is true and Eab is
false.

I shall now investigate various suppositions concerning the
number of circles assumed as our ‘universe of discourse’, i.e.
as the field of our interpretation. It is obvious that the rules of
our basis remain valid throughout all the interpretations. If our
universe of discourse consists of three circles or more, the four
axioms of assertion are of course verified, and the axiomatically
rejected expression

*59. CKAcbAablac

is rejected, as it is possible to draw two circles ¢ and ¢ excluding
each other and both included in the third circle 4. The premisses
Ach and Aab are then true, and the conclusion fac is false. The
expression

*59a. CKEcbEablac

also is rejected, as we can draw three circles each excluding the
two others, so that the premisses £cb and Eab are true and the
conclusion Iac is false. This interpretation therefore satisfies
the conditions of our basis, and so do all our other interpreta-
tions.

Let us now suppose that our universe of discourse consists of

T See the paper of Stupecki quoted in p. 76, n. I have tried to simplify the author’s
arguments in order to make them comprehensible to readers not trained in mathe-
matical thinking. I am, of course, alone responsible for the following exposition
of Stupecki’s ideas.
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only three circles, but no more, and let us consider the following
expression:

(F3) CEabCEacCEadCEbcCEbdIcd.

This expression contains four different variables, but each of
them can assume only three different values, as we can only
draw three different circles. Whatever be the way to substitute
these three values for the variables, two variables must always
receive the same value, i.e. must be identified. But if some one of
the pairs of variables, a and b, or 2 and ¢, or ¢ and d, or b and ¢,
or b and d, consists of identical elements, the corresponding
E-premiss becomes false, and the whole implication, i.e. the
expression (F3), is verified; and if the last pair of variables, ¢
and 4, has identical elements, the conclusion Jed becomes true,
and the whole implication is again verified. Under the condition
that only three circles can be drawn, the expression (F3) is true
and cannot be disproved by our axioms and rules of rejection.
If we suppose, however, that our universe of discourse consists
of more than three circles, we can draw four circles, each of them
excluding the three others, and (F3) becomes false. (F3) there-
fore cannot be proved by our axioms and rules of assertion. As
(F3) can neither be proved nor disproved by the system of our
axioms and rules, it is an undecidable expression.
Let us now consider an expression of the form

(F4) CoyCoyCa,y...Cx,,B,
containing # different variables:
a1y 4y, A3, ..., an,

and let us suppose that: (1) every antecedent of (F4) is of the
type Ea,a;, a; differing from a;; (2) the consequent 8 is of the
type layay, a differing from a;; (3) all the possible pairs of
different variables occur in (F4). If our universe of discourse
consists of only (n-1) circles, (F4) is verified, because some two
variables must be identified, and either one of the antecedents
bfacomes false or the consequent is true. But if our universe of
discourse consists of more than (n-1) circles, (F4) is not verified,
for n circles may be drawn each excluding the remainder, so
t.hat all the antecedents become true and the consequent is
false. (F4), therefore, is an undecidable expression.
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Such undecidable expressions are infinite in number, as n
may be any integer whatever. It is obvious that they are all
false in the Aristotelian logic, and must be rejected, for we can-
not restrict the Aristotelian logic to a finite number of terms,
and expressions of the form (F4) are disproved when the number
of terms is infinite. This infinite number of undecidable expres-
sions cannot be rejected otherwise than axiomatically, as results
from the following consideration: (F3) cannot be disproved by
the system of our axioms and rules, and therefore must be
rejected axiomatically. The next undecidable expression of the
form (F4) containing five different terms cannot be disproved
by our system of axioms and rules together with the already
rejected expression (F3), and must again be rejected axiomatic-
ally. The same argument may be repeated with respect to every
other undecidable expression of the form (F4). Since it is im-
possible to reject axiomatically an infinity of expressions, we
must look for another device if we want to solve the problem of
decision affirmatively.

§ 30. Slupecki’s rule of rejection
I start from two terminological remarks: Expressions of the
type Aab, Iab, Eab, and Oab I call simple expressions; the first
two are simple affirmative expressions, and the third and fourth
simple negative expressions. Simple expressions as well as ex-
pressions of the type:
Co,CayCoy...Cap_yr,,,

where all the «’s are simple expressions, I call elementary
expressions. With the help of this terminology Stupecki’s rule
of rejection ‘may be formulated as follows:

If x and B are simple negative expressions and y is an elemen-
tary expression, then if Cay and CBy are rejected, CaCBy
must be rejected too.

Stupecki’s rule of rejection has a close connexion with the
following metalogical principle of traditional logic: ‘utraque si
praemissa neget, nil inde sequetur.” This principle, however,
is not general enough, as it refers only to simple syllogisms of
three terms. Another formulation of the same principle, ‘ex
mere negativis nihil sequitur’, is apparently more generat, but
it is false when applied not only to syllogisms but also to other
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expressions of the syllogistic. Such theses as CEabEba or
CEabOab show clearly that something does follow from merely
negative premisses. Stupecki’s rule is a general rule .and avoids
the awkwardness of traditional formulations.

Let us explain this point more fully in order to make Stu-
pecki’s rule clear. The proposition Aac does not follow either
from the premiss Aab or from the premiss 4bc; but when we
conjoin these premisses, saying ‘dab and Abc’, we get the con-
clusion Aac by the mood Barbara. Eac does not follow from Ebc,
or from Aab either: but from the conjunction of these premisses
‘Ebc and Aab’ we get the conclusion Eac by the mood Celarent.
In both cases we obtain from the conjunction of premisses some
new proposition which does not result from either of them
separately. If we have, however, two negative premisses, like
Ech and Eab, we can of course obtain from the first the con-
clusion Ocb and from the second Oab, but from the conjunction
of these premisses no new proposition can be drawn except
those that follow from each of them separately. This is the
meaning of Stupecki’s rule of rejection: if y does not follow
either from « or from B, it cannot follow from their conjunction,
as nothing can be drawn from two negative premisses that does
not follow from them separately. Stupecki’s rule is as plain as
the corresponding principle of traditional logic.

I shall now show how this rule can be applied in the rejection
of undecidable expressions. For this purpose I use the rule in a
symbolic form, denoted by RS (Rule of Stupecki):

RS. *Cay, *CBy — *CaCBy.

Here as everywhere 1 employ Greek letters to denote variable
expressions satisfying certain conditions: thus, « and 8 must be
simple negative expressions of the syllogistic, y must be an
elementary expression as explained above, and all three ex-
pressions must be such that Cay and CBy may be rejected. The
arrow (—) means ‘therefore’. I want to lay stress on the fact
that RS is a peculiar rule, valid only for negative expressions
« and B8 of the Aristotelian logic, and, as we have already seen,
cannot be applied to affirmative expressions of the syllogistic.
Nor can it be applied to the theory of deduction. This results
from the following example: the expressions CNCpgr and
CNCgpr are both not true and would be rejected, if rejection

S
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were introduced into this theory, but CNCpgCNCqpr is a thesis.
Also in algebra the proposition ‘e equals 4 does not follow
either from the premiss ‘a is not less than §” or from the premiss
‘b is not less than a’, but it follows from the conjunction of these
premisses.
As the first application of the new rule I shall show that the
expression
*s9a. CKEcbEablac,
which was rejected axiomatically, can now be disproved. This
results from the following deduction:
9. p|Eac, ajc, blax 79
79. CCEaclcaCEaclac
79 X C*8o-*64
*80. CEaclca
*8o X *81. c/a, b/c, a/c
*81. CEcblac
*64 X *82. bfc
*82. CEablac
RS. «o/Ecb, B/Eab, y|lac X *81, *82 — *83
*83. CEcbCEablac.

The rule RS is here applied for the first time; « and B are
simple negative expressions, and y is also a simple expression.
From *83 we get by the law of exportation VII the formula *59a:

VII. p/Ech, g/Eab, r/lac'x 84
84. CCKEcbEablacCEcbCEablac
84 X C*59a-*83
*sga. CKEcbEablac.
It follows from the above that Stupecki’s rule is stronger than
our axiomatically rejected expression *59a. Since *59¢ has to
be cancelled, formula *59, i.e. CKAcbAablac, remains the sole
expression axiomatically rejected.
In the second place I shall apply the rule RS repeatedly to
disprove the formula (F3):
*64 X *85. dfc, c/a
*85. CEadlcd
*85 X *86. b/a
*86. CEbdlcd
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RS. o/Ead, B/Ebd, y[Icd X *85, *86 — *87
*89. CEadCEbdIcd
*8o x *88. b/a, d|a
*88. CEbcled
RS. af/Ebc, B/Ebd, y|Icd x *88, *86 — *8g
*89. CEbcCEbdIcd

RS. «/Ead, B/Ebc, y|CEbdlcd X *87, *89 — *g0
*90. CEadCEbcCEbdIcd
*88 x *g1. afb
*g1. CEaclced
RS. ofEac, B/Ebd, y|Icd X *q1, ¥*86 — *g2
*g2. CEacCEbdIcd

RS. o/ Eac, B|Ebe, y|CEbdlcd x *92, *89 — *93
*93. CEacCEbcCEbdlcd

RS. of/FEac, B/Ead, v/CEbcCEbdIcd X *93; *g0 — *g4
*94. CEacCEadCEbcCEbdIcd
*85 X *g5. b/d
*95. CEablcd
RS. «/Eab, B/Ebd, y/lcd X *g5, *86 — *gb
*96. CEabCEbdIcd

RS. «/Eab, B/Ebc, y/CEbdlcd X *gb6, *89 — *g7
*q7. CEabCEbcCEbdIcd

RS. o/Eab, B/Ead, y/CEbcCEbdIcd X *g7, *go — *o8
*98. CEabCEadCEbcCEbdlcd
RS. «/Eab, B/Eac, y/CEadCEbcCEbdlcd x *98, *gq —

*
99
*99. CEabCEacCEadCEbcCEbdIcd

The rule RS is used in this deduction ten times; « and B are
always simple negative expressions, and y is everywhere an
clementary expression. In the same manner we could disprove
other formulae of the form (F4), and also the formula (F1) of
section 28. It is needless, however, to perform these deductions,
since we can now set forth the general problem of decision,

§ 31. Deductive equivalence

We need for our proof of decision the concept of deductive or
inferential equivalence. Since there are, in my opinion, some

S
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misunderstandings in the treatment of this concept, its meaning
must be carefully defined. I shall do this on the basis of the
theory of deduction.

It is usually said that two expressions, « and B, are deductively
equivalent to each other when it is possible to deduce 8 from o
if a is asserted, and conversely « from B if 8 is asserted. The rules
of inference are always supposed as given. But they are seldom
sufficient. They suffice, for instance, in the following example.
From the asserted law of commutation CCpCqrCqCpr we can
deduce the thesis CgCCpCqrCpr:

(1) CCpCqrCqCpr

(1) p/CpCar, 7/Cprx C(1)~(2)

(2) CgCCpCqrCpr,
and again from this thesis we can deduce the law of com-
mutation:

(2) g/CqCCpCarCpr, pls, 7/t x C(2)-(3)

(3) CCsCCqCCpCaqrCprtCst

(2) q/CbCar, plg, 7/Cpr (4)
(4) CCpCqrCCqCCHCerCprCqCpr
(3) s/CpCyr, t/CqCprx C(4)—(1)

(1) CCpCqrCqCpr.?

But we cannot in this simple way deduce from the asserted
expression CNpCpg the law of Duns Scotus CpCNpg, because
from the first expression we can derive new propositions only
by substitution, and all the substitutions of CNpCpg begin with
CN, none with Cp. To deduce one of those expressions from
another we must have further assistance. Speaking generally,
the relation of deductive equivalence is seldom absolute, but in
most cases it is relative to a certain basis of theses. In our case
this basis is the law of commutation. Starting from

(5) CNpCpq
we get by commutation the law of Duns Scotus:
(1) pIND, qp, 7/ < C(5)-(6)
(6) CpCNpy,
and starting from (6) we get again by commutation (5):
(1) 9/ Np, 7]9 < C(6)—(5)
(5) CNpCpg.

! This neat deduction was given by A. Tarski in Warsaw.
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I'say therefore that CNpCpg and CpCNpq are deductively equiva-
lent with respect to the law of commutation, and I write:
CNpCpg ~ CpCNpg with respect to (1).

The sign ~ denotes the relation of deductive equivalence.
This relation is different from the ordinary relation of equiva-
lence, denoted here by Q , which is defined by the conjunction
of two implications each converse to the other,

Q pg = KCpeCqp,
and requires no basis. If an ordinary equivalence Q af is asserted,
and «, or a substitution of «, is asserted too, then we can assert
B, or the corresponding substitution of 8, and conversely. An
asserted ordinary equivalence Q of is therefore a sufficient basis
for the deductive equivalence a ~ B; but it is not a necessary
one. This is just the point where explanation is needed.

Not only asserted or true expressions may be deductively
equivalent, but also false ones. In order to solve the problem of
decision for the C-N-system we have to transform an arbitrary
significant expression « into the expression CNam, where 7 is a
propositional variable not occurring in «. This can be done by
means of two theses:

S1. CpCNpq

Sa2. CCNppp.

I say that « is deductively equivalent to CNam with respect to
S1 and Sg2, and I write:

I. o ~ CNom with respect to St and Sz.
All goes easily when « is asserted. Take as example NNCpp.
This is a thesis easily verified by the o-1 method. I state accord-
ing to formula I that

NNCpp ~ CNNNCppq
Starting from
(7) NNCpp
we get by S1:
St. p|NNCpp > C(7)—(8)
(8) CNNNCppq,

and starting again from (8) we get by substitution and S2:

(8) g/NNCpp < (9)
(9) CNNNCpNNCpp

with respect to St and Sa.
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S2. p[NNCpp x C(9)-(7)
(7) NNCpp.

But « is an arbitrary expression; it may be false, e.g. Cpg. In
this case formula I reads:

Cpg ~ CNCpgr

Here the difficulty begins: we can get the thesis CCpgCNCpgr
from S1 by the substitution p/Cpg, ¢/r, but we cannot derive
from this thesis the consequent CNCpgr, for (pg is not a thesis
and cannot be asserted. Therefore CNCpgr cannot be detached.
A still greater difficulty arises in the other direction: we can
get from S2 by the substitution p/Cpg the thesis CCNCpgCpqCpy,
but CNCpqCpq is not asserted, nor can we get CNCpqg(pg from
CNCpgr by substitution, because CNCpgr is not a thesis. We
cannot say: Suppose that Cpq be asserted; then CNCpgr would
follow. The assertion of a false expression is an error, and we
cannot expect to prove anything by an error. It seems therefore
that formula I is valid not for all expressions but only for those
that are asserted.

There exists, in my opinion, only one way to avoid these
difficulties: it is the introduction of rejection into the theory of
deduction. We reject axiomatically the variable p, and accept
the clear rules of rejection, (¢) and (d). It can easily be shown
on this basis that Cpg must be rejected. For we get from the
axiom :

(*10) p

and the thesis
(11) CCCpppp
by the rules of rejection:
(11) X C(*12)—(*10)
(*r2) CCppp
(*12) X (*13) p/Cpp, q/p

(*13) Cpg.

Now we are able to prove that if Cpg is rejected, CNCpgr must

be rejected too; and conversely, if CNCpgr is rejected, Cpg must
be rejected too. Starting from

(*13) Cpg

with respect to St and Sa.
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we get by S2 and the rules of rejection:

S2. p/Cpgx(14)
(14) CCNCpgCpaChq
(14) X C(*15)-(*13)
(*15) CNCpqCpg
(*15) X (*16) 7/Cpg
(*16) CNCpgr.
In the other direction we easily get Cpg from (*16) by S1:

St. p/Cpq, g/r (17)
(17) CCpgCNCpgr
(17) X C(*13)-(*16)

(*13) Cpg.

Formula I is now fully justified. We have, however, to correct
our previous definition of deductive equivalence, saying:

Two expressions are deductively equivalent to each other
with respect to certain theses when and only when we can
prove by means of these theses and of the rules of inference
that if one of those expressions is asserted, the other must
be asserted too, or if one of them is rejected, the other must
be rejected too.

It follows from this definition that ordinary equivalence is not

a necessary basis of deductive equivalence. If Q of is a thesis, it
is true that « is deductively equivalent to 8 with respect to Q of;
but if « is deductively equivalent to B with respect to certain
theses, it is not always true that Q of is a thesis. Take as example
the deductive equivalence just considered:

Cpg ~ CNCpgr with respect to St and Se.

The corresponding ordinary equivalence QCpgCNCpgr is not
a thesis, for it is false for p/1, g/o, /1.

It is obvious that the relation of deductive equivalence is
reflexive, symmetrical, and transitive. There are cases where
« is deductively equivalent to two expressions 8 and y witp
respect to certain theses. That means: if « is asserted, then ,B is
asserted and y is asserted, and consequently their conjunctlo.n
‘B and 4’ is asserted; and conversely, if both 8 and y, or thf:ll‘
conjunction ‘B and y’, is asserted, then « is asserted too. {Xgam,
if « is rejected, then the conjunction ‘8 and y’ must be rejected,
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and in this case it is sufficient that only one of them, 8 or Y,
should be rejected; and conversely, if only one of them is
rejected, o must be rejected too.

§ 32. Reduction to elementary expressions
Our proof of decision is based on the following theorem:

(TA) Every significant expression of the Aristotelian syllo-
gistic can be reduced in a deductively equivalent way,
with respect to theses of the theory of deduction, to
a set of elementary expressions, i.e. expressions of the
form

Ca;CoyCas...Ca,, 0,

where all the o’s are simple expressions of the syllogis-
tic, i.e. expressions of the type Aab, Iab, Eab, or Oab.

All known theses of the syllogistic either are elementary ex-
pressions or can easily be transformed into elementary expres-
sions. The laws of conversion, e.g. Clablba or CAablba, are
elementary expressions. All the syllogisms are of the form
CKapy, and expressions of this kind are deductively equivalent
to elementary expressions of the form CxCBy with respect to the
laws of exportation and importation. But there are other signi-
ficant expressions of the syllogistic, some of them true, some
false, that are not elementary. We have already met such an
expression: it was thesis 78, CCNAabAbalab, the antecedent of
which is not a simple expression but an implication. There
exists, of course, an infinity of such expressions, and they must all
be taken into account in the proof of decision.

Theorem (TA) can easily be proved on the basis of an
analogous theorem for the theory of deduction:

(TB) Every significant expression of the theory of deduction
with C and N as primitive terms can be reduced in

a deductively equivalent way with respect to a finite
number of theses to a set of elementary expressions of

the form '
Co;CoyCay...Ca

n—-1%n)
where all the o’s are simple expressions, i.e. either
variables or their negations.

The proof of this theorem is not easy, but since it is essential



112 THE PROBLEM OF DECISION §32

for the problem of decision it cannot be omitted. The proof of
(TB) given below is intended for readers interested in formal
logic; those not trained in mathematical logic may take both
theorems, (TA) and (TB), for granted.

Let « be an arbitrary significant expression of the theory of
deduction other than a variable (which may, but need not, be
transformed): every such expression can be transformed, as we
already know, in a deductively equivalent way with respect to
the theses St and S2:

S1. CpCNpq
Sa2. CCNppp

into the expression CNam, where = is a variable not occurring
in a. We have therefore as transformation I:

I. « ~ CNam with respect to St and Sz2.

Transformation I allows us to reduce all significant expres-
sions to implications that have a variable as their last term.
Now we must try to transform Na, the antecedent of CNam,
into a variable or its negation. For this purpose we employ the
following three transformations:

II. CNNaff ~ Cof with respect to Sg and S4,
III. CNCaBy ~ CaCNBy 5 S5 and S6,
IV. CCafy ~ CNuay, CBy ’ . S7, S8, and Sg.

The respective theses are: for transformation II:

S3. CCNNpqgCpq
S4. CCpgCNNpg;

for transformation III:

Ss. CCNCpgrCpCNgr
S6. CCpCNgrCNCpqr;

for transformation IV: ’

S7. CCCpgrCNpr
S8. CCCpgrCqr
Sg. CCNprCCqrCCpqr.

Let us now explain how we can get by these transformations
a variable or its negation in the antecedent of CNam. The
expression a occurring in CNow may, like every significant
expression of the C-N-system, be either a variable, or a nega-
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tion, or an implication. If « is a variable, no transformation is
needed; if it is a negation, we get CNNaB, and two negations
annul each other according to transformation II; if it is an
implication, we get from CNCaBy the equivalent expression
CaCNBy, the antecedent of which, «, is simpler than the initial
antecedent NCof. This new « may again be a variable—no
transformation is then needed—or a negation—this case has
already been settled—or an implication. In this last case we get
from CCuBy two expressions, CNay and CBy, with simpler ante-
cedents than the initial antecedent Cof. By repeated applica-
tions of 11, IIl, and IV we must finally reach in the antecedent
a variable or its negation.

Let us now see by examples how these transformations work.

First example: NNCpp.

NNCpp ~ CNNNCppq by 1I;
CNNNCppg ~ CNCppg ,» 1I;
CNCppg  ~ CHCNpq ,» IIL

NNCpp is thus reduced to the expression CpCNpg with the
variable p in the antecedent. CpCNpg is an elementary
expression,

Second example: CCCpgpp.
CCCpqpp ~ CNCCCpqppr by 1;
CNCCCpgppr ~ CCCpgpCNpr ,, 111;
CCCpgpCNpr ~ CNCpgCNpr, CpCNpr by 1V
CNCpgCNpr ~ CpCNgCNpr by II1.

CCCpgpp is thus reduced to two expressions: CpCNgCNpr and
CpCNpr, both with the variable p in the antecedent; both are
clementary expressions.

Third example: CCCpgqCCapp.

CCCpqqCCypp ~ CNCCCpqgqCCqppr by I;
CNCCCpqqCCqppr ~ CCCpegCNCCqppr ,, 111;
CCCpeqCNCCqppr ~ CNCpgCNCCqppr, CgqCNCCqpprbyI1V;
CNCpgCNCCappr ~ CpCNgCNCCqppr by III.

CCCpgqCCqpp is reduced to two expressions CHCNgCNCCqppr

and CgCNCCqppr, both with a variable in the first antecedent.

Neither of them, however, is elementary, since the first has the

compound expression NCCqpp as its third antecedent and the
5367 I
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second has the same compound expression as its second ante-
cedent.

As we can see from this last example, our task is not yet
finished. By transformations I-IV we obtain implications with
a variable in the first antecedent, and also expressions of the
form:

CoyCayCoy...Corpy 1,
but not all antecedents of this form, apart from «,, need be
simple expressions. In order to get rid of such compound ante-
cedents we need three further transformations:

V. CaCBy ~ CBCay with respect to Sio0,
VI. CaCBCyS ~ CaCyCPB3 5 3 Si1r,
VIIL. CaCBy ~ CNCoNBy » » S12 and S13.

The respective theses are: for transformation V:
S10. CCpCqrCqCpr;

for transformation VI:
S11. CCpCqCrsCpCrCys;

for transformation VII:
S12. CCpCqrCNCpNgr
S13. CCNCpNgrCpCyr.

By S10 we can move a compound antecedent from the second
place to the first, and by Si1 from the third place to the
second. Applying these transformations to the expressions
CpCNgCNCCqppr and CqCNCCqppr of our third example we get:
(a) CpCNGCNCCqppr ~ CpCNCCqppCNgr by VI;
CpCNCCppCNgr ~ CNCCqppCpCNgr ,, V;
CNCCqppCpCNgr ~ CCqpCNpCpCNgr ,, 111,
CCopCNpCpCNgr ~ CNqCNpCpCqu CpCNpCpCqu by

(B) CqCNCCqppr ~ CNCququr by V;

CNCCqppCqr ~ CCqpCNpCqr ,, 111;

CCqpCNpCqr ~ CNgCNpCyr, CpCNﬁqu by IV,
CCCpqqCCqpp is thus reduced to four elementary expressions:
CNgCNpCpCNgr, CpCNpCpCNgr, CNgCNpCqr, and CpCNpCyr.

Transformation VII is used in all those cases where the com-
pound antecedent occurs in the fourth place or farther. This
transformation allows us to reduce the number of antecedents;
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in fact, NCpNg means the same as Kpg, and S12 and S13 are
other forms of the laws of importation and exportation respec-
tively. Now CNCuaNBy, like CKoBy, has only one antecedent,
whereas the equivalent expression CaCBy has two antecedents.
If, therefore, a compound expression occurs in the fourth place,
as 8 in CaCBCyCde, we can move it to the third place, applying
VII and then VI:

CaCBCyCie ~ CNCaNBCyCie by VII;
CNCaNBCyCle ~ CNCaNBCECye ,, VI.

From this last expression we get by the converse application of
VII the formula:

CNCoaNBC3Cye ~ CaCBC3Cye by VII.
It is now easy to bring 8 to the first place by VI and V:

CaCBC3Cye ~ CaCSCBCye by VI,
CaC8CBCye ~ C3CalBCye ,, V.

Applying transformation VII repeatedly in both directions we
can move any antecedent from the nth place to the first, and
transform it, if it is compound, by 11, III, and IV into a simple
expression.

The proof of theorem (TB) is thus completed. It is now easy
to show that this theorem entails the proof of decision for the
C-N-system of the theory of deduction. If all the elementary
expressions to which a given expression « has been reduced are
true, i.e. if they have among their antecedents two expressions
of the type p and Np, then « is a thesis and must be asserted. On
the other hand, if among the elementary expressions to which «
has been reduced there exists at least one expression such that
no two antecedents in it are of the type p and Np, then « must
be rejected. In the first case we can prove « by means of the
theses S1-S13, in the second we can disprove it, adding to the
above theses two new ones:

S14. CpCCpqq
S15. NNCpp,

and the axiom of rejection:
*S16. p.
Two examples will clarify this.
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First example: Proof of the thesis CpCCpgq.

This thesis must first be reduced to elementary expressions.
This is done by the following analysis (L):
CpCCpqq ~ CNCpCCpgqr by I;
CNCpCCpqqr ~ CHCNCCpqqr ,, 11I;
CpCNCCpqgr ~ CNCCpgqCpr ,, V;
CNCCpqqCpr ~ CCpgCNgCpr ,, 111,
CCpgCNgCpr ~ CNpCNgCpr, CqCNgCpr by 1V.

The elementary expressions to which CpCCpqq is reduced are
CNpCNgCpr and CgCN¢qCpr. Both, like all expressions to which
transformation I has been applied, have as their last term a
variable not occurring in the antecedents. Such expressions can
be true only on condition that they have two antecedents of the
type ¢ and Np, and any expression of this kind can be reduced
by transformations V, VI, or VII to a substitution of S1 from
which the proof of a thesis must always begin. Here are the
required deductions:

S1. ¢/CNgrx (1)
(1) CpCNpCNgr

S10. ¢/Np, r/CNgr x C(1)—(2)
(2) CNpCpCNgr

S11. p/Np, qlp, 1/Ng, s/rx C(2)~(3)
(3) CNHCN¢Cpr

S1. plq, q/Cpr < (4)
(4) CqCNqCpr.

Having got in (3) and (4) the same elementary expressions as
we reached at the end of our analysis (L), we now proceed from
them to their equivalents on the left, by applying theses on
which the successive transformations were based. Thus, step by
step, we get our original thesis by means of Sg, S6, S10, and S2:

Sg. r/CNgCpr x C(3)-C(4)-(5)
(5) CCpgCNgCpr

S6. p/Cpq, 1/Cpr x C(5)-(6)
(6) CNCCpqqCpr

Sto. p/NCCpqq, q/p x C(6)-(7)
(7) CpCNCCpggr

|

[
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S6. ¢/CCpgq < C(7)—-(8)
(8) CNCpCCpqqr

(8) 7/CpCCpgq X (9)
(9) CNCpCCpqqaCpClpqg
S2. p/CpCCpaq x C(9)-(10)
(10) CpCCpyqq.

Upon this model we can prove any thesis we want.

Second example: Disproof of the expression CCNpgq.

We first reduce this expression to elementary expressions on
the basis of the following analysis:

CCNpqq ~ CNCCNpgqr by 1;
CNCCNpgqr ~ CCNpqCNygr ,, 111;
CCNpgCNgr ~ CNNpCNgr, CgqCNgr by IV ;
CNNpCNgr ~ CpCNgr by II.

The expression CCNpqq is thus reduced to two elementary ex-
pressions, CgCNgr and CpCNgr. The first of these is a thesis, but
the second is not true, for it has no two antecedents of the type
p and Np. The expression CCNpgq therefore, which leads to this
not-true consequence, must be rejected. We begin the disproof
from the top, successively applying according to the given trans-
formations the theses S1, S, S7, and S3:

St. p/CCNpqq, g/rX (11)
(11) CCCNpggCNCCNpgqr

S5. p/CNpgx (12)
(12) CCNCCNpggrCCNpgCNgr
S7. p|Np, r/CNgrx (13)
(13) CCCNpgCNgrCNNpCNgr
S3. ¢/CNgrx(14)
(14) CCNNpCNgrCpCNgr.
Now we must disprove the expression CpCNgr; we need for this
purpose the new theses S14 and S15 and the axiom of rejection.

S14. pINNCpp, glp X CS15-(15)
(15) CCNNCpppp

(15) < C(*16)-*S16
(*10) CNNCppp

o4
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St4. p|CpCNpg, q/CNNCppp < CS1—(17)
(17) CCCHpCNpgCNNCpppCNNCppp
(17) X C(*18)—(*16)
(*18) CCPpCNpgCNNCppp
(*18) x (*19) p/CpCNpq, g/ NCpp, 7[p
(*19) CpCNgr
Having rejected CpCNgr, we can now successively reject its ante-
cedents till we reach the original expression CCNpgq.
(14) X C(*20)-(*19)
(*20) CNNpCNgr '
(13) X C(*21)~(*20)
(*21) CCNpgCNgr
(12) X C(*22)—(*21)
(*22) CNCCNpqqr
(11) X G(*23)-(*22)
(*23) CCNpgq
In this way you can disprove any not-true expression of the
C-N-system. All these deductions could have been made shorter,
but I was anxious to show the method implied in the proof of
decision. This method enables us to decide effectively, on the
basis of only fifteen fundamental theses, S1-S15, and the axiom
of rejection, whether a given significant expression of the C-N-
system should be asserted or rejected. As all the other functors
of the theory of deduction may be defined by C and ¥, all

significant expressions of the theory of deduction are decidable

on an axiomatic basis. A system of axioms from which the
fifteen fundamental theses can be drawn is complete in this
sense, that all true expressions of the system can be deduced in
it. Of this kind is the system of three axioms set out in section
23, and also the system of those three axioms on which trans-
formation IV is based, ~viz. CCCpgrCNpr, CCCpqrCgr, and
CCNprCCqrCCpgr.

The proof of theorem (TA), according to which every signi-
ficant expression of the Aristotelian logic can be reduced to
elementary expressions, is implicitly contained in the proof of
the analogous theorem for the theory of deduction. If we take
instead, of the Greek letters used in our transformations I-VII
(except the final variable in transformation I) propositional
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expressions of the Aristotelian logic, we can apply those trans-
formations to them in the same way as to expressions of the
theory of deduction. This can easily be seen in the example of
CCNAabAbalab. We get:

CCNAabAbalab ~ CNCCNAabAbalabp by 1;
CNCCNAabAbalabp ~ CCNAabAbaCNIabp ,, 111;
CCNAabAbaCNIabp ~ CNNAabCNlabp, CAbaCNlabp by 1V;
CNNAabCNIabp  ~ CAabCNlabp by II.

Instead of NAab we can always write Oab, and Eab instead of
NIab. In what follows, however, it will be more convenient to
employ forms with N.

Both elementary expressions, CAabCNlabp and CAbaCNlabp,
to which CCNAabAbalab has been reduced, have a proposi-
tional variable as their last term. This variable is introduced by
transformation I. We can get rid of it by the following de-
ductively equivalent transformations where = is a propositional
variable not occurring in either « or B:

VIIL. ,CaCBr ~ CaNB with respect to S17 and S18,
IX. CaCNBmr ~ Caf M 5 519 and Szo.

Theses for transformation VIII:

S17. CCpCqNgCpNq

S18. CCpNgCpCar.
Theses for transformation IX:

S19. CCpCNqqCpg :

S20. CCpgCpCNgr.
When CaCBr is asserted, we get from it by substituting N8 for =
the expression CaCBNB, and then CaNB by S17; and conversely
from CaNB the expression CaCBm by S18. When CaCpr is re-
jected, we get by S18 CCaNBCaCPBm, therefore CaVB must be
rejected ; and conversely, when CaNB is rejected, we get by S1y
CCxCBNBCaNB, therefore CaCBNB must be rejected and conse-
quently CaCBn. Transformation IX can be explained in the
same way. This we can apply directly to our example. Take
Aab for «, lab for B, and p for w; you get CAablab. In the same
way from CAbaCNIabp results CAbalab. If we have an expression
with more antecedents than two, e.g. with n antecedents, we
must first reduce by repeated application of transformation
VII the n-1 antecedents to one antecedent, and then apply

L4
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transformation VIII or IX. Take, for instance, the following
example:

CNIabCAchCAdcCladp ~ CNCNIabNAcbCAdcCladp
by VII;
CNCNIabNAcbCAdecCladp ~ ~ CNCNCNIabNAcbNAdcCladp
by VII;
CNCNCNIabNAcbNAdeCladp ~ CNCNCNIabNAcbNAdcNIad
by VIII;
CNCNCNIabNAcb NAdeNlad ~ CNCNIabNAcbCAdecNlad
by VII;
CNCNIabNAcbCAdeNIad ~ CNIabCAcbCAdcNlad ,, VII.

Theorem (TA) is now fully proved; we can proceed therefore
to our main subject, the proof of decision of the Aristotelian
syllogistic.

§ 33. Elementary expressions of the syllogistic

According to theorem (TA), every significant expression of
the Aristotelian syllogistic can be reduced in a deductively equi-
valent way to a set of elementary expressions, i.e. expressions
of the form

CoyCoyCay...Cxpy_yax,,,

where all the «’s are simple expressions of the syllogistic, i.e.
expressions of the type Aab, Iab, Eab or Nlab, and Oab or
NAab. Now I shall show that every elementary expression of the
syllogistic is decidable, i.e. either asserted or rejected. I shall
first prove that all the simple expressions, except expressions of
the type Aaa and laa, are rejected. We have already seen
(section 27, formula *61) that Jac is rejected. Here are the
proofs of rejection of the other expressions:

*100 X *61. ¢/b
*100. Iab ”
8 xC*101-*100
*101. Aab
IV. p/Aaa, q/lab x C1-102
102. CNAaalab

102 X C*103-*100
*103. Ndaa (= Oaa)

(8. CAablab)

(IV. CoCNpg)

S, i

=T
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*103 X *104. b/a
*104. NAdab (= Oab)

IV. p/laa, q/labx C2-105
105. CNlaalab

105 X C*106-*100

*106. Nlaa (= Eaa)
*106 X *107. bja
*107. Nlab (= Eab).

Turning now to compound elementary expressions I shall suc-
cessively investigate all the possible cases, omitting the formal
proofs where it is possible, and giving only hints how they could
be done. Six cases have to be investigated.

First case: The consequent o, is negative, and all the ante-
cedents are affirmative. Such expressions are rejected.

Proof: By identifying all the variables occurring in the ex-
pression with g, all the antecedents become true, being laws of
identity Aaa or laa, and the consequent becomes false. We see
that for the solution of this case the laws of identity are essential.

Second case: The consequent is negative, and only one of the
antecedents is negative. This case may be reduced to the case
with only affirmative elements, and such cases, as we shall see
later, are always decidable.

Proof: Expressions of the form CoCNBNy are deductively
equivalent to expressions of the form CaCyf with respect to the
theses CCpCNrNgCpCqr and CCpCqrCpCNrNg. This is true not
only for one affirmative antecedent «, but for any number of
them.

Third case: The consequent is negative, and more than one
antecedent is negative. Expressions of this kind can be reduced
to simpler expressions, and eventually to the second case. The
solution of this case requires Stupecki’s rule of rejection.

Proof: Let us suppose that the original expression is of the
form CNaCNBCy...Np. This supposition can always be made,
as any antecedent may be moved to any place whatever. We
reduce this expression to two simpler expressions CNaCy...Np
and CNBCy...Np, omitting the second or the first antecedent
respectively. If these expressions have more negative ante-
cedents than one we repeat the same procedure till we get
formulac with only one negative antecedent. As such formulae

N
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according to the second case are deductively equivalent to
decidable affirmative expressions, they are always either asserted
or rejected. If only one of them is asserted, the original expres-
sion must be asserted too, for by the law of simplification we can
add to this asserted formula all the other negative antecedents
which were previously omitted. If, however, all the formulae
with one negative antecedent are rejected, we gather from them
by repeated application of Stupecki’s rule of rejection that the
original expression must be rejected. Two examples will ex-
plain the matter thoroughly.

First example: CNAGSCNABCNIBACTbeNAcd, a thesis,

We reduce this expression to (1) and (2):

(1) CNAabCNIbACIbcNAcd,  (2) CNAbcCNIbdCIbeNAcd.
In the same way we reduce (1) to (3) and (4):

(3) CNAabCIbe NAcd, (4) CNIbACIbcNAcd,
and (2) to (5) and (6):

(5) CNAbcCIbeNAcd, (6) CNIbdCIbeNAcd.

Now the last expression is a thesis; it is the mood Ferison of the
third figure. Putting in GpCqp (6) for p, and NAbc for ¢, we get
(2), and applying CpCqgp once more by putting (2) for p, and
NAab for g, we reach the original thesis.

Second example: CNAabCNAbcCNIcdCIbdNAad, not a thesis.
We reducesthis expression as in the foregoing example:

(1) CNAabCNIcdCIbdNAad,  (2) CNAbcCNIcdCIBNAad;

then we reduce (1) to (3) and (4), and (2) to (5) and (6):

(3) CNAabCIbdNAad, (4) CNIdCIBIN Aad,
(5) CNAbcCIbdNAad, (6) CNIedCIbdNAad.

None of the above formulae with one negative antecedent is
a thesis, as can be proved by reducing them to the case with
only affirmative elements. Expressions (3), (4), (5), and (6)
are rejected. Applying the rule of Siupecki, we gather from the
rejected expressions (5) and (6) that (2) must be rejected, and
from the rejected expressions (3) and (4) that (1) must be
rejected. But if (1) and (2) are rejected, then the original
expression must be rejected too.

Fourth case: 'The consequent is affirmative, and some (or all)
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antecedents are negative. This case can be reduced to the
third.

Proof: Expressions of the form CaCNBy are deductive-
ly equivalent to expressions of the form CaCNBCNyNAaa
on the ground of the theses CCpCNgrCpCNgCNrNAaa and
CCHCNgCNrNAaaCpCNgr, as NAaa is always false.

All the cases with negative elements are thus exhausted.

Fifth case: All the antecedents are affirmative, and the conse-
quent is a universal affirmative proposition. Several sub-cases
have to be distinguished.

(a) The consequent is Aaa; this expression is asserted, for its
consequent is true.

(6) The consequent is Aab, and Aab is also one of the ante-
cedents. The expression is of course asserted.

In what follows it is supposed that Aab does not occur as
antecedent.

(¢) The consequent is Aab, but no antecedent is of the type
Aaf with f different from a (and from &, of course). Such

expressions are rejected.
Proof: By identifying all variables different from a and 4 with

b, we can only get the following antecedents:
Aaa, Aba, Abb, Iaa, Iab, Iba, Ibb.

(We cannot get Aab, for no antecedent is of the type Aqf, f
being different from a.) Premisses Adaa, Abb, laa, Ibb can be
omitted as true. (If there are no other premisses, the expression
is rejected, as in the first case.) If there is /ba besides Iab, one of
them may be omitted, as they are equivalent to each other. If
there is Aba, both Izb and Iba may be omitted, as Aba implies
them both. After these reductions only 4ba or lab can remain as
antecedents. Now it can be shown that both implications,

CAbaAab and ClabAab,

are rejected on the ground of our axiom of rejection:

X. p/Acb, q/Aba, r/lac, s|AabX C277-108
108. CCAabAbaCKAcbAablac (X. CCKpqrCCsqCKpsr;
108 X C*109-*59 27. CKAcbAbalac)
*109. CAabAba
*109 X *110. bja, afb
*110. CAbadab.
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If CAbaAab is rejected, then ClabAab must be rejected too, for
Iab is a weaker premiss than Aba.

(d) The consequent is Aab, and there are antecedents of the
type daf with f different from a. If there is a chain leading from
a to b, the expression is asserted on the ground of axiom g, the
mood Barbara; if there is no such chain, the expression is
rejected.

Proof: By a chain leading from a to 4 I understand an ordered
series of universal affirmative premisses:

Aacy, Aciey, ..., Ac,_s6,, Ac,b,

where the first term of the series has a as its first argument, the
last term 4 as its second argument, and the second argument of
every other term is identical with the first argument of its suc-
cessor. It is evident that from a series of such expressions Aab
results by repeated application of the mood Barbara. If| there-
fore, there is a chain leading from a to 4, the expression is
asserted ; if there is no such chain, we can get rid of antecedents
of the type Aaf, identifying their second argument with a.. The
expression is reduced in this way to the sub-case (¢), which was
rejected.

Sixth case: All the antecedents are affirmative, and the conse-
quent is a particular affirmative proposition. Here also we have
to distinguish several sub-cases.

(a) The consequent is Jaa; the expression is asserted, for its
consequent is frue.

(b) The consequent is lab, and as antecedent occurs either
Aab, or Aba, or Iab, or Iba; it is obvious that in all these cases
the expression must be asserted.

In what follows it is supposed that none of the above four pre-
misses occurs as antecedent.

(¢) The consequent is lab, and no antecedent is of the type
Afa, f different from a, or of the type Agb, g different from 4. The
expression is rejected.

Proof: We identify all variables different from a and 4 with
¢; then we get, besides true premisses of the type Acc or Icc, only
the following antecedents:

Aac, Abc, lac, Ibc.

Aac implies lac, and Abc implies Jbc. The strongest combination
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of premisses is therefore Aac and Abc. From this combination,
however, Iab does not result, as the formula

CAacCAbclab

is equivalent to our axiom of rejection.

(d) The consequent is fab, and among the antecedents there
are expressions of the type Afa (f different from a), but not of
the type Agb (g different from &). If there is Abe or Ibe (leb), and
a chain leading from e to a:

(o) Abe; Aeey, Aese,, ..., Ae,a,

(B) 1be; Aeey, Aeyey, ..., de,a,

we get from (a) Abe and Aea, and therefore Iab by the mood
Bramantip, and from (8) Ibe and Aea, and therefore Iab by the
mood Dimaris. In both cases the expression is asserted. If, how-
ever, the conditions («) and (B) are not fulfilled, we can get rid
of antecedents of the type Afa by identifying their first argu-
ments with g, and the expression must be rejected according to
sub-case (¢).

(¢) The consequent is Jab, and among the antecedents there are
expressions of the type Agb (g different from 4), but not of the type
Afa ( fdifferent from ). This case can be reduced to sub-case (d),
as a and b are symmetrical with respect to the consequent Jab.

(f) The consequent is Jab, and among the antecedents there
are expressions of the type 4fa ( f different from a), and expres-
sions of the type Agb (g different from, ). We may suppose that
the conditions («) and () are not fulfilled for 4fa, or the analo-
gous conditions for Agb either; otherwise, as we already know,
the original expression would be asserted. Now, if there is Aca
and a chain leading from ¢ to &:

(y) Aca; Accy, Acycs, ..., Ac,b,
or Adb and a chain leading from 4 to a:

(8) Adb; Add,, Ad\d,, ..., Ad,a,
we get from (y) Aca and Acb, from (8) Adb and Ada, and there-
fore in both cases Jab by the mood Darapti. Further, if there is
an antecedent Jed (or Idec) and two chains, one leading from ¢
to a, and another from d to b:

(o) Ied; Acey, Acqey, ..., Acya,

Ied; Add,, Ad\d,, ..., Ad,b,
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we get by the first chain the premiss 4ca, by the second chain
the premiss Adb, and both premisses yield together with /ed the
conclusion Zab on the basis of the polysyllogism:

CIcdCAcaCAdblab.

We prove the polysyllogism by deducing lad from Icd and Aca by
the mood Disamis, and then lab from Jad and Adb by the mood
Darii. In all these cases the original expression must be asserted.
If, however, none of the conditions (y), (8), or (e) is satisfied, we
can get rid of expressions of the type Afa and Agb by identifying
their first arguments with a or with & respectively, and the
original expression must be rejected accordmg to sub-case (¢).
(All possible cases are now exhausted, and it is proved that every
significant expression of the Aristotelian syllogistic is either
asserted or rejected on the basis of our axioms and rules of
inference.

§ 34. An arithmetical interpretation of the syllogistic

In 1679 Leibniz discovered an arithmetical interpretation of
the Aristotelian syllogistic which deserves our attention from the
historical as well as from the systematic point of view.! It is an
isomorphic interpretation. Leibniz did not know that the Aris-
totelian syllogistic could be axiomatized, and he knew nothing
about rejection and its rules. He only tested some laws of con-
version and some syllogistic moods in order to be sure that his
interpretation was not wrong. It seems, therefore, to be a mere
coincidence that his interpretation satisfies our asserted axioms
1—4, the axiom of rejection *59, and the rule of Stupecki. In any
case it is strange that his philosophic intuitions, which guided
him in his research, yielded such a sound result.

" Leibniz’s arithmetical interpretation is based on a correlation
of variables of the syllogistic with ordered pairs of natural
numbers prime to each other. To the variable g, for instance,
correspond two numbers, say 4, and a,, prime to cach other; to
the variable b correspond two other numbers, say b, and b,,
also prime to each other. The premiss 4ab is true when and only
when g, is divisible by 4,, and g, is divisible by &,. If one of these
conditions is not satisfied, Aab is false, and therefore NAab is

! See L. Couturat, Opuscules et fragments inédits de Leibniz, Paris (1g03), pp. 77 seq.
Cf. also J. Lukasiewicz, ‘O sylogistyce Arystotelesa’ (On Aristotle’s Syllogistic),
Comptes Rendus de I’ Acad. des Sciences de Cracovie, xliv, No. 6 (1939), p. 220.
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true. The premiss Iab is true when and only when g, is prime
to b,, and a, is prime to b,. If one of these conditions is not
satisfied, Zab is false, and therefore Nlab is true.

It can easily be seen that our asserted axioms 1—4 are verified.
Axiom 1, Aaa, is verified, for every number is divisible by itself.
Axiom 2, Jaa, is verified, for it is supposed that the two numbers
corresponding to 4, a, and a,, are prime to each other. Axiom 3,
the mood Barbara CKAbcAabAac, is also verified, since the rela-
tion of divisibility is transitive. Axiom 4, the mood Datisi
CKAbclbalac, is verified too; for if 4, is divisible by ¢, b, is
divisible by ¢,, b, is prime to a,, and &, is prime to a,, then g,
must be prime to ¢,, and a, must be prime to ¢,. For if g, and ¢,
had a common factor greater than 1, 4, and b, would also have
the same common factor, since b, contains c,. But this is against
the supposition that g, is prime to 4,. In the same way we prove
that a, must be prime to ¢,.

It is also easy to show that the axiom *59 CK'AcbAablac must
be rejected. Take as examples the following numbers:

a =15, by = 3, ¢; = 12,

8y = 14, by = 7, ¢ = 35.
Acb is true, for ¢, is divisible by 4, and ¢, is divisible by 4,; 4ab
is also true, for g, is divisible by 4, and g, is divisible by b,; but
the conclusion Jac is not true, for ¢, and ¢, are not prime to
each other.

The verification of Stupecki’s rule of rejection is more com-

plicated. I shall explain the matter with the help of an example.
Let us take as the rejected expressions,

(*1) CNAabCNIcdCIbdNAad and (*2) CNIbcCNIcdCIbdNAad.
From them 'we get, by the rule of Stupecki,
*CNay, ¥*CNBy — *CNaCNBy,

a third rejected expression,
(*3) CNAabCNIbcCNIcdCIbdNAad.

Expression (1) is disproved, for instance by the following set of
numbers:

(4) {‘11=4:b1=7751=3 d,

4,
a;=9,b;=5,¢,=28,4d 3.

Il I
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It can easily be proved that according to this interpretation Aab
is false (since 4 is not divisible by %), and therefore NAab is
true; Icd is false (since ¢, is not prime to 4;), and therefore Nlcd
is true; Ibd is true (for both pairs of numbers, 4, and ds, 4, and
d,, are prime to each other); but NAad is false, because Aad is
true (a, being divisible by d,, and a, by d,). All the antecedents
are true, the consequent is false; therefore expression (1) is
disproved. )

The same set of numbers does not disprove expression (2),
because Jbc is true (as both pairs of numbers, ; and ¢,, and b,
and ¢;, are prime to each other), and therefore Nlbc is false.
But if the antecedent of an implication is false, the implication
is true. In order to disprove expression (2) we must take another
set of numbers, for instance the following:

(5) (11=9,b1=3,€1=8,d1=3,
a, = 2,b, =2,¢c, = 5,d, = 2.

According to this interpretation all the antecedents of expres-
sion (2) are true, and the consequent is false; the expression
is therefore disproved. But this second set of numbers does not
disprove expression (1), because Aab is true, and therefore
NAab is false, and a false antecedent yields a true implication.
Neither, therefore, of the sets (4) and (5) disproves expression
(3), which contains NAab as well as Nbc.

There, is a general method that enables us to disprove
expression (3) when expressions (1) and (2) are disproved.!
First, we write down all the prime numbers which make up
the sets of numbers disproving (1) and (2). We get for (1) the
series 2, 3, 5, and 7, and for (2) the series 2, g, and 5. Secondly,
we replace the numbers of the second series by new primes,
all different from the primes of the first series, for instance:
2 by 11, 3 by 13, and 5 by 17. We get thus a new set of
numbers: '

(6) {al =13.13, %, = 13, ¢, = 11.11.11, d; = 13,
a, = 11, by =11,¢, = 17, dy = 11I.

This set also disproves (2), since the relations of divisibility and
primeness remain the same as they were before the replacement.

! This method was discovered by Stupecki, op. cit., pp. 28-30.
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Thirdly, we multiply the numbers of corresponding variables
occurring in the sets (4) and (6). We thus get a new set:

7) a = 4.13.13, b, = 7.13,¢;, = 3.11.11.11,d, = 4.13,
a,=9.11, by=5.1I,¢,=28.17, dy =g.11.1}

This set disproves (3). For it is evident, first, that if to the pre-
miss Aef or Ief there corresponds the set of numbers

€1, €y .fl» fm 4 Prime to ez:fl primc to‘f2’

and there is another set of numbers
’ ’ ’ . ’ ’ . "
€1, €5, f1, f9s €1 prime to ey, f; prime to f;,

all of them composed of different primes from the numbers of
the first set, then the product of ¢, and ¢, i.e. ¢;.¢;, must be
prime to the product of ¢, and e, i.e. ¢,.¢;, and f;.f] prime to
J2.J3. Secondly, if Adef is verified by the first set, i.e. if ¢, is
divisible by f;, and ¢, by f,, and the same is true of the second
set, so that ¢; is divisible by f], and ¢; by f;, then ¢,.e; must be
divisible by f;.f{, and e,.¢; by f,.f;. Again, if Ief is verified by
the first set, i.e. ¢, is prime to f,, and e, is prime to f;, and the
same is true of the second set, so that ¢; is prime to f;, and e,
is prime to f7, then e, .e; must be prime to f,.f; and ¢,.¢; prime
to f.f1, since all the numbers of the second set are prime to
the numbers of the first set. On:the contrary, if only one of the
conditions for divisibility or primeness is not satisfied, the re-
spective premisses must be fals€. It can be seen in our example
that dad and Ied are verified by (7), for they are verified by (4)
and (6), and Jbc is disproved both by (4) and (6), and therefore
also by (7). Aab is disproved only by (4) (but this suffices to
disprove it by (7)), and Ibc is disproved only by (6) (but this
also suffices to disprove it by (7)). This procedure may be
applied to any case of the kind, and therefore Stupecki’s rule is
verified by the Leibnizian interpretation.

Leibniz once said that scientific and philosophic contro-
versies could always be settled by a calculus. It seems to me that
his famous ‘calculemus’ is connected with the above arith-
metical interpretation of the syllogistic rather than with his
ideas on mathematical logic.

* If there is a variable occurring in one of the disproved expressions but not in
the other, we simply take its corresponding numbers after eventual replacement.

baa7 K
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§ 35. Conclusion

The results we have reached on the basis of an historical and
systematic 1nvest1gat10n of the Aristotelian syllogistic’ are at
more than one point different from the usual presentation.
Aristotle’s logic was not only misrepresented by logicians who
came from philosophy, since they wrongly identified it with the
traditional syllogistic, but also by logicians who came from
mathematics. In text-books of mathematical logic one can read
again and again that the law of conversion of the 4-premiss and
some syllogistical moods derived by this law, like Darapti or
Felapton, are wrong. This criticism is based on the mistaken
notion that the Aristotelian universal affirmative premiss ‘All a
is 4" means the same as the quantified implication ‘For all ¢, if ¢
is a, then ¢ is §’, where ¢ is a singular term, and that the particular
affirmative premiss ‘Some 4 is 4’ means the same as the quanti-
fied conjunction ‘For some ¢, ¢ is a and ¢ is &, where ¢ is again a
singular term. If one accepts such an interpretation, one can
say of course that the law CAablba is wrong, because a may be
an empty term, so that no ¢ is ¢, and the above quantified
implication becomes true (for its antecedent is false), and the
.above quantified conjunction becomes false (for one of'its factors
is false). But all this is an imprecise misunderstanding of the
Aristotelian logic. There is no passage in the Analytics that would
justify sych an interpretation. Aristotle does not introduce into
his logic singular or empty terms or quantifiers. He applies his
logic only to universal terms, like ‘man’ or ‘animal’. And even
these terms belong only to the application of the system, not to
the system itself. In the system we have only expressions with
variable arguments, like 4ab or lab, and their negations, and
two of these expressions are primitive terms and cannot be
defined; they have only those properties that are stated by the
axioms. For the same reason such a controversy as whether
the Aristotelian syllogistic is a theory of classes or not is in my
opinion futile. The syllogistic of Aristotle is a theory neither of
classes nor of predicates; it exists apart from other deductive
systems, having its own axiomatic and its own problems.

I have tried to set forth this system free from foreign elements.
I do not introduce into it singular, empty, or negative terms, as
Aristotle has not introduced them. I do not introduce quanti-
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fiers either; I have only tried to explain some ideas of Aristotle
by the help of quantifiers. In formal proofs I employ theses of
the theory of deduction, since Aristotle uses them intuitively in
his proofs, and I employ rejection, because Aristotle himself
rejects some formulae and even states a rule of rejection.
Wherever in Aristotle’s exposition there was something not
completely correct, I have been anxious to correct the flaws of
his exposition, e.g. some unsatisfactory proofs by reductio per
impossibile, or the rejection through concrete terms. It has been
my intention to build up the original system of the Aristotelian
syllogistic on the lines laid down by the author himself, and in
accordance with the requirements of modern formal logic. The
crown of the system is the solution of the problem of decision,
and that was made possible by Stupecki’s rule of rejection, not
khown to Aristotle or to any other logician.

The syllogistic of Aristotle is a system the exactness of which
surpasses even the exactness of a mathematical theory, and this
is its everlasting merit. But it is a narrow system and cannot be
applied to all kinds of reasoning, for instance to mathematical
arguments. Perhaps Aristotle himself felt that his system was
not fitted for every purpose, for he added later to the theory of
assertoric syllogisms a theory of modal syllogisms.! This was
of course an extension of logic, but probably not in the right
direction. The logic of the Stoics, the inventors of the ancient
form of the propositional calculus was much more important
than all the syllogisms of Arlstotle We realize today that the
theory of deduction and the theory of quantifiers are the most
fundamental branches of logic.

Aristotle is not responsible for the fact that for many cen-
turies his syllogistic, or rather a corrupt form of his syllogistic,
was the sole logic known to philosophers. He is not responsible
either for the fact that the influence of his logic on philosophy
was, as it seems to me, disastrous. At the bottom of this disas-
trous influence there lies, in my opinion, the prejudice that
every proposition has a subject and a predicate, like the pre-
misses of Aristotelian logic. This prejudice, together with the
criterion of truth known as adaequatio rei et intellectus, is the basis

' I take it that the theory of modal syllogisms expounded by Aristotle in Chapters
8-22 of Book I of the Prior Analytics was inserted later, since Chapter 23 is obviously

an immediate continuation of Chapter 7.
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of some famous but fantastic philosophical speculations. Kant
divided all propositions (he calls them ‘judgements’) into analy-
tic and synthetic according to the relation of the predicate of a
proposition to its subject. His Critique of Pure Reason is chiefly an
attempt to explain the problem how true synthetic a priori
propositions are possible. Now some Peripatetics, for instance
Alexander, were apparently already aware that there exists
a large class of propositions having no subject and no predi-
cate, such as implications, disjunctions, conjunctions, and so
on.' All these may be called functorial propositions, since in all
of them there occurs a propositional functor, like ‘if—then’, ‘or’,
‘and’. These functorial propositions are the main stock of every
scientific theory, and to them neither Kant’s distinction of ana-
lytic and synthetic judgements nor the usual criterion of truth
is applicable, for propositions without a subject or predicate
cannot be immediately compared with facts. Kant’s problem
loses its importance and must be replaced by a much more
important problem: How are true functorial propositions pos-
sible? It seems to me that here lies the starting-point for a new
philosophy as well as for a new logic.

I In connexion with Aristotle’s definition of the mpdraocis Alexander writes,
11, 17: eloi 8¢ odroe ol Spor mpordoews ol mdons dMA s dmdijs Te xal xalovpéuys
Katyyopikis® 16 ydp Tu katd Tivos Exew xai 76 xabddov ) év uépet ) ddidpiaTov i
Tavrys 7 yap dmoberucy odk v 7@ Ti katd Tivos Myeofar dAX’ év diodovlia 7 udyy 7o
dAnbés 7 78 Yieddos Exer.
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CHAPTER VI

ARISTOTLE’S MODAL LOGIC OF
PROPOSITIONS

§ 36. Introduction

THERE are two reasons why Aristotle’s modal logic is so little
known. The first is due to the author himself: in contrast to the
assertoric syllogistic which is perfectly clear and nearly free of
errors, Aristotle’s modal syllogistic is almost incomprehensible
because of its many faults and inconsistencies. He devoted to this
subject some interesting chapters of De Interpretatione, but the
system of his modal syllogistic is expounded in Book I, chapters
3 and 8—22 of the Prior Analytics. Gohlke® suggested that these
chapters were probably later insertions, because chapter 23
was obviously an immediate continuation of chapter 7. If he is
right, the modal syllogistic was Aristotle’s last logical work and
should be regarded as a first version not finally elaborated by the
author. This would explain the faults of the system as well as the
corrections of Theophrastus and Eudemus, made perhaps in
the light of hints given by the master himself.

The second reason is that modern logicians have not as yet been
able to construct a universally acceptable system of modal logic
which would yield a solid basis for the interpretation and appre-
ciation of Aristotle’s work. I have tried to construct such a
system, different from those hitherto known, and built up upon
Aristotle’s ideas.? The present monograph on Aristotle’s modal
logic is written from the standpoint of this system.

A modal logic of terms presupposes a modal logic of proposi-
tions. This was not clearly seen by Aristotle whose modal syllo-
gistic is a logic of terms; nevertheless it is possible to speak of an
Aristotelian modal logic of propositions, as some of his theorems
are general enough to comprise all kinds of proposition, and some
others are expressly formulated by him with propositional vari-
ables. I shall begin with Aristotle’s modal logic of propositions,

t Paul Gohlke, Die Entstehung der Aristotelischen Logik, Berlin (1936), pp. 88-94.
2 Jan Lukasiewicz, ‘A System of Modal Logic’, The Journal of Computing Systems,
vol. i, St. Paul (1953), pp. 111-49. A summary of this paper appeared under the
same title in the Proceedings of the XIth International Congress of Philosophy, vol. xiv,
Brussels (1953), pp. 82-87. A short description of the system is given below in § 49.
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which is logically and philosophically far more important than
his modal syllogistic of terms.

§ 37. Modal functions and their interrelations

There are four modal terms used by Aristotle: dvayxaior—
‘necessary’, ddvvaror— ‘impossible’, vvardv— " possible’, and évde-
xSpevor— ‘contingent’. This last term is ambiguous: in the De
Interpretatione it means the same as Svvardy, in the Prior Analytics it
has besides a more complicated meaning which I shall discuss
later.

According to Aristotle, only propositions are necessary, im-
possible, possible, or contingent. Instead of saying: ‘The pro-
position ‘‘p”’ isnecessary’, where “‘p” is the name of the proposition
£, I shall use the expression : ‘It is necessary that p°, where p is a
proposition. So, for instance, instead of saying: “The proposition
“man is an animal” is necessary’, I shall say: ‘It is necessary that
man should be an animal.’ I shall express the other modalities in
a similar way. Expressions like: ‘It is necessary that p’, denoted
here by Lp, or ‘Itis possible that p’, denoted by Mp, 1 call ‘modal
functions’ ; L and M, which respectively correspond to the words
‘it is necessary that’ and ‘it is possible that’, are ‘modal functors’,
p is their ‘argument’. As modal functions are propositions, I say
that L and M are proposition-forming functors of one propositional
argument. Propositions beginning with L or their equivalents are
called ‘apodeictic’, those beginning with M or their equivalents
‘problematic’. Non-modal propositions are called ‘assertoric’.
This modern terminology and symbolism will help us to give.a
clear exposition of Aristotle’s propositional modal logic.

Two of the modal terms, ‘necessary’ and ‘possible’, and their
interrelations, are of fundamental importance. In the De Inter-
pretatione Aristotle mistakenly asserts that possibility implies non-
necessity, i.e. in our terminology :

(@) If it is possible that p, it is not necessary that p.* He later sees
that this cannot be right, because he accepts that necessity implies
possibility, i.e.:

(8) If it is necessary that p, it is possible that p, and from (b) and
(a) there would follow by the hypothetical syllogism that

5 o \ - .
' Deint. 13, 22°15 76 pév yap dvvard elvar 16 évdéyeabfar elvar (dxodovlei), xai
Tobro ékelve dvriaTpéder, Kal T6 py ddvvarov elvar kai 76 wi dvaykaiov elva.

_—L_"r:-_—_ ——
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(¢) If it is necessary that p, it is not necessary that p, which is ab-
surd.! After a further examination of the problem Aristotle rightly
states that

(d) If it is possible that p, it is not necessary that not p,2 but does not
correct-his former mistake in the text of De Interpretatione. This
correction is given in the Prior Analytics where the relation of
possibility to necessity has the form of an equivalence:

(e) It is possible that p—if and only if—it is not necessary that
not p.3
I gather from this that the other relation, that of necessity to
possibility, which is stated in the De Interpretatione as an implica-
tion,* is also meant as an equivalence and should be given the
form:

(f) It is necessary that p—if and only if—it is not possible that not p.

If we denote the functor ‘if and only if” by Q,5 putting it
before its arguments, and ‘not’ by J¥, we can symbolically express
the relations (¢) and (f) thus:

1. QMpNLNp, i.e. Mp—if and only if—NLNp,
2. QLpNMNg, i.e. Lp—if and only if—NMNp.

The above formulae are fundamental to any system of modal
logic.

§ 38. Basic modal logic

Two famous scholastic principles of modal logic : 4b oportere ad
esse valet consequentia, and Ab esse ad posse valet consequentia, were
known to Aristotle without being formulated by him explicitly.
The first principle runs in our symbolic notation (C is the sign of
the functor ‘if-then’):

3. CLpp, i.e. If it is necessary that p, then p.
The second reads:

! Ibid. 2211 76 pév yap dvayxaiov elvar Suvatdv elvar . . . 14 dAAG puny TG ye
Svvarov elvat 76 ok ddvvarov elvar diolovlel, TobTw 8¢ T6 u¥ dvayxaiov elvar dare
ovpBaivel T0 dvayxaiov elvar py dvaykaiov elvar, Smep dromov.

2 Ibid. 22%22 Aeimerar rolvur 76 0Bk dvayxaiov u7 elvar dxodovleiv 7H Svvatov elvar.

3 An. pr. i. 13, 32325 16 ‘évBéxyerac mdpyen’ kai ‘obx ddvvarov dmdpyew’ xai ‘obx
dvdyxn u7 dndpyew’, frow TadTd éotar §f drolovfobrra dAMjAots.

* Deint. 13,22%20 78 8¢ ) Svvatd pi) elvar xai pi évdexopéve i) elvar 76 dvayxaiov
elvar xai 76 ddvvarov pi elvas (dxolovlet).

3 1 usually denote equivalence by E, but as this letter has already another
meaning in the syllogistic, I have introduced (p. 108) the letter Q for equivalence.
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4. CpMp, i.e. If p, it is possible that p.

According to a passage of the Prior Analytics® Aristotle knows
that from the assertoric negative conclusion ‘Not p’, i.e. Np, there
results the problematic consequence ‘It is possible that not p’,
i.e. MNp. We have therefore CNpMNp. Alexander, commenting
on this passage, states as a general rule that existence implies
possibility, i.e. CpMp, but not conversely, i.e. CMpp should be
rejected.? If we denote rejected expressions by an asterisk, we get
the formula :3

*5. CMpp, i.e. If it is possible that p, then p—rejected.

The corresponding formulae for necessity are also stated by
Alexander who says that necessity implies existence, i.e. CLpp, but
not conversely, i.e. CpLp should be rejected.+ We get thus another
rejected expression :

*6. CpLp, i.e. If p, it is necessary that p—rejected.

Formulae 1-6 are accepted by the traditional logic, and so far
as I know, by all the modern logicians. They are, however, in-
sufficient to characterize Mp and Lp as modal functions, because
all the above formulae are satisfied if we interpret Mp as always
true, i.e. as ‘verum of p’, and Lp as always false, i.e. as “falsum
of °. With this interpretation a system built up on the formulae
1-6 would cease to be a modal logic. We cannot therefore assert
Mp, i.e. accept that all problematic propositions are true, or
assert VLp, i.e. accept that all apodeictic propositions are false;
both éxpressions should be rejected, for any expression which
cannot be asserted should be rejected. We get thus two additional
rejected formulae: :

*7. Mp, i.e. It is possible that p—rejected, and
*8. NLp, i.e. It is not necessary that p—rejected.

Both formulae may be called Aristotelian, as they are conse-
quences of the presumption admitted by Aristotle that there exist

1 An. pr. i. 16, 36°15 davepov &’ St kal o &vSéxeobar p3) Smdpxew yiyverar ovAdo-
yiopds, eimep xai 708 py) Smdpxew. — évdéyeabar means here the ‘possible’, not the
‘contingent’,

* Alexander 209. 2 76 pdv yap Smdpyov kai évdexdpevor dAnles elmeiv, 76 5’ dvdexd-
pevov ob mdvTws xai Smdpyov.

* Asserted expressions are marked throughout the Chapters VI-VIII by arabic
numerals without asterisks.

* Alexander 152. 32 76 ydp dvayxaiov kai Smdpyo, odkére 8¢ 74 Ymdpxav dvayxaiov.
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asserted apodeictic propositions. For, if La is asserted, then
LNNa must be asserted too, and from the principle of Duns
Scotus CpCNpg we get by substitution and detachment the
asserted formulae CNLap and CNLNNap. As p is rejected, NLa
and NLNN« are rejected too, and consequently NLp and NLNp,
i.e. Mp, must be rejected.

I call a system ‘basic modal logic’ if and only if it satisfies
the formulae 1-8. I have shown that basic modal logic can be
axiomatized on the basis of the classical calculus of propositions.*
Of the two modal functors, M and L, one may be taken as the
primitive term, and the other can be defined. Taking M as the
primitive term and formula 2 as the definition of L, we get
the following independent set of axioms of the basic modal logic:

4. CpMp  *5. CMpp  *7. Mp 9. QMpMNNp,
where g is deductively equivalent to formula 1 on the ground of
the definition 2 and the calculus of propositions. Taking L as the
primitive term and formula 1 as the definition of M, we get a
corresponding set of axioms:

3. CLpp  *6. CpLp  *8. NLp  10. QLPpLNNY,
where 10 is deductively equivalent to formula 2 on the ground
of the definition 1 and the calculus of propositions. The derived
formulae g and 10 are indispensable as axioms.

Basic modal logic is the foundation of any system of modal
logic and must always be included in any such system. Formulae
1-8 agree with Aristotle’s intpitions and are at the roots of our
concepts of necessity and possibility ; but they do not exhaust the
whole stock of accepted modal laws. For instance, we believe that
if a conjunction is possible, each of its factors should be possible,
1.e. in symbols:

11. CMKpgMp  and  12. CMKpgMy,

and if a conjunction is necessary, each of its factors should be
necessary, i.e. in symbols:
13. CLKpglp and  14. CLKpgLq.
None of these formulae can be deduced from the laws 1-8. Basic
modal logic is an incomplete modal system and requires the
addition of some new axioms. Let us see how it was supplemented
by Aristotle himself.
! See pp. 114-17 of my paper on modal logic.

i
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§ 39. Laws of extensionality

Aristotle’s most important and—as I see it—most successful
attempt to go beyond basic modal logic consisted in his accepting
certain principles which may be called ‘laws of extensionality for
modal functors’. These principles are to be found in Book I,
chapter 15 of the Prior Analytics, and are formulated in three
passages. We read at the beginning of the chapter:

‘First it has to be said that if (if « is, 8 must be), then (if « is
possible, B must be possible too).’

A few lines further Aristotle says referring to his syllogisms:

‘If one should denote the premisses by «, and the conclusion
by B, it would not only result that if « is necessary, then B8 is
necessary, but also that if « is possible, then B is possible.’

And at the end of the section he repeats:

‘It has been proved that if (if « is, f is), then (if « is possible,
then B is possible).’s

Let us first analyse these modal laws beginning with the second
passage, which refers to syllogisms.

All Aristotelian syllogisms are implications of the form Cof
where « is the conjunction of the two premisses and 8 the con-
clusion. Take as example the mood Barbara:

15. CKAbaAchAca.

Nt et
« B
According to the second passage we get two modal theorems, in
the form of implications taking Caf as the antecedent and CLaLB
or CM«MB as the consequent, in symbols:

16. CCaBCLaLB and  17. CCoBCMaMp.

The letters « and 8 stand here for the premisses and the conclu-
sion of an Aristotelian syllogism. As in the final passage there is

* An. pr. 1. 15, 3425 mpdTov 8¢ Xexréov 1t €l 706 A Svros dvdyxn 76 B elvar, xal
Suvarol Gvros Tof A Suvartdv éorar xai 76 B é£ dvdykns.

2 Ibid. 34222 €l is fein 76 pév A Tds mpordoes, 76 8¢ B 16 ovpmépacua, auuBaivot
av ot pdvov dvayxalov Tob A Svros dpa xai 70 B elvar dvaykaiov, dAAa xai dvvarod
duvardv.

3 Ibid. 3429 8édeinrat 67¢ € Tob A bvros 16 B éoti, xai Suvarod Svros rob A éorar
76 B dvvardv.
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no reference to syllogisms, we may treat these theorems as special
cases of general principles which we get by replacing the Greek
letters by propositional variables:

18. CCpgCLpLg and  19. CCpeCMpMy.

Both formulae may be called in a wider sense ‘laws of extension-
ality’, the first for L, the second for M. The words ‘in a wider
sense’ require an explanation.

The general law of extensionality, taken sensu stricto, is a
formula of the classical calculus of propositions enlarged by the
introduction of variable functors, and has the form:

20. CQ pqCépdq.

This means roughly speaking: If p is equivalent to ¢, then if & of
5, & of ¢, where 8 is any proposition-forming functor of one pro-
positional argument, e.g. N. Accordingly, the strict laws of
extensionality for L and M will have the form:

21. CQpgCLpLg and  22. CQpeCMpMy.

These two formulae have stronger antecedents than formulae 18
and 19, and are easily deducible from them, 21 from 18, and 22
from 19, by means of the thesis CQ pgCpg and the principle of the
hypothetical syllogism. It can be proved, however, on the ground
of the calculus of propositions and the basic modal logic that con-
versely 18 is deducible from 21, and 19 from 22. I give here the
full deduction of the L-formula:-

The premisses:

23. CCQ pgrCpCCpgr
24. CCpgCCqrCpr
25. CCpCqCprCqCpr
3. CLpp.

The deduction:
23. r/CLpLgx C21-26
26. CpCCpqCLpLg
24. p/Lp, qlp, r/CCpqCLpLgx C3-Cab-27
27. CLpCCpqCLpLg
25. p/Lp, q/Cpg, r/Lgx C27-18
18. CCpgCLpLy.

9
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In a similar way 19 is deducible from 22 by means of the pre-
misses CCQ pgrCNgCCpqr, CCpgCCqrCpr, CCNpCqCrpCqCrp, and
the transposition CNMpNp of the modal thesis CpMp.

We see from the above that, given the calculus of propositions
and basic modal logic, formula 18 is deductively equivalent to
the strict law of extensionality 21, and formula 19 to the strict law
of extensionality 22. We are right, therefore, to call those formulae
‘laws of extensionality in a wider sense’. Logically, of course, it
makes no difference whether we complete the L-system of basic
modal logic by the addition of CCpgCLpLg or by the addition of
CQ pgCLpLg; the same holds for the alternative additions to the
M-system of CCpqCMpMgq or CQ pgCMpMgq. Intuitively, however,
the difference is great. Formulae 18 and 19 are not so evident as
formulae 21 and 22. If p implies ¢ but is not equivalent to it, it is
not always true that if 6 of p, 8 of ¢; e.g. CNpNg does not follow
from Cpq. But if p is equivalent to ¢, then always if 8 of p, & of g,
i.e. if p is true, ¢ is true, and if p is false, ¢ is false; similarly if p is
necessary, ¢ is necessary, and if p is possible, ¢ is possible. This
seems to be perfectly evident, unless modal functions are regarded
as intensional functions, i.e. as functions whose truth-values do
not depend solely on the truth-values of their arguments. But
what in this case the necessary and the possible would mean, is
for me a mystery as yet.

§ 40. Aristotle’s proof of the M-law of extensionality

In the last passage quoted above Aristotle says that he has
proved the law of extensionality for possibility. He argues in
substance thus: If « is possible and 8 impossible, then when «
came to be, B would not come to be, and therefore « would be
without 8, which is against the premiss that if « is, 8 is.! It is
difficult to recast this argument into a logical formula, as the
term ‘to come to be’ has an ontological rather than a logical
meaning. The comment,“however, given on this argument by
Alexander deserves a careful examination.

Aristotle defines the contingent as that which is not necessary

and the supposed existence of which implies nothing impossible.2

¥ An. pr.i. 15, 34?8 el odv 76 pév Suvartdv, Ste Suvardv elvar, yévorr’ dv, 76 &’ dddvaror,
v s 20 VU, e o > o v A pass YR
&7’ 48dvarov, odx dv yévorro, dua & € 76 A Svvarov xal 16 B ddvvaror, évdéyoir’ dv 1o
A yevéoBas dvev Tob B, el 8¢ yevéobBar, xal elvas. 2 See below, p. 154, n. 3.
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Alexander assimilates this Aristotelian definition of contingency to
that of possibility by omitting the words ‘which is not necessary’.
He says ‘that a 8 which is impossible cannot follow from an «
which is possible may also be proved from the definition of
possibility : that is possible, the supposed existence of which im-
plies nothing impossible’.* The words ‘impossible’ and ‘nothing’
here require a cautious interpretation. We cannot interpret ‘im-
possible’ as ‘not possible’, because the definition would be circu-
lar ; we must either take ‘impossible’ as a primitive term or, taking
‘necessary’ as primitive, define the expression ‘impossible that
£’ by ‘necessary that not p’. I prefer the second way and shall
discuss the new definition on the ground of the L-basic modal
logic. The word ‘nothing’ should be rendered by a universal
quantifier, as otherwise the definition would not be correct. We
get thus the equivalence:

28. QMpITaCCpaNLNG.

That means in words: ‘It is possible that p—if and only if—for
all ¢, if (if p, then ¢), it is not necessary that not ¢.” This equiva-
lence has to be added to the L-basic modal logic as the definition
of Mp instead of the equivalence 1 which must now be proved as
a theorem.

The equivalence 28 consists of two implications:
29. CMpIIgCCpgNLNg  and  30. CIIgCCpgNLNgMp.

From 29 we get by the theorem CIIqCCpgNLNgCCpgNLNg and
the hypothetical syllogism the consequence:

31. CMpCCpgNLNg,

and from 31 there easily results by the substitution ¢/p, Cpp, com-
mutation and detachment the implication CMpNLNp. The con-
verse implication CNLNpMp which, when combined with the
original implication, would give the equivalence 1, cannot be
proved otherwise than by means of the law of extensionality for
L: CCpgCLpLyq. As this proof is rather complicated, I shall give
it in full.

! Alexander 177. 11 Sewcvdorro & dv, 61 u7) oldv 7€ duvard vt 7 A ddvvarov
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The premisses:

18. CCpqCLpLq

24. CCpgCCqrCpr

30. CIIqCCpgNLNgMp
32. CCpgCNgNp

33. CCpCqrCqCpr.

The deduction:

18. p/Ng, g/ Npx34
34. CCNgNpCLNqLNp

24. pCpg, g/CNgNp, r/CLNGLNp x C32-C34-35
35. CCpgCLNgLNp

32. p/LNg, q/LNp < 36
36. CCLNgLNpCNLNpNLNg

24. p/Cpq, 9/ CLNGLNp, r/[CNLNpNLNg x C35-C36-37
37. CCpgCNLNpNLNg

33. p/Cpq, g/ NLNp, r| NLNgx C37-38
38. CNLNpCCpgNLNg

38. Il2¢ X 39
39. CNLNpIIqCCpqNLNg

24. p|NLNp, q/11qCCpqNLNg, r/Mpx C39-C30-40
40. CNLNpMp.

We can now prove the law of extensionality for M, which was
the purpose of Alexander’s argument. This law easily results from
the equivalence 1 and thesis 7. We see besides that the proof by
means of the definition with quantifiers is unnecessarily com-
plicated. It suffices to retain definition 1 and to add to the L-
system the L-law of extensionality in order to get the M-law of
extensionality. In the same way we may get the L-law of exten-
sionality, if we add the M-law of extensionality to the M-system
and definition 2. The L-system is deductively equivalent to the
M-system with the laws of extensionality as well as without them.

It is, of course, highly improbable that an ancient logician
could have invented such an exact proof as that given above. But
the fact that the proof is correct throws an interesting light on
Aristotle’s ideas of possibility. I suppose that he intuitively saw
what may be shortly expressed thus: what is possible today, say
a sea-fight, may become existent or actual tomorrow ; but what is
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impossible, can never become actual. This idea seems to lie at the
bottom of Aristotle’s proof and of Alexander’s.

§ 41. Necessary connexions of propositions

The L-law of extensionality was formulated by Aristotle only
once, together with the M-law, in the passage where he refers to
syllogisms.*

According to Aristotle there exists a necessary connexion be-
tween the premisses « of a valid syllogism and its conclusion 8.
It would seem therefore that the laws of extensionality formulated
above in the form:

16. CCoBCLaLB  and  17. CCaPCMaMB,

should be expressed with necessary antecedents:
41. CLCoBCLoLB  and 42. CLCoBCMaMB,

and the corresponding general laws of extensionality should run:
43. CLCpgCLpLg  and  44. CLCpgCMpMy.

This is corroborated for the M-law by the first passage quoted
above where we read : ‘If (if « is, B must be), then (if a is possible,
B is possible).’

Formulae 43 and 44 are weaker than the corresponding formu-
lae with assertoric antecedents, 18 and 19, and can be got from
them by the axiom CLgp and the hypothetical syllogism 24. It is
not, however, possible to derive the stronger formulae convcrscly
from the weaker. The problem is whether we should reject the
stronger formulae 18 and 19, and replace them by the weaker
formulae 43 and 44. To solve this problem we have to inquire
into the Aristotelian concept of necessity.

Aristotle accepts that some necessary, i.e. apodeictic, pro-
positions are true and should be asserted. Two kinds of asserted
apodeictic proposition can be found in the Analytics: to the one
kind there belong necessary connexions of propositions, to the
other necessary connexions of terms. As example of the first kind
any valid syllogism may be taken, for instance the mood Barbara:

() If every b is an a, and every c is a b, then it is necessary that every
¢ should be an a.

Here the ‘necessary’ does not mean that the conclusion is an
I See p. 138, n. 2.
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apodeictic proposition, but denotes a necessary connexion be-
tween the premisses of the syllogism and its assertoric conclusion.
This is the so called ‘syllogistic necessity’. Aristotle sees very well
that there is a difference between syllogistic necessity and an
apodeictic conclusion when he says, discussing a syllogism with an
assertoric conclusion, that this conclusion is not ‘simply’ (d7A&s)
necessary, i.e. necessary in itself, but is necessary ‘on condition’,
i.e. with respect to its premisses (todrwv évrwv).! There are
passages where he puts two marks of necessity into the conclusion
saying, for instance, that from the premisses: ‘It is necessary that
every b should be an a, and some ¢ is a #’°, there follows the con-
clusion: ‘It is necessary that some ¢ should be necessarily an a.’2
The first ‘necessary’ refers to the syllogistic connexion, the second
denotes that the conclusion is an apodeictic proposition.

By the way, a curious mistake of Aristotle should be noted: he
says that nothing follows necessarily from a single premiss, but ohly
from at least two, as in the syllogism.? In the Posterior Analytics he
asserts that this has been proved,* but not even an attempt of
proofis given anywhere. On the contrary, Aristotle himself states
that ‘If some & is an g, it is necessary that some a should be a &’,
drawing thus a necessary conclusion from only one premiss.s

I have shown that syllogistic necessity can be reduced to uni-
versal quantifiers.® When we say that in a valid syllogism the
conclusion necessarily follows from the premisses, we want to
state that the syllogism is valid for any matter, i.e. for all values of
the variables occurring in it. This explanation, as I have found
afterwards, is corroborated by Alexander who asserts that : ‘syllo-
gistic combinations are those from which something necessarily
follows, and such are those in which for all matter the same comes
to be’.7 Syllogistic necessity reduced to universal quantifiers can

T An. pr. i. 10, 3032 76 ovumépaopa ovx EorTwv dvaykaiov dmdds, dAAG TodTwy
Svrwy dvaykaiov.

2 Ibid. 9, 30237 76 pév A mavri 7 B Vmapxérw €€ dvdyxms, 16 8¢ Brwi v I'
dmapyérw pdvov: dvdywn 83 76 A i 76 I' dmdpyew éf dvdyuns.

3 Ibid. 15, 34217 ob ydp forww obdév éf dvdyxns &vés rwos Gvros, MG Suoiv
éayiorow ,o0lov Srav ai mpordoes olrws Exwaw ds éXéxBn xatd Tov gulloyiapdy.

¢ An. post. i. 3, 73%7 évds pév odv keipévov 8édeixrar St 008émor’ dvdyrn T elvar
érepov (Aéyw &’ évds, 611 oiTe Spov évds otire Oéoews wids Tebeions), éx Svo 8¢ Géoewr
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be eliminated from syllogistic laws, as will appear from the fol-
lowing consideration.

The syllogism (g) correctly translated into symbols would have
the form:

(k) LCKAbaAcbAca,

which means in words:

(¢) 1t is necessary that (if every b is an a, and every ¢ is a b, then every
¢ should be an a).

The sign of necessity in front of the syllogism shows that not
the conclusion, but the connexion between the premisses and
the conclusion is necessary. Aristotle would have asserted (£).
Formula

(j) CKAbaAchLAca,

which literally corresponds to the verbal expression (g), is wrong.
Aristotle would have rejected it, as he rejects a formula with
stronger premisses, viz.

(k) CKAbaLAcbLAca,

i.e. “If every b is an a and it is necessary that every ¢ should be a b, it is
necessary that every ¢ should be an a.’t

By the reduction of necessity to universal quantifiers formula
(#) can be transformed into the expression :

() HallbIIcCKAbaAcbAca,

1.e. ‘For all g, for all 4, for all ¢ (if c{/ery bisanaand everycisa b,
then every ¢ is an a).” This last expression is equivalent to the
mood Barbara without quantifiers:

(m) CKAbaAcbAca,

since a universal quantifier may be omitted when it stands at the
head of an asserted formula.

Formulae (%) and (m) are not equivalent. It is obvious that (m)
can be deduced from (%) by the principle CLpp, but the converse
deduction is not possible without the reduction of necessity to
universal quantifiers. This, however, cannot be done at all, if the
above formulae are applied to concrete terms. Put, for instance,

I An. pr. i. 9, 30%23 €l 8¢ 76 pév AB p7) éorw dvayxaiov, 76 8¢ BI" dvaykaiov, odx
éoTas 70 ovumépacua dvaykaiov.
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in (k) ‘bird’ for b, ‘crow’ for a, and ‘animal’ for ¢; we get the
apodeictic proposition:
(n) It is necessary that (if every bird is a crow and every animal is
a bird, then every animal should be a crow).

From (n) results the syllogism (o) :

(0) If every bird is a crow and every ammal is a bird, then every
animal is a crow,

but from (o) we cannot get (r) by the transformation of necessity
into quantifiers, as (n) does not contain variables which could be
quantified.

And here we meet the first difficulty. It is easy to understand
the meaning of necessity when the functor L is attached to the
front of an asserted proposition containing free variables. In this
case we have a general law, and we may say: this law we regard
as necessary, because it is true of all objects of a certain kind, and
does not allow of exception. But how should we interpret neces-
sity, when we have a necessary proposition without free variables,
and in particular, when this proposition is an implication con-
sisting of false antecedents and of a false consequent, as in our
example (n) ? I see only one reasonable answer : we could say that
whoever accepts the premisses of this syllogism is necessarily com-
pelled to accept its conclusion. But this would be a kind of psycho-
logical necessity which is quite alien from logic. Besides it is
extremely doubtful that anybody would accept evidently false
propositions as true,

I know no better remedy for removing this difficulty than to
drop everywhere the L-functor standing in front of an asserted
implication. This procedure was already adopted by Aristotle
who sometimes omits the sign of necessity in valid syllogistical
moods.!

§ 42. ‘Material’ or ‘strict’ implication?

According to Philo of Megara the implication ‘If p, then ¢’,
i.e. Chyg, is true if and only if it does not begin with a true ante-
cedent and end with a false consequent.? This is the so-called
‘material’ implication now universally accepted in the classical
calculus of propositions. ‘Strict’ implication: ‘It is necessary that

T See p. 10, 1. 5. 2 See p. 83, n. 1.
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if p, then ¢’, i.e. LCpq, is a necessary material implication and was
introduced into symbolic logic by C. I. Lewis. By means of this
terminology the problem we are discussing may be stated thus:
Should we interpret the antecedent of the Aristotelian laws of
extensionality as material, or as strict implication ? In other words,
should we accept the stronger formulae 18 and 19 (I call this the
‘strong interpretation’), or should we reject them accepting the
weaker formulae 43 and 44 (weak interpretation) ?

Aristotle was certainly not aware of the difference between
these two interpretations and of their importance for modal logic.
He could not know Philo’s definition of the material implication.
But his commentator Alexander was very well acquainted with
the logic of the Stoic-Megaric school and with the heated con-
troversies about the meaning of the implication amidst the fol-
lowers of this school. Let us then see his comments on our
problem.

Commenting on the Aristotelian passage ‘If (if « is, 8 must
be), then (if « is possible, B must be possible)’ Alexander em-
phasizes the necessary character of the premiss ‘If « is, 8 must
be’. It seems therefore that he would accept the weaker inter-
pretation CLCxBCMaM§B and the weaker M-law of extensionality
CLCpgCMpMg. But what he means by a necessary implication is
different from strict implication in the sense of Lewis. He says
that in a necessary implication the consequent should always,
l.e. at any time, follow from the antecedent, so that the pro-
position ‘If Alexander is, he is so and so many years old’ is not a
true implication, even if Alexander were in fact so many years
old at the time when this proposition is uttered.! We miay say that
this proposition is not exactly expressed, and requires the addition
of a temporal qualification in order to be always true. A true
material implication must be, of course, always true, and if it
contains variables, must be true for all values of the variables.
Alexander’s comment is not incompatible with the strong inter-
pretation; it does not throw light on our problem.

Some more light is thrown on it, if we replace in Alexander’s
proof of the M-law of extensionality expounded in § 40 the

! Alexander 176. 2 éor. 8¢ dvaykaia dkodovbia ody 7 mpdoxaipos, AN év § del 6
eidqupévov émeabor Eomi 7& T8 eldpupévor dis fyovpevor elvar. ob yap dAndis cuvnu-
névov 76 ‘el ANéfavdpos éaw, ANéfavBpos Suaréyeral, 7 ‘el ANébavSpos ori, ToodvSe
érav {070, Kai (&) ein, Gre Aéyerar % mpdracs, TooovTwy érév.
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material implication Cpg by the strict implication LCpq. Trans-
forming thus the formula

31. CMpCCpgNLNg,
we get:
45. CMpCLCpgNLNg.

From 31 we can easily derive CMpNLNp by the substitution ¢/p
getting CMpCCppNLNp, from which our proposition results by
commutation and detachment, for Cpp is an asserted implication.
The same procedure, however, cannot be applied to 45. We get
CMpCLCppNLNp, but if we want to detach CMpNLNp we must
assert the apodeictic implication LCpp. And here we encounter
the same difficulty, as described in the foregoing section. What is
the meaning of LCpp? This expression may be interpreted as a
general law concerning all propositions, if we transform it into
IIpCpp; but such a transformation becomes impossible, if we
apply LCpp to concrete terms, e.g. to the proposition ‘Twice two
1s five’. The assertoric implication ‘If twice two is five, then twice
two is five’ is comprehensible and true being a consequence of the
law of identity Cpp; but what is the meaning of the apodeictic
implication ‘It is necessary that if twice two is five, then twice
two should be five’? This queer expression is not a general law
concerning all numbers; it may be at most a consequence of
an apodeictic law, but it is not true that a consequence of an
apodagictic proposition must be apodeictic too. Cpp is a conse-
quence of LCpp according to CLCppCpp, a substitution of CLpp,
but is not apodeictic.

It follows from the above that it is certainly simpler to interpret
Alexander’s proof by taking the word oupBaive: of his text in the
sense of material rather than strict implication. Nevertheless our
problem is not yet definitively solved. Let us therefore turn to the
other kind of asserted apodeictic proposition accepted by Aris-
totle, that is to necessaty connexions of terms.

§ 43. Analytic propositions
Aristotle asserts the proposition: ‘It is necessary that man

should be an animal.’® He states here a necessary connexion
between the subject ‘man’ and the predicate ‘animal’; i.e. a

L An. pr. i. 9, 30°30 {@ov uév yap ¢ dvBpwmos é¢ dvdyxns éotl.
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necessary connexion between terms. He apparently regards it as
obvious that the proposition ‘Man is an animal’, or better ‘Every
man is an animal’, must be an apodeictic one, because he defines
‘man’ as an ‘animal’, so that the predicate ‘animal’ is contained
in the subject ‘man’. Propositions in which the predicate is con-
tained in the subject are called ‘analytic’, and we shall probably
be right in supposing that Aristotle would have regarded all
analytic propositions based on definitions as apodeictic, since he
says in the Posterior Analytics that essential predicates belong to
things necessarily,! and essential predicates result from definitions.

The most conspicuous examples of analytic propositions are
those in which the subject is identical with the predicate. If it is
necessary that every man should be an animal, it is, ‘a fortiori,
necessary that every man should be a man. The law of identity
‘Every a is an 4’ is an analytic proposition, and consequently an
apodeictic one. We get thus the formula:

(p) LAaa, i.e. It is necessary that every a should be an a.

Aristotle does not state the law of identity Aaa as a principle of
his assertoric syllogistic; there is only one passage, found by Ivo
Thomas, where in passing he uses this law in a demonstration.z
We cannot expect, therefore, that he has known the modal thesis
LAaa.

The Aristotelian law of identity Aaa, where 4 means ‘every—is’
and q is a variable universal term, is different from the principle
of identity Fxx, where 7 means ‘is identical with’ and x is a
variable individual term. The latter principle belongs to the
theory of identity which can be established on the following
axioms:

(@) Fxx, 1.e. x is identical with x,

(r) CFxyCohxdy, i.e. If x is identical with y, then if x satisfies ¢,
y satisfies ¢,
where ¢ is a variable proposition-forming functor of one indi-
vidual argument. Now, if all analytic propositions are necessary,
so also is (¢), and we get the apodeictic principle:

(s) LJFxx, i.e. It is necessary that x should be identical with x.
I An. post. i. 6, 74P6 1a 8¢ kaf’avrd Ymdpyovre dvaykaia Tois mpdypaciv.

2 Ivo Thomas, O.P., ‘Farrago Logica’, Dominican Studies, vol. iv (1951), p. 71.
The passage reads (4n. pr. ii. 22, 68219) karnyopeitar 8¢ 76 B xal alro avrob.
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It has been observed by W. V. Quine that the principle (s), if
asserted, leads to awkward consequences.! For if L fxx is asserted,
we can derive () from (r) by the substitution ¢/L 7x’—L 7x works
here like a proposition-forming functor of one argument:

(t) CFxyCLFxxL Fxy,
and by commutation

(W) CLFxxCFoLF,
from which there follows the proposition:

() CTvLiy.

That means, any two individuals are necessarily identical, if they
are identical at all.

The relation of equality is usually treated by mathematicians
as identity and is based on the same axioms (¢) and (r). We may
therefore interpret 7 as equality, x and y as individual numbers
and say that equality holds necessarily if it holds at all.

Formula (v) is obviously false. Quine gives an example to show
its falsity. Let x denote the number of planets, and y the number
9. It is a factual truth that the number of (major) planets is equal
to g, but it is not necessary that it should be equal to 9. Quine
tries to meet this difficulty by raising objections to the substitution
of such singular terms for the variables. In my opinion, however,
his ob_]ectlons are without foundation.

There is another awkward consequence of the formula (v) not
mentioned by Quine. From (v) we get by the definition of L and
the law of transposition the consequence:

() CMNFoNF.

That means: ‘If it is possible that x is not equal to y, then x is
(actually) not equal to .’ The falsity of this consequence may be
seen in the following example: Let us suppose that a number x
has been thrown with a die. It is possible that the number y next
thrown with the die will be different from x. But if it is possible
that x will be different from y, i.e. not equal to y, then according
to (w) x will actually be different from y. This consequence is
obviously wrong, as it is possible to throw the same number twice.

' W. V. Quine, ‘Three Grades of Modal Involvement’, Proceedings of the XIth

International Congress of Philosophy, vol. xiv, Brussels (1953). For the following
argumentation I am alone responsible.
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‘T'here is, in my opinion, only one way to solve the above diffi-
culties: we must not allow that formula L Fxx should be asserted,
i.c. that the principle of identity Fex is necessary. As Jxx is a
typical analytic proposition, and as there is no reason to treat this
principle in a different way from other analytic propositions, we
are compelled to assume that no analytic proposition is necessary.

Before dealing with this important topic let us bring to an end
our investigation of Aristotle’s concepts of modalities.

§ 44. An Aristoielian paradox

'I'here is a principle of necessity set forth by Aristotle which is
highly controversial. He says in the De Interpretatione that ‘any-
thing cxistent is necessary when it exists, and anything non-
existent is impossible when it does not exist’. This does not mean,
he adds, that whatever exists is necessary, and whatever does not
exist is impossible: for it is not the same to say that anything
existent is necessary when it does exist, and to say that it is simply
necessary.! It should be noted that the temporal ‘when’ (Srav) is
used in this passage instead of the conditional ‘if’. A similar thesis
is sct forth by Theophrastus. He says, when defining the kinds of
things that are necessary, that the third kind (we do not know
what the first two are) is ‘the existent, for when it exists, then it is
impossible that it should not exist’.? Here again we find the
temporal particles ‘when’ (5-:-e) and ‘then’ (rdére). No doubt an
analogous principle occurs in medieval logic and scholars could
find it there. There is a formulation quoted by Leibniz in his
Theodicee running thus : Unumquodgue, quando est, oportet esse.> Note
agrain in this sentence the temporal quando.

What does this principle mean? It is, in my opinion, ambigu-
ous. Its first meaning seems to be akin to syllogistic necessity,
which is a necessary connexion not of terms, but of propositions.
Alexander commenting on the Aristotelian distinction between
simple and conditional necessity,* says that Aristotle was himself

' Deint. 9. 19?23 76 pév odv elvac 70 Oy, rav fj, kal 76 pi) Ov py elvay, Srav uy 7,
dmiyrn o v obire 76 v dmav dvdyxn elvar ovre 16 p7y Ov pi elvar. OO yap Tadrov
duri 76 Ov dmav elvar € dvdyxms Sre €oti, kai 76 ATADs elvar €€ dvdyxms.

+ Alexander 156. 29 ¢ yotv Oeddpaaros év 76 mpdrw Taw Ilporépwy avadvrikdv
Mywy mept rév Omd Tob dvaykalov oquawouévay obtws ypder ‘tpirov 76 vmdpyor
Sre yiap vmdpyet, TéTE 00y 0ldy T 7 dmdpyew.’

' Philosophische Schriften, ed. Gerhardt, vol. vi, p. 131.

¢ See p. 144, n. 1.
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aware of this distinction, which was explicitly made by his
friends (that is, by Theophrastus and Eudemus), and quotes as
a further argument the passage of the De Interpretatione above
referred to. He is aware that this passage is formulated by
Aristotle in connexion with singular propositions about future
events, and calls the necessity involved ‘hypothetical necessity’
(dvayxaiov €€ vmobéoews).!

This hypothetical necessity does not differ from conditional
necessity, except that it is applied not to syllogisms, but to singular
propositions about events. Such propositions always contain a
temporal qualification. But if we include this qualification in the
content of the proposition, we can replace the temporal particle
by the conditional. So, for instance, instead of saying indefinitely :
‘It is necessary that a sea-fight should be, when it is’, we may say:
‘It is necessary that a sea-fight should be tomorrow, if it will be
tomorrow.” Keeping in mind that hypothetical necessity is a
necessary connexion of propositions, we may interpret this latter
implication as equivalent to the proposition: ‘It is necessary that
if a sea-fight will be tomorrow, it should be tomorrow’ which is
a substitution of the formula LCpp.

The principle of necessity we are discussing would lead to no
controversy, if it had only the meaning explained above. But it
may have still another meaning : we may interpret the necessity
involved in it as a necessary connexion not of propositions, but of
terms. This other meaning seems to be what Aristotle himself has
in mind; when he expounds the determinist argument that all
future events are necessary. In this connexion a general statement
given by him deserves our attention. We read in the De Inter-
pretatione: ‘If it is true to say that something is white or not white,
it is necessary that it should be white or not white.’? It seems that
here a necessary connexion is stated between a ‘thing’ as subject
and ‘white’ as predicate. Using a propositional variable instead
of the sentence ‘Something is white’ we get the formula: ‘Ifit is

T Alexander 141. 1 dua 8¢ xal Ty 705 dvayxaiov Siaipeow G1i kai adrds oldev, v
o éraipos avroi memoiyvrar, dedfAwre Sid Tis mpoabrins (scil. ‘rovrewy’ Svrwy’), Hv
dldaas 107 xai év 7 Hepi épunveias Se'ael.xev, év ols mepl Tijs els Tov p,é/\/\oy‘ru, xpo’vov
)\cyop.sv-qs avruﬁaaews 7T€pl. 7@ xab’ éxaoTov e:.p'qp.evwv )\eyﬂ 70 pév ody elvar 76 b,
Srav ﬁ, xal 70 pi) 8v pi) elvar, Srav pi) 4§, dvdywn’. 76 ydp € vmolégews dvayxaiov
TOLOUTOV Ea‘rl

2 De int. 9, 18239 €l yap adqlés eimeiv o7 Aeuxdv 7} G7e 0b Aevwdy éoTw, dvdyky
elvar Aeviov 7} od Aevkdv.
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true that p, it is necessary that p’. I do not know whether Aristotle
would have accepted this formula or not, but in any case it is
interesting to draw some consequences from it.

In two-valued logic any proposition is either true or false.
Hence the expression ‘It is true that p’ is equivalent to ‘p’. Apply-
ing this cqulvalence to our case we see that the formula ‘If it is
truc that p, it is necessary that §° would be equivalent to this
simpler expression: ‘If p, it is necessary that p° which reads in
symbols: CpLp. We know, however, that this formula has been
rejected by Alexander, and certainly by Aristotle himself. It must
be rejected, for propositional modal logic would collapse, if it
were asserted. Any assertoric proposition p would be equivalent
to its apodeictic correspondent Lp, as both formulae, CLpp and
CpLp, would be valid, and it could be proved that any assertoric
proposition p was equivalent also to its problematic correspondent
Mp. Under these conditions it would be useless to construct a
pmpositional modal logic.

But it is possible to express in symbohc form the idea implied
by the formula ‘Ifit is true that p, it is necessary that p’: we need
only replace the words ‘It is true that p” by the expression ‘a is
asserted’. These two expressions do not mean the same. We can
put forward for consideration not only true, but also false pro-
positions without being in error. But it would be an error to assert
a proposition which was not true. It is therefore not sufficient to
sy ‘p is true’, if we want to impart the idea that p is really true;
p may be false, and ‘p is true’ isfalse with it. We must say ‘a is
asserted’ changing 9’ into ‘o’, as ‘p’ being a substitution-variable
cannot be asserted, whereas ‘e’ may be interpreted as a true
proposition. We can now state, not indeed a theorem, but a rule:

(x) a— La. n
In words: ‘a, therefore it is necessary that o’. The arrow means
‘therefore’, and the formula (x) is a rule of inference valid only
when « is asserted Such a rule restricted to ‘tautologous’ pro-
positions is accepted by some modern logicians.!

From rule (x) and the asserted principle of identity Fxx there
follows the asserted apodeictic formula L Fxx which leads, as we
have seen, to awkward consequences. The rule seems to be doubt-
ful, cven ir restricted to logical theorems or to analytic proposi-

' See, e.g. G. H. von Wright, 1_1n Essay in Modal Logic, Amsterdam (1951),
PP 1415,
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tions. Without this restriction rule (x) would yield, as appears
from the example given by Aristotle, apodeictic assertions gf
merely factual truths, a result contrary to intuition. For this
reason this Aristotelian principle fully deserves the name of a
paradox.

§ 45. Contingency in Aristotle

I have already mentioned that the Aristotelian term E,I.ISEX(;-
pevov is ambiguous. In the De Interpretatione, and sometimes in the
Prior Analytics, it means the same as dvvardy, but sometimes it has
another more complicated meaning which following Sir David
Ross I shall translate by ‘contingent’.! The merit of having
pointed out this ambiguity is due to A. Becker.?

Aristotle’s definition of contingency runs thus: ‘By ‘‘con-
tingent” I mean that which is not necessary and the supposed
existence of which implies nothing impossible.’”> We can see at
once that Alexander’s definition of possibility results from Aris-
totle’s definition of contingency by omission of the words ‘which
is not necessary’. If we add, therefore, the symbols of these words
to our formula 28 and denote the new functor by ‘T’, we get the
following definition:

46. QTpKNLpIIqCCpgNLNg.
This definition can be abbreviated, as ITgCCpgNLNg is equivalent
to NLNp. The implication :

39. CNLNpIIgCCpgNLNg
has been already proved ; the converse implication

47. CIIgCCpgNLNGNLNp '

easily results from the thesis CIIgCCpgNLNgCCpgNLNg by the
substitution ¢g/p, commutation, Gpp, and detachment. By putting
in 46 the simpler expression NLNp for IIgCCpgNLNg we get :

48. QTpKNLHNLNp.
This means in words: ‘It is contingent that p—if and only if—it

! W. D. Ross, loc. cit., p. 296.

2 See A. Becker, Die Aristotelische Theorie der Miglichkeitsschliisse, Berlin (1933).
1 agree with Sir David Ross (loc. cit., Preface) that Becker’s book is ‘very acute’,
but I do not agree with Becker’s conclusions.

3 An. pr.i. 13, 32218 Aéyw & évdéxeabar kal 70 évdeyduevor, od uy dvros dvayxaiov,
TeBévros &' Umdpyew, ovdév éorar dia TobT’ dddvaTov.
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is not necessary that p and it is not necessary that not .’ As the
phrase ‘not necessary that not p” means the same as ‘not impos-
sible that p’, we may say roughly speaking: ‘Something is con-
tingent if and only if it is not necessary and not impossible.’
Alexander shortly says: “The contingent is neither necessary nor
impossible.’1

We get another definition of Tp, if we transform NLNp ac-
cording to our definition 1 into Mp, and NLp into MNp:

49. QTpKMNpMp or 50. QTpKMpMNp.

Formula 50 reads: ‘It is contingent that p—if and only if—it is
possible that p and it is possible that not p.” This defines con-
tingency as ‘ambivalent possibility’, i.e. as a possibility which can
indeed be the case, but can also not be the case. We shall see that
the consequences of this definition, together with other of
Aristotle’s assertions about contingency, raise a new major
difliculty.

In a famous discussion about future contingent events Aristotle
trics to defend the indeterministic point of view. He assumes that
things which are not always in act have likewise the possibility of
being or not being. For instance, this gown may be cut into
picces, and likewise it may not be cut.2 Similarly a sea-fight may
happen tomorrow, and equally it may not happen. He says that
‘Of two contradictory propositions about such things one must
be true and the other false, but not this one or that one, only
whichever may chance (to .be fulfilled), one of them may be
more true than the other, but neither of them is as yet true, or as
yet false.’s

‘These arguments, though not quite clearly expressed or fully
thought out, contain an important and most fruitful idea. Let us
take the example of the sea-fight, and suppose that nothing is
decided today about this fight. I mean that there is nothing that
is rcal today and that would cause there to be a sea-fight tomorrow,
nor yet anything that would cause there not to be one. Hence, if

' Alexander 158. 20 odire ydp dvaykaiov olire ddvvarov 76 &vBexduevov.
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truth rests on conformity of thought with reality, the proposition
‘The sea-fight will happen tomorrow’ is today neither true nor
false. It is in this sense that I understand the words ‘not yet true
or false’ in Aristotle. But this would lead to the conclusion that it
is today neither necessary nor impossible that there will be a sea-
fight tomorrow; in other words, that the propositions ‘It is
possible that there will be a sea-fight tomorrow’ and ‘It is
possible that there will not be a sea-fight tomorrow’ are today
both true, and this future event is contingent.

It follows from the above that according to Aristotle there exist
true contingent propositions, i.e. that the formula 7p and its
equivalent KMpMNp are true for some value of p, say a. For ex-
ample, if « means ‘There will be a sea-fight tomorrow’, both
Mo and MNa would be accepted by Aristotle as true, so that
he would have asserted the conjunction:

(A) KMoMNe.

There exists, however, in the classical calculus of propositions
enlarged by the variable functor 8, the following thesis due to
Le$niewski’s protothetic:

51. CSpCONp3q.

In words: ‘If 8 of p, then if § of not p, 8 of ¢’, or roughly speaking :
‘If something is true of the proposition p, and also true of the
negation of p, it is true of an arbitrary proposition ¢.” Thesis 51 is
equivalent to

52. CK8pSNpSq

on the ground of the laws of importation and exportation
CCpCqrCKpgr and CCKpgrCpCqr. From (A) and 52 we get the
consequence :

52 8/M, plx, g/p x C(A)~(B)
(B) Mp.
Thus, if there is any contingent proposition that we accept as

true, we are bound to admit of any proposition whatever that
it is possible. But this would cause a collapse of modal logic;

Mp must be rejected, and consequently KMo MNo cannot be |,

asserted.
We are at the end of our analysis of Aristotle’s propositional
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modal logic. This analysis has led us to two major difficulties:
the first difficulty is connected with Aristotle’s acceptance of true
apodeictic propositions, the second with his acceptance of true
contingent propositions. Both difficulties will reappear in Aris-
totle’s modal syllogistic, the first in his theory of syllogisms with
onc assertoric and one apodeictic premiss, the second in his theory
of contingent syllogisms. If we want to meet these difficulties and
to explain as well as to appreciate his modal syllogistic, we must
first cstablish a secure and consequent system of modal logic.



