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opposition to Aristotle and to the whole school of the Peri-
patetics, he eagerly seized the occasion to back up his opinion by
the authority of an illustrious name.

Remark. The problem of compound syllogisms raised by Galen has
considerable interest from the systematic point of view. Investigating
the number of valid moods of the syllogisms consisting of three pre-
misses, I have found that there are forty-four valid moods, the figures
F1, F2, F4, F5, F6, and F7 having six moods each, and figure F8
eight. Figure F3 is empty. It has no valid moods, for it is not possible
to find premisses of the form A-B, C-B, C-D such that a conclusion
of the form A--D would follow from them. This {'csult, if known, would
certainly be startling for students of the traditional logic. Mr. C. A.
Meredith, who attended my lectures delivered on this subject in 1949
at University College, Dublin, has found some general formulae
concerning the number of figures and valid moods for syllogisms of n
terms, including expressions of 1 and 2 terms. I publish these formulae
here with his kind permission :

Number of terms . . . . n

Number of figures . 5 o It
Number of figures with valid moods . }(nP—n+-2)
Number of valid moods . . . n(gn—1)

For all n every non-empty figure has 6 valid moods, except one that
has 2r valid moods.

Examples:
Number of terms . . . . I, 2, 8 4y, 10
Number of figures . . .1, 2, 4, 8,.,51I2
Number of figures with valid moods I, 2, 4y ey 46
Number of valid moods . . . 2, 10, 24, 44;..., 290

It is obvious that for large n’s the number of figures with valid moods
is comparatively small against the number of all figures. For n = 10
we have 46 against 512 respectively, i.e. 466 figures are empty. For
n = 1 there is only 1 figure, 4-4, with 2 valid moods, i.e. the laws of
identity. For n = 2 there are 2 figures:
Premiss  Conclusion

Fi A4-B A-B

Fa B-4 4-B
with 10 valid moods, 6 in F1 (viz. four substitutions of the proposi-
tional law of 1dent1ty, e.g. ‘ifall 4is B, then all 4 is B’, and two laws
of subordination), and 4 moods in F2 (viz. four laws of conversion).

CHAPTER II1

THE SYSTEM

§ 15. Perfect and imperfect syllogisms

In the introductory chapter to the syllogistic Aristotle divides all
syllogisms into perfect and imperfect. ‘I call that a perfect syllo-
gism’, he says, ‘which needs nothing other than what has been
stated to make the necessity evident; a syllogism is imperfect, if
it needs either one or more components which are necessary by
the terms set down, but have not been stated by the premisses.’?
This passage needs translation into logical terminology. Every
Aristotelian syllogism is a true implication, the antecedent of
which is the joint premisses and the consequent the conclusion.
What Aristotle says means, therefore, that in a perfect syllogism
the connexion between the antecedent and the consequent is
evident of itself without an additional proposition. Perfect syllo-
gisms are self-evident statements which do not possess and do not
need a demonstration; they are indemonstrable, dvamédeixror.?
Indemonstrable true statements of a deductive system are now
called axioms. The perfect syllogisms, therefore, are the axioms of
the syllogistic. On the other hand, the imperfect syllogisms are not
self-evident; they must be proved by means of one or more pro-
positions which result from the, premisses, but are different from
them. _

Aristotle knows that not all true propositions are demon-
strable.? He says that a proposition of the form ‘A4 belongs to B’
is demonstrable if there exists a middle term, i.e. a term which
forms with 4 and B true premisses of a valid syllogism having the
above proposition as the conclusion. If such a middle term does

U An. pr. i. 1, 2422 7édeiov pév o8y kadd cvMoyioudy Tov underds dAov mpooded-
pevov mapa 76 eldnupéva mpds 76 Pavivar 76 dvayxaiov, dredij 8¢ Tov wpoadeduevov
évos ) mAewdvar, & éoti pév dvaykaia Sid TGy dmoxeyuévwy Spaw, ob uiy eldymrac Sid
mpéTacew.

* Commenting upon thé above passage Alexander uses the expression dvamédet-
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not exist, the proposition is called ‘immediate’, duedos, i.e. with-
out a middle term. Immediate propositions are indemonstrable;
they are basic truths, dpyai.! To these statements of the Posterior
Analytics may be added a passage of the Prior Analytics which
states that every demonstration and every syllogism must be
formed by means of the three syllogistical figures.?

This Aristotelian theory of proof has a fundamental flaw: it
supposes that all problems can be expressed by the four kinds
of syllogistic premiss and that therefore the categorical syllo-
gism is the only instrument of proof. Aristotle did not realize
that his own theory of the syllogism is an instance against this
conception. The syllogistic moods, being implications, are pro-
positions of another kind than the syllogistic premisses, but
nevertheless they are true propositions, and if any of them is not
self-evident and indemonstrable it requires a proof to establish its
truth. The proof, however, cannot be done by means of a cate-
gorical syllogism, because an implication does not have either a
subject or a predicate, and it would be useless to look for a middle
term between non-existent extremes. This is perhaps a subcon-
scious cause of the special terminology Aristotle uses in the doc-
trine of the syllogistic figures. He does not speak of ‘axioms’ or
‘basic truths’ but of ‘perfect syllogisms’, and does not ‘demon-
strate’ or ‘prove’ the imperfect syllogisms but ‘reduces’ them
(dvdyer or avadver) to the perfect. The effects of this improper
terminology, persist till today. Keynes devotes to this matter a
whole section of his Formal Logic, entitled ‘Is Reduction an essen-
tial part of the Doctrine of the Syllogism?’, and comes to the
conclusion ‘that reduction is not a necessary part of the doctrine
of the syllogism, so far as the establishment of the validity of the
different moods is concerned’.? This conclusion cannot be applied
to the Aristotelian theory of the syllogism, as this theory is an
axiomatized deductive system, and the reduction of the other
syllogistic moods to those of‘the first figure, i.e. their proof as
theorems by means of the axioms, is an indispensable part of the
system.

Aristotle accepts as perfect syllogisms the moods of the first

T An. post. i. 23, 84P19 davepdy 8¢ xal Sri, Srav 76 A 7 B vmdpxy, € pév éore
péoov, éore detfar 6T 76 A 7§ B dmdpyer . . ., € 8¢ pi} dorwv, odkéri EoTw dmddeifis,
dAX’ 9 éni 1ds dpyds 6dds alry éoTiv.

2 An. pr. i. 23, 41P1 ndoav dnddefw xal mdvra ovMoyiapdv dvdyrn yiveaBar Sid
TPV TAY Tpoelpuévay axnudTwy. 3 Op. cit., pp. 325-7.
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figure, called Barbara, Celarent, Darii, and Ferio.! Yet in the
last chapter of his systematic exposition he reduces the third and
fourth moods to the first two, and takes therefore as axioms of his
theory the most clearly evident syllogisms, Barbara and Cela-
rent.? This detail is of no little interest. Modern formal logic tends
to reduce the number of axioms in a deductive theory to a
minimum, and this is a tendency which has its first exponent in
Aristotle.

Aristotle is right when he says that only two syllogisms are
needed as axioms to build up the whole theory of the syllogism.
He forgets, however, that the laws of conversion, which he uses
to reduce the imperfect moods to the perfect ones, also belong to
his theory and cannot be proved by means of the syllogisms.
There are three laws of conversion mentioned in the Prior
Analytics: the conversion of the E-premiss, of the A-premiss, and
of the I-premiss. Aristotle proves the first of these laws by what
he calls ecthesis, which requires, as we shall see later, a logical
process lying outside the limits of the syllogistic. As it cannot be
proved otherwise, it must be stated as a new axiom of the system.
The conversion of the A-premiss is proved by a thesis belonging
to the square of opposition of which there is no mention in the
Prior Analytics. We must therefore accept as a fourth axiom either
this law of conversion or the thesis of the square of opposition,
from which this law follows. Only the law of conversion of the
I-premisses can be proved without a new axiom.

There are still two theses that have to be taken into account,
although neither of them is explicitly stated by Aristotle, viz. the
laws of identity: ‘4 belongs to all 4’ and ‘4 belongs to some A4’.
The first of these laws is independent of all other theses of the
syllogistic. If we want to have this law in the system, we must
accept it axiomatically. The second law of identity can be
derived from the first.

Modern formal logic distinguishes in a deductive system not
only between primitive and derivative propositions, but also
between primitive and defined terms. The constants of the
Aristotelian syllogistic are the four relations: ‘to belong to all’

' At the end of chapter 4, containing the moods of the first figure, Aristotle says,
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or 4, ‘to belong to none’ or E, ‘to belong to some’ or /, and ‘to
not-belong to some’ or 0. Two of them may be defined by the
other two by means of propositional negation in the following
way : ‘4 does not belong to some B’ means the same as ‘It is not
true that 4 belongs to all B°, and ‘4 belongs to no B’ means the
same as ‘It is not true that 4 belongs to some B’. In the same
manner 4 could be defined by O, and I by E. Aristotle does not
introduce these definitions into his system, but he uses them
intuitively as arguments of his proofs. Let us quote as only one
example the proof of conversion of the J-premiss. It runs as fol-
lows: ‘If A belongs to some B, then B must belong to some A.
For if B should belong to no 4, 4 would belong to no B.’t It is
obvious that in this indirect proof Aristotle treats the negation of
“B belongs to some A4’ as equivalent to ‘B belongs to no 4’. As to
‘the other pair, 4 and O, Alexander says explicitly that the phrases
‘to not-belong to some’ and ‘to not-belong to all’ are different
only in words, but have equivalent meanings.?

If we accept as primitive terms of the system the relations A4
and 7, defining E and O by means of them, we may, as-I stated
many years ago,® build up the whole theory of the Aristotelian
syllogism on the following four axioms:

1. 4 belongs to all A4,

2. A belongs to some A4.
3. If 4 belongs to all B and B belongs to all C, then 4

belongs to all C. Barbara
4. If 4 belongs to all B and C belongs to some B, then
A belongs to some C. Datisi

It is impossible to reduce the number of these axioms. In
particular they cannot be derived from the so-called dictum de
omni ¢t nullo. This principle is differently formulated in different
text-books of logic, and always very vaguely. The classic formula-
tion, ‘quidquid de omnibus valet, valet etiam de quibusdam et de
singulis’ and ‘quidquid de nullo valet, nec de quibusdam nec de

' An. pr.i. 2, 25220 €l yap 76 A Twi 7@ B, xai 76 B rwi 7@ A dvdyxn Sndpyew. €l
yap pndevi, 0v8é 76 A obderi 7@ B. [Corr. by W. D, Ross.]
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3 J. Lukasiewicz, Elementy logiki matematycznej (Elements of Mathematical Logic),
edited by M. Presburger (mimeographed), Warsaw (1929), p. 172; ‘Znaczenie
analizy logicznej dla poznania’ (Importance of Logical Analysis for Knowledge),
Przegl. Filoz. (Philosophical Review), vol. xxxvii, Warsaw (1934), p. 373.
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singulis valet’, cannot be strictly applied to the Aristotelian logic,
as singular terms and propositions do not belong to it. Besides,
I do not see how it would be possible to deduce from this prin-
ciple the laws of identity and the mood Datisi, if anything at all
can be deduced from it. Moreover, it is evident that it is not one
single principle but two. It must be emphasized that Aristotle is
by no means responsible for this obscure principle. It is not true
that the dictum de omni et nullo was given by Aristotle as the axiom
on which all syllogistic inference is based, as Keynes asserts.” It
is nowhere formulated in the Prior Analytics as a principle of
syllogistic. What is sometimes quoted as a formulation of this
principle is only an explanation of the words ‘to be predicated of
all’ and ‘of none’.2

It is a vain attempt to look for the principle of the Aristotelian
logic, if ‘principle’ means the same as ‘axiom’. If it has another
meaning, I do not understand the problem at all. Maier, who
has devoted to this subject another obscure chapter of his book,?
spins out philosophic speculations that neither have a basis in
themselves nor are supported by texts of the Prior Analytics. From
the standpoint of logic they are useless.

§ 16. The logic of terms and the logic of propositions

To this day there exists no exact logical analysis of the proofs
Aristotle gives to reduce the imperfect syllogisms to the perfect.
The old historians of logic, like Prantl and Maier, were philo-
sophers and knew only the ‘philosophical logic’ which in the nine-
teenth century, with very few exceptions, was below a scientific
level. Prantl and Maier are now dead, but perhaps it would not
be impossible to persuade living philosophers that they should
cease to write about logic or its history before having acquired a
solid knowledge of what is called ‘mathematical logic’. It would
otherwise be a waste of time for them as well as for their readers.
It seems to me that this point is of no small practical importance.

No one can fully understand Aristotle’s proofs who does not
know that there exists besides the Aristotelian system another
system of logic more fundamental than the theory of the syllogism.

' Op. cit., p. 30I.

2 An, pr. i. 1, 24P28 Myopev 8¢ 76 kard mavrds karqyopeiobar, Srav pndév § AaPeiv
[r06 vmoxeyuévov (secl. W. D. Ross)], xad’ oF Odrepov ob Aexbrjoerar xai 76 xard
undevds doavrws. * Op. cit., vol. ii b, p. 149.
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It is the logic of propositions. Let us explain by an example the
difference between the logic of terms, of which the Aristotelian
logic is only a part, and the logic of propositions. Besides the
Aristotelian law of identity ‘4 belongs to all 4’ or ‘All 4 is 4’, we
have still another law of identity of the form ‘If p, then p’. Let us
compare these two, which are the simplest logical formulae :

AllAis A and If p, then p.

They differ in their constants, which I call functors: in the first
formula the functor reads ‘all—is’, in the second ‘if—then’. Both
are functors of two arguments which are here identical. But the
main difference lies in the arguments. In both formulae the
arguments are variables, but of a different kind : the values which
may be substituted for the variable 4 are terms, like ‘man’ or
‘plant’. From the first formula we get thus the propositions ‘All
men are men’ or ‘All plants are plants’. The values of the variable
2 are not terms but propositions, like ‘Dublin lies on the Liffey’
or ‘Today is Friday’ ; we get, therefore, from the second formula
the propositions: ‘If Dublin lies on the Liffey, then Dublin lies
on the Liffey’ or ‘If today is Friday, then today is Friday’. This
difference between term-variables and proposition-variables is
the primary difference between the two formulae and conse-
quently between the two systems of logic, and, as propositions
and terms belong to different semantical categories, the difference
is a fundamental one.

The first system of propositional logic was invented about half
a century after Aristotle: it was the logic of the Stoics. This logic
is not a system of theses but of rules of inference. The so-called
modus ponens, now called the rule of detachment: ‘If «, then B;
but «; therefore 8° is one of the most important primitive rules
of the Stoic logic. The variables « and B are propositional
variables, as only propositions can be significantly substituted for
them.! The modern system of the logic of propositions was created
only in 1879 by the great German logician Gottlob Frege. Another
outstanding logician of the nineteenth century, the American
Charles Sanders Peirce, made important contributions to this
logic by his discovery of logical matrices (1885). The authors
of Principia Mathematica, Whitehead and Russell, later put this

! Cf. Lukasiewicz, ‘Zur Geschichte des Aussagenkalkiils’, Erkenntnis, vol. v, Leipzig
(1935), pp- 111-31.
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system of logic at the head of all mathematics under the title
‘Theory of Deduction’. All this was entirely unknown to philo-
sophers of the nineteenth century. To this day they seem to have
no idea of the logic of propositions. Maier says that the Stoic
logic, which in fact is a masterpiece equal to the logic of Aristotle,
yields a poor and barren picture of formalistic-grammatical un-
steadiness and lack of principle, and adds in a footnote that the
unfavourable judgement of Prantl and Zeller on this logic must
be maintained.' The Encyclopaedia Britannica of 1911 says briefly of
the logic of the Stoics that ‘their corrections and fancied improve-
ments of the Aristotelian logic are mostly useless and pedantic’.?

It seems that Aristotle did not suspect the existence of another
system of logic besides his theory of the syllogism. Yet he uses
intuitively the laws of propositional logic in his proofs of im-
perfect syllogisms, and even sets forth explicitly three statements
belonging to this logic in Book II of the Prior Analytics. The first
of these is a law of transposition : “When two things’, he says, ‘are
so related to one another, that if the one is, the other necessarily
is, then if the latter is not, the former will not be either.’® That
means, in terms of modern logic, that whenever an implication
of the form ‘If «, then B’ is true, then there must also be true
another implication of the form ‘If not-8, then not-«’. The second
is the law of the hypothetical syllogism. Aristotle explains it by an
example: ‘Whenever if 4 is white, then B should be necessarily
great, and if B is great, then C should not be white, then it is
necessary if 4 is white that C should not be white.’# That means:
whenever two implications of the form ‘If «, then 8’ and ‘If §,
then y ’ are true, then there must also be true a third implication
‘If «, then y *, The third statement is an application of the two
foregoing laws to a new example and, curiously enough, it is
false. This very interesting passage runs thus:

‘It is impossible that the same thing should be necessitated by the
being and by the not-being of the same thing. I mean, for example,

! Maier, op. cit., vol. ii b, p. 384: ‘In der Hauptsache jedoch bietet die Logik
der Stoiker . . . ein diirftiges, 6des Bild formalistisch-grammatischer Prinzip- und
Haltlosigkeit.” Ibid., n. 1: ‘In der Hauptsache wird es bei dem ungiinstigen Urteil,
das Prantl und Zeller iiber die stoische Logik fillen, bleiben miissen.’

2 11th ed., Cambridge (1911), vol. xxv, p. 946 (s.v. ‘Stoics’).
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50 THE SYSTEM §16

that it is impossible that B should necessarily be great if 4 is white,
and that B should necessarily be great if 4 is not white. For if B is not
great 4 cannot be white. But if, when 4 is not white, it is necessary
that B should be great, it necessarily results that if B is not great, B
itself is great. But this is impossible.’?

Although the example chosen by Aristotle is unfortunate, the
sense of his argument is clear. In terms of modern logic it can be
stated thus: Two implications of the form ‘If «, then B’ and ‘If
not-o, then B’ cannot be together true. For by the law of trans-
position we get from the first implication the premiss ‘If not-8,
then not-o’, and this premiss yields together with the second
implication the conclusion ‘If not-g, then 8’ by the law of the
hypothetical syllogism. According to Aristotle this conclusion is
impossible.

Aristotle’s final remark is erroneous. The implication ‘If not-8,
then B°, the antecedent of which is the negation of the conse-
quent, is not impossible ; it may be true, and yields as conclusion
the consequent 8, according to the law of the logic of propositions :
‘If (if not-p, then p), then p.’> Commenting upon this passage,
Maier says that there would here result a connexion contrary to
the law of contradiction and therefore absurd.3 This comment
again reveals Maier’s ignorance of logic. It is not the implication
‘If not-B, then B’ that is contrary to the law of contradiction, but
only the conjunction ‘ 8 and not-8°.

A few years after Aristotle, the mathematician Euclid gave a
proof of a mathematical theorem which implies the thesis ‘If (if
not-p, then p), then p’.# He states first that ‘If the product of two

! An. pr. ii. 4, 57°3 705 8" adrod Svros xal p 5wo;, dddvaror e’f a'.wi'yx'r]s‘ elvar 76
ad7d. Ac-yw 8’ olov To5 4 & dvros Aevkod 16 B elvar puéya éf dvdyxms, xai uz dvros Aevxod
700 A 16 B elvas peya €€ dvdyxns. Here follows the example of the hypothetical
syllogism quoted in p. 49, n. 4, and a second formulation of the law of trans-
position. The conclusion reads, 11 106 83 B p3) dvros peyddov 76 A ovy oldv 7€ Aevwdy
€lvac. 705 8¢ A p3) Svros Aevkod, €l dvdyx 76 B péya elvar, ovpBaives ¢ dvdyxns ot B
peydlov uv Svros abro 16 B elvar puéya. Totro 8° dddvarov.

? See A. N. Whitehead and B. Russell, Principia Mathematica, vol. i, Cambridge
(1910), p. 138, thesis *2-18. :

3 Op. cit., vol. ii 4, p. 331: ‘Es ergibe sich also ein Zusammenhang, der dem
Gesetze des Widerspruchs entgegenstiinde und darum absurd wire.’

* See Seritti di G. Vailati, Leipzig-Firenze, cxv. ‘A proposito d’un passo del
Tecteto ¢ di una dimostrazione di Euclide’, pp. 516—27; cf. Lukasiewicz,
‘Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalkuls’
Comptes Rendus des stances de la Société des Sciences et des Lettres de Varsovie, xxiii (1930),
CL I1I, p. 67.
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integers, a and b, is divisible by a primc number #, then if a is not
divisible by =, b should be divisible by »’. Let us now suppose that
¢ = b and the product axa (a?) is divisible by 7. It results from
this supposition that ‘If « is not divisible by #, then a is divisible
by n’. Here we have an example of a true implication the ante-
cedent of which is the negation of the consequent. From this
implication Euclid derives the theorem: ‘If ¢ is divisible by a
prime number #, then a is divisible by ».’

§ 17. The proofs by conversion

The proofs of imperfect syllogisms by conversion of a premiss
are both the simplest and those most frequently employed by
Aristotle. Let us analyse two examples. The proof of the mood
Festino of the second figure runs thus: ‘If M belongs to no W,
but to some X, then it is necessary that N should not belong to
some X. For since the negative premiss is convertible, N will
belong to no M ; but M was admitted to belong to some X; there-
fore NV will not belong to some X. The conclusion is reached by
means of the first figure.’!

The proof is based on two premisses : one of them is the law of
conversion of the E-propositions:

(1) If M belongs to no N, then N belongs to no M,
and the other is the mood Ferio of the first figure:

(2) If V belongs to no M and M belongs to some X, then ¥
does not belong to some X..

From these premisses we have to derive the mood Festino:

(3) If M belongs to no N and M belongs to some X, then ¥
does not belong to some X.

Aristotle performs the proof intuitively. Analysing his intuitions
we find two theses of the propositional calculus: one of them is
the above-mentioned law of the hypothetical syllogism, which
may be stated in the following form:

(4) If (if p, then g), then [if (if ¢, then 7), then (if p, then
]

' An. pr.i. 5, 27232 €l yop 76 M 76 pév N pndevi 7§ 3¢ E 1wi Smdpyer, avdykn 76 N
1l v& & py) dmdpyew. émel yap dvriarpéder T6 aTepnTindy, 0vdevi 7o M dmdpte 6 N-
76 8¢ ye M Sméecro Twi 7§ & Smdpyew wore 76 N vl 7@ & ovy mdpec. yiverar yap
avAdoyiauos 8id Tob mpdiTov oxRuaros.

¢ See Principia Mathematica, p. 104, thesis *2-06.
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The other thesis reads:

(5) If (if p, then ¢), then (if p and 7, then ¢ and ).

This thesis is called in Principia Mathematica, following Peano, the
principle of the factor. It shows that we may ‘multiply’ both sides
of an implication by a common factor, i.e. we may add, by means
of the word ‘and’, to p and to ¢ a new proposition 7.

We start with thesis (5). As p, ¢, and 7 are propositional
variables, we may substitute for them premisses of the Aristotelian
logic. Putting ‘M belongs to no N’ for p, ‘¥ belongs to no M’ for
g, and ‘M belongs to some X’ for 7, we get from the antecedent of
(5) the law of conversion (1), and we may detach the consequent
of (5) as a new thesis. This new thesis has the form:

(6) If M belongs to no N and M belongs to some X, then N

belongs to no M and M belongs to some X.

The consequent of this thesis is identical with the antecedent of
thesis (2). Therefore we may apply to (6) and (2) the law of the
hypothetical syllogism, substituting for ¢ the conjunction ‘M
belongs to no ¥ and M belongs to some X°, for ¢ the conjunction
‘N belongs to no M and M belongs to some X’, and for r the
proposition ‘N does not belong to some X’. By applying the rule
of detachment twice we get from this new thesis the mood
Festino.

The second example I want to analyse is somewhat different.
It is the above-mentioned proof of the mood Disamis.? We have
to prove the following imperfect syllogism :

(7) If R belongs to all § and P belongs to some S, then P

belongs to some R.

The proof is based on the mood Darii of the first figure:
(8) If R belongs to all § and S belongs to some P, then R
belongs to some P,
and on the law of conversion of the I-propositions applied twice,
once in the form: :
(9) If P belongs to some S, then § belongs to some P,
and for the second time in the form:
(10) If R belongs to some P, then P belongs to some R.
As auxiliary theses of the propositional logic we have the law of

' See Principia Mathematica, p. 119, thesis *3-45. The conjunction ‘p and s* is
called in the Principia ‘logical product’. 2 See the Greek text in p. 25, n. 1.
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the hypothetical syllogism, and the following thesis, which is
slightly different from thesis (5), but also may be called the .
principle of the factor:

(1) If (if p, then g), then (if 7 and p, then r and g).

The difference between (5) and (11) consists in this, that the
common factor 7 is not in the second place, as in (5), but in the
first. As conjunction is commutable and ‘p and r’ is equivalent to
‘r and g, this difference does not affect the validity of the thesis.

The proof given by Aristotle begins with the conversion of the
premiss ‘P belongs to some §’. Following this procedure, let us
substitute for g in (11) the premiss ‘P belongs to some §’, for ¢
the premiss ‘S belongs to some P’, and for 7 the premiss ‘R belongs
to all §°. By this substitution we get from the antecedent of (11)
the law of conversion (9), and therefore we may detach the
consequent of (11) which reads:

(12) If R belongs to all S and P belongs to some S, then R
belongs to all § and § belongs to some P.

The consequent of (12) is identical with the antecedent of (8).
By applying the law of the hypothetical syllogism we can get
from (12) and (8) the syllogism:
(13) If R belongs to all § and P belongs to some S, then R
belongs to some P.

This syllogism, however, is not the required mood Disamis, but
Datisi. Of course, the mood Disamis could be derived from Datisi
by converting its consequent according to thesis (10), 1.e. by
applying the hypothetical syllogism to (13) and (10). It seems,
however, that Aristotle took another course: instead of deriving
Datisi and converting its conclusion, he converts the conclusion
of Darii, getting the syllogism:

(14) If R belongs to all S and § belongs to some P, then P

belongs to some R,

and then he applies intuitively the law of the hypothetical syllo-
gism to (12) and (14). The syllogism (14) is a mood of the fourth
figure called Dimaris. As we already know, Aristotle mentions
this mood at the beginning of Book 1T of the Prior Analytics.

In a similar way we could analyse all the other proofs by con-
version. It follows from this analysis that if we add to the perfect
syllogisms of the first figure and to the laws of conversion three
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laws of the logic of propositions, viz. the law of the hypothetical
syllogism and two laws of the factor, we get strictly formalized
proofs of all imperfect syllogisms except Baroco and Bocardo.
These two moods require other theses of the propositional logic.

§ 18. The proofs by reductio ad impossibile

The moods Baroco and Bocardo cannot be reduced to the first
figure by conversion. The conversion of the A-premiss would
yield an I-proposition, from which together with the O- -premiss
nothing results, and the O-premiss cannot be converted. Aristotle
tries to prove these two moods by a reductio ad impossibile, dmaywyy
ets 76 a8vvarov. The proof of Baroco runs thus: ‘If M belongs to
all ¥, but not to some X, it is necessary that V should not belong
to some X; for if /V belongs to all X, and M is predicated also of
all N, M must belong to all X; but it was assumed that M does
not belong to some X.’! This proof is very concise and needs an
explanation. Usually it is explained in the following way :2

We have to prove the syllogism :

(1) If M belongs to all ¥ and M does not bélong to some X,
then & does not belong to some X.

It is admitted that the premisses ‘M belongs to all N’ and ‘M
does not belong to some X’ are true; then the conclusion ‘¥ does
not belong to some X’ must also be true. For if it were false, its
contradictory, ‘N belongs to all X’, would be true. This last pro-
position is the starting-point of our reduction. As it is admitted
that the premiss ‘M belongs to all N’ is true, we get from this
premiss and the propostion ‘¥ belongs to all X” the conclusion
‘M belongs to all X’ by the mood Barbara. But this conclusion is
false, for it is admitted that its contradictory ‘M does not belong
to some X’ is true. Therefore the starting-point of our reduction,
‘N belongs to all X°, which leads to a false conclusion, must be
false, and its contradictory, ‘N does not belong to some X’, must
be true. '

This argument is only apparently convincing; in fact it does
not prove the above syllogism. It can be applied only to the
traditional mood Baroco (I quote this mood in its usual form

T An. pr. 1. 5, 27237 €l 7@ pév N mavri 0 M, 76 8¢ & rwl p7) Sndpyer, dvdyxy 76 N
Twi 7@ 8 pn dndpyew € yap mavri dndpye, xarnyopeirar 8¢ xai 76 M wavrds rob N,
dvdyrn 16 M mavri 7 & dndpyew: dméxerro 8¢ Twil u7) dmdpyew.

2 Cf., for instance, Maier, op. cit., vol. ii a, p. 84.
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with the verb ‘to be’, and not in the Aristotelian form with ‘to
belong’) :
(2) All Vis M,
Some X is not M,
therefore
Some X is not V.

This is a rule of inference and allows us to assert the conclusion
provided the premlsses are true. It does not say what happens
when the premlsses are not true. This is irrelevant for a rule of
inference, as it is evident that an inference based on false pre-
misses cannot be valid. But Aristotelian syllogisms are not rules
of inference, they are propositions. The syllogism (1) is an im-
plication which is true for all values of the variables M, ¥, and X,
and not only for those values that verify the premisses. If we apply
this mood Baroco to the terms M = ‘bird’, N = ‘animal’, and X =
‘owl’, we get a true syllogism (I use fdrms with ‘to be’, as does
Aristotle in examples) : :
(3) If all animals are birds
and some owls are not birds,
then some owls are not animals.

This is an example of the mood Baroco, because it results from it
by substitution. The above argument, however, cannot be applied
to this syllogism. We cannot admit that the premisses are true,
because the propositions ‘All animals are birds’ and ‘Some owls
are not birds’ are certainly false. We need not suppose that the
conclusion is false ; it is false whether we suppose its falsity or not.
But the main point is that the contradictory of the conclusion, i.e.
the proposmon ‘All owls are animals’, yields together w1th the
first premiss ‘All animals are birds’ not a false conclusion, but a
true one: ‘All owls are birds’. The reductio ad impossibile is in this
case impossible.

The proof given by Aristotle is neither sufficient nor a proof
by reductio ad impossibile. Aristotle describes indirect proof or the
demonstration per impossibile by contrast with direct or ostensive
proof, as a proof that posits what it wishes to refute, i.e. to refute
by reduction to a statement admitted to be false, whereas ostensive
proof starts from propositions admitted to be true. Accordingly,

' An. pr. ii. 14, 62b2g quSepﬂ 8’ 1) els 76 ddvvatov awoSezfns TS Sem'ruc'qs 6
n()cvat G ﬁou,\srcu dvapeiv, dndyovoa eis Spodoyotpevoy theddos 1) 8¢ Seuxtiny) dpyerar

éf Sporoyovuévay 9é (dAn8av).
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if we have to prove a proposition by reductio ad impossibile, we
must start from its negation and derive thence a statement
obviously false. The indirect proof of the mood Baroco should
start from the negation of this mood, and not from the negation
of its conclusion, and this negation should lead to an uncondition-
ally false statemen, and not to a proposition that is admitted to
be false only under certain conditions. I shall here give a sketch
of such a proof. Let « denote the proposition ‘M belongs to all
N, B “N belongs to all X°, and y ‘M belongs to all X’. As the
negation of an A-premiss is an O-premiss, ‘not-8° will have the
meaning ‘N does not belong to some X’, and ‘not-y * ‘M does not
belong to some X’. According to the mood Baroco the implication
‘If « and not-y, then not-B’ is true, or in other words, « and not-y
are not true together with B. The negation, therefore, of this
proposition would mean that ‘ « and  and not-y * are together
true. But from ‘a and B°, ¢y’ results by the mood Barbara ; we
get therefore ‘y and not-y’, i.e. a proposition obviously false,
being a contradiction in forma. It can easily be seen that this
genuine proof of the mood Baroco by reductio ad impossibile is
quite different from that given by Aristotle.

"The mood Baroco can be proved from the mood Barbara by a
very simple ostensive proof which requires one and only one

thesis of the propositional logic. It is the following compound law
of transposition :

(4) If (if p and ¢, then r), then if p and it is not true that r,
then 1t is not true that ¢.

Put for p ‘M belongs to all N, for g ‘N belongs to all X*, and for r
“M belongs to all X°. By this substitution we get in the antecedent

of (4) the mood Barbara, and therefore we can detach the conse-
quent, which reads:

(5) If M belongs to all V and it is not true that M belongs
to all X, then it is not true that N belongs to all X,
As the O-premiss is the negation of the 4-premiss, we may replace
in (5) the forms ‘it is not true that belongs- to all’ by ‘does not
belong to some’, getting thus the mood Baroco.
There can be no doubt that Aristotle knew the law of trans-
position referred to in the above proof. This law is closely con-

! I am using ‘not-’ as an abbreviation for the propositional negation ‘it is not
» - e
true that’, % See Principia Mathematica, p. 118, thesis *3-37.
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nected with the so-called ‘conversion’ of the syllogism, which he
investigated thoroughly.! To convert a syllogism means to take
the contrary or the contradictory (in proofs per impossibile only the
contradictory) of the conclusion together with one premiss, there-
by destroying the other premiss. ‘It is necessary,’ Aristotle says,
‘if the conclusion has been converted and one of the premisses
stands, that the other premiss should be destroyed. For if it should
stand, the conclusion must also stand.’? This is a description of
the compound law of transposition. Aristotle therefore knows this
law ; moreover, he applies it to obtain from the mood Barbara
the moods Baroco and Bocardo. Investigating in the same chapter
the conversion of the moods of the first figure, he says: ‘Let the
syllogism be affirmative (i.e. Barbara), and let it be converted as
stated (i.e. by the contradictory denial). Then if 4 does not belong
to all C, but to all B, B will not belong to all C. And if 4 does not
belong to all C, but B belongs to all C, 4 will not belong to all
B.’3 The proofs of Baroco and Bocardo are here given in their
simplest form.

In the systematic exposition of the syllogistic these valid proofs
are replaced by insufficient demonstrations per impossibile. 'The
reason is, I suppose, that Aristotle does not recognize arguments
é¢ dmobéoews as instruments of genuine proof. All demonstration
is for him proof by categorical syllogisms; he is anxious to show
that the proof per impossibile is a genuine proof in so far as it con-
tains at least a part that is a categorical syllogism. Analysing the
proof of the theorem that the side of a square is incommensurable
with its diagonal, he states explicitly: We know by a syllogism
that the contradictory of this theorem would lead to an absurd
consequence, viz. that odd numbers should be equal to evens,
but the theorem itself is proved by an hypothesis, since a false-
hood results when it is denied.* Of the same kind, Aristotle

! An. pr. ii. 8-10.

2 Ibid. 8, 59P3 dvdyxn ydp Tob oupmepdouaros dvriorpadévros xal ris érépas
pevovons mpordoews dvatpeiofar v dovmijy: € yap éorai, kal 16 ovunépaoua éorat.
Cf. Top. viil. 14, 163334 dvdyxn ydp, € 70 ouumépaoua pij éare, plav Tva dvarpeiofar
Tdv mpordocwy, eimep maodv TeBewodv avdyxn v 70 ovpmépacua elvar.

3 An. pr.ii. 8, 50P28 Zorw yap xarnyopids S auMoyiouds, kal dvriorpedéofw orws
(i.e. .dvrixeypévws). otwobv el 76 A ob navri 7o I'y 70 8¢ B navri, 76 B ob navri ro I
xai €l 76 pév A 3y mavri 76 I', 76 8¢ B mavri, 6 A o mavri v+$ B.

+ Ibid. i. 23, 41323 wdvres ydp oi Sia Tol ddwvdrov wepalvorres T6 pév Pebdos
ovAoyilovrar, 70 8' €€ dpxiis éf dmobéaews dewviovaw, Stav dddvardy T ovuBaivy Tis
dvripdoews tefelans, olov 61u dovuperpos 1) diduerpos dia 76 ylveobar Td mepirTd. {oa
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concludes, are all other hypothetical arguments; for in every case
the syllogism leads to a proposition that is different from the
original thesis, and the original thesis is reached by an admission
or some other hypothesis.* All this is, of course, not true ; Aristotle
does not understand the nature of hypothetical arguments. The
proof of Baroco and Bocardo by the law of transposition is not
reached by an admission or some other hypothesis, but performed
by an evident logical law ; besides, it is certainly a proof of one
categorical syllogism on the ground of another, but it is not per-
formed by a categorical syllogism.

At the end of Book I of the Prior Anaiytics Aristotle remarks that
there are many hypothetical arguments that ought to be con-
sidered and described, and promises to do so in the sequel.? This
promise he nowhere fulfils.? It was reserved for the Stoics to in-
clude the theory of hypothetical arguments in their system of
propositional logic, in which the compound law of transposition
found its proper place. On the occasion of an argument of Aenesi-
demus (which is irrelevant for our purpose) the Stoics analysed
the following rule of inference which corresponds to the com-
pound law of transposition: ‘If the first and the second, then the
third ; but not the third, yet the first; therefore not the second.™*
This rule is reduced to the second and third indemonstrable
syllogisms of the Stoic logic. We already know the first indemon-
strable syllogism, it is the modus ponens; the second is the modus
tollens: ‘If the first, then the second ; but not the second ; therefore
not the first.” The third indemonstrable syllogism starts from a
denied conjunction and reads: ‘Not (the first and the second);
but the first; therefore not the second.” According to Sextus
Empiricus the analysis runs thus: By the second indemonstrable
syllogism we get from the implication ‘if the first and the second,
Tois dprios ovuuérpov tefelons. 16 pév odv loa yivesbar 76 mepirra Tols dprios
cvMoyilerar, 76 &' dovuperpov elvar Tiv dudpetpov €f Vmobéoews delxvvawy, émei
eddos ovpPaiver i Ty dvripaow,

Y An. pr. i. 23, 41337 doavrws 8¢ xal of EAos mdvres of é Smobévews: & dmact yip
S pév ovAoyiaucs ylverar mpos o peralauPavéuevov, 16 8 €f dpxijs mepaiverar 8¢
dpoldoyias 7 Twvos dAAns dmobéoews.

2 Ibid. 44, 50239 moMdoi 8¢ nai érepor mepailvovrar éf Umoféoews, ods émoxé-
Yaolas dei xal Scaomuivar kabapds. Tives pév odv al diadopal TovTwy, Kai mosaxds
ylverar 16 éf vmobéaews, Sorepov époduev.

3 Alexander 389. 32, commenting on this passage says: Aéyes xai dAovs moMdovs
éf vmobéoews mepaivealar, mepl By tmentiferar pév ds épdv émueléoTepov, o punv
péperar adrod ovyypappa mept avTiv.

+ The Stoics denote proposition-variables by ordinal numbers.
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then the third’, and the negation of its consequent ‘not the third’,
the negation of its antecedent ‘not (the first and the second)’.
From this proposition, which is virtually contained in the pre-
misses, but not explicitly expressed in words, together with the
premiss ‘the first’, there follows the conclusion ‘not the second’
by the third indemonstrable syllogism.* This is one of the
neatest arguments we owe to the Stoics. We see that competent
logicians reasoned 2,000 years ago in the same way as we are
doing today.

§ 19. The proofs by ecthesis

The proofs by conversion and per impossibile are sufficient to
reduce all imperfect syllogisms to perfect ones. But there is still
a third kind of proof given by Aristotle, viz. the so-called proofs
by exposition or éxfesis. Although of little importance for the
system, they have an interest in themselves, and it is worth while
to study them carefully.

There are only three passages in the Prior Analytics where
Aristotle gives a short characterization of this kind of proof. The
first is connected with the proof of conversion of the E-premiss,
the second is a proof of the mood Darapti, the third of the mood
Bocardo. The word ékféafar occurs only in the second passage,
but there can be no doubt that the other two passages also are
meant as proofs by ecthesis.?

Let us begin with the first passage, which runs thus: ‘If 4

I Sextus Empiricus (ed. Mutschmann), Adv. math. viii. 235-6 evvéarnxe yap ¢
Toioiros Adyos (scil. & mapd 76 Alvmoldipw épwrnlels) éx Sevrépov dvamodelnTov Kal
Tpitov, KkaBds mdpeart pabeiv éx 7ijs dvardoews, s cadeorépa pdldov yevigerar émi
708 Tpémov mowoapévwy fudv Tiv didackallay, éxorros odTws' © €l 76 mpdTov Kal TO
Sedrepov, 16 TpiTov: olxl 8¢ ye 16 Tplrov, dAAG Kai 76 mpdTov: obi dpa TS Sedrepov.’
émel yap Exopev auvmuuévov év § ryeirar aupmemdeypévov (rd) ‘16 mpdrov Kai 76
Sedrepov ’, Mjyer 8¢ (76> © 76 Tpirov’, éxopev 8¢ kai 78 dvricelpevov Tob Mjyovros T
“ ob 76 Tpirov’, ovvaxfjoerar fpiv kai 70 dvrikeipevov Tod Nyovuévou 76 © odk dpa
76 mpddTov kal 10 devrepoy * Sevrépyw dvamodeintw. dAAG 89 Toliro avTo xaTd pév T
Stvapw Eyxarar TG Adyw, émel Exopev TG ouvakTikd abrod Mjppare, xatd 8¢ TV
wpodopoy mapeirar. Smep Tdfavres perd Tod Aecmopévov Mjpparos rod ¢ 76 mparoy’,*
opev auvayduevov 76 ouumépagua 76 ‘ obx dpa 16 Sevrepor ’ Tpitew dvamodeixTw.
[* Tob mpdrov codd., roi Tpémov Kochalsky, 705 ‘ 76 mpdrov’ scripsi. (rpémos =
mood expressed in variables, quvnuuévor = implication, 7jyoduevor = antecedent,
Ajyov == consequent, ovumemAeypévor = conjunction.)]

2 There are two other passages dealing with ecthesis, An. pr. 3036-14 and 30Pg1-
40 (I owe this remark to Sir David Ross), but both are related to the scheme of
modal syllogisms.
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belongs to no B, neither will B belong to any A. For if it should
belong to some, say C, it would not be true that 4 belongs to
no B; for C is some of the B’s.’! The conversion of the E-premiss
is here proved per impossibile, but this proof per impossibile is based
on the conversion of the I-premiss which is proved by exposition.
The proof by exposition requires the introduction of a new term,
called the ‘exposed term’; here it is C. Owing to the obscurity of
the passage the very meaning of this C and of the logical structure
of the proof can be reached only by conjecture. I shall try to
explain the matter on the ground of modern formal logic.

We have to prove the law of conversion of the J-premiss: ‘If
B belongs to some A, then 4 belongs to some B.” Aristotle intro-
duces for this purpose a new term, C; it follows from his words
that Cis included in B aswell asin 4, so that we get two premisses :
‘B belongs to all C” and ‘4 belongs to all ¢’. From these premisses
we can deduce syllogistically (by the mood Darapti) the conclu-
sion ‘4 belongs to some B’. This is the first interpretation given
by Alexander.? But it may be objected that this interpretation
presupposes the mood Darapti which is not yet proved. Alex-
ander prefers, therefore, another interpretation which is not
based on a syllogism : he maintains that the term C is a singular
term given by perception, and the proof by exposition consists in
a sort of perceptual evidence.? This explanation, however,
which is accepted by Maier,*has no supportin the text of the Prior
Analytics: Aristotle does not say that C is an individual term.
Moreover, a proof by perception is not a logical proof. If we

! An. pr. 1. 2, 25315 €l odv pundert 7 B 10 A dmdpyxet, 008¢ 1H A oddevi dmdple 10
. S s TN oy m \ i o oe s V0

B. €l ydp 1w, olov 70 I, odk dAnlfés éorar 16 pndevi 7@ B 76 A dmdpxew: 10 yap I
Tév B 7{ éorw. [Corr. W. D. Ross.]

2 Alexander 32. 12 € yip 76 B 7wi 7® A dndpxe ... vmapxérw 16 I' éarw yap

PR - ' ¥ s Npae o vy L s
ToiiTo Ti T0b A, & dndpyer 76 B. éorar 87 76 I' év 6Aw 78 B kai 7i avrod, xai 16 B xard
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mayrds Tob I Tadrdv yap 76 év A xai xard mavrds. dAX’ v 70 I' 7i 106 A- év SAw
v e Vo Trt aay s \ TP \ Vo
dpa xai 7® A 76 I' éoriv €l 8¢ év SAw, xata mavros adrod pnrjoerar 76 A. fv 8¢ 76 I’
7i 100 B* xai 76 A dpa xatd Twos #o B karyyopnbicerac.

3 Ibid. 32 4 dpewdv dori kai olxeidrarov Tois Aeyopédvois 76 8¢’ éxféoews xal

) PN AP , T , \
alofnyrikds Aéyew iy Seifwv yeyovévar, dAda py TOV elpnuévor Tpdmov undé ovAloyi-
aTikdis. 6 yap ia s éxbéoews Tpdmos 8i” alobrjoews yiverar kal od ovAoyioTinds
TotobTov ydp 7t AapBdverar 76 I' 76 éxriBépevov, 5 alalnrov v udpidv o rois A- el yap
xard poplov To6 A Svros 106 I' alofnrod Twos xai kal’ éxaara Aéyoiro 18 B, ein dv
xai 700 B pdpiov 76 avro I' 6v ye év adrd* dore 16 I' el dv dudorépwr pdpiov kal év
dudorépois adrois.

+ Op. cit., vol. ii a, p. 20: ‘Die Argumentation bedient sich also nicht eines
Syllogismus, sondern des Hinweises auf den Augenschein.’
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want to prove logically that the premiss ‘B belongs to some 4’
may be converted, and the proof is to be performed by means of
a third term C, we must find a thesis that connects the above
premiss with a proposition containing C.

It would not, of course, be true to say simply that if B belongs
to some A, then B belongs to all C and 4 belongs to all C; but a
little modification of the consequent of this implication easily
solves our problem. We must put before the consequent an
existential quantifier, the words ‘there exists’, binding the vari-
able C. For if B belongs to some 4, there always exists a term C
such that B belongs to all C and 4 belongs to all C. C may be the
common part of 4 and B or a term included in this common part.
If, for example, some Greeks are philosophers, there exists a
common part of the terms ‘Greek’ and ‘philosopher’, viz. ‘Greek
philosopher’, and it is evident that all Greek philosophers are
Greeks, and all Greek philosophers are philosophers. We may
state, therefore, the following thesis:

(1) If B belongs to some A, then there exists a C such that B

belongs to all C and 4 belongs to all C.
This thesis is evident. But also the converse of (1) is evident. If
there exists a common part of 4 and B, B must belong to some
A. We get, therefore:
(2) If there exists a C'such that B belongs to all C and 4 belongs
to all C, then B belongs to some A.
It is probable that Aristotle intuitively felt the truth of these
theses without being able to formulate them explicitly, and that
he grasped their connexion with the conversion of the /-premiss
without seeing all the deductive steps leading to this result. I shall
give here the full formal proof of the conversion of the J-premiss,
starting from theses (1) and (2), and applying to them some laws
of the propositional logic and the rules of existential quantifiers.

The following thesis of the propositional logic was certainly
known to Aristotle::

(3) If p and ¢, then ¢ and p.

It is the commutative law of conjunction.! Applying this law to
the premisses ‘B belongs to all C* and ‘A belongs to all ¢, we get:

(4) If B belongs to all C and A4 belongs to all C, then 4 belongs

to all C and B belongs to all C.
! See Principia Mathematica, p. 116, thesis ¥3-22.
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To this thesis I shall apply the rules of existential quantifiers.
There are two such rules; both are stated with respect to a true
implication. The first rule reads: It is permissible to put before a
consequent of a true implication an existential quantifier, binding
a free variable occurring in the consequent. It results from this
rule that:

(5) If B belongs to all C and 4 belongs to all C, then there
exists a C such that 4 belongs to all C and B belongs to
all C.

The second rule reads: It is permissible to put before the ante-
cedent of a true implication an existential quantifier, binding
a free variable occurring in the antecedent, provided that this
variable does not occur as a free variable in the consequent. In
(5) Cis already bound in the consequent ; therefore according to
this rule we may bind C in the antecedent, thus getting the
formula:

(6) Ifthere exists a Csuch that B belongs to all C and 4 belongs
to all C, then there exists a C such that 4 belongs to all C
and B belongs to all C.

The antecedent of this formula is identical with the consequent of
thesis (1); it results, therefore, by the law of the hypothetical
syllogism that:

(7) If B belongs to some A4, then there exists a C such that 4
belongs to all C and B belongs to all C.

From (2) by interchanging B and 4 we get the t}-1csis:

(8) Ifthere exists a C such that 4 belongs to all C and B belongs
to all C, then 4 belongs to some B,

and from (7) and (8) we may deduce by the hypothetical syllo-
gism the law of conversion of the I-premiss:

(9) If B belongs to some 4, then 4 belongs to some B.

We see from the above that the true reason of the converti~
bility of the I-premiss is the commutability of the conjunction.
The perception of an individual term belonging to both 4 and B
may intuitively convince us of the convertibility of this premiss,
but is not sufficient for a logical proof. There is no need to assume
C as a singular term given by perception.

§19 THE PROOFS BY ECTHESIS 63

The proof of the mood Darapti by exposition can now be
easily understood. Aristotle reduces this mood to the first figure
by conversion, and then he says: ‘It is possible to demonstrate
this also per impossibile and by exposition. For if both P and R
belong to all S, should some of the S’s, e.g. N, be taken, both P
and R will belong to this, and then P will belong to some R.!
Alexander’s commentary on this passage deserves our attention.
It begins with a critical remark. If ¥ were a universal term in-
cluded in S, we should get as premisses ‘P belongs to all N’ and
‘R belongs to all N°. But this is just the same combination of
premisses, ov{vyla, as ‘P belongs to all $* and ‘R belongs to all
$’, and the problem remains the same as before. Therefore,
Alexander continues, N cannot be a universal term; it is a
singular term given by perception, a term evidently existing in P
as well as in R, and the whole proof by ecthesis is a proof by
perception.? We have already met this opinion above. In support
of it Alexander adduces three arguments: First, if his explanation
were rejected, we should have no proof at all; secondly, Aristotle
does not say that P and R belong to all ¥, but simply to ¥; thirdly,
he does not convert the propositions with N.3 None of these
arguments is convincing: in our example there is no need of
conversion ; Aristotle often omits the mark of universality where
it should be used,* and as to the first argument, we know already
that there exists another and a better explanation.

The mood Darapti:

(10) If P belongs to all §and R beléngs to all §, then P belongs
to some R,

T An. pr. i. 5, 28322 €01 8¢ kai 8id Tob dduvdToy Kai 7& éxbBésbar morelv Ty amd-
debu el yip dpdw (scil. 1T kai P) mavri 76 Z dmdpye, dv Apgdfj 7 7dw Z, olog 7 N,
TovTew Kai 76 I1 kal 76 P Sfdple, dore Twi 7 P 76 IT Smdpfer.

2 Alexander g9. 28 7{ ydp Siadéper 76 X dmdpyew AaBeiv mavri 76 e I wal 76 P

p Siapéper G P

xal pépec Tl To6 X 7o N; 76 ydp adrd xal émi 106 N Andfévros péver % ydp adry
ovlvyia éoriv, dv Te xatd 706 N mavrds éxelvwv éxdrepov, dv Te katd Tod T xaryyopij-
Tai. % o'ﬁ Totadry 7 deikis, § xp’ﬁ-rav 6 yap 8" éxbéoews ‘rpé‘rros‘&' a:.'aﬂ:lfacws “yt've"ruz.
ov yap iva TowdTdy 7 Tob X AdPwpev, xab’ of pnbicerar mavros xal 76 IT kai 76 P,

, D "oy / o ) 5 xal 20 7 IT xat
Adyer. .. A’ va T tdv In” alofpow mmtévrav, 6 davepdy éoTw Sy kal év 7 IT xal
v .
é 7 P.

3 Ibid. 100. 7 &7¢ ydp alolnry) 4 Sid 7ijs éxbéoecws Beifes, onpetov mpdTov pév 76
€ un odrws AauPdvoiro, pndeulay yivealar deifw: émerra 8¢ xal 76 adrov pmxére

/ y oy Tar e o - Vv oA e $ re TT xal 78 P. dAX’
xpijoacbas émt To6 N, 8 v 1 705 X, 7@ mavti adrd dmdpyew 76 T IT xal 76 P,
amAds Oeivar 76 dmdpyew dAAG xal 76 underépav dvriaTpépar.

* See, for instance, p. 2, n.
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results from a substitution of thesis (2)—take P for B, and R
for 4:

(11) If there exists a C such that P belongs to all ¢ and R
belongs to all C, then P belongs to some R,

and from the thesis:

(12) If P belongs to all § and R belongs to all S, then there
exists a C such that P belongs to all C and R belongs to
all C.

Thesis (12) we may prove by applying to the identity :
(13) If P belongs to all C and R belongs to all C, then P belongs
to all C and R belongs to all C,

the second rule of existential quantifiers, getting thus:

(14) If P belongs to all C and R belongs to all C, then there
exists a C such that P belongs to all C and R belongs to
all C,

and substituting in (14) the letter S for the free variable C, i.e.
performing the substitution in the antecedent only, as it is not
permissible to substitute anything for a bound variable.

From (12) and (11) the mood Darapti results by the hypo-
thetical syllogism. We see again that the exposed term C is a
universal term like 4 or B. It is of no consequence, of course, to
denote this term by /N rather than by C.

Of greater importance seems to be the third passage, contain-
ing the proof by exposition of the mood Bocardo. This passage
reads: ‘If R belongs to all S, but P does not belong to some S, it is
necessary that P should not belong to some R. For if P belongs to
all R, and R belongs to all S, then P will belong to all §; but we
assumed that it did not. Proof is possible also without reduction
ad impossibile, if some of the S’s be taken to which P does not
belong.’ 1 shall analyse this proof in the same way as the other
proofs by exposition, “

Let us denote the part of S to which P does not belong by C;
we get two propositions: ‘S belongs to all ¢’ and ‘P belongs to
no C’. From the first of these propositions and the premiss ‘R

T An. pr.i. 6, 2817 €l 'yap 76 P ravri 79 Z, 76 8¢ IT 1uvi y.'q u'n'apxﬂ, a,va.‘yk‘q 6 IT
Twird P p.'r] dndpyew. €l yip 1ra.vn, xal 78 P mavri 73 X, xai 76 IT mavri 7 X u‘napfﬂ
dAX® ody Umiipxev. Selivura 8¢ kai dvev Tis dmaywyis, éav Mpdbf T Tdv 23 & 76 IT py)
dmdpyet.
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belongs to all §* we get by the mood Barbara the consequence
‘R belongs to all ¢’, which yields together with the second
proposition ‘P belongs to no C’ the required conclusion ‘P does
not belong to some R’ by the mood Felapton. The problem is how
we can get the propositions with C from the original premisses ‘R
belongs to all $” and ‘P does not belong to some $°. The first of
these premisses is useless for our purpose as it does not contain P;
from the second premiss we cannot get our propositions in the
ordinary way, since it is particular, and our propositions are
universal. But if we introduce the existential quantifier we can
get them, for the following thesis is true:

(15) If P does not belong to some S, then there exists a C such
that § belongs to all € and P belongs to no C.

The truth of this thesis will be obvious if we realize that the
required condition for C is always fulfilled by that part of § to
which P does not belong.

Starting from thesis (15) we can prove the mood Bocardo on
the basis of the moods Barbara and Felapton by means of some
laws of propositional logic and the second rule of existential quan-
tifiers. As the proofis rather long, I shall give here only a sketch.

We take as premisses, besides (15), the mood Barbara with
transposed premisses:

(16) IfS belongs to all C and R belongs to all S, then R belongs
to all C,

and the mood Felapton, also with transposed premisses :

(17) If R belongs to all C and P belongs to no C, then P does
not belong to some R,

To these premisses we may apply a complicated thesis of proposi-
tional logic which, curiously enough, was known to the Peri-
patetics and is ascribed by Alexander to Aristotle himself. It is
called the ‘synthetic theorem’, ovvferikov Beddpnua, and runs
thus: ‘If « and 8 imply y, and y together with § implies ¢, then «
and B together with & imply e.’* Take for «, 8, and y the first

I Alexander 274. 19 8" dv 8¢ Aéyew viv, Smoypddec fuiv pavepdrepor 16 Aeydpevov
¢ guvlericdv Bedspnpa ’, od avTds éoTiv edperijs. éoTi 3¢ 1) mepioyr) adTod Toradry ¢ Srav
éx Tvwy o’uvd‘yrp’ai T, 76 8¢ cruva‘ydp.evov p.er& Twos | TWdY ouva'.'yy 71, kal Td ovy-
axTikd alroi ped’ of 1§ ued’ dv ouva'ysﬂu exewa, xal adrd 76 avro owwdfe.” The fol-
lowmg example is given ibid. 26 émei yap 76 ¢ 7dv Sixarov ayaﬂov guvaydpevoy Smo
7@ ¢ ndv dixaov xaddv, miv xaddv dyaldy ® ovvdye pera Tob ¢ mdv dyalbov ovpdépor’

5367 F
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premiss, the second premiss, and the conclusion respectively of
Barbara, for 8§ and e the second premiss and the conclusion
respectively of Felapton; we get the formula:
(18) If § belongs to all C and R belongs to all S and P belongs
to no C, then P does not belong to some R.

This formula may be transformed by another law of propositional
logic into the following:
(1g) If S belongs to all C and P belongs to no C, then if R
belongs to all S, P does not belong to some R.

To this formula may be applied the second rule of existential
quantifiers. For C is a free variable occurring in the antecedent
of (19g), but not in the consequent. According to this rule we get
the thesis:
(20) If there exists a C such that § belongs to all C and P
belongs to no C, then if R belongs to all S, P does not
belong to some R.

From premiss (15) and thesis (20) there results by the hypotheti-
cal syllogism the consequence:
(21) If P does not belong to some S, then if R belongs to all §,
P does not belong to some R,

and this is the implicational form of the mood Bocardo.

It is, of course, highly improbable that Aristotle saw all the
steps of thi$ deduction; but it is important to know that his
intuitions with regard to the proof by ecthesis were right. Alex-
ander’s commentary on this proof of the mood Bocardo is worthy
of quotation. ‘It is possible’, he says, ‘to prove this mood without
assuming some S given by perception and singular, but taking
such an S, to none of which P would belong. For P will belong to
none of this S, and R to all, and this combination of premisses
yields as conclusion that P does not belong to some R.’! Here at
last Alexander concedes that the exposed term may be universal.

The proofs by exposition have no importance for Aristotle’s

76 * méy Sixatov ovudépov’, xal td © mév Slkawv xaldv, wdv xaddv dyalév’ dvra

auvaxTikd Tob © mav Slxawov dyaldy’ perd 7oi ‘ wév dyaldv qupdépov’ owwdfe 74
¢ wdv Sixaov aupdépoy ’.
! Alexander 104. 3 8dvara: &' émi rijs avlvyias Tavrys Seuvivar, kal el pi) alobyrdv
o ; ¢ e AN p. \ \ ,
7t 100 Z AapfBdvoiro xai xab® éxacra, dAAG Towbrov, ol xatd punSevds xaryyopnbijoerar
6 I1. &orar yop 76 uév IT xar’ od8evés avrod, 76 8¢ P xard mavrds: 4 8° odrws éxovea
avlvyla suMoyiotikds 8édewrar auvdyovaa 76 Twi 7@ P 18 IT pi) dmdpxew.
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syllogistic as a system. All theorems proved by ecthesis can be
proved by conversion or per impossibile. But they are highly
important in themselves, as they contain a new logical element
the meaning of which was not entirely clear for Aristotle. This
was perhaps the reason why he dropped this kind of proof in his
final chapter (7) of Book I of the Prior Analytics, where he sums
up his systematic investigation of syllogistic.! Nobody after him
understood these proofs. It was reserved for modern formal logic
to explain them by the-idea of the existential quantifier.

§ 20. The rejected forms

Aristotle in his systematic investigation of syllogistic forms not
only proves the true ones but also shows that all the others are
false, and must be rejected. Let us see by means of an example
how Aristotle proceeds to reject false syllogistic forms. The
following two premisses are given: 4 belongs to all B and B
belongs to no C. It is the first figure: 4 is the first or the major
term, B is the middle, and C'is the last or the minor term. Aristotle
writes :

‘If the first term belongs to all the middle, but the middle to none of
the last, there will be no syllogism of the extremes ; for nothing neces-
sary follows from the terms being so related ; for it is possible that the
first should belong to all as well as to none of the last, so that neither
a particular nor a universal conclusion is necessary. But if there is no
necessary consequence by means of these premisses, there cannot be
a syllogism. Terms of belonging to all: animal, man, horse; to none:
animal, man, stone.’2

In contrast to the shortness and obscurity of the proofs by
ecthesis, the above passage is rather full and clear. Nevertheless
I am afraid it has not been properly understood by the com-
mentators. According to Alexander, Aristotle shows in this pas-
sage that from the same combination of premisses there can be

! Cf. the comment of Alexander, who maintains to the end his idea of the
perceptual character of proofs by ecthesis, 112. 33: o7t 8¢ 7 8¢’ éxféoews Seifis fv
alalnricy) xai o avAdoyiarikr, Sfdov xal é€x Tob viv alrov unxére pynuovevew adrijs
s dd ovMoyiauod Twos ywouévs.

z An. pr. i. 4, 2672 € 8¢ 16 pdv mpdTov mavri v péow drodovlei,'ro 8¢ péaov pydevi
76 daxdre dmdpyer, obx dorar cuMoyiouds Tév dxpwv: 0dddy ydp dvayxaiov aupBaiver
7 rabra elvar xal ydp mavri xal undevi évdéxerar 16 mpaTov 1@ éoxdrw vmdpyew,
dare obire 76 kard pépos obre T6 xaBddov yiverar dvayxaior pndevds 8¢ Gvros dvayraiov
8id Todraww obk Eorat aulMoyiouds. Spot Tob mavrl Undpxew {@Pov, dvbpwmos, inmos: Tob
undevi {dov, dvBpwmos, Aiflos.
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derived (Suvdpevov ovvdyesfai) for some concrete terms a uni-
versal affirmative conclusion, and for some other concrete terms
a universal negative conclusion. This is, Alexander asserts, the
most obvious sign that such a combination of premisses has no
syllogistic force, since opposite and contradictory propositions
which destroy each other are proved by it (delkvvrar).! What
Alexander says is certainly misleading, for nothing can be for-
mally derived from an asyllogistic combination of premisses, and
nothing can be proved by it. Besides, propositions with different
concrete subjects and predicates are neither opposite to each
other nor contradictory. Maier again puts the terms pointed out
by Aristotle into a syllogistical form :

all men are animals all men are animals

no horse is 2 man no stone is a man

all horses are animals no stone is an animal

(the premisses are underlined by him, as in a syllogism), and says
that there results (ergibt sich) from logically equivalent premisses
a universal affirmative proposition as well as a universal nega-
tive.> We shall see below that the terms given by Aristotle are
not intended to be put into the form of a syllogism, and that
nothing results formally from the premisses of the would-be
syllogisms quoted by Maier. In view of these misunderstandings
a logical analysis of the matter seems to be necessary.
If we want to piove that the following syllogistic form :

(1) If A’belongs to all B and B belongs to no C, then 4 does
not belong to some C,

is not a syllogism, and consequently not a true logical theorem,
we must show that there exist such values of the variables 4, B,
and C as verify the premisses without verifying the conclusion.
For an implication containing variables is true only when all the

! Alexander 55. 22 xai ydp xalddov katagarikdy éni Twos SAns Selte. Suvdpevov
awvdyeadac xal wddw ém’ dMms xalddov dmodatikdv, & évapyéararov ompeiov Tod
undepiav éxew v ovlvylay radryy loxdv ovMoyioruciv, € ye 1d e dvavria xal 6
dvrikeipeva év adrij Selkvurar, Svta dAMAwy dvaiperind.

2 Op. cit., vol. ii. a, p. 76: ‘Es handelt sich also um folgende Kombinationen :

aller Mensch ist Lebewesen aller Mensch ist Lebewesen

kein Pferd ist Mensch kein Stein ist Mensch .

alles Pferd ist Lebewesen kein Stein ist Lebewesen
So wird an Beispielen gezeigt, dass bei der in Frage stehenden Primissenzusam-
menstellung von logisch véllig gleichen Vordersitzen aus sowohl ein allgemein
bejahender, als ein allgemein verneinender Satz sich ergeben konne.’
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values of variables that verify the antecedent verity the conse-
quent also. The easiest way of showing this is to find concrete
terms verifying the premisses ‘4 belongs to all B’ and ‘B belongs
to no C’, but not verifying the conclusion ‘4 does not belong to
some C’. Aristotle found such terms: take ‘animal’ for 4, ‘man’
for B, ‘horse’ for C. The premisses ‘Animal belongs to all man’
or ‘All men are animals’, and ‘Man belongs to no horse’ or ‘No
horses are men’, are verified; but the conclusion ‘Animal does
not belong to some horse’ or ‘Some horses are not animals’ is
false. Formula (1), therefore, is not a syllogism. For the same
reason neither will the following form:

(2) If A belongs to all B and B belongs to no C, then 4 belongs
to no C,

be a syllogism, because the premisses are verified for the same
concrete terms as before, but the conclusion ‘Animal belongs to
no horse’ or ‘No horses are animals’ is false. It follows from the
falsity of (1) and (2) that no negative conclusion can be drawn

from the given premisses.
Nor can an affirmative conclusion be drawn from them. Take

the next syllogistical form :
(3) If 4 belongs to all B and B belongs to no C, then 4 belongs
to some C.

There exist values for 4, B, and C, i.e. concrete terms, that verify
the premisses without verifying the conclusion. Aristotle again
gives such terms: take ‘animal’ for A, ‘man’ for B, ‘stone’ .for C.
The premisses are verified, for it is true that ‘All men are amr.nals’
and ‘No stone is a man’, but the conclusion ‘Some stone is an
animal’ is obviously false. Formula (3), therefore, is not a syllo-
gism. Neither can the last form:

(4) If A belongs to all B and B belongs to no C, then 4 belongs

to all C,

be a syllogism, since for the given terms the premisses are veriﬁefl
as before, but the conclusion ‘All stones are animals’ is not veri-
fied. It results from the above that no conclusion whatever can be
derived from the combination of premisses ‘4 belongs to all B
and ‘B belongs to no C’, where 4 is the predicate .and 'B is the
subject of the conclusion. This combination of premisses is useless

for syllogistic.
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The main point of this process of rejection is to find a true
universal affirmative proposition (like ‘All horses are animals’)
and a true universal negative proposition (like ‘No stone is an
animal’), both compatible with the premisses. It is not sufficient
to find, for instance, for some terms a true universal affirmative
statement, and for some other terms a true particular negative
statement. This opinion was put forward by Alexander’s teacher
Herminus and some older Peripatetics, and was rightly refuted
by Alexander.! This is again a proof that Aristotle’s ideas of
rejection have not been properly understood.

The syllogistic forms (1)-(4) are rejected by Aristotle on the
basis of some concrete terms that verify the premisses without
verifying the conclusion. Aristotle, however, knows yet another
kind of proof for rejection. Investigating the syllogistic forms of
the second figure, Aristotle states generally that in this figure
neither two affirmative nor two negative premisses yield a neces-
sary conclusion, and then continues thus:

‘Let M belong to no JV, and not to some X. It is possible then for ¥
to belong either to all X or to no X. Terms of belonging to none:
black, snow, animal. Terms of belonging to all cannot be found, if M
belongs to some X, and does not belong to some X. For if i belonged
to all X, and M to no N, then M would belong to no X; but it is
assumed that it belongs to some X. In this way, then, it is not possible
to take terms, and the proof must start from the indefinite nature of the
particular premiss. For since it is true that M does not belong to some
X, even if it belongs to no X, and since if it belongs to no X a syllogism
is not possible, clearly it will not be possible either.’2

Aristotle here begins the proof of rejection by giving concrete
terms, as in the first example. But then he breaks off his proof, as
he cannot find concrete terms that would verify the premisses

! Cf. Alexander 89. 34-g0. 27. The words of Herminus are quoted 89. 34:
‘Eppivos 8¢ Myer *éd' Fs vip avlvyias iy dvrigaow éveari auvayoudvny Seitéar,
eddoyor tatryy pndéy Earrov davAAdyioror Aéyew Tis é&v § 74 évavria ouvdyeras
dowvimapkra yap xal radra duolws éxelvors.’
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‘M belongs to no N’ and ‘M does not belong to some X°, witl.lout
verifying the proposition ‘N does not belong to some X’, prqwdegi
M, which does not belong to some X, belongs at the same time to
some (other) X. The reason is that from the premisses ‘M belongs
to no N’ and ‘M belongs to some X’ the proposition ‘N does
not belong to some X’ follows by the mood Festino. B.ut it is not
necessary that M should belong to some X, when it does not
belong to some (other) X; M might belong to no X. Concrete
terms verifying the premisses ‘M belongs to no N’ and ‘M belongs
to no X’, and not verifying the proposition ‘¥ does not belong to
some X, can easily be chosen, and in fact Aristotle found'- them,
rejecting the syllogistic form of the second figure with. universal
negative premisses; the required terms are: M—‘line’, N—
‘animal’, X—‘man’.! The same terms may be used to disprove
the syllogistic form:

(5) If M belongs to no N and M does not belong to some X,
then NV does not belong to some X. .

For the premiss ‘No animal is a line’ is true, a}nd the second
premiss ‘Some man is not a line’ is also true, as it is true t}}at ‘No
man is a line’, but the conclusion ‘Some man is not an animal’ is
false. Aristotle, however, does not finish his proof in this way,?
because he sees another possibility: if the form with universal
negative premisses: A

(6) If M belongs to no N and M belongs to no X, then N does
not belong to some X,

is rejected, (5) must be rejected too. For if (5) stands, (6), having
a stronger premiss than (5), must also stand. =

Modern formal logic, as far as I know, does not use ‘rCJectl_on’
as an operation opposed to Frege’s ‘assertion’. The rules of rejec-
tion are not yet known. On the ground of the above proof of
Aristotle we may state the following rule:

(¢) If the implication ‘If «a, then B’ is asserted, but.its conse-
quent Bisrejected, then its antecedent « must be rejected too,

! Ibid. 27220 008’ (scil. éorar ovMoywuds) Srav pijre Tod N prjre rob ‘E 'p.'q'Ssv&s
xaryyopiirar 70 M. Spou Tob vmdpxew ypapud, {dov, dvlpwmos, Tof w3 dmdpyew
ypappr, {dov, Alfos. oL L .
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This rule can be applied not only to reject (5) if (6) is rejected,
but also to reject (2) if (1) is rejected. For from an E-premiss
an O-premiss follows, and if (2) is true, then (1) must be true.
But if (1) is rejected, so must (2) be rejected.

The rule (¢) for rejection corresponds to the rule of detachment
for assertion. We may accept another rule for rejection corre-
sponding to the rule of substitution for assertion. It can be for-
mulated thus:

(d) If « is a substitution for 8, and « is rejected, then B must be
rejected too.

Example: suppose that ‘4 does not belong to some 4’ is rejected ;
then ‘4 does not belong to some B’ must be rejected too, since, if
the second expression were asserted, we should obtain from it by
substitution the first expression, which is rejected.

The first of these rules was anticipated by Aristotle, the second
was unknown to him..Both enable us to reject some forms, pro-
vided that some other forms have already been rejected. Aristotle
rejects some forms by means of concrete terms, as ‘man’, ‘animal’,
‘stone’. This procedure is correct, but it introduces into logic
terms and propositions not germane to it. ‘Man’ and ‘animal’
are not logical terms, and the proposition ‘All men are animals’
is not a logical thesis. Logic cannot depend on concrete terms and
statements. If we want to avoid this difficulty, we must reject
some forms axiomatically. I have found that if we reject the two
following forms of the second figure axiomatically:

(7) If A belongs to all B and A4 belongs to all C, then B belongs
to some C, and

(8) If A belongs to no B and 4 belongs to no C, then B bclongs
to some G,

all the other forms may be rejected by the rules (¢) and (d).

§ 21. Some unsolved problems -

The Aristotelian system of non-modal syllogisms is a theory of
four constants which may be denoted by ‘All — is’, ‘No — is’,
‘Some — i¢’, and ‘Some — is not’. These constants are functors
of two arguments which are represented by variables having as
values only concrete universal terms. Singular, empty, and also
negative terms are excluded as values. The constants together
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with their arguments form_ four kinds of proposition called pre-
misses, viz. ‘All 4is B’, ‘No A is B’, ‘Some A4 is B’, and ‘Some
4 is not B’. The system may be called ‘formal logic’, as concrete
terms, like ‘man’ or ‘animal’, belong not to it but only to its
applications. The system is not a theory of the forms of thought,
nor is it dependent on psychology ; it is similar to a mathematical
theory of the relation ‘greater than’, as was rightly observed
by the Stoics.

The four kinds of premiss form theses of the system by means of
two functors ‘if — then’ and ‘and’. These functors belong to pro-
positional logic, which is an auxiliary theory of the system. In
some proofs we meet a third propositional functor, viz. the
propositional negation ‘It is not true that’, denoted shortly by
‘not’. The four Aristotelian constants ‘All — is’, ‘No — is’, ‘Some
—is’ and ‘Some — is not’, together with the three propositional
constants ‘if— then’, ‘and’, and ‘not’, are the sole elements of the
syllogistic. v

All theses of the system are propositions regarded as true for all
values of the variables that occur in them. No Aristotelian syllo-
gism is formulated as a rule of inference with the word ‘therefore’,
as is done in the traditional logic. The traditional logic is a
system different from the Aristotelian syllogistic, and should not
be mixed up with the genuine logic of Aristotle. Aristotle divided
syllogisms into three figures, but he knew and accepted all the
syllogistic moods of the fourth figure. The division of syllogisms
into figures is of no logical importance and has only a pract1cal
aim: we want to be sure that no valid syllogistical mood is
omitted.

The system -is axiomatized. As axioms Aristotle takes the two
first moods of the first figure, Barbara and Celarent. To these
two axioms we have to add two laws of conversion, as these can-
not be proved syllogistically. If we wish to have the law of
identity, ‘All 4 is 4, in the system we have to assumeit axiomatic-
ally. Thesimplest basis we can get is to take the constants ‘All —is’
and ‘Some — is’ as primitive terms, to define the two other con-
stants by means of those terms with the help of propositional
negation, and to assume as axioms four theses, viz. the two laws
of identity and the moods Barbara and Datisi, or Barbara and
Dimaris. It is not possible to build up the system on one axiom
only. To look for the principle of the Aristotelian syllogistic is a
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vain attempt, if pr1nc1plc means the same as ‘axiom’. The so-
called dictum de omni et nullo cannot be the principle of syllo-
gistic in this sense, and was never stated to be such by Aristotle
himself.

Aristotle reduces the so-called imperfect syllogisms to the per-
fect, i.e. to the axioms. Reduction here means proof or deduction
of a theorem from the axioms. He uses three kinds of proof: by
conversion, by reductio ad impossibile, and by ecthesis. Logical
analysis shows that in all the proofs of the first two kinds there are
involved theses of the most elementary part of propositional logic,
the theory of deduction. Aristotle uses them intuitively, but soon
after him the Stoics, who were the inventors of the first system of
propositional logic, stated some of them explicitly—the com-
pound law of transposition and the so-called ‘synthetic theorem’,
which is ascribed to Aristotle but does not exist in his extant
logical works.- A new logical elément seems to be implied by the
proofs by ecthesis: they can be explained with the help of
existential quantifiers. The systematic introduction of quanti-
fiers into the syllogistic would completely change this system : the
primitive term ‘Some — is’ could be defined by the term ‘All —
is’, and many new theses would arise not known to Aristotle. As
Anstotlc himself has dropped the proofs by ecthesis in his final
summary of the syllogistic, there is no need to introduce them into
his system.

Angther new logical element is contained in Aristotle’s in-
vestigation of the inconclusive syllogistic forms: it is rejection.
Aristotle rejects invalid forms by exemplification through con-
crete terms. This procedure is logically correct, but it introduces
into the system terms and propositions not germane to it. There
are, however, cases where he applies a more logical procedure,
reducing one invalid form to another already rejected. On the
basis of this remark a rule of rejection could be stated correspond-
ing to the rule of detachment by assertion ; this can be regarded
as.the commencement of a new field of logical inquiries and of
new problems that have to be solved.

Aristotle does not systematically investigate the so-called
polysyllogisms, i.e. syllogisms with more than three terms and
two premisses. As we have seen, Galen studied compound syllo-
gisms consisting of four terms and three premisses. It is an old
error to ascribe to Galen the authorship of the fourth figure:
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Galen divided the compound syllogisms of four terms into four
figures, but not the simple ones known to us by their medieval
names. His investigations were entirely forgotten. But compound
syllogisms also belong to the syllogistic and have to be taken into
account, and here is another problem that has to be studied
systematically. An essential contribution to this problem is the
set of formulae given by C. A. Meredith, and mentioned above
at the end of section 14.

There still remains one problem not seen by Aristotle, but of
the utmost importance for his whole system: it is the problem of
decision. The number of significant expressions of the syllogistic
is infinite ; most of them are certainly false, but some of them may
be true, like valid polysyllogisms of n terms where n is any integer
whatever. Can we be sure that our axioms together with our rules
of inference are sufficient to prove all the true expressions of the
syllogistic ? And similarly, can we be sure that our rules of rejec-
tion, formulated at the end of section 20, are sufficient to reject
all the false expressions, provided that a finite number of them is
rejected axiomatically? I raised these problems in 1938 in my
Seminar an Mathematical Logic at the University of Warsaw.
One of my former pupils, now Professor of Logic and Methodo-
logy at the University of Wroclaw, J. Stupecki, found the solution
to both problems. His answer to the first questlon was positive,
to the second negative. According to Stupecki it is not possible to
reject all the false expressions of the syllogistic by means of the
rules (¢) and (d) quoted in section 20, provided a finite num-
ber of them is rejected axiomatically. However many false ex-
pressions we may reject axiomatically, there always exist other
false expressions that cannot be rejected otherwise than axio-
matically. But it is impossible to establish an infinite set of axioms.
A new rule of rejection must be added to the system to complete
the insufficient characterization of the Aristotelian logic given by
the four axioms. This rule was found by Stupecki.

Stupecki’s rule of rejection peculiar to Aristotle’s syllogistic
can be formulated in the following way: Let « and 8 denote
negative premisses of the Aristotelian logic, i.e. premisses of the
type ‘No 4 is B’ or ‘Some 4 is not B’, and let y denote either a
simple premiss (of any kind) or an implication the consequent of
which is a simple premiss and the antecedent a conjunction of
such premisses : if the expressions ‘If a, then 9’ and ‘If 8, then y’
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are rejected, then the expression ‘If « and B, then ’ must be
rejected too.! This rule, together with the rules of rejection (c)
and (d) and the axiomatically rejected expression ‘If all C is B
and all 4 is B, then some 4 is C’, enables us to reject any false
expression of the system. Besides, we suppose as given the four
asserted axioms of the syllogistic, the definitions of the E- and
the O-premiss, the rules of inference for asserted expressions, and
the theory of deduction as an auxiliary system. In this way the
problem of decision finds its solution: for any given significant
expression of the system we can decide whether it is true and may
be asserted or whether it is false and must be rejected.

By the solution of this problem the main investigations on
Aristotle’s syllogistic are brought to an end. There remains only
one problem, or rather one mysterious point waiting for an
explanation: in order to reject all the false expressions of the
system it is necessary and sufficient to reject axiomatically only
one false expression, viz. the syllogistic form of the second figure
with universal affirmative premisses and a particular affirmative
conclusion. There exists no other expression suitable for this
purpose. The explanation of this curious logical fact may perhaps
lead to new discoveries in the field of logic.

1 J. Slupecki, ‘Z badan nad sylogistyka Arystotelesa’ (Investigation on Aristotle’s

Syllogistic), Travaux de la Société des Sciences et des Lettres de Wroclaw, Sér. B, No. g,
Wroclaw (1948). See chapter v, devoted to the problem of decision.
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CHAPTER IV

ARISTOTLE’S SYSTEM IN SYMBOLIC
FORM

§ 22. Explanation of the symbolism

Tnis chapter does not belong to the history of logic. Its purpose is
to set out the system of non-modal syllogisms according to the
requirements of modern formal logic, but in close connexion with
the ideas set forth by Aristotle himself.

Modern formal logic is strictly formalistic. In order to get an
exactly formalized theory it is more convenient to employ a
symbolism invented for this purpose than to make use of ordinary
language which has its own grammatical laws. I have therefore
to start from the explanation of such a symbolism. As the
Aristotelian syllogistic involves the most elementary part of the
propositional logic called theory of deduction, I shall explain
the symbolic notation of both these theories.

In both theories there occur variables and constants. Variables
are denoted by small Latin letters, constants by Latin capitals.
By the initial letters of the alphabet 4, b, ¢, d, ..., I denote term-
variables of the Aristotelian logic. These term-variables have as
values universal terms, as ‘man’ or ‘animal’. For the constants of
this logic I employ the capital letters 4, E, I, and O, used already
in this sense by the medieval logicians. By means of these two
kinds of letters I form the four functions of the Aristotelian logic,
writing the constants before the variables:.

Aab means All g is b or b belongs to all a,

Eahb ,, Noaish »» b belongs to no a,

Iasb ,, Someaisbh »» b belongs to some a,

Oab ,, Someaisnot b ,, b does not belong to some a.

The constants 4, E, I, and O are called functors, ¢ and & their
arguments. All Aristotelian syllogisms are composed of these
four types of function connected with each other by means of
the words ‘if” and ‘and’. These words also denote functors, but
of a different kind from the Aristotelian constants: their argu-
ments are not term-expressions, i.e. concrete terms or term-
variables, but propositional expressions, i.e. propositions like
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‘All men are animals’, propositional functions like ‘4ab’, or
propositional variables. I denote propositional variables by g,
g, 1, 5, ..., the functor ‘if’ by C, the functor ‘and’ by K. The
expression Cpg means ‘if p, then ¢’ (‘then’ may be omitted) and
is called ‘implication’ with p as the antecedent and ¢ as the
consequent. C does not belong to the antecedent, it only com-
bines the antecedent with the consequent. The expression Kpg
means ‘p and ¢’ and is called ‘conjunction’. We shall meet in
some proofs a third functor of propositional logic, propositional
negation. This is a functor of one argument and is denoted by
N. It is difficult to render the function Np either in English or
in any other modern language, as there exists no single word
for the propositional negation.! We have to say by circumlocu-
tion ‘it-is-not-true-that p’ or ‘it-is-not-the-case-that p’. For the
sake of brevity I shall use the expression ‘not-p’.

The principle of my notation is to write the functors before
the arguments. In this way I can avoid brackets. This symbol-
ism without brackets, which I invented and have employed in
my logical papers since 1929,% can be applied to mathematics as
well as to logic. The associative law of addition runs in the
ordinary notation thus:

(a+b)+¢c = a+(b+c),
and cannot be stated without brackets. If you write, however,
the functor + before its arguments, you get:
(a+b3+c = ++abc and a+(b+c) = +atbe.
The law of association can be now written without brackets:
+ +abc = +a-+tbe.
Now I shall explain some expressions written down in this

symbolic notation. The symbolic expression of a syllogism is
easy to understand. Take, for instance, the mood Barbara:

Ifallbiscand all ais b, then all ais c.

It reads in symbols:
CKAbcAabAac.

I The Stoics used for propositional negation the single word odxl.
2 See, for instance, Lukasiewicz and Tarski, ‘Untersuchungen iiber den Aus-
sagenkalkiil’, Comptes Rendus des séances de la Société des Sciences et des Lettres de Varsovie,

xxiii (1930), Cl. III, pp. 31-2.
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The conjunction of the premisses 4bc and Aab, viz. KAbcAab, is
the antecedent of the formula, the conclusion Aac is its conse-
quent.

Some expressions of the theory of deduction are more com-
plicated. Take the symbolic expression of the hypothetical
syllogism: :

If (if p, then ¢), then [if (if ¢, then ), then (if p, then 7)].

It reads:
CCpqCCqrCpr.
In order to understand the construction of this formula you
must remember that C is a functor of two propositional argu-
ments which follow immediately after C, forming together with
C a new compound propositional expression. Of this kind are
the expressions Cpg, Cqr, and Cpr contained in the formula.
Draw brackets around each of them; you will get the expression:

C(Cpg)C(Cqr) (Cpr).
Now you can easily see that (Cpg) is the antecedent of the whole
formula, and the rest, i.e. C(Cqr)(Cpr), is the consequent, having
(Cgr) as its antecedent and (Cpr) as its consequent.

In the same way we may analyse all the other expressions,
for instance the following, which contains N and K besides C:

CCKpgrCENrgNp.
Remember that X, like C, is a functor of two arguments, and

that N is a functor of one argument. By using different kinds of
brackets we get the expression:

CTC(Epg)r}{CLK (N7)q1(Np)}-
[C(Kpq)r] is here the antecedent of the whole formula while
{C[K(N7)ql(Np)} is its consequent, having the conjunction

[K(N71)q] as its antecedent and the negation (Np) as its con-
sequent.

§ 23. Theory of deduction

The most fundamental logical system on which all the other
logical systems are built up is the theory of deduction. As every
logician is bound to know this system, I shall here describe it in
brief.
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The theory of deduction can be axiomatized inseveral different
ways, according to which functors are chosen as primitive terms.
The simplest way is to follow Frege, who takes as primitive
terms the functors of implication and negation, in our symbol-
ism C and V. There exist many sets of axioms of the C—N-
system; the simplest of them and the one almost universally
accepted was discovered by myself before 1929.! It consists of
three axioms: '

T1. CCpgCCqrCpr
T2. CCNppp
T3. CpCNpq.

The first axiom is the law of the hypothetical syllogism already
explained in the foregoing section. The second axiom, which
reads in words ‘If (if not-p, then p), then p’, was applied by
Euclid to the proof of a mathematical theorem.? I call it the
law of Clavius, as Clavius (a learned Jesuit living in the second
half of the sixteenth century, one of the constructors of the
Gregorian calendar) first drew attention to this law in his com-
mentary on Euclid. The third axiom, in words ‘If p, then if
not-p, then ¢’, occurs for the first time, as far as I know, in a
commentary on Aristotle ascribed to Duns Scotus; I call it the
law of Duns Scotus.? This law contains the venom usually
imputed to contradiction: if two contradictory sentences, like
« and Na, were true together, we could derive from them by
means of this law the arbitrary proposition g, i.e. any proposi-
tion whatever.

There belong to the system two rules of inference: the rule of
substitution and the rule of detachment.

The rule of substitution allows us to deduce new theses from
a thesis asserted in the system by writing instead of a variable a
significant expression, everywhere the same for the same vari-
able. Significant expressions are defined inductively in the fol-
lowing way: (a2) any propositional variable is a significant
expression; (b) N« is a significant expression provided « is a

* First published in Polish: ‘O znaczeniu i potrzebach logiki matematycznej’
(On the Importance and Requirements of Mathematical Logic), Nauka Polska,
vol. x, Warsaw (192g), pp. 610-12. Cf. also the German contribution quoted in
p- 78, n. 2: Satz 6, p. 35.

2 See above, section 16.

3 Cf. my paper quoted in p. 48, n.
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significant expression; (¢) Caf is a significant expression pro-
vided « and B are significant expressions.

The rule of detachment is the modus ponens of the Stoics
referred to above: if a proposition of the type Caf is asserted
and its antecedent o is asserted too, it is permissible to assert
its consequent B, and detach it from the implication as a new
thesis. '

By means of these two rules we can deduce from our set of
axioms all the true theses of the C-N-system. If we want to
have in the system other functors besides C and W, e.g. K, we
must introduce them by definitions. This can be done in two
different ways, as I shall show on the example of X. The con-
Junction ‘p and ¢’ means the same as ‘it-is-not-true-that (if p,
then not-¢)’. This connexion between Kpg and NCpNg may be
expressed by the formula:

Kpg = NCpNy,

where the sign = corresponds to the words ‘means the same
as’, This kind of definition requires a special rule of inference
allowing us to replace the definiens by the definiendum and vice
versa. Or we may express the connexion between Kpg and
NCpNg by an equivalence, and as equivalence is not a primitive
term of our system, by two implications converse to each other:

CKpgNCpNg  and = CNCpNgKpq.

In this case a special definition-rule is not needed. I shall use
definitions of the first kind.

Let us now see by an example how new theses can be derived
from the axioms by the help of rules of inference. I shall deduce
from T1-T3 the law of identity Cpp. The deduction requires
two applications of the rule of substitution and two applications
of the rule of detachment; it runs thus:

T1. q/CNpgx CT3-Ty

T'q. CCCNpgrCpr

T4. q/p, r/p X CT2-T5

Ts. Cpp.

The first line is called the derivational line. It consists of two
parts separated from each other by the sign x. The first part,
T1. ¢q/CNpg, means that in Tt CNpg has to be substituted for

banT G
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¢. The thesis produced by this substitution is omitted in order to
save space. It would be of the following form:

(I) CCpCNpgCCCNpgrCpr.

The second part, CT3-T4, shows how this omitted thesis is
constructed,; makingit obvious that the ruleof detachment may be
applied toit. Thesis (I) begins with C, and then there follow axiom
T3 as antecedent and thesis T4 as consequent. We can therefore
detach T4 as a new thesis. The derivational line before T has
a similar explanation. The stroke (/) is the sign of substitution
and the short rule () the sign of detachment. Almost all sub-
sequent deductions are performed in the same manner.

One must be very expert in performing such proofs if one
wants to deduce from the axioms T1-Tg the law of commuta-
tion CCpCqrCqCpr or even the law of simplification CpCgp. I
shall therefore explain an easy method of verifying expressions
of our system without deducing them from the axioms. This
method, invented by the American logician Charles S. Peirce
about 1885, is based on the so-called principle of bivalence,
which states that every proposition is either true or false, i.e.
that it has one and only one ‘of two possible truth-values: truth
and falsity. This principle must not be mixed up with the law of
the excluded middle, according to which of two contradictory
propositions one must be true. It was stated as the basis of logic
by the Stoics, in particular by Chrysippus.?

All functions of the theory of deduction are truth-functions,
i.e. their truth and falsity depend only upon the truth and
falsity of their arguments. Let us denote a constant false pro-
position by o, and a constant true proposition by 7. We may
define negation in the following way:

No=1 and NI =o.

This means: the negation of a false proposition means the same
as a true proposition (ory shortly, is true) and the negation of
a true proposition is false. For implication we have the follow-
ing four definitions:

Coo=1, Cor=1, Cro=o0, Cir=r1,

* Cicero, Acad. pr. ii. 95 ‘Fundamentum dialecticae est, quidquid enuntietur
(id autem appellant df/wpa) aut verum esse aut falsum’; De fafo 21 ‘Itaque
contendit omnes nervos Chrysippus ut persuadeat omne déiwga aut verum esse aut
falsum.’ In the Stoic terminology déiwua means ‘proposition’, not ‘axiom’.
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This means: an implication is false only when its antecedent is
true and its consequent false; in all the other cases it is true.
This is the oldest definition of implication, stated by Philon of
Megara and adopted by the Stoics.! For conjunction we have
the four evident equalities:
Koo =0, Kor=o0, Kro=o0, Kir=1

A conjunction is true only when both its arguments are true;
in all the other cases it is false.

Now if we want to verify a significant éxpression of the theory
of deduction containing all or some of the functors C, N, and X
we have to substitute for the variables occurring in the expression
the symbols o0 and r in all possible permutations, and reduce the
formulae thus obtained on the basis of the equalities given above.
If after the reduction all the formulae give r as the final result,
the expression is true or a thesis; if any one of them gives o as
the final result, the expression is false. Let us take as an example
of the first kind the law of transposition CCpgCNgNp; we get:

For p/o, q/o: CCooCNoNo = C1Crr = Cr1 = 1,
» Dlo, q/1: CCo1CNINo = CrCor = Cr11 = 1,
» DI, qlo: CC1oCNoN1 = CoCro = Coo = 1,
» PI1, g/1: CCrICNINI = C1Co0 = CI1 = 1.
As for all substitutions the final result is 1, the law of trans-
position is a thesis of our system. Let us now take as an example
of the second kind the expression CKpNgq. It suffices to try only
one substitution: ’

pl1, g/o: CK1Noo = CK110 = Cro = o.

This substitution gives o as the final result, and therefore the
expression CKpNgq is false. In the same way we may check all
the theses of the theory of deduction employed as auxiliary
premisses in Aristotle’s syllogistic.

§ 24. Quantifiers

Aristotle had no clear idea of quantifiers and did not use them
in his works; consequently we cannot introduce them into his
syllogistic. But, as we have already seen, there are two points in
his system which we can understand better if we explain them

! Sextus Empiricus, Adv. math. viii. 113 6 pév Pldwv édeyev dAnbdés yivealbar 7o
ouvwppévoy, Srav py dpxnrar dn’ dAnbobs xai AMjyp éml Peidos, dare Tpixds piév
yiveaBar xar’ adrdv dAnfés auvmuuévov, xal’ éva 8¢ Tpdmov heddos.

f
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by employing quantifiers. Universal quantifiers are connected
with the so-called ‘syllogistic necessity’, existential or particular
quantifiers with the proofs by ecthesis. I shall now translate into
symbols the proofs with existential quantifiers set down in
section 19, and then the argument dependent on universal
quantifiers mentioned in section 5.

I denote quantifiers by Greek capitals, the universal quanti-
fier by I7, and the particular or existential quantifier by 2. II
. may be read ‘for all’, and X ‘for some’ or ‘there exists’; e.g.
ZcKAcbAca means in words: “There exists a ¢ such that all ¢ is
b and all ¢ is @’, or more briefly: ‘For somec, all ¢is b and all ¢
is .’ Every quantified expression, for instance ZcKAcbAca, con-
sists of three parts: part one, in our example 2, is always a
quantifier; part two, here ¢, is always a variable bound by the
preceding quantifier; part three, here KAcbAca, is always a
propositional expression containing the variable just bound by
the quantifier as a free variable. It is by putting X¢ before
KAcbAca that the free variable ¢ in this last formula becomes
bound. We may put it briefly: X (part one) binds ¢ (part two)
in KAcbAca (part three).

The rules of existential quantifiers have already been set out
in section 19. In derivational lines I denote by Zr the rule al-
lowing us to put X before the antecedent, and by 22 the rule
allowing us to put it before the consequent of a true implica-
tion. The following deductions will be easily understood, as they
are translations of the deductions given in words in section 19,
the corresponding theses bearing the same running number and
having corresponding small letters as variables instead of capitals.

Proof of conversion of the I-premiss
Theses assumed as true without proof:

(1) ClabZcKAcbAca
(2) CXcKAcbAcalab »

Theses (1) and (2) can be used as a definition of the I-premiss.
(3) CKpgKgp (commutative law of conjunction)

(3) plAch, g/Acax (4)
(4) CKAcbAcaKAcaAch

(4) Z2cx (5)
(5) CKAcbAcaXcK AcaAch
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(5) Z1c % (6)
(6) CXeKAcbAcaZcKAcaAch
Ti. CCpqgCCqrCpr (law of the hypothetical syllogism)
T1.p/lab, q/ZcKAcbAca,r/ZcK AcaAch x C(1)-C(6)-(7)
(7) ClabZeKAcaAch
(2) b/a, a/bx (8)
(8) CZcKAcaAcblba
T1. p/lab, q/ZcKAcadch, r/1ba X C(7)-C(8)—(9)
(9) Clablba

The derivational lines show that (4) and (8) result from other
theses by substitution only, and (7) and (g) by substitution and
two detachments. Upon this pattern the reader himself may try
to construct the proof of the mood Darapti, which is easy.

Proof of the mood Bocardo

(The variables P, R, and § used in section 19 must be re-
lettered, as the corresponding small letters p, 7, and s are reserved
to denote propositional variables: write d for P, a for R, and b for S.)

Thesis assumed without proof:
(15) CObdZEcKAcbEcd

Two syllogisms taken as premisses:
(16) CKAcbAbaAca (Barbara)
(17) CKAcaEcdOad (Felapton)
T6. CCKpgrCCKrstCKKpgst
This is the ‘synthetic theorem’ ascribed to Aristotle.
T6. p/Acb, g/ Aba, r|/Aca, s/Ecd, t/|Oad X C(16)-C(17)-
(18)
(18) CKKAcbAbaEcdOad
Ty. CCKEKpgrsCKprCys (auxiliary thesis)
T7. p/Ach, q/Aba, r/Ecd, s{Oad X C(18)—(19)
(19) CKAcbEcdCAbaOad
(19) Z1c X (20)
(20) CZeKAchEcdCAbaOad
T1. CCpqgCCqrCopr
T1. p/0bd, 9/ ZcKAcbEcd, r|CAbaOad x C(15)-C(20)-
(21)
(21) CObdCAbaOad



86 ARISTOTLE’S SYSTEM IN SYMBOLIC FORM § 24

This is the implicational form of the mood Bocardo. If we wish
to have the usual conjunctional form of this mood, we must
apply to (21) the so-called law of importation:

T8. CCpCqrCKpgr.

We get:
T8. p/0bd, q/Aba, r/Oad x C(21)-(22)

(22) CKObdAbaOad (Bocardo).

By the so-called law of exportation,

Tg. CCKpqrCpCyr,
which is the converse of the law of importation, we can get
the implicational form of the mood Bocardo back from its
conjunctional form.

The rules of universal quantifiers are similar to the rules of
particular quantifiers set out in section 19. The universal
quantifier can be put before the antecedent of a true implica-
tion unconditionally, binding a free variable occurring in the
antecedent, and before the consequent of a true implication
only under the condition that the variable which is to be bound
in the consequent does not occur in the antecedent as a free
variable. I denote the first of these rules by IT1, the second
by II2.

Two derived rules result from the above primitive rules of
universal quantifiers: first, it is permissible (by rule IT2 and the
law of simplification) to put universal quantifiers in front of a
true expression binding free variables occurring in it; secondly,
it is permissible (by rule IIr and the propositional law of
identity) to drop universal quantifiers standing in front of a true
expression. How these rules may be derived I shall explain by
the example of the law of conversion of the I-premiss.

From the law of conversion
(9) Clablba
there follows the quantified expression
(26) HallbClablba,

and from the quantified expression (26) there follows again the

unquantified law of conversion (g).
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First: from (g) follows (26).
Tio. CpCqp (law of simplification)

Tro. p/Clablba x C(9)—(23)
(23) CqClablba

To this thesis we apply rule IT2 binding 4, and then a, as neither
b nor a occurs in the antecedent:
(23) I12b < (24)
(24) Cql1bClablba
(24) I12ax (25)
(25) CqllallbClablba
(25) ¢/CpCqp X CT10-(26)
(26) IIalIbClablba

Secondly: from (26) follows (g).
Ts. Cpp (law of identity)

T5. p/Clablba x (27)
(27) CClablbaClablba

To this thesis we apply rule IIr binding 4, and then a:
(27) I1rb < (28)
(28) CIIbClablbaClablba
(28) Il1a x (29)
(29) CIallbClablbaClablba

(29) X G(26)~(9)
(9) Clablba

Aristotle asserts: ‘If some a is b, it is necessary that some b
should be a.” The expression ‘it is necessary that’ can have, in
my opinion, only this meaning: it is impossible to find such
values of the variables @ and & as would verify the antecedent
without verifying the consequent. That means, in other words:
‘For all ¢, and for all &, if some a is 4, then some b is a.” This is
our quantified thesis (26). It has been proved that this thesis is
equivalent to the unquantified law of conversion ‘If some a is 5,
then some b4 is @, which does not contain the sign of necessity.
] Since the syllogistic necessity is equivalent to a universal
quantifier it may be omitted, as a universal quantifier may be
omitted at the head of a true formula.
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§ 25. Fundamentals of the syllogistic

Every axiomatized deductive system is based on three funda-
mental elements: primitive terms, axioms, and rules of inference.
Istart from the fundamentals for asserted expressions, the funda-
mental elements for the rejected ones being given later.

As primitive terms I take the constants 4 and I, defining by
them the two other constants, £ and O:

Df 1. Eab = Nlab
Df 2. Oab = NAab.

In order to abbreviate the proofs I shall employ instead of the
above definitions the two following rules of inference:

Rule RE: NI may be everywhere replaced by E and con-
versely.

Rule RO: N4 may be everywhere replaced by O and con-
versely.

The four theses of the system axiomatically asserted are the
two laws of identity and the moods Barbara and Datisi:

1. daa

2. laa

3. CKAbcAabAac (Barbara)
4. CKAbclbalac (Datisi).

Besides the rules RE and RO I accept the two following rules
of inference for the asserted expressions:

(@) Rule of substitution: If « is an asserted expression of the
system, then any expression produced from « by a valid
substitution is also an asserted expression. The only valid
substitution is to put for term-variables a, , ¢ other term-
variables, e.g. b for a.

(6) Rule of detachment: If Cof and o are asserted expressions
of the system, then B is an asserted expression.

As an auxiliary theory I assume the C-/N-system of the theory
of deduction with K as a defined functor. For propositional
variables propositional expressions of the syllogistic may be
substituted, like Aab, Iac, KEbcAab, etc. In all subsequent proofs
(and also for rejected expressions) I shall employ only the
following fourteen theses denoted by roman numerals:
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I. CpCqp (Iaw of simplification)
II. CCqrCCpqCpr (law ofhypothetical syllogism, 2nd form)
HI. CCpCqrCqCpr (law of commutation)
IV. CpCNpq (law of Duns Scotus)
V. CCNppp (law of Clavius)
VI. CCpgCNgNp (law of transposition)
VII. CCEpgrCpCqr (law of exportation)
VIII. CpCCEKpgrCqr
IX. CCspCCEpgrCKsgr
X. CCKpqrCCsqCKpsr
XI. CCrsCCKpgrCKqps
XII. CCKpgrCEpNrNg
XIIL. CCKpgrCKENrgNp
XIV. CCKpNgNrCKprq

Thesis VIII is a form of the law of exportation, theses IX-XI
are compound laws of hypothetical syllogism, and XII-XIV
are compound laws of transposition. All of these can be easily
verified by the o—r method explained in section 23. Theses IV
and V give together with IT and III the whole C-/N-system, but
IV and V are needed only in proofs for rejected expressions.

The system of axioms 1—4 is consistent, i.e. non-contradictory.
The easiest proof of non-contradiction is effected by regarding
term-variables as proposition-variables, and by defining the
functions 4 and I as always true, i.e. by putting Aab = Iab =
KCaaCbb. The axioms 1—4 are then true as theses of the theory
of deduction, and as it is known that the theory of deduction is
non-contradictory, the syllogistic is non-contradictory too.

All the axioms of our system are independent of each other.
The proofs of this may be given by interpretation in the field of
the theory of deduction. In the subsequent interpretations the
term-variables are treated as propositional variables.

Independence of axiom 1: Take K for 4, and C for I. Axiom 1
is not verified, for Aaa = Kaa, and Kaa gives o for a/o. The other
axioms are verified, as can be seen by the o-r method.

Independence of axiom 2: Take C for 4, and K for 1. Axiom 2
is not verified, for Jaa = Kaa. The other axioms are verified.

Independence of axiom 4: Take C for 4 and I. Axiom 4 is
not verified, for CKAbclbalac = CKCbcChaCac gives o for b/o,
al1, cfo. The rest are verified.
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Independence of axiom g: it is impossible to prove the inde-
pendence of this axiom on the ground of a theory of deduction
with only two truth-values, 0 and 1. We must introduce a third
truth-value, let us say 2, which may be regarded as another
symbol for truth, i.e. for 1. To the equivalences given for C, N,
and X in section 23, we have to add the following formulae:

Co2 = Cr2 = C2r = C22 =1, C20 = o, Nz = o,
Ko2 = K20 = o, Kr2 = Kor = K22 = 1.

It can easily be shown that under these conditions all the theses
of the C—N-system are verified. Let us now define /ab as a func-
tion always true, i.e. Jab = r for all values of 2 and b, and Aab
as a function with the values

Aaa = 1, dor = A12 = 1, and Aoz = o (the rest is ir-
relevant).

Axioms 1, 2, and 4 are verified, but from g we get by the sub-
stitutions b/1, ¢/2, ajo: CKA12401402 = CK110 = Cro = o.

It is also possible to give proofs of independence by inter-
pretation in the field of natural numbers. If we want, for in-
stance, to prove that axiom g is independent of the remaining
axioms, we can define Aab as a1 # b, and Iab as a-+b = b+ta.
Iab is always true, and therefore axioms 2 and 4 are verified.
Axiom 1 is also verified, for a1 is always different from a. But
axiom 3, i.e. ‘If b4r1 5 ¢ and a1 # b, then a-+1 # ¢, is not
verified? Take 3 for q, 2 for b, and 4 for ¢: the premisses will be
true and the conclusion false.

It results from the above proofs of independence that there
exists no single axiom or ‘principle’ of the syllogistic. The four
axioms 1—-4 may be mechanically conjoined by the word ‘and’
into one proposition, but they remain distinct in this inorganic
conjunction without representing one single idea.

§ 26. Deduction of syllogistz‘; theses

From axioms 1—-4 we can derive all the theses of the Aristotel-
1an logic by means of our rules of inference and by the help of
the theory of deduction. I hope that the subsequent proofs will
be quite intelligible after the explanations given in the fore-
going sections. In all syllogistical moods the major term is
denoted by g, the middle term by &, and the minor term by .
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The major premiss is stated first, so that it is easy to compare
the formulae with the traditional names of the moods.!

A. THE LAaws oF GONVERSION
VIL. p/Abe, q/Iba, r/Iac X C4—5
5. CAbcClbalac
5. bla, ¢c/a, alb x C1-6
6. Clablba (law of conversion of the I-premiss)
I11. pjAbec, q/1ba, r/lac X C5—y
7. CIbaCAbclac
7. bla, ¢/bx C2-8
8. CAablab (law of subordination for affirmative pre-
misses)
I1. g/lab, r/1ba X C6—9
9. CCplabCplba
9. p/Aabx C8-10

10. CAablba (law of conversion of the A4-premiss)
6. a/b, blax 11
11. Clbalab

V1. p/lba, q/Iab < C11-12
12. CNlabNlba
r2. REx13
13. CEabEba (law of conversion of the E-premiss)

VL. p/Adab, q/lab x C8-14
14. CNIabNAab
14. RE, RO X 15
15. CEabOab (law of subordination for negative premisses)

B. Tue ArFriRMATIVE Moobs

X. p/Abe, q/1ba, r/lac X C4—16
16. CCslbaCK Abcslac

16. s/lab x C6-17
17. CKAbclablac (Darii)

¥ In my Polish text-book, Elements of Mathematical Logic, published in 1929 (see
p- 46, n. 3), I showed for the first time how the known theses of the syllogistic may
be formally deduced from axioms 14 (pp. 180-go). The method expounded in
the above text-book is accepted with some meodifications by I. M. Bochenski, O.P.,
in his contribution: On the Categorical Syllogism, Dominican Studies, vol. i, Oxford

(1948).
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18.
19.
20.
21.
22,
23.
24.
25.
26.

27.

28.
29.
30.
31
32.
33

34-
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16. s/Aabx C10-18
CKAbcAablac

8. a/b, blax 19
CAbalba

16. s/Aba x C19-20
CKAbcAbalac

XI. r/Iba, s/Iab x C11-21
CCKpqlbaCKqplab

4. ¢la, afc X 22
CKAbalbclca

21. pfAba, q/1bc, bjc X C22-23
CKIbcAbalac

17. ¢/a, ajc X 24
CKAbalcblca

21. plAba, q/lch, bjc x C24—25
CKIcbAbalac

18. ¢/a, afc X 26
CKAbaAcblca

21. p/Aba, q/Ach, bjc X C26—27
CKAcbAbalac

(Barbari)

(Darapti)

(Disamis)

(Dimaris)

(Bramantip)

C. Tue NecaTive Moobs
> XIII. p/Ibc, q/Aba, r/lac x C23-28
CKNlacAbaNIbc

28. RE x 29
CKEacAbaEbc

29. a/b, bjax 30
CKEbcAabEac

IX. s/Eab, p/Ebax C13-31
CCKEbagrCKEabgr

31. ajc, q/Aab, r/Eac X C30-32
CKEcbAabEac

XI. r/Eab, s|Eba x C13-33
CCKpqEabCKqpEba

32. ¢/a, ajc X 34
CKEabAcbEca

(Celarent)

(Cesare)
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33. p/Eab, q/Acb, ac, blax (34-35
35. CKAcbEabEac

30. c/a, afc X 36
36. CKEbaAcbEca

33. p/Eba, q/Ach, afc, blax C36-37
37. CKAcbEbaEac

II. g/Eab, r/Oab x C15-38
38, CCpEabCpOab

8. p/KEbcAab, bjc x C30-39
39. CKEbcAabOac

38. p/KEcbAab, b/c x C32—40
40. CKEcbAabOac

38. p/KAcbEab, bjc X C35—41
41. CKAcbEabOac

38. p/KAcbEba, bjc x C37—-42
42. CKAcbEbaQOac

XII1. p/Abe, q/Tba, r/lac X C4—43
43. CKNlacIbaNAbc

43. RE, ROXx 44
44. CKEaclbaObc

44. a/b, blaxX 45
45. CKEbclabOac

31. afc, g/1ab, r/Oac x:C45-46
46. CKEcblabOac

X. p/Ebc, g/1ab, r/Oac X C45-47
47. CCslabCKEbcsOac

47. s/Tbax C11-48
3. CKEbclbaOac
31. ajc, g/Iba, r/Oac X C48-49

49. CNEcblbaOac

10. afb, bjlax 50
no. CAbalab

47. s]Aba x C50-51
nt. CREbcAbaOac

31. aje, ¢/ Aba, r/Oac X C51-52
n2. CAEchAbaOac

-
o~

(Camestres)

(Camenes)

(Celaront)
(Cesaro)
(Camestrop)

(Camenop)

(Ferio)

(Festino)

(Ferison)

(Fresison)

(Felapton)

(Fesapo)
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As a result of all these deductions one remarkable fact de-
serves our attention: it was possible to deduce twenty syllo-
gistic moods without employing axiom 3, the mood Barbara.
Even Barbari could be proved without Barbara. Axiom § is the
most important thesis of the syllogistic, for it is the only syllo-
gism that yields a universal affirmative conclusion, but in the
system of simple syllogisms it has an inferior rank, being neces-
sary to prove only two syllogistic moods, Baroco and Bocardo.
Here are these two proofs:

XII. p/Abe, q/Aab, r/Aac X C3-53
53. CKAbcNAacNAab

53. RO X 54

54. CKAbcOacOab
54- bje, c[bX 55

55. CKAcbOabOac (Baroco)
XII1. p/Abc, q/Aab, r/Aac X C3-56

56. CKNAacAabNAbc

56. RO X 57
57. CKOacAabObc
57. a/b, blax 58
58. CKObcAbaOac (Bocardo)

§ 27. Axioms and rules for rejected expressions

Of two intellectual acts, to assert a proposition and to reject
it,’ only the first has been taken into account in modern formal
logic. Gottlob Frege introduced into logic the idea of assertion,
and the sign of assertion (), accepted afterwards by the authors
of Principia Mathematica. The idea of rejection, however, so far
as I know, has been neglected up to the present day.

We assert true propositions and reject false ones. Only true
propositions can be asserted, for it would be an error to assert
a proposition that was not true. An analogous property cannot
be asserted of rejection: it is not only false propositions that
have to be rejected. It is true, of course, that every proposition
is either true or false, but there exist propositional expressions
that are neither true nor false. Of this kind are the so-called
propositional functions, i.e. expressions containing free variables

' T owe this distinction to Franz Brentano, who describes the acts of believing as
anerkennen and verwerfen. ’
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and becoming true for some of their values, and false for others.
Take, for instance, p, the propositional variable: itis neither true
nor false, because for p/r it becomes true, and for p/o it becomes
false. Now, of two contradictory propositions, « and N, one
must be true and the other false, one therefore must be asserted
and the other rejected. But neither of the two contradictory
propositional functions, p and Ap, can be asserted, because
neither of them is true: they both have to be rejected.

The syllogistic forms rejected by Aristotle are not propositions
but propositional functions. Let us take an example: Aristotle
says that no syllogism arises in the first figure, when the first
term belongs to all the middle, but to none of the last. The
syllogistic form therefore:

(i) CKAbcEablac

is not asserted by him as a valid syllogism, but rejected.
Aristotle himself gives concrete terms disproving the above
form : take for b ‘man’, for ¢ ‘animal’, and for a ‘stone’. But there
are other values for which the formula (i) can be verified: by
identifying the variables a and ¢ we get a true implication
CKAbaEablaa, for its antecedent is false and its consequent true.
The negation of the formula (7):

(j) NCKAbcEablac

must therefore be rejected too, because for ¢/a it is false.

By introducing quantifiers into the system we could dispense
with rejection. Instead of rejecting the form (i) we could assert
the thesis:

(k) ZaZbZcNCKAbcEablac.

‘T'his means: there exist terms a, b, and ¢ that verify the negation
of (). The form (i), therefore, is not true for all 4, b, and ¢, and
cannot be a valid syllogism. In the same way instead of rejecting
the expression (j) we might assert the thesis:

() ZaZbZcCKAbcEablac.

But Aristotle knows nothing of quantifiers; instead of adding to
his system new theses with quantifiers he uses rejection. As
rejection seems to be a simpler idea than quantification, let us
follow in Aristotle’s steps.
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Aristotle rejects most invalid syllogistic forms by exemplifica-
tion through concrete terms. This is the only point where we
cannot follow him, because we cannot introduce into logic such
concrete terms as ‘man’ or ‘animal’. Some forms must be
rejected axiomatically. I have found® that if we reject axioma-
tically the two following forms of the second figure:

CKAcbAablac
CKEcbEablac,

all the other invalid syllogistic forms may be rejected by means
of two rules of rejection:

(¢) Rule of rejection by detachment: if the implication ‘If «,
then B’ is asserted, but the consequent 8 is rejected, then
the antecedent « must be rejected too.

(d) Rule of rejection by substitution: if 8 is a substitution of
«, and B is rejected, then « must be rejected too.

Both rules are perfectly evident.

The number of syllogistic forms is 4 X 43 = 256; 24 forms are
valid syllogisms, 2 forms are rejected axiomatically. It would be
tedious to prove that the remaining 230 invalid forms may be
rejected by means of our axioms and rules. I shall only show,
by the example of the forms of the first figure with premisses
Abc and Eab, how our rules of rejection work on the basis of
the first axiom of rejection.

Rejected expressions I denote by an asterisk put before their
serial number. Thus we have:

*59. CKAcbAablac (Axiom)

*59a. CKEcbEablac

- L. p/lac, ¢/ KAcbAab x 60
60. ClacCKAcbAablac
60 x C*61-*59

*61. lac. ,

Here for the first time is applied the rule of rejection by
detachment. The asserted implication 60 has a rejected con-
sequent, *59; thereforeits antecedent, *61, must be rejected too.
In this same way I get the rejected expressions *64, *67, *71,
*74, and *77. '

I See section 20.
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V. pllac X 62
62. CCNlaclaclac
62. RE x 63
63. CCEaclaclac
63 X C*64-*61
*64. CEaclac
I. afc X 65
65. Acc
VIIL. p/Ace, q/Eac, r/lac x C65-66
66. CCKAccEaclacCEaclac
66 X C*67-*64
*67. CKAccEaclac
*67 X *68. b/c
*68. CKAbcEablac
Here the rule of rejection by substitution is applied. Expression
*68 must _be rejected,because by the substitution of 4 for ¢in *68 we
get the rejected expression *67. The same ruleis used to get* 75.
I1. g/Aab, r/Iab x C8-69
69. CCpAabCplab
69. p/KAbcEab, bjc X 70
70. CCKAbcEabAacCK AbcEablac
70 X C*971-*68
*71. CKAbcEabAac
XIV. p|Acb, q/lac, r/Aab X 72
72. CCKAcb NIacNAabCKAcbAablac
72. RE, RO x 73
73. CCKAcbEacOabCK AcbAablac
73 X C*74-*59
*74. CKAcbEacOab
*74 X *75. ble, c/b
*75. CKAbcEabOac
38. p/KAbcEab, bjc x 76
76. CCKAbcEabEacCK AbcEabOac
76 X C*77-*75
*77. CKAbcEabEac

The rejected expressions *68, *71, *75, and *77 are the four
G367 H
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possible forms of the first figure having as premisses 4b¢ and
Eab. From these premisses no valid conclusion can be drawn in
the first figure. We can prove in the same way on the basis of
the two axiomatically rejected forms that all the other invalid
syllogistic forms in all the four figures must be rejected too.

§ 28. Insufficiency of our axioms and rules

Although it is possible to prove all the known theses of the
Aristotelian logic by means of our axioms and rules of assertion,
and to disprove all the invalid syllogistic forms by means of our
axioms and rules of rejection, the result is far from being satis-
factory. The reason is that besides the syllogistic forms there
exist many other significant expressions in the Aristotelian logic,
indeed an infinity of them, so that we cannot be sure whether
from our system of axioms and rules all the true expressions of
the syllogistic can be deduced or not, and whether all the false
expressions can be rejected or not. In fact, it is easy to find false
expressions that cannot be rejected by means of our axioms and
rules of rejection. Such, for instance, is the expression:

(F1) ClabCNAabAba.

It means: ‘If some q is b, then if it is not true that all 4 is b, all
b is a.’ This expression is not true in the Aristotelian logic, and
cannot be proved by the axioms of assertion, but it is consistent
with them and added to the axioms does not entail any invalid
syllogisti¢ form, It is worth while to consider the system of the
syllogistic as thus extended.

From the laws of the Aristotelian logic:

8. CAablab and
50. CAbalab

and the law of the theory of deduction:
(m) CCprCCqrCCNpgr
we can derive the followirig new thesis 78:
(m) p/Aab, g/Aba, r/lab x C8—Cr0-78
78. CCNAabAbalab.

This thesis is a converse implication with regard to (F1), and
together with (F1) gives an equivalence. On the. ground of this
equivalence we may define the functor I by the functor 4:

(F2) Iab = CNAabAba.
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This definition reads: ¢ “Some a is ” means the same as “If it
is not true that all a is b, then all b is ”. As the expresswn ‘If
not-p, then ¢’ is equlvalcnt to the alternation ‘Either p or ¢’, we
can also say: ¢ “Some a is 5”” means the same as “Either all a is
bor all bis a”.’ It is now easy to find an interpretation of this
extended system in the so-called Eulerian circles. The terms a,
b, ¢ are represented by circles, as in the usual interpretation,
but on the condition that no two circles shall intersect each
other. Axioms 1—4 are verified, and the forms *59 CKAcbAablac
and *59a CKEcbEablac are rejected, because it is possible to draw
two circles lying outside each other and included in a third
circle, which refutes the form CKAcbAablac, and to draw three
circles each excluding the two others, which refutes the form
CKEcbEablac. Consequently all the laws of the Aristotelian
logic are verified, and all the invalid syllogistic forms are re-
jected. The system, however, is different from the Aristotelian
syllogistic, because the formula (F1) is false, as we can see from
the following example: it is true that ‘Some even numbers are
divisible by 3’, but it is true neither that ‘All even numbers are
divisible by 3’ nor that ‘All numbers divisible by g are even’.

It results from this consideration that our system of axioms
and rules is not categorical, i.e. not all interpretations of our
system verify and falsify the same formulae or are isomorphic.
The interpretation just expounded verifies the formula (Fr1)
which is not verified by the Aristotelian logic. The system of our
axioms and rules, therefore, is not sufficient to give a full and
exact description of the Aristotelian syllogistic.

In order to remove this difficulty we could reject the expres-
sion (F1) axiomatically. But it is doubtful whether this remedy
would be effective; there may be other formulae of the same
kind as (F1), perhaps even an infinite number of such formulae.
The problem is to find a system of axioms and rules for the
Aristotelian syllogistic on which we could decide whether any
given significant expression of this system has to be asserted or
rejected. To this most important problem of decision the next
chapter is devoted.



