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IV

MATHEMATICS AS THE SCIENCE OF
FORMAL SYSTEMS: EXPOSITION

Wr turn now to another line of thought with another historical root.
As Leibniz sought the source of the self'evidence and the content of
mathematics in logical relations between propositions and concepts,
so Kant sought it in perception. And, just as kibniz conceived the
euiding principles of logicism, so Kant was led to anticipate the
eoidiog principles of two modern movements in the philosophy of
mathematics : formalism and intuitionism.

For Kant the role of logic in mathematics is precisely the role it has
in any other field of knowledge. He holds that in mathematics, although
the theorems follow from the axioms according to principles of logic,
the axioms and theorems are not themselues principles of logic, or any
application of such principles. He regards them, on the contrary, as
descriptive, namely as describing the structure of two perceptual data,
space and time. Their structure manifests itself as something which
we find in perception, when we abstract its varying empirical con-
tent. Thus in perceiving two apples, the iteration which is perceived
isafeatureofthespace and time inwhich the apples are located. The
same structure manifests itself further in our deliberate geometrical
constructions, both in making such constructions possible and -in
confining them within limits-permitting the construction, for
example, of three-dimensional objects but not of four-dimensional.

HilGrt, who in his practical programme adapted Kant's guiding
idea, expresses Kant's'fundamental philosophical position', andhis
own, inihe following words: '. . . something which is presupposed in
the making of logical inferences ind in the carrying out of logical
operations; is already given in representation (Vorstellung): i.e. c,ertain
eitra-logical concrete objects, which are intuitively present as immc-
diate experience, and underlie all thought. If logical thinking is to be
s@ure, ihese objects must be capable of being exhaustively surveyed,
in their parts; and the exhibition, the disrinction, the succession of
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their parts, and their arrangement beside each other, must be give,n,
wjth the objects themselves, as something that cannot be reduced to
unything else or indeed be in any need of such reduction.'l

Hilbert shares this fundamental position with Brouwer and his
rchool as well as with Kant. If mathematics is to be restricted-
cntirely and without qualification-to the description of concrete
objects ofa certain kind, and logical relations between such descrip-
tions, then no inconsistencies can arise within it: precise descriptions of
concrete objects are always mutually compatible. In particular, in this
kind of mathematics, there are no antinomies to trouble us, generated
by the notion of actual infinity; and for the simplest of reasons, namely
that the concept of actual infnity does not describe any concrete
object.

' Yet-and here is the root of the disagreement between formalists
such as Hilbert and intuitionists like Brouwer-Hilbert does not think
his position requires him to abandon Cantor's transfinite mathematics.
The task he sets himself is the accommodating of transfinite mathe-
matics within a mathematics conceived, in Kantian fashion, as con-
cerned with concrete objects. 'No one will ever be able to expel us',
he says, 'from the paradise which Cantor has created for us.'

His way of reconciling concrete, finite mathematics with the
abstract and transfinite theory of Cantor is something Hilbert again
owes-at least fundamentally-to Kant.2 It was not, indeed, in the
philosophy of mathematics that Kant employed the principle on which
Hilbert's reconciliation proceeds. Kant employed it in a part of
philosophy which for him was much more important-the reconcilia-
tion of moral freedom and religious faith with natural necessity.
Arguing in this context, Kant fust pointed out that the notion of
moral freedom (and some other notions, including that of actual
infinity) were fdeas of Reason which were unrelated to perception,
in the sense of being neither abstracted from it nor applicable to it.
He then argued that any system containing notions applicable
primarily to concrete objects (such as the mathematics and physics of
his day) could indeed be amplified by Ideas, but only provided the
amplified system could be shown to be consistent. Proving consistencn
within a system embracing both the findings of theoretical science on
the one hand and, on the other, the Ideas of morals and faith, was
Kant's way as he himself put it'of making room for faith'.

In quite similar fashion Hilbert distinguishes between the concrete
1 Hilbert, Die Grundlagen der Mathematr&, Sem. der Hamburger Universitet,

vol. 6, p. 65. Also Becker, p. 371.
2 Sea, e,9,, op. clt,, p.71.
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or real notions of finite mathematics and the ideal notions (Ideas) of
transfinite mathematics. In order to justify the adjunction of ideal
notions to the real, he too requires a proofthat the system is consis-
tent. Hilbert's task is thus to prove the consistency of a system com-
prising finite and transfinite mathematics. He adopts the Kantian
theses (i) that mathematics includes descriptions of concrete objects
and constructions and (ii) that the adjunction of ideal elements to a
theory requires a proof of the consistency of the system thus ampli-
fied. In his hands these have been transformed into what is claimed
to be a practical programme for founding mathematics upon what is
perceived or perceivable. We have now to examine this.

l, The programme
To show that a system of propositions"--€.8.. the theorems of a

mathematical theory-is internally consistent is to show that it does
not contain two propositions one of which is the negation of the other
or a proposition from which any other proposition would follow.
(The second formulation also holds for systems in which negation is
not available.) Only in the case of very simple systems is it possible to
compile a list of all their propositions and to check the list for inconsis-
t€ncy. In general, a more complex investigation into the structure of
the system as a whole will be necessary.

Such an investigation presupposes that the system is clearly
demarcated and capable of being surveyed. The demarcation, as
Frege saw, is secured to some extent by axiomatization: i.e. by listing
the undefined concepts in the system, the presupposed assumptions
in it, and Jastly, the inference-rules (the rules for deducing theorems
-from the assumptions and already deduced theorems). We have
mentioned (in chapter II above) various axiomatizations of the
logic of propositions, of classes, and of quantification. Similar axio-
matizations have often been given for other systems, such, e.g., as
(unarithmetized) geometry and parts of theoretical physics. Axio-
matization may be more or less strict, depending on the extent to
which the rules of sentence-formation and of inferential procedure
are more or less explicitly anS precisely formulated.

For proving the consistency of a system two methods are available:
the direct and the indirect. fn some cases it can be shown by combina-
torial means that inconsistent statements are not deducible in a given
theory. In other cases the direct method proceeds by exhibiting a per-
ceptual model of the theory. More precisely it consists (i) in identifying
the objects of the theory with concrete objects, (ii) in identifying the

\postulates 
with exact descriptions of these objects arld their mutual
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relations; and (iii) in showing that an inference within the system will
not lead to any other than exact descriptions. Since mathematics
abounds in concepts of actual infinities which cannot be identified with
perceptual objects, the use of the direct method is restricted to certain
small parts of mathematics.l

A theory involving actual infinities can-at least prima facie-be
tested for consistency only by the indirect method. One proceeds in
this by establishing a one-one correspondence between (a) the postu-
lates and theorems of the original theory and (b) all or some of the
postulates and theorems of a second theory, which is assumed to be
consistent. The consistency of this theory can in some cases be re-
duced to a third one. But none of these theories can have a concrete
model.

Amongst indirect proofs of the consistency of any geometrical
or physical theory the most common are based on arithmetization,
i.e. on representing the objects of these theories by real numbers or
systems of such. This is by no means surprising. For on the one hand
the creative work of mathematicians, at least since Descartes, has been
characterized by the demand that all mathematics should be capable
of being embedded in arithmetic; and, on the other hand, the creative
work of physicists, at least since Galileo, has been characterized by
the demand that all physics should be mathematized. These are
philosophical demands and convictions and they have led to extensions
of mathematics so as to make it capable of accommodating all physical
formalisms; and they have led to such extensions of arithmetic as to
make it capable-by the use of one-one correspondences---of accom-
modating all mathematics, in particular all geometry and abstract
algebra. ft cannot indeed be said a priori that this arithmetization of
science has no limits. But the reducibility to arithmetic of physical
and mathematical theories which contain ideal notions, and which
cannot be proved consistent by the direct method, raises the question
of the consistency of arithmetic itself. Before Hilbert, no practical
prograrnme for proving the consistency of arithmetic had been
suggested. (If mathematics should be found reducible to an obviously
consistent logic, this problem would not, of course, arise.)

And Hilbert's basic idea, here, is as ingenious as it is simple. The
mathematician deals with concrete objects or systems of such. He can
therefore rely on'finite methods'; in other words he can rest content
with the employment of concepts which can be instantiated in percep-
tion, with statements in which these concepts are correctly applied, and
with inferences from statements of this type to other such statements.

I See, a.9., Hilbert-Bernays, op, cit., p, 72,
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Finite methods do not lead to inconsistencies, especially in mathe-
matics where the concrete objects can be effectively demarcated. -"

Classical arithmetic does, of course, deal with such abstract and
ideal objects as actual infinities. But even when on this account non-
finits ms*r6ds have to be used within aritbnetic it may nevertheless
be possible to regard or reconstruct arithmetic itself as a concrete
object which can be dealt with by finite methods. It would be natural
to expect this concrete object to possess properties capable ofthrowing
light on classical arithmetic as usually conceived. It may in particular
be expected to have a property the possession of which would guaran-
tee the consistency of the classical arithmetic. ,

Before attempting a more detailed exposition of these points one
can hardly do better than formulate the programme for proving the
consistency of the classical arithmetic in Hilbert's own words:
'Consider the essence and method of the ordinary finite theory of
numbers: This can ccrtainly be developed through number-construc-
tion by means of concrete, intuitive (inhaltlicher, anschaulicher)
considerations. But the science of mathematics is in no way exhausted
by number-equations and is not entirely reducible to such. Yet one
can assert that it is an apparatus which in its application to whole
numbers must always yield correctnumerical equations. But then there
arises tho demand to inquire into the structure of the apparatus to an
extent sufficicnt for the truth of the assertion to be recognized. And
here we have at our disposal, as an aid, that same concrete (konkret
inhaltliche) manner of contemplation, and finite attitude of thinking,
which had been applied in the development of the theory of numbers
itsdlf for the derivation of numerical equations. This scientific demand
can indeed be fulfilled, i.e. it is possible to achieve in a purely intuitive
and finite manner-just as is the case with the truths of the thgr of
numbers-those insights which guarantee the reliability lthe
mathematical apparatus.'l r 

-
Theconsistency of the classical arithmetic-including, we rlsay,

the main parts of Cantor's theory-is to be proved and t"!pro-
granrme would appear to be (i) to define with all possible dar|.what
is meant in mathem4rtics by finite methods as opposed to non-finite,
(ii) to reconstruct as much as possible of classical arithmetic as
a precisely demarcated concrete object which is given to, or realizablc
in, perception and (iii) to show that this object has a property which
clearly guarantees the consistency of classical arithmetic.

The formalist not only needs the assurance that his formalism
formalizes a consistent theory, but also that it completely formalizes

I op. cit., p. 7l; Becker, p.372. r
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what it is meant to formalize. A formalism is complete, if every for-
mula which-in accordance with its intended interpretation-is
provable within the formalism, embodies a true proposition, and if,
conversely, every true proposition is embodied in a provable formula.
(This is the original meaning of the term 'completeness' which has
also other, though related, meanings in the literature some of which
have no reference to an original, non-formalized, theory.) For some
such formalisms there are available mechanical methods-decision
procedures-by which one can decide for any formula whether it is
provable or not and whether consequently the embodied proposition
is true or false. The ideal would be a consistent, complete and
mechanically decidable formalism for all mathematics.

2. Finite methods and infinite totalilies
Incompatibility is a relationship between propositions or concepts.

Perceivable objects and processes cannot be incompatible with each
other. Again, propositions cannot be incompatible with each other if
they precisely describe such objects and processes; for a description
implying incompatibility between entities that cannot be incompatible
could not be precise. Yet the trouble is that there is no general test for
deciding whether a description is or is not precise. Attempts such as
Russell's sense-data theory to mark out in gcneral objccts which can
be precisely described-or such attempts Bs aro madc by theories like
Neurath's theory of 'protocol scntcncos' to mark out propositions
which are precisely descriptive-arc by no mcans unlvcrsally accepted
as successful. In mathematics it secms to bo othorwise. Hcre it seems
comparatively easy to demarcate a narrow flold of pcrceptual objects
and processes which will be capable of prccioo doccription, or at least
of a description free from contradictions. In tho olamcntary theory of
numbers we deal with such objects and proccsses. Tho methods of
dealing with them, the so-called finite (or 'finitary') mcthods, are
explained in the above mentioned papers by Hilbcrt and in tho classic
Die Grundlagen der Mathemallr by Hilbert and Bernayo.l Consistcntly
with these texts the point of view mieht be put as followr.

The subject matter of the elementary theory of numborr consists
of the signs'1', '11', ' l l l ',etc,, plus the process of produclng these
signs by starting with '1' and putting always another stroko bcyond
the last stroke of the previous sigrr. The initial figure 'l' and the
production-rule together provide the objects of the theory; thcso
objects can be abbreviated by use of the ordinary notation, tho
numeral ' lll' , e.9., being unitten as '3'. The small letters a, b, c, Glc.

1 See also Kleene's Introduction to Metamathemarics, Amsterdam, 1952.
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are employed to designate unspecified figures. For operations per'
formed on the figures one uses further signs: brackets, the sign '='
(to indicate that two figures havo tho same structure) and the siCrr
'< ' (to indicate that one figure is in an obvious and perceivable way
contained in another). Thus l1<lll, l.e, if beginning with '1' we
build up '11' and '111' by parallel steps the former will be finished
before the latter. .

Within this elementary theory of numbers, one can perform and
describe concrete addition, subtraction, multiplication and division.
The associative, commutative and distributive laws, and the principle
ofinduction are nothing else than obvious features ofthese operations.
Thus'11+ 111= 111* l f  is an instance of 'a+b:bta' ,  anequat ion
which asserts in a general way that the production offigures by iter'
ating the stroke does not dcpend on order.

Again the principle of induction, the most characteristic of all the
principles of arithmetic, is, in the words of Hilbert and Bernays 1 not
an 'independent principle' but 'a consequence which we take from
the concrete construction (Aufbau) of the figures'. fndeed if (a) '1' has
a certain property and (b) if, provided the property is possessed by
any stroke-expression, it is also possessed by the succeeding stroke-
expression (the expression formed by putting a further '1' after the
original) then this property will be seen to be possessed by any stroke-
expression that can be produced. Having defined the concrete funda-
mental operations by means of the colcrete principle of induction, one
can define the notion of prime numbers, and construct for any given
prime number a bigger prime number. The process of recursive
definitien can also be defined and performed concretely. For example
the facforial function p (n):1.2.3...n is recursively defined brl
(a) p(l): I and (b) p(n* l): p(n). (z+ 1). This definition prescribes i
an obvious way how, beginning with p(l), and using nothing
concrete addition and multiplication, we can build up p(z) for
perceptually given figure n. o

Elementary arithmetic is the paradigm of mathematical theory. It
is an apparatus which produces formulae, and which can be entirely
developed by finite methods. This statement, however, the meaning of
which has just been illustrtted from the development of elementary
arithmetic, is still needlessly imprecise, and requires an actual and
explicit characterization of what is to be meant by 'finite methods'.

First, every mathematical concept or characteristic must be such
that its possession or non-possession by any object can be decided by
inspection ofeither the actually constructed object or the constructive

1 Op, cit . ,  p.23'
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process which would produce the object. The second ofthese alter-
natives introduces a certain latitude in determining finite charac-
teristics and the finite methods consisting in their employment. Thus
one is reasonably content with a process of construction which is .in
principle' performable. Indeed it is at this point, namely when the
choice arises between making the formalist programme less strict or
sacrificing it, that some relaxation of the finite point of view may be
expected. ?

Secondly, a truly universal proposition-a proposition about all
stroke-expressions for example-is not finite: no totality of an un-
limited number of objects can be made available for inspection, either
in fact or 'in principle'. It is, however, permissible to interpret any
such statement as being about each constructed object. Thus, that all
numbers divisible by four are divisible by two means that if one
constructs an object divisible by four, this object will have the
property of being divisible by two. Clearly this assertion does nor
imply that the class of all numbers divisible by four is actually and
completely available. .

Thirdly, a truly existential proposition-to the effect, e.g., that
there exists a stroke-expression with a certain propcrty-is cqually not
finite: we cannot go through a// strokc-expression (of n cortuin liind)

.ffIQhicct.In the
an

to find one which has the property in questiorlpg!wA rn4ftcgrrglsn
.9{i rtrtrnrnt to.bo rupplcincntcd
bv an incncation eithr!_9Lgg-nc..tglojhletlilch po$e$qr ltre

ment indicating the presence of a 'tromuro wllhout dlsclosing its
location'. Propositions which involvo both unhcnlt nnd oxisteitial
assertions-e.9. to the effect that there exlsts on obJa;t wlrich stunds to
euery obj*t in a certain relation-can again only In rrrllbrccl as
fagons de parler promising the exhibition of porcolvlblc 

'r 
crnstruc-

tible relationships.
Fourthly, the law of excluded middle is not Unlwnelly vnlirl. tn

finitist mathematics one permits neither the statcmont thet r,/, rtr.rkc-
expressions possess a property P nor the statement thlt ttrere rrirl.r
a stroke-expression which does not possess p-unless thol. llHlgrnclll$
are backed by an actual construction. one consequontly olnturl H(lllit
as universally valid the unqualified disjunction of thors two rlnrc-
ments, that is to say the law of excluded middle.

Even in elementary arithmetic there is occasion for ulfurg, ln n
restricted way, transfinite methods, in particular tho prlaOi;rlo ol'

I Philosophy of Mathematics and Natural Science, princ€ton, l94gr p, t | ,
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excluded middle. But whereas transfinite methods here are easily
replaceable by finite ones quite sufficient for their perceivable or cons-
tructible subject matter, the situation is different, as we have seen
already at various stages of the argument, in analysis. This funda-
mental difference between elementary arithmetic and analysis in its
classical form is due-as has frequently been pointed out-to the fact
that the central notion of analysis, that of a real number, is defined in

-, 
terms of actual infinite totalities. (See Appendix A.)

( ' We have seen that every real number between 0 and I (we can dis-
regard the real numbers outside this interval without loss of generality)
can be represented by a decimal fraction of the form0.ap2a3 . . . where
the dots indicate that the number of decimal places is c, i.e. denumer-
ably infinite. If the numbers to the right of the decimal point do
not terminate, i.e. if they are not from a certain place onwards all
zeros, and if their sequence shows no periodicity, then the infinite
decimal fraction represents an irrational number. Every place of the
decimal fraction can be occupied by one of the numbers 0 to 9.
The totality of these possibilities, which represents the totality of all
real numbers in any interval is, we have s@n, greater than the totality
of all integers and greater than the totality of all rational numbers. Its
cardinal number c is greater than c, the cardinal number of any
denumerable set. .

In order to appreciate the nature of this statement about real
numbers it will be well to consider the representation of real numbers
by binary fractions of the form,0.b1b2fu. . . . Ffere, just as the first
place to the right of the decimal point indicates tenths, the second
hundredths, the third thousandths and so on, so the first place to the
rig$ of the binary point indicates halves, the second quarters, the
third eighths, etc. Again, just as every place of a decimal fraction can
be occupied by any number from 0 to 9 inclusive, so every place of a
binary fraction-+very Lis occupied by either 0 or 1. Moreover just
as all real numbers can be represented by all decimal fractions, so all
real numbers can be represented by all binary fractions-the choice of
the decimal, the binary or any other system being a purely external
matter.

Assume now that all natural numbers are given in their natural
order and in their totalfty thus: 1, 2, 3, 4,5, 6, . . . . Now form a finite
or infinite subclass from the totality, indicating the choice of a number
for the subclass by writing I in its place, and indicating the rejection
of a number by writing in its place 0. If we choose 2,4,5,... and
reject 1;3,6, we shall thus write 010110. . . . It is clear that every
infinite sequence of zeros and ones determines one and only one sub-
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class of the class of natural numbers in their natural order. But we
have just seen that every infinite sequence of zeros and ones deter-
mines one and only one real number between 0 and 1 (in the binary
representation). There is thus a one-one correspondence between the
class of all subclasses of natural numbers and the class of all real
numbers between 0 and I and, as can be easily shown, the class of all
real numbers in any interval. In speaking of a real number the classical
analyst is committed to the assumption that it is 'possible' to pick out
a subclass from the actual totality of all natural numbers. In speaking
of all real numbers he is not only committed to assuming the actual
totality of all natural numbers but also the greater actual irrfinite
totality of all subclasses of this class (see p. 63). The assumption of
such totalities implied in speaking of a real number, or even of all
real numbers, transcends the finite point of view and the employment
offinils rnslhtds.

Classical analysis transcends the finite point of view not only by
assuming actual infinite totalities, but by using the law of excluded
middle without qualification. If not all members of a class have a
certain property P then at least ono mcmbcr has tho ptoperty not-P
and aice-aersa-indiffcrently whother tho closs in quostion bo finite,
denumerably infinite or grcetcr then thorc. Anothar non-constructive
principle of classical analysis and tho thoory of rotn wui modo cxplicit
by Zermelo. This is the so-callcd princlplo or crlom ol'cholco (tluswahl- i\,
prinzip). Hilbert and Bornays formulcto lt cr follown: I 'lf to ev€ry ,,rl
object x of a genus @1 thero oxistr ot lout ono obJoct .r, of gcnus @2, '
which stands to x in the relation B(x, y), thon therc oxlili u function {,
which correlates with every object .r of 8€nui 0rt, B unlquo object {(x)
of genus @2 such that this object $tands in tho rolatlon /l(*, d(.r)) to x.' ,-

Another way of expressing the axiom of choico lr to ruy that given
a class of classes, each of which has at least ono mombor. thcre always
exists a selector-function which selects one membor tlom ouch of these
classes. (One might 'picture'the selector-function il I nun with as
many hands as there are non-empty classes-picking out ono olcmcnt
from each of them.) It is obviously possible to oxhlblt c rclcctor-
function for a class consisting of a finite numbcr of flnlto clnsscs.
When it comes, however, to picking out one membcr from eech ol'un
infinite number of finite classes, still more from an inffnltc nrrnrbcr of
infinite classes, the exhibition ofthe selector-function, ar I fbnttrro of
perceivable or constructible objects or processes, is clcarly out ol'tho
question. That the axiom of choice is implicitly assumod In a groat
deal of analysis and set-theory only be.came clear to mathemallsiuns

l  Op, c i t . ,p.4l .
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after Tnrmelo discovered it to have been a tacit assumption in tho
proofthat every class can be well-ordered, and that in ionsequence
the cardinal numbers of any two (finib or infinite) classes are com-
parable (see p. 64;.t .

Thus, on Hilbert's showing, classical mathematics has as its hard
core a perceivable, or at least in principle perceptually constructible,
subject-matter, to which fictitious, imperceivable and perceptually
non'constructible objects, in particular various infinite totalities, are
adjoined. To this adjunction of ,fictitious' subject-matter ihere
correspond (i) ideal concepts which are characteristic of it-.e.g.
Cantor's actual infinities, and transfinite cardinal and ordinal num-
bers-(ii) ideal statements describing either it or operations upon it-
e.g. the unqualified law of excluded middle, or the axiom of choice-
(iii) ideal inferences leading either from statements of finite mathe-
matics to ideal statements or from ideal statements to other ideal
statements. t

This adjunction ofideal concepts, statements and inferences to a
theory is, of course, not at all new in mathematics. Thus in projective
geometry it has proved of great use to introduce an ideal point at
infnity on every straight line and to define it as the point at which all
lines parallel to the given line intersect; and to introduce, in every
plane, an ideal line containing all the points at infnity of all the lines
in the plane. There can, ofcourse, be no question of.the ideal point
common to two parallel lines' denoting any perceptually-given or
constructible entity; the reasons for demanding points of intersection
ofparallel Iines require any set ofparallel lines to have one point of
intersection, not two points of intersection, one, as it were, at each end
of the parallel lines.z By adjoining ideal points, lines and planes to the
'real' ones, one creates concepts which, although logically related to
the concepts to which they have been adjoined, are even less character-
istic of perception than the former. Even if 'real point' and . real line '
cAn cum grano salis be said to describe perceptual objects, no amount
of salt will make it plausible to say that 'ideal point' and .ideal line'
are perceptual characteristics.

The introduction of idea$elements into projective geometry, into
the algebraic theory of numbers and mathematical theories in general,
has, according to Hilbert, been one of the glories of creative mathe-

1 As to the use of the axiom in topology, in the theory of Lebesgue measure,
etc., see J. B. Rosser, Logic for Mathematicians, New York, 1953, pp, 510 ff.

2 For an explanation ofthe reasons for the introduction ofideal points, lines
and planes and for further details see, e.g'., Courant and Robbins, Iyhot tt
Mathematics?, Oxford, 1941, and later editions, especially ch lpter IV.
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matical thinking. The emergence of antinomies as a result of this
udjoining of infinite totalities to elementary arithmetic requires
according to him not their abandonment but some proof that an
extended arithmetic-the combination into one system of finite and
transfinite objects and methods-is free from contradiction. How this
is to be achieved is, he argues, suggested by considering elementary
arithmetic. d

His crucial point here is that elementary arithmetic can be con-
ceived of in two different ways; on the one hand, quite naturally, as
being a theory about the regulated activity of constructing stroke-
cxpressions, and, on the other hand, somewhat artificially, as being a
formalism, i.e. as itself a regulated activity of constructing perceptual
objects-this time, of course, not stroke-expressions but formulae.
The arithmetical theory consists of statements, the arithmetical
formalism of symbol-manipulations and their results. The formalism
can, just like the regulated activity ofconstructing stroke-expressions,
become the subject-matter of another theory, usually called a'meta-
theory'. We are thus led to distinguish between two kinds of con-
structing activities-stroke-construction and formula-construction i
and between two kinds of theory-the original theory about stroke-
construction and the new 'metatheory' about formulu-construction. ,

The connection between arithmctical thoory, orithmotical forma-
lism and metatheory about tho arithmoticnl formallnm is obviously
quite intimate. In its broad outlincs it is foundod on tlro filct that thc
same physical  objects,  e.C.<l* l -2) or ( l - t . l*3) ( tho objects
between the French quotes), function in dlrtlnct thou3h corrcsponding
ways, in the arithmetical theory and in tho nrlthnrotlcnl formalism.
The formalism may be built up in such o monnor llurt it bocomes
possible to distinguish among its rules two kindr In purticular:
(a) rules for the production of such formulae as corrorpolld (like our
two examples) to statements of the theory and whlolr wo rhall call
statement-formulae; (b) rules for the production of tuch er (likc the
first example, but unlike the second) correspond to.truo ttalomcnts or
theorems of the theory and which we shall call thcorcnr.tbrrrrrrluo.

In asserting that a certain physical object is, in thc conloxt ol'thc
formalism, a statement-formula or a theorem-formula, wo erc rpouk-
ing about formula-construction and are making a statcmonl of'nrclu-
theory. This statementisfnite, in that it asserts of a perccptual obior.l,
or of the process by which it is produced, a purely porcoplltnl or
(literally!) formal characteristic. TIte formal characteristic of r rtnto-
ment-formula's being a theorem-formula corresponds to tho hrytrul
characteristic of a statement's being a theorem.
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To this correspondence between the formal characteristics of the
formalism and the logical characteristics of the theory, others can be
added. Perhaps the most important of these is the correspondence
between the formal consistency of the formalism and the logical
consistency of the theory. To assert that the theory is logically consis-
tent is to assert that not every statement ofthe theory is also a theorem
of the theory. (This definition, as has been indicated before, has the
advantage of avoiding the use of the notion of negation.) To assert
that the formalism is formally consistent is to assert that not every
statement-formula of the formalismis also a theorem-formula. In view
of the correspondence (mediated by their embodiment in the same
physical objects) between statement-formulae and theorem-formulae
on the one hand, and statements and theorems on the other, we arr
entitled to say that to demonstrate formal consistency is at the same
time to demonstrate logical consistency. .

We now turn to non-elementary arithmetic. The subject-matter of
this arithmetical theory is, of course, no longer finite. But it may be
possible to construct an arithmetical formalism--with statement-
formulae and theorem-formulae corresponding as before to statements
and theorems of the theory; and this formalism could then be the
subject-matter of a metatheory. Since the subject-matter, namely
formula-construction, would be finite, the metatheory would be just
as finite as elementary arithmetic, from which it would differ only by
being about a different kind of perceptual construction.If a formalism
corresponding, in the required manner, to the theory of non-elemen-
tary arithmetic can be constructed, then we can again, by demon-
strating formal consistency of the formalism, eo lpso establish logical
consistency of the theory. Indeed we can do this by strictly finite
methods, since orlr subject matter-the regulated activity of formula-
construction-is perceptual, or at least in principle perceptually
constructible. Our next task, therefore, must be to consider the
formula-constructing activities, or formalisms-both formalisms
considered by themselves and formalisms which are at the same time
formalizations of theories. 

.
3. Formal systems and formalizations

Once a formal system has been constructed a new . entity ' has been
brought into the world-a system of rules for the production of
formulae. These formulae are perceptual objects which can be dis-
tinguished and classified by means of perceptual characteristics which
are possessed either by the formulae themselves or by the process of
their production, in particular by the sequence of formulae which
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successively lead from an initial formula to the formula under
consideration. In a formal argument we must ignore any correspon-
dence between the formal properties of the formal system and the
logical properties of any pre-existing theory, even though to establish
such a correspondence was the guiding motive in constructing the
formal system. .

According to Hilbert the content of mathematics is still propo-
sitions; in the case of elementary arithmetic they are propositions
about stroke-expressions and their production, in the case of the
amplified (classical) arithmetic they include in addition propositions
'about' ideal objects. The formal systems which he constructs are
merely means by which, in virtue of the correspondence between
formal and logical properties, he studies the pre-existing mathematical
theories. His formalisms are formalizations. ,

Yet since no insight derived from the pre-existing theory is per-
mitted to enter the arguments concerning the formal system; since,
that is to say, from the point of view of these arguments, no theory
needs to exist of which the formal theory is a formalization, the
possibility is opened to us of regarding the formal theory not merely as
an instrument for investigating a pre-existing systcm of propositions,
but as the subject-matter of mathematics itsclf. Thoro aro good grounds
for this. On the one hand, thcrc ie no ro$on why tho oubjoct-matter
of metamathematics should not bo oxtondod to eny klnd of formal
manipulation of marks. On tho othor hrnd I phonomonalist philo-
sopher, or one of a similar phllorophlcrl ponuulon, mlght woll-for
philosophical reasons of a gonual klnd-dcny tho oxlrtonco of ideal
propositions and thus declaro, e.g., tho ampllflod rrlthmotic with its
ideal objects and propositions to bo meaninglon otrlmply l'ulsc.If so,
he would, with H. B. Curryt propose to doffno nrthcmutlcs as 'the
science of formal systems'. In other words, whorur to Hilbert
mathematics, or rather metamathematics, is tho Lclbnlrlrn 'thrcad of
Ariadne' leading him through the labyrinth of methrnrllcnl propo-
sitions and theories, the strict formalisr regards mathonutlcr an having
this thread-and nothing more-for its subject-mattcr, I

The change from Hilbert's formalist point of viow to lho ttrict
formalism of Curry leaves the former's mathematicd rcrultr rrn-
touched. It represents, however, a transition to a dlfionmt phllo-
sophical point of view. Mathematics has now no truck wllh en.vthln$
but formal systems, in particular not with ideal, non.ptttoptual
entities. Hilbert's position is analogous to that of a modontl plrano.
menalist who would admit physical-object concepts ar lurlll$ry

I Outlines of a Formallst Philosophy of Mathematics, Amstordsm, lgtl.



86 THE pglr,osopuy oB MATHEMATTcs

-if fictitious-{oncepts, in terms of which sense-data would bo
ordered or purely phenomenalistic statements made---even if physical-
object concepts could not be 'reduced'to sense-data, or tb purely
phenomenalist concepts. Strict formalism on the other hand is analo-
gous to a phenomenalism which would admit only sense-data and
purely phenomenalist statements. !

Strict formalism as a philosophy of mathematics is nearer than
Hilbert's view to Kant's doctrine in the Transendental Aesthetic.
According to Kant a statement in pure mathematics has constructions
for its subject-matter---constructions in space and time, which by the
very nature of these intuitions are restricted. According to strict
formalism the subject-matter of mathematics is constructions, the
possibility of which is restricted by the limits under which perception
is possible; and our statements about these constructions ire dimon-
strationes ad oculos, read off, as it were, from perception. They are
true synthetic statements. However, their self-evidence is neither that
of logical tautologies, nor, as Kant held, that attaching to supposedly
a priori particulars. It is the self-evidence of very simple phenomenalist
or sense-data statements. Statements about mathematical construc-
tions are in other words empirical statements involving the least
possible risk of error. This is the reason why in discussing the process
of proof-one of the principal subjects of the science of formaiisms-
Curry says, very naturally, that it is .difficult to imagine a process
more clear cut and objective'.

For Hilbert the raison d'€tre of fornnl systems is to save and safe-
guard the pre-existing-albeit somewhat modified---classical theories,
in particular Cantor's theory of sets. For Curry formal systems are the
substitutes of classical mathematics. From these fundamental
differences, between moderate and strict formalism others follow.
For Hilbert, who intends to establish the (logical) consistency of
theories uia the (formal) consistency of formal systems, a (formilly)
inconsistent formal system is useless. Not so for Curry. He maintains
that for the acceptability or usefulness of a formal system . a proof of
consistency is neither necessary nor sufficient'.l rndeed inconsistenr
formal systems, he argues, have in the past proved of the greatest
importance, e.g. tophysics. ,

Both Hilbert and Curry {pny the possibility of deducing mathe-
matics from logic. Yet whereas Hilbert regards principles of reasoning
which are sufficient for elementary arithmetic as logical principles of a
finite and, as it were, minirnal logic, Curry separates logic and
mathematics even more drastically. It all hinges, he sa5rs,2 .on

I Op. cit., p. 61. z Op. cit., p. 65. I op. cit., p, 6Q. z Op. cit., p. 62,
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what onc means by "logic"-"mathematics" we have already
defined. . . . On the one hand logic is that branch of philosophy in
which we discuss the nature and criteria of reasoning; in this sense
let us call it logic (l). On the other hand in the study of logic (l) we
may construct formal systems having an application therein; such
systems and some others we often call "logics". We thus have two-
valued, three-valued, modal, Brouwerian, etc. "logics", some of which
are connected with logic (1) only indirectly. The study of these systems
I shall call loCrc (2). The first point regarding the connection of mathe-
matics and logic is that mathematics is independent of logic (1). . . .
Whether or not there are a priori principles of reasoning in logic (1),
we at least do not need them for mathematics.' " ,

Hilbert has never explicitly and at any length dealt with the philo- /

sophical problem of applied mathematics. He seems to favour the
view that there is a paftial isomorphism between pure mathematics
and the realm of experience to which it is applied. Elementary arith-
metic, that is to say, either is itself the empirical subject-matter of our
study-a 'physics' of stroke-symbols and stroke-operations-or else
can be brought into one-one correspondence with some other empirical
subject-matter; for example, to take a trivial case, apples and apple-
operations. The non-elementary parts of the amplified arithmetic, on
the other hand, have no empirical corrolatcs. Their purpose is to
complete, systematize and safcguard tho clcmcntory coro which alone
either is empirical or has empirical corrolutcs, .

According to Curry, who is quito oxplicit on this qucstion, we
must distinguish between thc truth of a fornttrla within a formal
system-i.e. the statement that it is dcrivablo withln thc system-and
the acceptability of the system as a wholo. Tho formcr is 'an objective
matter about which we can all agree; while tho luttcr may involve
extraneous considerations'.r Thus he holds that 'tho ucccptability of
classical analysis for the purposes of application In plrysics is . . .
established on pragmatic grounds and neither tho quoltlon of intuitive
evidence nor that of a consistency proof has any bearing ott t lris matter.
The primary criterion of acceptability is empirical; antl tlto most
important considerations are adequacy and simpliclty.'r 1ytt"n ',

comes to the application of mathematics Curry is a prugttttttisl. lle
does not go so far as the pragmatic logicist whose view of purc nulthc-
matics is also pragmatist and who denies that logical, mcthcrrrnlicttl
and empirical propositions can be distinguished by any shnrp eritoriu.
(See p. 57.) The domain of formal theories and the propositloltr ttbout
their formal properties are, Curry holds, clearly demarcntod.
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- Before describing some formal systems in outline, we may perhaps
be allowed an imprecise, metaphorical characterization of-tfie basic
ideas of formalism. According to most philosophers, from plato to
Frege, the truths of mathematics exist (or .subsist,) independently of
their being known and independently of their embodiments in sen-
tences or formulae, even if these are needed for the truths to be
grasped. It was Hilbert's ingenious programme-foreshadowed to
some extent by Leibniz-so to embody the truths of classical mathe-
matics that the perceptual features ofthe bodies or ofthe processes by
which they are produced correspond to logical features of mathe-
matical propositions. The theorem-formulae are, as it were, the bodies
and the disembodied truths the souls--+very soul having at least one
body. This programme, as will be explained a little more precisely
later, cannot be carried out. It has been demonstrated by Gtidel that
every embodiment of classical mathematics in a forrnalism must be
incomplete; there are always mathematical truths which are not
embodied in theorem-formulae. t

fn order to appreciate this result we must be a little more specific
about the nature of formalisms. Hilbert remarks on a kind of pre-
established harmony which favours the progress of mathematics and
the natural sciences. Results which are achieved in the pursuit of quite
diverse purposes often provide the much needed instrument for a new
scientific aim. The logical apparatus of Principia Mathematica, which,
on the basis of previous researches with still different aims, was devised
for the purpose of reducing mathematics to logic, provided, in Hilbert's
own particular czre, the almost finished tool for executing his quite
different progxamme. Where Principia Mathematicafalls short is in its
incomplete forrnalization. It is not wholly a system of rules for mani
pulating marks and formulae, in particular theorem-formulae in total
independence of the fact that they can be interpreted as propositions
of classical mathematics. Brtt Principia Mathematica is an almost
perfect foundation for the rigorous formalization of classical mathe-
matics.

Indeed, of the formal systems, those outlined in discussing the
logicist philosophy of mathematics are as good examples as any. This
applies in particular to the propositional calculus and the formal
system of Boolean classJogic. Her6we shall do no more than describe
the general nature of formal systerns. They ale machines for the
production of physical objects of various kinds, machines whose
properties have been made the subject of extensive and detailed
inquiries by Hilbert, Bernays, Post, Carnap, Quine, Church, Turing,
Kleene and many others. As the result of the work dorre by these
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uuthors the terms 'machine' and 'mechanical properties' have in
logical contexts long ceased to be metaphorical. (Indeed, most
important insights into the nature of formalisms, that is to say the
most important theorems of metamathematics or, as it is also called,
proof-theory, can most simply and clearly be formulated as statements
to the effect that certain formula-producing machines can, and certain
others cannot, be constructed.)

Strict formalism regards, as we have seen, all mathematics as the
science of formal systerns, whether they are formally consistent or not,
and whether or not they are intended to be formalizations of pre-
existing theories; and it has made the nature of formalisms per se
easier to grasp. To do this has become necessary for any philosophy of
mathematics. For there can be no doubt that whatever else mathe-
matics may mean, either now or in the future, it must always include
the science of formal systems.

A very clear characterization of formal systems in general is given
by'Curry.t Each is defined by a set of conventions, its so-called
prirnitive frame. By indicating the primitive frame we are providing
an engineer with all the data he needs (apart from his knowledge of
engineering) for constructing the required formula-producing machine.
Curry distinguishes the following fcaturcs in any primitivc frame:

(i) Terms
These are (a) Tokens, which nrc spocillod try giving n Iist of otrjects

of different types,e.g. marks on popcr, stonos or othcr physicul objects.
(b) Operations, i.e. modes of combination for titrnring ncw tcrms.
(c) Rales offormation specifying how new tcrms uro to bo constructed.
For example, if marbles and boxes are omong our lcrnls and the
enclosing of marbles in boxes among our operations, we might adopt
the rule of formation permitting the enclosure of cach murblc in a box,
and stipulate that the enclosed marbles belong to thc mrnc kind of
term as the loose ones.

(ii) Elementary Propositions
These are specified by giving a list of 'predicates' with tlro rrrrrnbcr

and kind of 'arguments' for each. For example, we moy npccily ts
predicates pieces of wood with z holes into which both onckuotl nnd
loose marbles can be fitted and then determine that our clcrrrcntnry
propositions are all those pieces of wood the holes of which hnvo heon
duly filled in by enclosed or loose marbles.

I Op. cit,, chapter IV.
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(iii) Elementary lheorems

(a) Axioms, i.e. elementary'propositions' which are stated to be
' true' unconditionally. (b) Rules of Procedure which are of the follow-
ing form: 'If Py P2, . . . , P^are elementary theorems subject to such
and such conditions, and if Q is an elementary proposition having
such and such a relation to P1, P2, . . , , P^, then O is true.' For ex-
ample, if two pieces of wood with holes filled in by marbles are
elementary theorems, then any piece of wood which is produced from
the former by glurng them together is also 'true'.

In order to be able to speak of the primitive frame we must have
names for the tokens, operations and predicates and also indications
of the way in which the predicates are applied to terms. Specification
of the features which constitute the primitive frame of a formal system
must be effective or definite (a term used by Carnap). This means that it
must be possible to determine aftet a finite number of steps whether
an object has or has not this feature. Indeed if a formal system is to
be capable of being treated by finite methods (d la Hilbert), if in other
words what is to be proved about it can be proved by demonstrations
ad oculos, then the properties of being a formal predicate, of being a
fonnal axiom, of a formula's being formally derived from another in
accordance with a rule of procedure, must all be definite.

The property of being a theorem-formula may be but it need not
be definite; but the formal relation between a formula and the sequence
of formulae constituting its proof must, of course, be definite.
In most mathematical theories a formula does; so to speak, not bear
on its forehead the mark of being a theorem, but the proof of it, once
given, must be capable of being checked in a finite number of steps. ,

Many formal Systems have been constructed by mathematicians in
the present century. The motive of the activity has usually been the
need so to embody propositions into formulae that the formal
properties and relations of the formulae guarantee corresponding
logical properties and relations of the propositions. Indeed, as we
have seen, the ultimate purpose of Hilbert's programme, and what
would be its consummation, is a proof of the logical consistency of the
main body of classical mathematics reached uia aproof of the formal
consistency of a suitable formal systrm. .

As has often happened before in other branches of mathematics,
the study of formal systems led to unexpected results, to new problems,
new techniques and to at least one new branch of pure mathematics,
namely the theory of recursive functions. The importance of this
theory is considered by the experts very great. Thus E. L. Post who has
not only made important contributions to this subject, but who also
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has expressed its main ideas in a manner which makes them accessible
to non-experts, expresses the view that the formulation of the notion
of recursive functions 'may play a role in the history of combinatory
mathematics second to that of the formulation of natural number'.l

The reader of a book on the philosophy of mathematics cannot
expect that a full knowledge of these new ideas and techniques will be
conveyed in it. Yet he will readily see that the question how far the
correspondence between pre-existing theory and formal system can be
established is of great philosophical relevance; and he will expect a
report of results achieved by the mathematicians. Prima facie the
complete embodiment of mathematical theories in formalisms may
seem possible; and then it will at least be arguable that the pre-
existing theories are merely 'intuitive' in the somewhat disparaging
sense in which the term is used by mathematicians on the first few
pages oftheir treatises before they get down to business, and that the
said'theories are merely heuristic preliminaries for the construction of
formalisms and statements about them. '

We must, therefore, attempt to give an account of some results in
the science of formal systems, trusting the mathematicians-as we
have always done so far-to have done their job efficiently.

4, Some results of metamathematlcs
Only a very brief and very rough outlino of Ctidcl's main result

and of some new developmcnts connoctcd with it cnn bo given.2
Suppression of 'technicalitios' must hero Incvitnbly mcun suppression
of essential arguments and insights. To whot tho uppetite of the
reader without crass misstatements is porhopr tho bcst that can be
done.

We assume with Hilbert that the method and rorults of clementary
arithmetic (see p. 77) need no justification; and wo considcr a consis-
tent formal system Fwhich is sufficiently expressivo to pcrmit thc form-
alization of elementary arithmetic in it. This implio tho rcquirerhent

I Bulletin of the Amerlcan Mathematical Soclety, 1944, vol. t0, no, t,
2 The fundamental papor is Gcidel's 'Uber formal unentrchoklhero Slltzc der

Principia Mathematica und verwandter Systeme, l' in Monalnhelfu .l'llr Muthe-
matik und Physlk, 1931, vol. 38. For 'an informal exposition of Otklol'r llrcorcm
and Church's theorem' see J. B. Rosser's article of this titlc, tournal ul' ,\i)'nlnllc
Logic, 1939, vol. IV, no. 2. An ihformal and formal account of Gudol'r llteoly is
found in Sentences Undecidable in Formalized Arithmetic by Mortowrll, Anrilcr-
dam, 1952; also in Kleene, op, cit., and Hilbert-Bernays, op, cll., vol. 2. 'llro
theory of recursive functions is developed from first principlcs and wlllurrrl n
specialized logical symbolism in R. Pdter's Rekursiae Funktlontn, ?rrrl ctl.,
Budapest, 1958. For an excellent general survey ofthe present st&to of lho llreory,
see John Myhill, Philosophy in Mid-Century, Florence, 1958.
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that all arithmetical expressions correspond to formal expressions
in such a fashion that no formal theorem of F corresponds to a
false arithmetical proposition. If a formal statement, say I is the
formalization of an arithmetical proposition a, a is also said to be an
(arithmetical) interpretation of, or the intuitive meaning of,l .

Let us say that F completely formalizes elementary arithmetic
provided that in the case of every formal statement / which is the
formalization of an arithmetical statement either/or -/is a formal
theorem of F; or briefly, provided that/is decidable. Hilbert aimed at
the complete forrralization of (substantially) the whole of classical
mathematics. Gcidel has shown that even a formal system which
formalizes no more than elementary arithmetic does not for:naliTn it
completely. o

The incompleteness of F is established by the actual construction
of a formal statement/which formalizes an arithmetical proposition
while yet neither/nor -/is a formal theorem of F, i.e. while/is
undecidable. The interpretation oflreminds one of the liar-paradox:
'The proposition which I am now asserting is false.'If the assertion of
the proposition is correct then the proposition is false, from which it
follows that the assertion is incorrect. The statement is .about' itself.
It states its own falsehood, and states no more. It is this kind of self-
reference which Gddel's formal proposition possesses. But whereas in
the liar-paradox the relation between linguistic expression and its
meaning is far from clear, Gddel's formal proposition is as clear as lr
and arithmetic. ,

We now turn to the constructibn of the undecidable / (following
Mostowski's exposition). Since F formalizes elementary arithmetic,
the integers and properties of integers must have formal counterparts
in F."The formal integers or numerals will be printed in bold-faced
tn)e so that, e.g.,1 corresponds to I . The formal properties of integers
will be expressed by W(.), different formal properties being distin-
guished by different subscripts. It Wo() is the formal counterpart of
'x is a prime number', then ,yo(s) is the formal counterpart of the
arithmetical proposition that 5 is a prime number. The set of all formal
properties of integers can be ordered in many ways into a sequence
and we consider one of these sequences, say,

(t) a w{.), L/z(), rv{.), , . .
In order now to construct the self-referring formal proposition let us
formulate first any formal proposition arrived at by'saturating'some
formal property with the numeral corresponding to its subscript.
Such formal propositions are W1(l), lYz(Z), Wz(3), .. . . We next pick
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out, say, WsG). This formal proposition may or may not be a forrnal
theorem of F. Let us assume that it is not, i.e. that

l4ts$) is not a formal theorem of F.

This proposition is on the face of it not a formal proposition of d
but is a real proposition about a formal proposition, namely about the
formal proposition WsG).It is in Hilbert's sense a metastatement,
belonging to the metalanguage in which we talk about F. Similarly the
property:

@ W"(n) isnot a formaltheorem ofF

is on the face of it not a formal property belonging to F but a meta-
property belonging to the metalanguage. It seems implausible that
this property has a formal counterpart among the formal properties
of ,fl in particular among the members of the sequence (1). ,

But G6del shows that (2) must have such a counterpart in (1)-
that a member of the sequence (1) formalizes the metaproperty (2) or,
which amounts to the same thing, that this metaproperty is the
interpretation or intuitive meaning of a member of the sequence (1).
The method by which he shows this is known as the arithmetization
(also the 'Gcidelization') of the metalanguage or metamathematics, a
procedure which is quite analogous to Descartes' arithmetization of
Euclidean geometry-the provision of numerical coordinates for non-
numerical objects, and of numerical relations for tho non-numerical
relations between these objects

To each of the signs of F*e,g, -, v, ( -an intogor is assigned so
that every finite sequence ofsigrrs corresponds to a flnitc sequence of
integers. It is easy to find functions which will ostablish a one-one
correspondence between finite sequences of numbors and numbers.
(For example, if we agree to assign to a sequenco nr, nz, . , , , n^ the
product pr\,pznz . . . pm,m, where the p's are tho primo numbers in
their natural order, it is always possible to reconstruct the sequence
from the number by factorization.) In this way cvcry oign, every
sequen@ of signs (e.g. every formal proposition) and ovory scquenc€
of sequences of signs is assigned its numerical coordinato or Giidel
number. Statements about formal expressions can thuc bo rcplaced
by statements about integers. e

Again, to €very class of expressions there correspondr a closs of
Giidel numbers. The classes of Gtidel numbers necdod for the
incompleteness theorem are all defined recursively, i.e. each olcmcnt
can be actually calculated from the previous ones. Tho samo is truc
of the required relations between Giidel numbers and of tho functions
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which take Gddel numbers for their arguments and values. rt is in
particular possible to demarcate in this manner a class z, the class of
all formal propositions which are formal theorems in F. CIhe state-
ment thatp v -12 is a formal theorem of Fis then equivalently expressed
by ce I where c is the Gddel number of pv-p in F.) It is equally
possible to indicate in this manner a recursive function'6(u",p) of t*o
integral arguments whose value is the G6del number 6r tu-e formal
proposition W,(n), i.e. the formal proposition which we get by
'saturating' the nth member of the sequence (l) with the numeral p.
After these preparations (which, in the actual proof, naturally tate
more time, space and effort, and give accordingly more insight into
its naturQ we can give the Gddel translation of (2), i,e. of

I4/"(n) is not a formal theorem of F

as
(3) 6fu, n) non e ?,

i.e. the value of i@, n\ is a Giidel number which is not a member of
the class ?of the Giidel numbers of formal theorems of F.

Now (3) is a property of integers belonging to elementary arith-
metic. It must, therefore, have a formalization in 4 which must more-
over be found in the sequence (1) of Z( . ),s ; for this sequence contains
every formal property of numerals. Assume then that wo have found
that (3) is formalized by the qth member of the sequenc,e, i.e,by l4/"(.).

' The formal property lvo() takes numerali as iis argum&its,
among them also the numeral q. we consider therefore the formal
propesition llo(l), which is the undecidable formal proposition we
wished to construct. The interpretation of wq(l) is: the integer 4 has
the property formalized by ll/o(), i.e. the' arithmetical property:
$(n, n) non e Z; or equivalently: W"(q) is not a theorem of F. . 

-

tf Wo@) were a formal theorerir of F it would formalize a false
arithmetical proposition . lf - lVo(d were a formal theorem of d
then wo@) would formalize a trud arithmetical proposition. But then
a false arithmetical proposition, namely - Wq(q),would be formalized
by a formal theorem of .fi'. Since ex hypothesi Fis a consistent forma-
lization of elementary arithmetic, neither case can aise. lrn(l) is
undecidable and Fis incomplete. ?

variants of Giidel's result are obtained by varying the assumptions
concerning d and the methods of proof-all of which, hoiever,
allow the actual construction of the desired formal propositions.

The ideas and techniques, especially the arithmetization of meta-
mathematics, which yield the incompleteness theorem and its ,r,,ariants
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also yield Girdel's second theorem concerning formalisms of type F.
lf F is consistent and iflis a formalization of the statement that F is
consistent, then/is not a formal theorem of F. Briefly, the consistency
of Fis not provable in F. .

The second theorem implies the impossibility of proving the con-
sistency of formalized classical mathematics by finitist methods. For in
spite of a certain vagueness in demarcating the notion of finitist proofs,
any such proof can be arithmetized and incorporated into F. To prove
the consistency of .Fby finite or 'finitary' means is thus equivalent to
proving the consistency of Fin F-which by Giidel's second theorem
is impossible. The original programme for a consistency proof has to
be abandoned, or it has to be relaxed by redefining'finitist proof'. .

We may now make some brief remarks on the theory of recursive
functions which was the main instrument of G6del's proofs. (The
remarks followin the main R. P6ter's treatment.) Arecursive function
is a function which takes non-negative integers as arguments, whose
values are again non-negative integers and which is so defined that its
val.res can be 'effectively' calculated. The meaning of 'effective calcu-
lation' or 'computability' itself is clarified in developing thc thcory.
The definition of a recursive function does not clepcnd on &ny nssunlp-
tion either that there exlsl,r among thc totality ol' intcgers onc wlrich is
specified only as having a certuin propcrty, or thnt oll tncnthars of this
totality have a certain property. Thc thcory ol'rcctrrsivo funclions can
thus be developed without tho univorsul or oxlstentlnl qrruntilicr. That
a large part of arithmctic and logic cun ln dovolopcrl lrr this nl{tnncr
was recognized by Skolem m carly ar 1923,t A rrurlrr nrotivc for
developing this theory was the fact thnt by nbundorrlrrg unrcstrictcd
quantification, the set-theoretical antinonrioi cnn lrc uvoidcd -
'existence of a set' becoming equivalent with comprrtrrbility of its
members.2 (.

One of the simplest recursive functions c&n sorvo nr tlre rlclirrition
of adding to a fixed non-negative integer a anothcr intoger l, ( irnsitle r

$(0, a1 : o

4@+l,a):  $(n,a)+1.
The first equation, here, tells us the value of the addition of 0 to r, 'l'lto
second tells us how to find the value of the addition of n+ | lo a wlrcrr
the value of the addition of n to a has already been found. Ws trrrr

1 Begriindung der elementaren Arithmetik durch die rekurrlercnda DenAwoltt,
ohne Anwendung scheinbarer Verdnderlichen mit unendlichen Ausdehnunl,shttah h.
Videnskapsselskapets Skrifter I, Math.-Naturw. Kl. 6, 1923.

2 See also R. L. Goodstein, Recursiae Number Theory, Amsterdam, tgf '1,
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thus find the values of the function for z:0, n:1, n:2, n:3, etc.
They are a, a*1, a*2, a*3, etc. If we write p(a) for a* 1, then p(a)
expresses the operation of forming the immediate successor of a
non-negative integer. Our recursive function can then be written

$(0, a1 : o

4@@), a) : p($(n, a)).

In similar fashion we can define multiplication of a fixed positive
integer a by a positive integer n. If 6 (n, a) : n . a, we have

d(0,4) = o

$(nt l ,  a) :  $(n,a)*a.
In the same way we can define exponentiation and other functions of
arithmetic.

The form ofthese recursive functions is:

d(o): r
6@+r) : p(n,$(n\)

Here f is a function of one variable, p a functiorr of two variables, and
K a constant or function with no variable. The variable z for which
successively O, 1,2, etc. are substituted is called the recursion variable.
But the values of f and, therefore, F may depend also on other
variables which, however, do not enter into the process ofrecursion,
during which they are treated as constants-different values being
substituted for them either before or after the recursion, i.e. the calcu-
lation consisting in the successive substitutions for z. These other
variables are, in accordance with the usual terminology of mathe-
matics, called 'parameters'. A definition of the form

4(0, at  ez, .  . , ,  a)  :  a(ay a2,,  .  . ,  a)

6@+ l, e!, . . ., a) : F(n, at a2, . . ., ar, {(ny Qb o2, . . ., a))

is called a primitiue recursion.
If two functions are given we may form a new function by substi-

tuting one function for one variable in the other, e.g. from 6(x, y, 
")and tl@) we can gef by substitution 6(*@),y,2), 6(x,y,*(u)),

*(4@, y, z)),etc. Primitive recursions.and substitutions yield a large
and important class of functions called primitiue recursiue functions
characterizedl as those functions whose arguments and values are
non-negative integers and which starting from 0 and n+ 1 are defined
by a finite number of substitutions and primitive recursions.

1 P€ter, op. cit., p.32.
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In his proofs Giidel used only primitive recursive functions. To see
how formal properties can be arithmetized we consider the definition
of recursive relations. A relation B(at . . . , a) is primitive recursive
if there exists a primitive recursive function F(ay . . . , ar), such that it
equals 0, if and only if the relation B holds between ab . . . , Q.
If W(a) is a property, it is primitive recursive provided there exists a
primitive recursive function which equals 0, if and only if a has llr.
The complementary relat ion B'(ar. . . ,ar)  of  B(ay.. . ,a,)  is
also primitive recursive and holds only if F(ar . . . , a,) * 0. In this
way the notions 'being a complement', 'being a conjunction' and
more complex notions of methamathematics including 'being a
formal theorem of F' become expressible as primitive recursive func-
tions, and relations between Gddel numbers.

It follows from a theorem of Turing (1937) that the computation
of any primitive recursive function can be left to a machine. In fact he
showed that a wider class of functions, the so-called general recursiue
functions, are computable by Turing-machines. Before this was
shown, Church had proposed that the rather vague notion ofeffective
computability should be analysed as solvability by general recursive
functions. This proposal was justificd by Church's own results and by
other results which, though at first sight unconncctcd, all proved
equivalent. As regards this problcm of idcntifying cffcctivc comput-
ability with solvability by gencral rccttrsivo functions, axpcrt opinion
is no longer undivided.l On this quostion nothittg cttn prolittbly be
said in the present context by tho prsicnt uutltor, 'l'lto thcory is
deleloping into a new branch of puro nuthcntullci wltttso rclcvance
to the problems raised by Hilbcrt is moroly ono (tf it$ inrportant
aspects, and perhaps no longer the most importetrt.r

1 See Pdter, op, cit., $$ 20-22.
2 See Myhill, op. cit.,p. 136.
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statement of the logical implication, is therefore of littte importance.
But this is far from true. There are indeed trivial logical implica-
tions, e.g.: 'Construction x possesses C' logically implies ,construc-
tionx conforms to r which prescribes that x should possess C'. But
there are others which are not trivial, e.g.: 'Construction x possesses
C' logically implies 'construction x conforms to r which prescribes
that x should possess D'-where the question whether the possession
of C by a construction logically implies possession of D turns on the
validity of a complicated deduction from 'x has C, to,x has D',
employing certain admissible principles of inference. (So-called con-
structive proofs are on the whole more, and not less, complex than
non-constructive.)

The situation then is this: Prima facie the formalist does not rely
on logical principles but merely on perceptual statements such as
'a given construction of perceptual objects with perceptual charac-
teristics C ipso /acto possesses characteristics D,. To this the quali-
fication has to be added that the construction has to be correct. The
proposition, however, that a construction is correct, i.e. that it con-
forms to an adopted rule, is no longer perceptual but involves a
logical implication or an inference the validity of which depends on
logical principles. These principles must be adopted before we can
decide the correctness of a construction.

In deducing statements about constructions from other such state-
ments one employs fewer logical principles than in classical mathe-
matics. But these principles though suggested by constructions-e.g.
of strokes and stroke-expressions-are not perceptual judgementi.
Only if"'rve were to assume that the medium in which we make our
constructions is of a special kind so that they can be immediately
described by general and necessary propositions without raising ttr-e
question as to whether a particular construction is correct or incorrect,
could we dispense with logical principles. The intuitionists are aware
of the fact that ordinary perception is not the medium for such con-
structions and claim therefore that the general principles of reasoning
in mathematics are validated not by constructions in ordinary percep-
tion, but in a sui generis intuition.

The formalist logic is'a minimal logic---or better the minimum
logic needed for metamathematical reasoning. It is not a system of
statements describing perceptual features of various constructions.
This conclusion is independent of the point urged earlier that mathe-
matical concepts, being exact, differ from perceptual characteristics
which are inexact or admit of border-line cases.

VI

MATHEMATICS AS THE ACTIVITY OF
INTUITIVE CONSTRUCTIONS: EXPOSITION

Ir is one of the fundamental convictions of the intuitionist school,
whose doctrine is the subject of this chapter, that mathematics-if
properly understood and practised-is a wholly autonomous and
self-sufficient activity. Its methods and insights are regarded as being
neither capable of nor in need of the guarantees which the logicists
and the formalists each profess to provide. According to the intui-
tionists the impression that mathematics needs the support of an
extended logic or of rigorous formalization has arisen only where
mathematics has not bccn propcrly pursucd. 't t

Logicism and formalism hnvo trcutcd thc tntin<lmies of classical
mathematics as a malady cnpuhlo <tf tt cttro which wotrkl louvo clussicul
mathematics substantially intrtct, 'l'ho inlrrltlottlrtr cottrltlor tho unti-
nomies as merely a symptom thttt ntathomctlcr her In mutty of its
branches not been true to itsclf. l.oglclrm and ftrrntnlhttt lrlod ro to
reconstruct the building or to Rccuro ltr l'rtulrdatkttt lltnl lha lnrtthc-
matical work could go on in thc upf,pr rtorsyl wllltortl tttttch tlltttttr'
bance. The intuitionists attempt to builtl & now mltltetttnllur nt nll
levels by what they regard as the truly muthomatlcnl melltrxlr, ' ''

Both formalists and intuitionists and in purtlcrrlrr lltelr lnodont
leaders, fitilbert and Brouwer, acknowledgo' oi wo rrW; the lnlltranco
of-Kffi's philosophy of mathematics and rejcct tho l.clhnlrlln trnrll-
{ion according to which all mathematical propositlonr t|t llillyllt} lrl
the sense that their truth can be demo4glraleds6r.l#1, r|t rppll-
cation of the principles of loeic.-rtrJbili Brouwer ontl Hllbrrl ttl$trl
tdfi[AAiAIffioriefiS'siillietic, in a sense of tho tcrm wltlt'lt tr
based on a mutually exclusive and jointly exhaustivo cllmlfletlfnn uf
propositions into analytic and synthetic. ' L

Yet Brouwer's conception of the synthetic charactor of nrllro
matics is very different from Hilbert's, and nearer to Kant, Aoeilrdlrre
to Kant, it will be remembered, the axioms and theorems of rrlthmt tr.

119
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and geometry are synthetic a priori-i.e. they are descriptive of tho
pure intuition of space and time and of constructions inlt. Brouwer
accepts without reservation Kant's doctrine of the pure intuition of
time-time apart from any perceptual content-and regards this as
the substratum of mathematics. Like Kant he regards such intuition
as independent of sense-perception, including in sense-perception in
particular the perception of such symbols and operationi upon them,
as are the strokes and stroke-operations of Hilbert which, together
with other marks and operations, constitute the subject-matter of
formalist metamathematics.

The subject-matter of metamathematics is wrpeprualows and,
constructions, of so simple and transparent a structure that we can bo
certain of the truth of the synthetic empirical judgements which aro
descriptive of them. The subject-matter of intuitioniit mathematics. on
the other hand, is intuited non-nerceptu4!_o-bi*ts and constructi,ons
yhich are introspecli-vely self-ivi6t. -E-ro-uwer 

does appeal, not
indeed to the inspection of external objects, but to .close intro.
spection'.1 The distinction between perceptual and intuitive construc-
tions is of some philosophical importance since we can with more
plausibility claim that the latter can be apprehended as universal and
necessary without the application ofthe notion ofcorrectness and thus
without employing logical principles. (This point was discussed at the
end of the last chapter.)

In spite of the differences between the inspectible data of meta-
mathematics and the introspectible data of intuitionist mathematics,
they have much in common. The most important common feature is
that a completed infinite totality can neither be inspected nor intro.
spected. ln other words neither metamathematics nor intuitionist
mathematics can admit statements about actual infinities, only about
potential ones.

For a better understanding of intuitionism it is worth asking
whether it would reduce to formalist metamathematics if one were to
ignore the difference ofthe substrata, real or alleged, between the two
activities. As one would expect, both would employ on the whole the
same finite methods-methods such as were described earlier, in our
exposition of formalism. I{owever, the formalist would not use them
beyond the point at which, hdving established the consistency of a for.
mal system, he could start using it. For the intuitionist, on the other
hand, since he cannot find, or hope for, refuge in a formal system, the
incentive to use finite methods even in spite of increasing complexity

r See, e.g., 'Historical Background, Principles and Methods of Intuitionism'
in South AfricanJournal of Science, Oct.-Nov., 1952,p, l42,Tootnote.
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and difficulty is much greater. Finitist intuitionist mathematics has in
fact been diveloped much further than finitist metamathematics.

contained inthe first chapter of Heyting's Intuitionism-An Intro-
ductionr is a disputation in which one disputant called'Int' addresses
another called iForm' in the following words: '. . . you also use
meaningful reasoning in what Hilbert called metamathematics, but
yoor prri?ot" is to separate these reasonings from purely formal mathe-
mati&, and to confine yourselves to the most simple reasonings
possibie. We, on the contrary, are interested not in the formal side of
mathematics, but exactly in that type of reasoning which appears in
metamathematics; we tryto develop it to its farthest consequences.
This preference arises from the conviction that we find there one of
the most fundamental faculties of the human mind.'

For a brief exposition of intuitionism, it will be well first to explain
its conception of pure mathematics and the programme based upon
this conception; and then to give some examples of the intuitionist
method ai work especially in dealing with the notion of potential
infinity. As to the problem of applied mathematics, the intuitionists
have ihown even less interest in it than either the logicists or the
formalists.

l. The programme
Brouwer in one of his more recent English papers2 describes the

situation of the philosophy of mathematics as formulated by the old
and new formaliits and pre-intuitionists, as he calls those thinkers who
in some ways anticipated him, in particular Poincard, Borel and Lebes-
gue.

As it presented itself to Brouwer, the situation was this: mathe-
matics, as practised by the pre-intuitionists and formalists, consisted of
two separate parts-an autonomous mathematics and a mathematics
dependent for its trustworthiness onlanguage and logic. For the auto-
nomous mathematics, 'exact existence, absolute reliability, and non-
contradictority were universally acknowledged, independently of
language and without proof'. It embraced 'the elementary theory of
natural numbers, the principle of complete induction, and more or
less considerable parts ofalgebra and theory ofnumbers" The-nsn-
autonomous mathematics embraced the theory of the continuum of
real numbers. For this a proof of non'contradictory existence was
taiffig and, as was more or less generally agreed, was needed.

The fundamental theses of the intuitionist philosophy of mathe-
matics are clearly formulated by Brouwer' He describes them as 'two

I Amsterdam, 1956. 2 Op. cit.
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acts' by which intuitionism'intervenedn in the situation created by iis
predecessors and the formalists. The acts could also be called 'insights'
-t term used frequently by Brouwer. It is best to quote herc ueriatim
and at length from his paper.l

- 'The first act of intuitionism completely separates mathematics
from mathematical language, in particular from the phenomena of
lalruaee.*ttich are described by theoretical logic, and iecognizes that
intuitionist mathematics is an esse,ntially languageless activity of the
mind having its origin in the perception of a moae of time, i.i. of the
falling apart of a life moment into two distinct things, onq _of which
gvl way to the other, but is retained by memory. ffthe two-ity thus
fls fBfffbf all quality, there remains the empty form-of the
common substratum of aII two-ities. rt is this common substratum; this
empty form, which isthe basic intuition of mathematics.,

The doctrine of this and similar passages in Brouwer's writings is
substantially that of The critique of pure Reason-themain differJnce
being that according to Brouwer Kant's intuition of space and the
(Euclidean) constructions in it are not part of the iniuition which
underlies mathematics (see chapter r). Mathematics according to Kant
and Brouwer presupposes an intuition which is different on the one
land lrom sense-perc€ption, of which it is the invariant form, and. on
the other hand from the apprehension of logical connections between
concepts or statements. Just as the experience of, say, climbing a
mountain is not to be confused with its linguistic description and
communication to others, so the experience of mathematical intuitions
and constructions must not be confused with irs linguistic description
aid communication (although such linguistic formulation may be of
great help to the climber or mathematician and to those who wish to
follow his example)

In the same sense in which climbing is not dependent on language,
the mathematical activity, with its intuitive insights and construJtions,
is languageless. According to Brouwer the principles of classical logic
are linguistic rules in that those who .linguistically follow'them may
but need not 'be guided by experience'. This means that the rutes of
classical logic are erglrloyed in description and communication but not
in the activity itself of constructing; as they are not employed, except
as inessential aids, in the activity of mountain climbing. Mathematiis
is essentially independent, in this sense, not only of language but also
of logic.

We must thus according to Brouwer diqtinguish sharply between
two different activities: on the one hand the mathematical construc-,

I OP. cit.
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tion; and on the other the linguistic activity, i.e. all statements of the
results of construction and all application of logical principles of
reasoning to these statements. In view of the fundamental difference
between the two it makes very good sense to ask whether the logico-
linguistic representation is always adequate to the construction; in
particular whether the representation does not outrun the construc'
tion. That language sometimes outruns its subject-matter is a familiar
fact. Usually the danger ofits doing so had been regarded as very Sreat
in the case of philosophical langrage and very small in mathematical.
But according to Brouwer there is much of it in mathematics too.

(thus in the case of all mathematicians who employ the law of
-excluded middle in reasoning about infinite systems of mathematical
objects, language is outrunning and misrepresenting the mathematical
reality. )

It is again conve,nient here to quote part of Brouwer's own clear
formulation, tserbatim:'Suppose that an intuitionist mathematical
construction has been carefully described by means of words, and then,
the introspective character of the mathematical construction being
ignored for a moment, its linguistic description is considered by itself
and submitterlto a linguistic application of a principle of classical
togisJls it then always possible to perform a languageless mathe-

rmatical construction finding its expression in the logico'linguistic
\ figure in question?
I 'After a careful examination ono answors the question in the
\affirmatiue (if one allows for tho inevitablo inadoquacy of language as
la mode of description) as far as the principlos of contradiction and
lsyllogism are concerned; but in the negatlue (oxcopt in special cases)
/with regard to the principle of excluded third, ro that thc lattcr prin-
ciple, as an instrument for discovering new mathcmetical truths must
be rejected.'

We shall presently consider some mathematical constructions, the
examination of which led Brouwer and his followerg to rojcct the law
of excluded middle and certain other principles of roaooning for
infinite sets of objects. The same rejection we havo found in tho
original limitation of concrete metamathematics by tho formalists,
who however admit the/ormal application of these princlplor within
the formalized theories of classical mathematics. This way of raving
classical mathematics is not open to the intuitionists sinco lt ls in
conflict with their conception of mathematics as languaSoloru con-
structron.

The limitation of mathematics to the finite methods of formclirt
metamathematics-whether these be applied to objects of ordlnary
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perception or of intuition-would be a crippling blow to the structure
of classical mathematics. But, and this is tle .Lo"a i""r"r.tt-^rl,l '
tionism, there is a mathematics.f ffiavoldtng the perceptually and intuitively-re f actual, pre-
existing infinite totalities, constitutes a firm,lntuitive foundation ir a
new analysis and opcns a liold of development which .in several places

, far exceeds the fronticrs olclassical mathematics. . . .,
This field of . ncw rutonomous mathematics of the potential

infinite is opcncd by 'the x,cutu! oct of intuitionism which recognizes
the possibility ol'gcrrcrutirrg ncw mathematical entities: nrst in itre
form of it(initcl1, pt,tcctllng fi'qtu,ilces pr,p2,... whose terms are
chosen nu)r( or lr.r:t .li'rrl,t' .lirtttt matrtemiitcat entities preuiously
acquirul, in srrclr u wuy I lrut l lrc {}ccclom of choice existing perhaps for
the lirst clcrncrrt Is nuly lrc subjcctcd to a lasting restricii,on at some
following pr, urrd rrguin urrtl uguirr lo shurpcr lasting restrictions o, err"r,
abolition ut lirrlhel ruhlerlrrcrrl 2r's, wlrilc all these restricting inter_
ventionr, rtr woll nr llrc clr.ir:c 

'l ' l lrc 
p,'s thcmselves, at any atui" 

-uVbc mudo to doparrrl rrr lirlrr'c rrrlrrrcmatical experiences of ihe cieating
subject; rocrrrrdlv lrr rlrc lirlrrr .l'rnathcmatical species, i.e. properties
suppowhlo tir trretrhe,untrlutl uttitit'.t prauiously acquired,and satisfying
the contllilorr llrnt. ll'thcy lrokl fbr a certain mathematical entity, ihey
also hold lirr sll rrrrtlrcrrruric.l cntities which have been defineiio be
equal to lt, rrlrrtiorrs ol'c:tlrllity having to be symmetric, reflexive and
transitivo; nrnrhc,rrirricul cntities previously acquired for which the
proporty holrhi ru'c cullcd clcments of the species.' p n t

Ar un rlr'll scc in more detail, intuitionist mathematics differs
grcatly fhrrrr clrrssical, whether as practised .naively', as suppordd
by I lofl( lrr sulrstructure, or as safeguarded by formalization. Its
progrgmnlo is lirrmulatcd simply enough, even if its executioninvol-
vcg dlfllr'rrlt, ol ut loast vcry unfamiliar, procedures and concept.-u"a
cvon f f rlrc rrirlurc of intuitionist construction may notbe priia faite
clotr kr rhc rron-intuitionist. It is to make mathematical construciions
In lhe rrrcrlium of pure intuition and then to communicate them to
othsrr rrr cloarly as possible so that they can repeat them. .0.

Nrr cvcry mathematical construction is of equal interest and
lmp,r rrrrrcc. But therc is never much doubt as to which constructions
rrF rrrlx)rtant, since the motives for finding constructions arise, as in
tlorr rntrritionist mathematics, from the curiosity of pure mathe-
illrrtrr'rilns and the needs .o-l$ose who employ mathematics for other
; r r r r P.scsT The-prctgiainme bf tfi e intuitionist is to pruafi i;gliih-Gm
flrrrf lrematics, i.e. to create or construct mathematical objects sinceJ
orrly constructed gligll,leyg-ng!"{:patical existence. fL is not t;
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show the legitimacy of these constructions by either logic or formali-
zation. For they are legitimate in themselves, they are self-validating.

2. Intuitionist mathematics 
e t /

To the intuitionist mathematics is the construction of entities in
pure intuition, not the promise of such a construction or the enquiry
whether it is logically possible. o I '

The classical mathematician, the logicist and formalist allow as
legitimate statements to the effect that 'there exists' a number with
ceitain properties although so far no method for constructing this
number is known. Such statements-pure existence'theorems-the
intuitionist does not allow into his mathematics. He is consequently
quite unworried if one finds it odd that a mathematical theorem show-
ing the actual constructibility of some number should only become
true after it has been (by his methods) proven. There is no oddity in it
to him nor should there be to anybody who understands the intuitionist
position, for which 'mathematical existence' means the same as
;actual constructibility'. What is to count as actual constructibility
is indeed never quite precisely defined in general terms, but*the
intuitionist asserts-it is made clear in practice. "'

In explaining some of the elementary ideas of intuitionist mathe'
matics-which is all that can be attempted here-I shall be following
closely the exposition of Heyting's Intuitionism-An Introduction.
Heyting leads his reader very much further by explaining the intui-
tionist approach to special topics of advanced mathematics, such as the
theories of algebraic fields and the theory of measure and integration. "
,4iiiito"iit mathematics starts, then, with the notion of an abstracf "

entity and of the sequence of such -qntiti-eS. ft starts in other words
Wiiflhe sEquLrrict tjf ndrtural numbers. There is no need to formulate
a deductive system of elementary arithmetic--for such formulation
would be adequate only if it formulated what is,self-evident without
it. It confers neither self-evidence nor security. It only, at best, reflects
it linguistically. For the intuitionist Peano's axioms (see Appendix A)
merely formulate self-evident results of the process of generating the
natural numbers.

The difference between classical mathematics (equally in its 'naive'
and in its logicized or formalized form) and the intuitionist shows
itself very clearly when it comes to defining real numbers. In classical
mathematics the notion of a real number can be defined in terms of a
so-called Cauchy sequence df r@31 numbers. A classical Cauchy
sequence is defined as follows: 4b o.2, 43,.,. or, briefly, {anl ot a,
where every term is a rational number, is a Cauchy seguence if for
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every natural number /r (and therefore for every fraction, however
small, 1/k) there exists a natural number n:n(k) such that, for every
natural number p,laoao- anl < | lk. tttt

Roughly speaking this mcans that if we consider any fraction l/c
there always exists a term, say tho nth, such that on subtraction of it
from any of its successors, tho absolute value of the difference is
smallerthan 1lk.(The absoluto valuc of a non-negative number is this
number itself, the absoluto valuo of a ncgative number is that number
which results from changing itr minus sign into a plus sien.) The
absolute value of tho dlfroronco of pairs of rational numbers thus
becomss smallor as wo chooio thom from 'later' members of the
sequcnco. t1

Tho doflnltlon of tho notlon of an intuitionist Cauchy sequence
can bo formulltod In llmort tho ramo words. The only difference
consistr fn roplnclnf thr phrcro 'thoro cxists' by the phrase'there can
efectluoly bt lomd'or'lhoro cun olfcctively be constructed'. It is
worthwhlla to sttcnd to tho dlllbrcnco of meaning between these two
phrarot llnoa lt lerdr to lho coro ol'intuitionist mathematics. ra-

HoytltU brlqr lt out hy mo$ns of the following example. Consider
tho followLg deflnltlonr of clussical Cauchy sequences. The first
sequonoa {rrl lr: 2ll, 212,213. . . . or lZln}.In this series each compo-
nent cltl bt rfrotlvoly constructed, e.g. the thousandth member is
2/1000. COarltlor now o second sequence {D,} defined as follows: if
the ilh dlllt allor tho dccimal point in the decimal expansion of
z-3,ltlll , , , lr tho 9 of the first sequence 0123456789 in this expan-
sion, err I i In ovcry other case bn:2ln:ao. t 1 t

Slpr tln ioquence {br} differs from {an} in at most one term, it is a
Cauolly mqlroncc in the classical sense. But since we do not know of
any Coiltruction which would show whether or not the critical term
ocoutr In lDr)-whether a sequen@ 0123456789 occurs in z-we
hrrf no rlght to assert that {6,} is a Cauchy sequence in the intuitionist
ranre. An intuitionist Cauchy sequence, which like {ar} must be
Oonrtrrrctible, is also called a'(real) number generator'. It is clear that
tho lntuitionist cannot allow the idea of all number-generators into his
mAthatnotics---€ven if it could be shown to lead to no inconsistency
fnngivcnformalsystem. \  o/r

'l'hc identification of the existence with the actual constructibility of
numbcr-generators must lead to a thoroirgh modification of the classi-
crl notion of the equality and difference of two real numbers. Hening
dclines two equality-relations between real number generators, namely
'identity' and (the more important relation of) ,coincidence'. Two
number generators {an} and {b n\ are identical-in symbols a : b_|f for
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every n, an:bn,They coincide-in symbols a:b-tf for every & we
can find an integer n:n(k) such that larao-bnapl<llk for Qyat! p. a a

That we cannot find the required n:n(k) for every k, does not
entitle us to say that a and D do not coincide: for an intuitionist
negation, just as an intuitionist affirmation, must be based on a con-
struction-not on the absence of a construction. Only if a: b is
contradictory, i,e.'only if we can effect a construction which deduces a
contradiction from the supposition that a: b', are we entitled to assert
that 4 and D do not coincide, i.e. o* b.

It mieht be thought that proving in turn that a+b is contradictory
(impossible) is ipso facto a proof that a: b. As a matter of fact it is a
theorem of intuitionist mathematics that the contradictoriness
(impossibility) of a* b does amount to a: b.r But-and this is a very
mportant feature of intuitionist mathematics-'a proof of the impos-
sibility of the impossibility of a property is not in every case a proof

. ofthe property itself'. In othcr words if we writc '-' for'is con-
' tradictory' or 'is impossiblc'-in tho scnse in which this notion must
be backed by constructivc proof- and 'p' for uny msthcmatical aftirma-
tion (which is not thc aflirmation of an impossibility!), then "-r-r P
does not as in classical logic in gcncrul inrply p. Tho lirllowing cxample,
which shows that this principlc is not valid in intuitionist logic, has
been given by Brouwer and is also found in Hcyting's rcccnt book.

'I write the decimal expansion of z and under it tho clecimal
fraction p:0.333 ..., which I break off as soon 0s c scqucnce of'
digits 0123456789 has appeared in z. If ths 9 ol'tho lirst scquence
0123456789 in rr is the kth digit after tho dccimul point,
p=lok-ll3.l0k. Now suppose that p could not bo rotionul; then
p:lOk-ll3.lOk would be impossible and no sequcnce could appear
in z; but then p:{, which is also impossible. The assumption that p
cannot be rational has led to a contradiction; yet we have no right
to assert that p is rational, for this would mean that we could culcu-

late integers p andq so that p:4; this evidently requires that wc
'q '

can either indicate a sequence 0123456789 in z or demonstratc thut
no such sequence can appear.'

If two number-generators do not coincide (i.e, if a* b) a stronScr
inequality relation may hold between them. This is the relation of
apartness. That 'c lies apart from b'-in symbols a I F-means that
' n andk can be found such that lanq o- b,+ pl 2 | | k for evcry p'. I t is
evident that whereas a # b entails in general that a*b, the convcrsc
is not true. To the classical mathematician a mathematics which

r For the proof see Heyting, op. cit., p. 17.
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distinguishes between non-coincidence and apartness in this way
would very likely seem unnecessarily complicated and prolix. But this
prolixity may be due to mere unfamiliarity. Just as, in philosophy,
apparently lucid writers are sometimes confused thinkersiso ctassical
mathematicians may fo.r all their apparent lucidity be fundamentally
unclear.(Indeed no antinomies have so far been discovered in intui-
tionist mathematics.)

The fundamental operations with real number-generators can be
explained in a perfectly straightforward manner. But it must be noted
that a real number-generator is not a real number. In classical mathe-
matics one might, having defined a certain number_generator, pro-
ceed to define a corresponding real number as ' the sel of all trutibet-
generators which coincide with the given number-generator'. But the
phrase 'the set of all . . .' does not here refer to a constructible entity
and has to be given a new intuitionist content. Indeed to the classical
notion of a set there correspond two intuitionist notions. that of a
spread and that of a species-a spread being defined bv i common
Toj" 9! generating its (constructible) elements, and a ipecies being
defined by a characteristic property which can be assigned to mathe-
matical entities, which have been or could have been constructed
before defning the species.

In defining a spread lhe first step consists in conceiving the very
general notion of an infinitely proceeding sequence, i.e. Jsequence
which can be continued ad infinitumno matter how the components of
the sequence are determined, whether by law, free choice oi what you
will.- Of such sequences the above defined Cauchy ,"q,.r"rr".J o,
number-generators are special cases. The intuition of them, and the
insight which reveals their mathematical usefulness is--as'we have
seen (section l)--+laimed to be one of the basic'acts'of intuitionism.

To the intuitionist the continuum of real numbers is not the
completed totality of dimensionless points on a line, but rather the
'possibility of a gradual determination of points'-points describable
in terms of the notions of infinitely proceeding sequence and of spread.
A spread Mis defined by two laws which Heytingt whose definitions
I am almost literally repeating calls, spread-law Ay, and,, complemen-
tary law Ty'.

A spread law is a rule A which divides the finite sequences of
natural numbers into admissible and inadmissible sequences-according
to the following four prescriptions, namely

(i) By the rule A it can be decided for every natural number &.
whether it is a one-member admissible sequence or.not.

I Op. cit., pp. 34 ff.
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(A one-member sequence consists of one natural number, and an
n-mlmber sequence of z such numbers. The sequenca de a2, Q3 is
called an immediate descendant of the sequence ay a2&rrd Q1, a2a;II
immediate ascendant of Qy Q2, a3. And the same terminology is used
inthegeneralcaseofal, a2, . . ., an, an+ran;d av az, ., ., an)

(iiiEvery admissibie sequence Q1, a2, - . . , Qn, an11 is an immediate
descendant of an admissible sequence ab az, , . . , an

(iii) If an admissible sequenci ab . . ., a, is given, the rule zl allows
us to decide for every natural number & whether ab . . . , a, k is arr
admissible sequence or not.

(iv) To any admissible sequence Q!,...,a, at least one natu-ral
numbir /s can be found such that av - . . ' 

qn, k is an admissible
sequence.

The complenrcntary law Ty of t spread M assigns a definite mathe-
matical entity to any linitc scqucncc which is admissible according to
the spread law of M.

Cbnsider now an infinitcly procccding scqtlenccr and subjcct it to
the restriction that, for cvcry il, (11il2, . ' . . ttn nrttst bo un udmissible
sequence in accordonco with a nprcttd lnw A p, Sttch un inlinitcly pro-
ceeOing sequence-bricfly /2.r' *in no longor tt l'roo /2,r; btrt un udmis-
sible rps (admissiblc by Ail' Tho complctnclltltry Inw ulrigtt to cach
admissible sequen@ ati ut,azi Qt,cI2,,/t1l. , . g ntttlltctnntlclll cntity:-
i t  assigns, say, rr  to a1; b2 to a 1, a7i , '  .  i  hnto (rr .  (rr . ,  . ,  .  t t , t ,  I  lnch of
these infinitely proceeding sequenccs of uulgnod otrlltlcl rttch as
br, bz, b2,.. ., D, is callcd an element of the,rprouil M wltlr 1,, us its
rzth component. Two elcments of spreads aro cqual ll'th6lr rrtlt com-
ponents are equal; and two spreads are equal if to ovory elolttcnt of
one of them, an equal element of the other can bo ltlund. '

If we understand the notion of spread wo cttn ttndorrletttl lho
intuitionist notion of the continuum as a possibility of cortaln ucltrnl
constructions. Let us-closely following Heyting's cxporltion ar helirro
---consider an enumeration of rational numbers: tt, t2,.. , (l'p, wo
assign to every natural number 1,2,3,. . . -after ittr conrlruetlotr
a rational number, in a manner which guarantecs lltut lto rntlttttttl
number is left out).

We now define the spread M, which represcntt the ltttrrlllonlrt
continuum, as follows: its spread-law Aydetermines that cvery tteltlrnl
number shall form an admissible one-member scqucneel nttrl ll'
ab.. . ,anis an admissible sequence, then a1, a2,. . ,  )amun1 1 l r  nt t

1
admissible sequence if and only if lron-ron*rl<j; (ron, rini I El€ lltc!

rational numbers which, in our enumeration of rational numlrclr, ltflve



130 THE pHrlosopuy oF MATHEMATTcs
the. indices an and a,.r1 respectively). The complementary law \aassigns to every admissible sequence the rational number r*.

J-1y. thus generates infinitely proceeding sequenoes of rational
numbers. Every such lps is an element of M ind a real number_
generator. rndeed, to any real number-generator c, an element rn of
M cgn be found, such that c: m. It is worth emphasizing again that
nowhere in all this chain of definitions have we assumed an actually
given infinity or relinquished the principle that only constructible
entities exist.

Just as the notion of a spread does not allow us to assume a com_
pleted infinite totality of mathematical entities-being, as it were, a
set always-in"ghe mak!1p but never made-so the notion of a species
(a mat-licmafical'pii;perit) does iibt dlliffi us to assume actually iifinite
sets. obviously the cxclusion of infinite totality' from matiematics
implies the prohibition of properties of infinite totalities.

A species is a propcrty which mathematical entities can be supposed
to_ poss€ss. Aftcr o spccies s has been defined, any mathematical entity
which has becn or might havc been defined before s was defined. and
satisfies the condition S, is a member of the species ̂S.r For example,
the property of colnciding with a real number-generator is the speiies
'real numbcr'.

It is importunt to emphasize with Heyting that the vicious-circle-
antinomy (ol'thc set of all sets which do not contain themselves as
elemcnts) cunnot arise in intuitionist mathematics. For the intuitionist
so dcflncs 'species' that only entities which are definable independently
of tho dclinition of any given species can be members of thit species.

'l'hc identification of intuitionist existence with actual conJtructi-
bilily llso accgunts for fundamental differences between the classical
thcory ofsets or classes on the one hand and the intuitionist theory of
*pccies on the other. Thus whereas '4 e S, means that a is an element
of S-if a is definable independently of S-.a d S' means that it is
irryossible for a to be a member of S, in other words that the assump-
tion a e,S leads to a contradiction. Again if Z is a subspecies of S
(every member of I being a member of ,S) S- I is not the species of
those members of ,S which are not members of 7but of those members
9f S which cannot possibly be members of ?". In classical set theory
'f v (,S-f)' means the class of all entities which are members of
Tor of ̂ S- ?or both and this class is equal to ̂ 9. In view of the stronger,
constructive, definition of S- ?i the species f L/ (^g- T) may but need
not be equal to ,S. (In the former case ? is called a detachable species
of S.)

t Heyting, op. cit,, p. 37.
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It is clear that the intuitionist theory of cardinal numbers will differ
gxeatly from the classical theory. Thus the requirement of construc'
t-ibiliti and the intuitionist conception of negation, as requiring
tog"rft"r to be backed up by the actual construction ofa contradiction,
leids to the denial that a species which is not finite is therefore infinite.
(,q,n-,innnite species' is one which has denumerably infinite_sub-
,p""io, . denumerable' meaning constructible one-one correspondence
with the species of natural numbers.)

3. Intuitionist loglc
The intuitionist logic is a post factum record of the principles of

reasoning which havo-becn cmptoyed in mathematical constructions.
Wtt"t"uJthr logicist formulatcs these principles in order to abide by

them, the intuitionist admits that futurc mathematical constructions-

" "oiio" 
which to him ir qrnproblcmutio--might embody princip_les

so far unformulatcd and rinforosoon. whcrcns tho logicist justifies

his mathematics by an nppool to loglc, tho intuitionist justifies his
logic by an appeal to msthomutlcal conrtructionl.

- 1.ni intuiiionist is not conccrnod wlth loglc In goncrul but only with
the logic of mathcmntics, /,e. wlth 'm0thomutlcttl logic' in tho s-cnsc
oot oi a mathematizcd gencrol loglc, but of n formulutlon of the
principles employed in thc activity of mnthomatlcal conltruction.
af*,oirgf, intuitionists have produccd formal lyrtcmr. whlch.cun be
made and have been made objects of mctamathomgtlaBl Involtlgution,
these systems are regarded by thcm as llnguhtlc by.prodrrch of the
. essentlaily languageless' activity of mathcmat lcl ; rnd el hol n g moinly
of pedagogical value.'Froir 

i-purely formal point of view-that ig to my nprrt-from any
intended interpritation of the symbols, formulao and trantformrtion
rules-intuitionist logic appears as a subsystem of thc clalrlOEl logic.
This is particularly obvious in the case of certain formal ryltomr whlch
have bien constructed for the purpose inter alla of scparatlnS Intul-
tionist principles and rules of inference from tho widor o16r of
principles and rules which have been adopted by clasrlcrl nnd
non-intuitionist logicians. I

Eaery infiitionist proposition p, whether or not tho (intultlonht)

negation occurs in it, is the record of a construction. At Hoytlnt
inifect puts it, it says: 'I have effected a construction ,4 In my mlnd.'
.lo it t riiio6st-negalion r p is also the record of a constructlon, nnd

1 See for example the formal system of Kleene's Melamathematlc,l' ll Itt 21,

wtrere intuitionistiially valid priniiples, rules of inference and proofi rro oloErly

distinguished from those that are only classically valid'
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thus really an affirmation. It says: 'I have effected in my mind a
construction B which deduces a contradiction from the supposition
that the construction A werc brought to an end.' The proposition
'I have not effected a construction . . .' is of no interest to either the
intuitionist or the classical mathematician. But whereas the classical
mathematician admits 'there exists a mathematical construction. . .',
even ifnobody has so far been able to effect it, such a proposition could
from the intuitionist point of view only be an empty promise-perhaps
an incitement to research, but not a piece of mathematics.

Considering the intuitionist meaning of p and -r p wo can see
at once that ii with the intuitionist, we are to regard mathematics as
the science of intuitive constructions then, taking ' r ' in its required
mganing, the proposition (p or 

- 
p) is not a universally valid principle

of the logic of mathematics. By the meaning of the various intuitionist
symbols and by the examples of the previous section we see that if
we adopt the conception and prograrnme of intuitionist mathematics
there is nothing at all strange in intuitionist logic. In what follows we
shall briefly consider the vocabulary and some theorems of intuitionist
logic without attempting a rigid systematization such as would be.
in any case, foreign to its spirit.

p 
^ 

q (p and 4) can be asserted if, and only if, both can be asserted;
p y q (p or q) if, and only if, p or q or both can be asserted. The mean-
ing of '- p' has been explained already. It is worth noting here that
even the strong negation of intuitionist logic has been rejected by some
intuitionists as too weak-the reason being that proof of the impossi-
bility of a construction does not seem to'them to amount to an actual
construction which according to a more radical prograrnme, is alone
mathematical. The radical intuitionist requires a completely negation-
less mathelnatics and logic. He seems to agree with Goethe'J Faust

r that 'a perfect contradiction remains as mysterious to wise men as it
. does to fools'.l

The intuitionist implication p -- q is not a truth-function, Hey-
ting interprets it thus: p-->q can be asserted if, and only if, we
possess a construction IZ which joined to any construction proving
p (supposing that the latter be effected) would automatically effect a
construction proving q. Or, as he puts it more concisely, a proof of p,
together with W, would for4 a proof of 4. We may now put down
some intuitionist theorems and non-theorems placing the usual
assertion sign y' in front of the former and * in front of the latter.
Reflection and themeaning of the symbols should ultimatelyjustify the
distinction.

1 For details of this view and references see Heyting, op. cit.
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(r) /P* -'r- P
, t  l l  p-_-+ p

(ii) / (P * q) --+ (-=q * 
-P)*(-e+ 

-  
p)*(p-q)

( i i i )  / -P'-+-rrrp
/ --'r---t- p -> *l 

P

(In other words, the assertion of the impossibility ofp is equivalent to
the assertion of the impossibility of the impossibility of the impossibility
of p.T\ree intuitionist nogations can always be contracted into one.)

( iv)  rpv-P
/--(pv-t i l

(v)  / - (pvQ\-,-rpt  rQ
*-(pA4)-r ' ' rpv rQ

In Heyting'e formul iyrtom q , (p ' 4) lr on sxiom and he
gives reasons I why ho conrldon lt lo bo Intultlvoly clour. Wo msy ob-
serve at this point thot ot loert ono Intultkrnlrt or nour'intuitionist
logician denies intuitlvo clurlty to tlth proporltlon. Such rllmgrcoment
about the naturo of mathomatlcel Intultlou lr phllolophlcttlly lmpor-
tant and will occupy us in tho noxt ch6pt€r.

In developing tho usual thoory ofqucnllfloetlon lt lr, wt hBvG ioon,
a useful heuristic consideration to nsgard thc unlwnd qttnntlllor as
a kind o/ conjunction-and tho Gxhtontlnl qurntldrr u a hlnl of

- alternati.on-$8. If the members of tho ooqJunotlon or lllarttrl lrtn nrc
finite in nudraer the quantifiers arc moroly rbbrcvlrtlw dwic* lirr thc
formulation of truth-functional propotitlom. lf thr lnnrlllrtn to
infinite conjunctions and alternationc ie mado, tho lndoly brtwoon
universally or existentially quantified propositlont on thf ot|l ltlnd
and conjunctions or alternations on the othcr, though holpful In xrnn
cases, maybe verymisleading. An'infinite cor{unctlon' or tn 'lnflnltp
alternation' are even in the usual theory quito dlfrorant llom r lhtlle
conjunction or finite alternation. (See p. 48.)

ln developing the intuitionist theory of quantiflcrtlon the hrurlrtlu
derivation of the principles of quantification from tho Droporltlonrl
calculus must be used with even greater care. It murt bc oorutrnlly
checked against the principle that mathematical oxirtmoc lr llon ths
intuitionist point of view actual constructibility; ond r$lnrl llu
particular notions of infinitely proceeding sequenco! rnd of rpnl.h,
which two notions embody the intuitionist conccptlon of potSllhl

r Op. cit. p. 102.
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infinity. We may again set down the meaning of some of the intui-
tionist key terms and some theorems and non-theorenu.

If P(x) is a predicate of one variable ranging over a certain mathe-
matical species c then

'(x) P(x)'means that we possess a general method of construction
which, if any element a of a is chosen, yields the construction p(a),
and

'(1x) P(x)'means that for some particular element a of a p(a)has
actually been constructed. By these definitions the following formulae
show themselves as theorems or non-theorems respectively.

(vi) / (x) P(x) -+ -1 (3.r) r P(x)
* -r CJx) -r P(x) -> (x) P(x)

(vii) ,r Gx) P(x) -* 
- 

(x) 
- 

P(x)
* -r (x) 

- 
P(x) -+ (lx) P(x)

(viii) / (1x) -t P(x) --+ 1 (x) P(x)
* r (x) P(x)--* Gx) 

- 
p(x)

(ix) / (x) 
-r 

P(x)---+ 1 (3x) -r P(x)
(x) / 

- 
(1x) r P(x)* (x) rr P(x)

These sections on intuitionist logic and intuitionist mathematics
are of course schematic and incomplete. They can at best convey some
of the spirit of intuitionist mathematics. Those interested in making
closer contact with its substance are advised to master Heyting,s work
and refer to its (extensive) bibliography. As to the relation between
formalism and intuitionism from the point of view of logic and
mathematigs readers will find most of the available results in Kleene's
Metamathhmatics.

VII

MATHEMATICS AS THE ACTIVITY OF
INTUITIVE CONSTRUCTIONS: CRITICISM

IN accordance with the plan of this essay we must now examine the
intuitionist philosophy of pure and of applied mathematics, and its
distinctive theory of mathematical infinity. To the problem of the
nature of applied mathematics modern intuitionists have, however,
given even less attention than have either the logicists or the forma-
lists. Indeed their philosophy of applied mathcmatics is somcthing wo
have largely to conjecturo-tho baeis of tho coqiocturo boing chicfly,
(i) certain remarks of Brouwor and Woyl (of Brouwor on tho affinity
of his philosophy to Kant'E, of Woyl on tho rolstlon bctwoon Intui-
tionist mathematics and tho nstural rcloncor) rnd (ll) thc roruonablo
presumption that tho intuitionht phllorophy of rppllcd mrthomatlct
andits philosophy of puro mathcmaticr [t! oonrhbnt wlth croh othor.
These theories will be treatcd in tho ordor indlcrtod.

A concluding section will notc somo Indlortlonr of nrw devolop-
ments springing mainly from a fruitful clash botwoon thc fotmrlht und
the intuitionist points of view. This soction, though orpodtory In
character, is best placed at the end of our dircuulon of forfncllrm
and intuitionism as separate points of view.

t, Mathematical theorems as reports on lntultlue constructlow
We have seen that the formalist metamathomrtlcltr rnd the

intuitionist mathematician make the same claim, that thclr rtrt|mjlh
are not statements of logic. They are about a subjoct mrthr whloh lt
first produced (constructed) and then described. Conroquontly thry
are not'analytic'but'synthetic'. The constructionr of tho fonndlrt
are made, or can be made, in the physical world; thoro of thr Intul.
tionist in the mind, a medium which is different from ronrapgtlptkm
and open to introspection only. The formalist's st&tomdth rn ryn.
thetic and empirical, the intuitionist's synthetic and non*plrlorl,
i.e. a priori.
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