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MATHEMATICS AS THE SCIENCE OF
FORMAL SYSTEMS: EXPOSITION

WE turn now to another line of thought with another historical root.
As Leibniz sought the source of the self-evidence and the content of
mathematics in logical relations between propositions and concepts,
so Kant sought it in perception. And, just as Leibniz conceived the
guiding principles of logicism, so Kant was led to anticipate the
guiding principles of two modern movements in the philosophy of
mathematics: formalism and intuitionism.

For Kant the role of logic in mathematics is precisely the role it has
in any other field of knowledge. He holds that in mathematics, although
the theorems follow from the axioms according to principles of logic,
the axioms and theorems are not themselves principles of logic, or any
application of such principles. He regards them, on the contrary, as
descriptive, namely as describing the structure of two perceptual data,
space and time. Their structure manifests itself as something which
we find in perception, when we abstract its varying empirical con-
tent. Thus in perceiving two apples, the iteration which is perceived
is a feature of the space and time in which the apples are located. The
same structure manifests itself further in our deliberate geometrical
constructions, both in making such constructions possible and in
confining them within limits—permitting the construction, for
example, of three-dimensional objects but not of four-dimensional.

Hilbert, who in his practical programme adapted Kant’s guiding
idea, expresses Kant’s ‘fundamental philosophical position’, and h_is
own, in the following words: ¢. . . something which is presupposed in
the making of logical inferences and in the carrying out of logical
operations, is already given in representation (Vorstellung): i.e. certain
extra-logical concrete objects, which are intuitively present as imme-
diate experience, and underlie all thought. If logical thinking is to be

secure, these objects must be capable of being exhaustively surveyed,
in their parts; and the exhibition, the distinction, the succession of
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their parts, and their arrangement beside each other, must be given,
with the objects themselves, as something that cannot be reduced to
anything else or indeed be in any need of such reduction.’!

Hilbert shares this fundamental position with Brouwer and his
school as well as with Kant. If mathematics is to be restricted—
entirely and without qualification—to the description of concrete
objects of a certain kind, and logical relations between such descrip-
tions, then no inconsistencies can arise within it: precise descriptions of
concrete objects are always mutually compatible. In particular, in this
kind of mathematics, there are no antinomies to trouble us, generated
by the notion of actual infinity ; and for the simplest of reasons, namely
that the concept of actual infinity does not describe any concrete
object.

Yet—and here is the root of the disagreement between formalists
such as Hilbert and intuitionists like Brouwer—Hilbert does not think
his position requires him to abandon Cantor’s transfinite mathematics.
The task he sets himself is the accommodating of transfinite mathe-
matics within a mathematics conceived, in Kantian fashion, as con-
cerned with concrete objects. *No one will ever be able to expel us’,
he says, ‘from the paradise which Cantor has created for us.’

His way of reconciling concrete, finite mathematics with the
abstract and transfinite theory of Cantor is something Hilbert again
owes—at least fundamentally—to Kant.2 It was not, indeed, in the
philosophy of mathematics that Kant employed the principle on which
Hilbert’s reconciliation proceeds. Kant employed it in a part of
philosophy which for him was much more important—the reconcilia-
tion of moral freedom and religious faith with natural necessity.
Arguing in this context, Kant first pointed out that the notion of
moral freedom (and some other notions, including that of actual
infinity) were Ideas of Reason which were unrelated to perception,
in the sense of being neither abstracted from it nor applicable to it.
He then argued that any system containing notions applicable
primarily to concrete objects (such as the mathematics and physics of
his day) could indeed be amplified by Ideas, but only provided the
amplified system could be shown to be consistent. Proving consistency,
within a system embracing both the findings of theoretical science on
the one hand and, on the other, the Ideas of morals and faith, was
Kant’s way as he himself put it ¢ of making room for faith’.

In quite similar fashion Hilbert distinguishes between the concrete

1 Hilbert, Die Grundlagen der Mathematik, Sem. der Hamburger Universitiit,

vol. 6, p. 65. Also Becker, p. 371.
2 See, e.g., op. cit., p. 71.
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or real notions of finite mathematics and the ideal notions (Ideas) of
transfinite mathematics. In order to justify the adjunction of ideal
notions to the real, he too requires a proof that the system is consis-
tent. Hilbert’s task is thus to prove the consistency of a system com-
prising finite and transfinite mathematics. He adopts the Kantian
theses (i) that mathematics includes descriptions of concrete objects

and constructions and (ii) that the adjunction of ideal elements to a
theory requires a proof of the consistency of the system thus ampli-

fied. In his hands these have been transformed into what is claimed
to be a practical programme for founding mathematics upon what is
perceived or perceivable. We have now to examine this.

1. The programme

To show that a system of propositions—e.g. the theorems of a
mathematical theory—is internally consistent is to show that it does
not contain two propositions one of which is the negation of the other
or a proposition from which any other proposition would follow.
(The second formulation also holds for systems in which negation is
not available.) Only in the case of very simple systems is it possible to
compile a list of all their propositions and to check the list for inconsis-
tency. In general, a more complex investigation into the structure of
the system as a whole will be necessary.

Such an investigation presupposes that the system is clearly
demarcated and capable of being surveyed. The demarcation, as
Frege saw, is secured to some extent by axiomatization: i.e. by listing
the undefined concepts in the system, the presupposed assumptions
in it, and Jastly, the inference-rules (the rules for deducing theorems
—from the assumptions and already deduced theorems). We have
mentioned (in chapter II above) various axiomatizations of the
logic of propositions, of classes, and of quantification. Similar axio-
matizations have often been given for other systems, such, e.g., as
(unarithmetized) geometry and parts of theoretical physics. Axio-
matization may be more or less strict, depending on the extent to
which the rules of sentence-formation and of inferential procedure
are more or less explicitly and precisely formulated.

For proving the consistency of a system two methods are available:
the direct and the indirect. In some cases it can be shown by combina-
torial means that inconsistent statements are not deducible in a given
theory. In other cases the direct method proceeds by exhibiting a per-
ceptual model of the theory. More precisely it consists (i) in identifying
the objects of the theory with concrete objects, (ii) in identifying the

‘postulates with exact descriptions of these objects and their mutual
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relations, and (iii) in showing that an inference within the system will
not lead to any other than exact descriptions. Since mathematics
abounds in concepts of actual infinities which cannot be identified with
perceptual objects, the use of the direct method is restricted to certain
small parts of mathematics.!

A theory involving actual infinities can—at least prima facie—be
tested for consistency only by the indirect method. One proceeds in
this by establishing a one-one correspondence between (a) the postu-
lates and theorems of the original theory and (b) all or some of the
postulates and theorems of a second theory, which is assumed to be
consistent. The consistency of this theory can in some cases be re-
duced to a third one. But none of these theories can have a concrete
model.

Amongst indirect proofs of the consistency of any geometrical
or physical theory the most common are based on arithmetization,
i.e. on representing the objects of these theories by real numbers or
systems of such. This is by no means surprising. For on the one hand
the creative work of mathematicians, at least since Descartes, has been
characterized by the demand that all mathematics should be capable
of being embedded in arithmetic; and, on the other hand, the creative
work of physicists, at least since Galileo, has been characterized by
the demand that all physics should be mathematized. These are
philosophical demands and convictions and they have led to extensions
of mathematics so as to make it capable of accommodating all physical
formalisms; and they have led to such extensions of arithmetic as to
make it capable—by the use of one-one correspondences—of accom-
modating all mathematics, in particular all geometry and abstract
algebra. It cannot indeed be said a priori that this arithmetization of
science has no limits. But the reducibility to arithmetic of physical
and mathematical theories which contain ideal notions, and which
cannot be proved consistent by the direct method, raises the question
of the consistency of arithmetic itself. Before Hilbert, no practical
programme for proving the consistency of arithmetic had been
suggested. (If mathematics should be found reducible to an obviously
consistent logic, this problem would not, of course, arise.)

And Hilbert’s basic idea, here, is as ingenious as it is simple. The
mathematician deals with concrete objects or systems of such. He can
therefore rely on ‘finite methods’; in other words he can rest content
with the employment of concepts which can be instantiated in percep-
tion, with statements in which these concepts are correctly applied, and
with inferences from statements of this type to other such statements.

1 See, e.g., Hilbert-Bernays, op. cit., p. 12.
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Finite methods do not lead to inconsistencies, especially in mathe-
matics where the concrete objects can be effectively demarcated.

Classical arithmetic does, of course, deal with such abstract and
ideal objects as actual infinities. But even when on this account non-
finite methods have to be used within arithmetic it may nevertheless
be possible to regard or reconstruct arithmetic itself as a concrete
object which can be dealt with by finite methods. It would be natural
to expect this concrete object to possess properties capable of throwing
light on classical arithmetic as usually conceived. It may in particular
be expected to have a property the possession of which would guaran-
tee the consistency of the classical arithmetic. -

Before attempting a more detailed exposition of these points one
can hardly do better than formulate the programme for proving the
consistency of the classical arithmetic in Hilbert’s own words:
‘Consider the essence and method of the ordinary finite theory of
numbers: This can certainly be developed through number-construc-
tion by means of concrete, intuitive (inhaltlicher, anschaulicher)
considerations. But the science of mathematics is in no way exhausted
by number-equations and is not entirely reducible to such. Yet one
can assert that it is an apparatus which in its application to whole
numbers must always yield correct numerical equations. But then there
arises the demand to inquire into the structure of the apparatus to an
extent sufficient for the truth of the assertion to be recognized. And
here we have at our disposal, as an aid, that same concrete (konkret
inhaltliche) manner of contemplation, and finite attitude of thinking,
which had been applied in the development of the theory of numbers
itsélf for the derivation of numerical equations. This scientific demand
can indeed be fulfilled, i.e. it is possible to achieve in a purely intuitive
and finite manner—just as is the case with the truths of the th of
numbers—those insights which guarantee the reliability the
mathematical apparatus.’! '

The consistency of the classical arithmetic—including, we rjisay,
the main parts of Cantor’s theory—is to be proved and t Wpro-
gramme would appear to be (i) to define with all possible clarg hat
is meant in mathematics by finite methods as opposed to non-finite,
(ii) to reconstruct as much as possible of classical arithmetic as
a precisely demarcated concrete object which is given to, or realizable
in, perception and (iii) to show that this object has a property which

- clearly guarantees the consistency of classical arithmetic.

The formalist not only needs the assurance that his formalism

formalizes a consistent theory, but also that it completely formalizes

1 Op. cit., p. 71; Becker, p. 372.
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what it is meant to formalize. A formalism is complete, if every for-
mula which—in accordance with its intended interpretation—is
provable within the formalism, embodies a true proposition, and if,
conversely, every true proposition is embodied in a provable formula.
(This is the original meaning of the term ‘completeness’ which has
also other, though related, meanings in the literature some of which
have no reference to an original, non-formalized, theory.) For some
such formalisms there are available mechanical methods—decision
procedures—by which one can decide for any formula whether it is
provable or not and whether consequently the embodied proposition
is true or false. The ideal would be a consistent, complete and
mechanically decidable formalism for all mathelmatics.

2. Finite methods and infinite totalities

Incompatibility is a relationship between propositions or concepts.
Perceivable objects and processes cannot be incompatible with each
other. Again, propositions cannot be incompatible with each other if
they precisely describe such objects and processes; for a description
implying incompatibility between entities that cannot be incompatible
could not be precise. Yet the trouble is that there is no general test for
deciding whether a description is or is not precise. Attempts such as
Russell’s sense-data theory to mark out in general objects which can
be precisely described—or such attempts as are made by theories like
Neurath’s theory of ‘protocol sentences’ to mark out propositions
which are precisely descriptive—are by no means universally accepted
as successful. In mathematics it seems to be otherwise. Here it seems
comparatively easy to demarcate a narrow field of perceptual objects
and processes which will be capable of precise description, or at least
of a description free from contradictions. In the elementary theory of
numbers we deal with such objects and processes. The methods of
dealing with them, the so-called finite (or ‘finitary’) methods, are
explained in the above mentioned papers by Hilbert and in the classic
Die Grundlagen der Mathematik by Hilbert and Bernays,! Consistently
with these texts the point of view might be put as follows.

The subject matter of the elementary theory of numbers consists
of the signs “1°, ‘117, “111°, etc., plus the process of producing these
signs by starting with ‘1’ and putting always another stroke beyond
the last stroke of the previous sign. The initial figure ‘1’ and the
production-rule together provide the objects of the theory; these
objects can be abbreviated by use of the ordinary notation, the
numeral ‘111°, e.g., being written as ‘3°. The small letters a, b, c, etc.

1 See also Kleene’s Introduction to Metamathematics, Amsterdam, 1952.
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are employed to designate unspecified figures. For operatic_ms per-
formed on the figures one uses further signs: brackets, the sign = ’
(to indicate that two figures have the same structure) an_d the sign
‘<’ (to indicate that one figure is in an obvious and perceivable way
contained in another). Thus 11 <111, i.e. if beginning with ‘1_’ we
build up ‘11’ and ‘111’ by parallel steps the former will be finished
before the latter.

Within this elementary theory of numbers, one can perform and
describe concrete addition, subtraction, multiplication and division.
The associative, commutative and distributive laws, and the prinf:iple
of induction are nothing else than obvious features of these operations.
Thus ‘114+111=111+11"is an instance of ‘a+b=b+a’, an equation
which asserts in a general way that the production of figures by iter-
ating the stroke does not depend on order. - o

Again the principle of induction, the most characteristic of all the
principles of arithmetic, is, in the words of Hilbert gnd Bernays! not
an ‘independent principle’ but ‘a consequence which we take from
the concrete construction (Aufbau) of the figures’. Indeed if (a) ‘1’ has
a certain property and (b) if, provided the property is po_ssessed by
any stroke-expression, it is also possessed by the succeeding stroke-
expression (the expression formed by putting a further ‘1’ after the
original) then this property will be seen to be possessed by any stroke-
expression that can be produced. Having defined the concrete funda-
mental operations by means of the concrete principle of mductlon,.one
can define the notion of prime numbers, and construct for any given
prime number a bigger prime number. The process of recursive
definition can also be defined and performed concretely. For example
the factorial function p (mM=1.2.3...n is recursively deﬁnpd b
(@) p(1)=1 and (b) p(n+1)=p(n).(n+1). This deﬁm'tlzon presc_rlbes inl
an obvious way how, beginning with p(1), and using nothing but

concrete addition and multiplication, we can build up p(n) for any”®

perceptually given figure n. ¢ . _
Elementary arithmetic is the paradigm of mathematical theory. It

is an apparatus which produces formulae, and which can be eqtire]y
developed by finite methods. This statement, however, the meaning of
which has just been illustrated from the development of elementary
arithmetic, is still needlessly imprecise, and requires an actual and
explicit characterization of what is to be meant b}f ‘ﬁmte methods’.

First, every mathematical concept or characteristic must l?e such
that its possession or non-possession by any object can be decided _by
inspection of either the actually constructed object or the constructive

1 Op. cit., p. 23.
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process which would produce the object. The second of these alter-
natives introduces a certain latitude in determining finite charac-
teristics and the finite methods consisting in their employment. Thus
one is reasonably content with a process of construction which is ‘in
principle’ performable. Indeed it is at this point, namely when the
choice arises between making the formalist programme less strict or
sacrificing it, that some relaxation of the finite point of view may be
expected. ’ ;

Secondly, a truly universal proposition—a proposition about all
stroke-expressions for example—is not finite: no totality of an un-
limited number of objects can be made available for inspection, either
in fact or ‘in principle’. It is, however, permissible to interpret any
such statement as being about each constructed object. Thus, that all
numbers divisible by four are divisible by two means that if one
constructs an object divisible by four, this object will have the
property of being divisible by two. Clearly this assertion does not
imply that the class of all numbers divisible by four is actually and
completely available. ¢

Thirdly, a truly existential proposition—to the effect, e.g., that
there exists a stroke-expression with a certain property—is equally not
finite: we cannot go through all stroke-expression (of a certain kind)
to find one which has the property in question, But we may regard.an
existential proposition as an incomplete statement.to be supplemented
by an indication either of a concrete objget which possesses the

_Property or of the constructive process ylelding such an objcct. In the
words of Hermann Weyl, T an existential proposition Is ‘ merely a docu-
ment indicating the presence of a ‘treasure without disclosing its
location’. Propositions which involve both universal and existential
assertions—e.g. to the effect that there exists an object which stands to
every object in a certain relation—can again only be suffered as
Jfagons de parler promising the exhibition of perceivable or construc-
tible relationships. .

Fourthly, the law of excluded middle is not universally valid. In
finitist mathematics one permits neither the statement that a// stroke-
expressions possess a property P nor the statement that (here exists
a stroke-expression which does not possess P—unless these statements
are backed by an actual construction. One consequently ¢annot admit
as universally valid the unqualified disjunction of these two state-
ments, that is to say the law of excluded middle. *

Even in elementary arithmetic there is occasion for using, in o
restricted way, transfinite methods, in particular the pringiple of

1 Philosophy of Mathematics and Natural Science, Princeton, 1949, p, 51
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excluded middle. But whereas transfinite methods here are easily
replaceable by finite ones quite sufficient for their perceivable or cons-
tructible subject matter, the situation is different, as we have seen
already at various stages of the argument, in analysis. This funda-
mental difference between elementary arithmetic and analysis in its
classical form is due—as has frequently been pointed out—to the fact
that the central notion of analysis, that of a real number, is defined in
. terms of actual infinite totalities. (See Appendix A.) ;

We have seen that every real number between 0 and 1 (we can dis-
regard the real numbers outside this interval without loss of generality)
can be represented by a decimal fraction of the form 0-a,a,a; . . . where
the dots indicate that the number of decimal places is q, i.e. denumer-
ably infinite. If the numbers to the right of the decimal point do
not terminate, i.e. if they are not from a certain place onwards all
zeros, and if their sequence shows no periodicity, then the infinite
decimal fraction represents an irrational number. Every place of the
decimal fraction can be occupied by one of the numbers O to 9.
The totality of these possibilities, which represents the totality of all
real numbers in any interval is, we have seen, greater than the totality
of all integers and greater than the totality of all rational numbers. Its
cardinal number c is greater than a, the cardinal number of any
denumerable set. '

In order to appreciate the nature of this statement about real
numbers it will be well to consider the representation of real numbers
by binary fractions of the form .0-b,b,bs. . . . Here, just as the first
place to the right of the decimal point indicates tenths, the second
hundredths, the third thousandths and so on, so the first place to the
right of the binary point indicates halves, the second quarters, the
third eighths, etc. Again, just as every place of a decimal fraction can

be occupied by any number from 0 to 9 inclusive, so every place of a -

binary fraction—every b—is occupied by either 0 or 1. Moreover just
as all real numbers can be represented by all decimal fractions, so all

real numbers can be represented by all binary fractions—the choice of °

the decimal, the binary or any other system being a purely external
matter.

Assume now that all natural numbers are given in their natural
order and in their totality thus: 1, 2, 3,4, 5, 6, . . . . Now form a finite
or infinite subclass from the totality, indicating the choice of a number
for the subclass by writing 1 in its place, and indicating the rejection
of a number by writing in its place 0. If we choose 2,4, 5, ... and
reject 1, 3, 6, we shall thus write 010110. ... It is clear that every
infinite sequence of zeros and ones determines one and only one sub-

]
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class of the class of natural numbers in their natural order. But we
have just seen that every infinite sequence of zeros and ones deter-
mines one and only one real number between 0 and 1 (in the binary
representation). There is thus a one-one correspondence between the
class of all subclasses of natural numbers and the class of all real
numbers between 0 and 1 and, as can be easily shown, the class of all
real numbers in any interval. In speaking of a real number the classical
analyst is committed to the assumption that it is ‘possible’ to pick out
a subclass from the actual totality of all natural numbers. In speaking
of all real numbers he is not only committed to assuming the actual
totality of all natural numbers but also the greater actual infinite
totality of all subclasses of this class (see p. 63). The assumption of
such totalities implied in speaking of a real number, or even of all
real numbers, transcends the finite point of view and the employment
of finite methods.

Classical analysis transcends the ﬁmte pomt of view not only by
assuming actual infinite totalities, but by using the law of excluded
middle without qualification. If not all members of a class have a
certain property P then at least one member has the property not-P
and vice-versa—indifferently whether the class in question be finite,
denumerably infinite or greater than these. Another non-constructive
principle of classical analysis and the theory of sets was made explicit
by Zermelo. This is the so-called principle or axiom of choice (Auswahl-
prinzip). Hilbert and Bernays formulate it as follows:! ‘If to every
object x of a genus &, there exists at least one object y of genus &,,
which stands to x in the relation B(x, y), then there exists a function ¢,
which correlates with every object x of genus (4, a unique object ¢(x)
of genus &, such that this object stands in the relation B(x, $(x)) to x.’

Another way of expressing the axiom of choice i to say that given
a class of classes, each of which has at least one member, there always
exists a selector-function which selects one member {rom each of these
classes. (One might ‘picture’ the selector-function as a man with as
many hands as there are non-empty classes—picking out one element
from each of them.) It is obviously possible to exhibit a selector-
function for a class consisting of a finite number of finite classes.
When it comes, however, to picking out one member from each of an

infinite number of finite classes, still more from an infinite number of
infinite classes, the exhibition of the selector-function, as a feature of

perceivable or constructible objects or processes, is clearly out of the
question. That the axiom of choice is implicitly assumed in a great
deal of analysis and set-theory only became clear to mathematicians

1 Op. cit., p. 41.
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after Zermelo discovered it to have been a tacit assumption in the
proof that every class can be well-ordered, and that in consequence
the cardinal numbers of any two (finite or infinite) classes are com-
parable (see p. 64).1 .

Thus, on Hilbert’s showing, classical mathematics has as its hard
core a perceivable, or at least in principle perceptually constructible,
subject-matter, to which fictitious, imperceivable and perceptually
non-constructible objects, in particular various infinite totalities, are
adjoined. To this adjunction of ‘fictitious’ subject-matter there
correspond (i) ideal concepts which are characteristic of it—e.g.
Cantor’s actual infinities, and transfinite cardinal and ordinal num-
bers—(ii) ideal statements describing either it or operations upon it—
e.g. the unqualified law of excluded middle, or the axiom of choice—
(iii) ideal inferences leading either from statements of finite mathe-
matics to ideal statements or from ideal statements to other ideal
statements. ’

This adjunction of ideal concepts, statements and inferences to a
theory is, of course, not at all new in mathematics. Thus in projective
geometry it has proved of great use to introduce an ideal point at
infinity on every straight line and to define it as the point at which all
lines parallel to the given line intersect; and to introduce, in every
plane, an ideal line containing all the points at infinity of all the lines
in the plane. There can, of course, be no question of ‘the ideal point
common to two parallel lines’ denoting any perceptually-given or
constructible entity; the reasons for demanding points of intersection
of parallel lines require any set of parallel lines to have ore point of
intersection, not two points of intersection, one, as it were, at each end
of the parallel lines.2 By adjoining ideal points, lines and planes to the
‘real’ ones, one creates concepts which, although logically related to
the concepts to which they have been adjoined, are even less character-
istic of perception than the former. Even if ‘real point’ and ‘real line’
can cum grano salis be said to describe perceptual objects, no amount
of salt will make it plausible to say that ‘ideal point’ and ‘ideal line’
are perceptual characteristics. .

The introduction of ideat elements into projective geometry, into
the algebraic theory of numbers and mathematical theories in general,
has, according to Hilbert, been one of the glories of creative mathe-

1 As to the use of the axiom in topology, in the theory of Lebesgue measure,
etc., see J. B. Rosser, Logic for Mathematicians, New York, 1953, pp. 510 ff.

2 For an explanation of the reasons for the introduction of ideal points, lines
and planes and for further details see, e.g., Courant and Robbins, What is
Mathematics ?, Oxford, 1941, and later editions, especially ch jpter IV.
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matical thinking. The emergence of antinomies as a result of this
adjoining of infinite totalities to elementary arithmetic requires
according to him not their abandonment but some proof that an
extended arithmetic—the combination into one system of finite and
transfinite objects and methods—is free from contradiction. How this
is to be achieved is, he argues, suggested by considering elementary
arithmetic. ’

His crucial point here is that elementary arithmetic can be con-
ceived of in two different ways; on the one hand, quite naturally, as
being a theory about the regulated activity of constructing stroke-
expressions, and, on the other hand, somewhat artificially, as being a
formalism, i.e. as itself a regulated activity of constructing perceptual
objects—this time, of course, not stroke-expressions but formulae.
The arithmetical theory consists of statements, the arithmetical
formalism of symbol-manipulations and their results. The formalism
can, just like the regulated activity of constructing stroke-expressions,
become the subject-matter of another theory, usually called a ‘meta-
theory’. We are thus led to distinguish between two kinds of con-
structing activities—stroke-construction and formula-construction;
and between two kinds of theory—the original theory about stroke-
construction and the new ‘metatheory’ about formula-construction. |

The connection between arithmetical theory, arithmetical forma-
lism and metatheory about the arithmetical formalism is obviously
quite intimate. In its broad outlines it is founded on the fact that the
same physical objects, e.g. {1+ 1=2)> or {14 1=3> (the objects
between the French quotes), function in distinct though corresponding
ways, in the arithmetical theory and in the arithmetical formalism.
The formalism may be built up in such a manner that it becomes
possible to distinguish among its rules two kinds in particular:
(a) rules for the production of such formulae as correspond (like our
two examples) to statements of the theory and which we shall call
statement-formulae; (b) rules for the production of such as (like the
first example, but unlike the second) correspond to true statements or
theorems of the theory and which we shall call theorem«formulae. -

In asserting that a certain physical object is, in the context of the
formalism, a statement-formula or a theorem-formula, we are speak-
ing about formula-construction and are making a statement of meta-
theory. This statement is finite, in that it asserts of a perceptunl object,
or of the process by which it is produced, a purely perceptunl or
(literally!) formal characteristic. The formal characteristic of & state-
ment-formula’s being a theorem-formula corresponds to the /oglcal
characteristic of a statement’s being a theorem.
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To this correspondence between the formal characteristics of the
formalism and the logical characteristics of the theory, others can be
added. Perhaps the most important of these is the correspondence
between the formal consistency of the formalism and the logical
consistency of the theory. To assert that the theory is logically consis-
tent is to assert that not every statement of the theory is also a theorem
of the theory. (This definition, as has been indicated before, has the
advantage of avoiding the use of the notion of negation.) To assert
that the formalism is formally consistent is to assert that not every
statement-formula of the formalism is also a theorem-formula. In view
of the correspondence (mediated by their embodiment in the same
physical objects) between statement-formulae and theorem-formulae
on the one hand, and statements and theorems on the other, we are
entitled to say that to demonstrate formal consistency is at the same
time to demonstrate logical consistency. -

We now turn to non-elementary arithmetic. The subject-matter of
this arithmetical theory is, of course, no longer finite. But it may be
possible to construct an arithmetical formalism—with statement-
formulae and theorem-formulae corresponding as before to statements
and theorems of the theory; and this formalism could then be the
subject-matter of a metatheory. Since the subject-matter, namely
formula-construction, would be finite, the metatheory would be just
as finite as elementary arithmetic, from which it would differ only by
being about a different kind of perceptual construction. If a formalism
corresponding, in the required manner, to the theory of non-elemen-
tary arithmetic can be constructed, then we can again, by demon-
strating formal consistency of the formalism, eo ipso establish logical
consistency of the theory. Indeed we can do this by strictly finite
methods, since our subject matter—the regulated activity of formula-
construction—is perceptual, or at least in principle perceptually
constructible. Our next task, therefore, must be to consider the
formula-constructing activities, or formalisms—both formalisms
considered by themselves and formalisms which are at the same time
formalizations of theories.

€

3. Formal systems and formalizations

Once a formal system has been constructed a new ‘entity’ has been
brought into the world—a system of rules for the production of
formulae. These formulae are perceptual objects which can be dis-
tinguished and classified by means of perceptual characteristics which
are possessed either by the formulae themselves or by the process of
their production, in particular by the sequence of formulae which
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successively lead from an initial formula to the formula under
consideration. In a formal argument we must ignore any correspon-
dence between the formal properties of the formal system and the
logical properties of any pre-existing theory, even though to establish
such a correspondence was the guiding motive in constructing the
formal system. .

According to Hilbert the content of mathematics is still propo-
sitions; in the case of elementary arithmetic they are propositions
about stroke-expressions and their production, in the case of the
amplified (classical) arithmetic they include in addition propositions
‘about’ ideal objects. The formal systems which he constructs are
merely means by which, in virtue of the correspondence between
formal and logical properties, he studies the pre-existing mathematical
theories. His formalisms are formalizations. -

Yet since no insight derived from the pre-existing theory is per-
mitted to enter the arguments concerning the formal system; since,
that is to say, from the point of view of these arguments, no theory
needs to exist of which the formal theory is a formalization, the
possibility is opened to us of regarding the formal theory not merely as
an instrument for investigating a pre-existing system of propositions,
but as the subject-matter of mathematics itself. There are good grounds
for this. On the one hand, there is no reason why the subject-matter
of metamathematics should not be extended to any kind of formal
manipulation of marks. On the other hand a phenomenalist philo-
sopher, or one of a similar philosophical persuasion, might well—for
philosophical reasons of a general kind-—deny the existence of ideal
propositions and thus declare, e.g., the amplified arithmetic with its
ideal objects and propositions to be meaningless or simply false. If so,
he would, with H. B. Curry! propose to define- mathematics as ‘the
science of formal systems’. In other words, whereas to Hilbert
mathematics, or rather metamathematics, is the Leibnizian ‘thread of
Ariadne’ leading him through the labyrinth of mathematical propo-
sitions and theories, the strict formalist regards mathematics as having
this thread—and nothing more—for its subject-matter,

The change from Hilbert’s formalist point of view to the strict
formalism of Curry leaves the former’s mathematical results un-
touched. It represents, however, a transition to a different philo-
sophical point of view. Mathematics has now no truck with anyvthing
but formal systems, in particular not with -ideal, non-perceptual
entities. Hilbert’s position is analogous to that of a moderate pheno-
menalist who would admit physical-object concepts as auxiliary

1 Outlines of a Formalist Philosophy of Mathematics, Amsterdam, 1941
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—if fictitious—concepts, in terms of which sense-data would be
ordered or purely phenomenalistic statements made—even if physical-
object concepts could not be ‘reduced’ to sense-data, or to purely
phenomenalist concepts. Strict formalism on the other hand is analo-
gous to a phenomenalism which would admit only sense-data and
purely phenomenalist statements. ‘

Strict formalism as a philosophy of mathematics is nearer than
Hilbert’s view to Kant’s doctrine in the Transendental Aesthetic.
According to Kant a statement in pure mathematics has constructions
for its subject-matter—constructions in space and time, which by the
very nature of these intuitions are restricted. According to strict
formalism the subject-matter of mathematics is constructions, the
possibility of which is restricted by the limits under which perception
is possible; and our statements about these constructions are demon-
strationes ad oculos, read off, as it were, from perception. They are
true synthetic statements. However, their self-evidence is neither that
of logical tautologies, nor, as Kant held, that attaching to supposedly
a priori particulars. It is the self-evidence of very simple phenomenalist
or sense-data statements. Statements about mathematical construc-
tions are in other words empirical statements involving the least
possible risk of error. This is the reason why in discussing the process
of proof—one of the principal subjects of the science of formalisms—
Curry says, very naturally, that it is ‘difficult to imagine a process
more clear cut and objective’. -

For Hilbert the raison d’étre of formal systems is to save and safe-
guard the pre-existing—albeit somewhat modified—classical theories,
in particular Cantor’s theory of sets. For Curry formal systems are the
substitutes of classical mathematics. From these fundamental
differences> between moderate and strict formalism others follow.
For Hilbert, who intends to establish the (logical) comsistency of
theories via the (formal) consistency of formal systems, a (formally)
inconsistent formal system is useless. Not so for Curry. He maintains
that for the acceptability or usefulness of a formal system ‘a proof of
consistency is neither necessary nor sufficient’.! Indeed inconsistent
formal systems, he argues, have in the past proved of the greatest
importance, e.g. to physics. ’

Both Hilbert and Curry deny the possibility of deducing mathe-
matics from logic. Yet whereas Hilbert regards principles of reasoning
which are sufficient for elementary arithmetic as logical principles of a
finite and, as it were, minimal logic, Curry separates logic and
mathematics even more drastically. It all hinges, he says,2 ‘on

1 Op. cit., p. 61. 2 Op. cit., p. 65.
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what one means by ‘logic’—*“mathematics” we have already
defined. . .. On the one hand logic is that branch of philosophy in
which we discuss the nature and criteria of reasoning; in this sense
let us call it logic (1). On the other hand in the study of logic (1) we
may construct formal systems having an application therein; such
systems and some others we often call ‘logics”. We thus have two-
valued, three-valued, modal, Brouwerian, etc. *“logics”’, some of which
are connected with logic (1) only indirectly. The study of these systems
I shall call logic (2). The first point regarding the connection of mathe-
matics and logic is that mathematics is independent of logic (1). ...
Whether or not there are a priori principles of reasoning in logic (1),
we at least do not need them for mathematics.’ ‘

Hilbert has never explicitly and at any length dealt with the philo- -

sophical problem of applied mathematics. He seems to favour t_he
view that there is a partial isomorphism between pure mathematics
and the realm of experience to which it is applied. Elementary arith-
metic, that is to say, either is itself the empirical subject-matter of our
study—a ‘physics’ of stroke-symbols and stroke-operations—on: else
can be brought into one-one correspondence with some other empirical
subject-matter; for example, to take a trivial case, apples and qpple-
operations. The non-elementary parts of the amplified arithmetlg, on
the other hand, have no empirical correlates. Their purpose is to
complete, systematize and safeguard the elementary core which alone
either is empirical or has empirical correlates. '

According to Curry, who is quite explicit on this question, we
must distinguish between the truth of a formula within a formal
system—i.e. the statement that it is derivable within the system—and
the acceptability of the system as a whole. The former is ‘an objective
matter about which we can all agree; while the latter may involve
extraneous considerations’.! Thus he holds that ‘the acceptability of
classical analysis for the purposes of application in physics is ...
established on pragmatic grounds and neither the question of intuitive
evidence nor that of a consistency proof has any bearing on this matter.
The primary criterion of acceptability is empirical; and the most
important considerations are adequacy and simplicity,'* When it
comes to the application of mathematics Curry is a pragmatist, He
does not go so far as the pragmatic logicist whose view of pure mathe-
matics is also pragmatist and who denies that logical, mathematical
and empirical propositions can be distinguished by any sharp criteria.
(See p. 57.) The domain of formal theories and the propositions anbout
their formal properties are, Curry holds, clearly demarcated,

1 Op. cit., p. 60. 2 Op. cit., p. 62.

/
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Before describing some formal systems in outline, we may perhaps
be allowed an imprecise, metaphorical characterization of the basic
ideas of formalism. According to most philosophers, from Plato to
Frege, the truths of mathematics exist (or ‘subsist’) independently of
their being known and independently of their embodiments in sen-
tences or formulae, even if these are needed for the truths to be
grasped. It was Hilbert’s ingenious programme—foreshadowed to
some extent by Leibniz—so to embody the truths of classical mathe-
matics that the perceptual features of the bodies or of the processes by
which they are produced correspond to logical features of mathe-
matical propositions. The theorem-formulae are, as it were, the bodies
and the disembodied truths the souls—every soul having at least one
body. This programme, as will be explained a little more precisely
later, cannot be carried out. It has been demonstrated by Godel that
every embodiment of classical mathematics in a formalism must be
incomplete; there are always mathematical truths which are not
embodied in theorem-formulae.

In order to appreciate this result we must be a little more specific
about the nature of formalisms. Hilbert remarks on a kind of pre-
established harmony which favours the progress of mathematics and
the natural sciences. Results which are achieved in the pursuit of quite
diverse purposes often provide the much needed instrument for a new
scientific aim. The logical apparatus of Principia Mathematica, which,
on the basis of previous researches with still different aims, was devised
for the purpose of reducing mathematics to logic, provided, in Hilbert’s
own particular case, the a/most finished tool for executing his quite
different programme. Where Principia Mathematica falls short is in its
incomplete formalization. It is not wholly a system of rules for mani-
pulating marks and formulae, in particular theorem-formulae in total
independence of the fact that they can be interpreted as propositions
of classical mathematics. But Principia Mathematica is an almost
perfect foundation for the rigorous formalization of classical mathe-
matics.

Indeed, of the formal systems, those outlined in discussing the
logicist philosophy of mathematics are as good examples as any. This
applies in particular to the propositional calculus and the formal
system of Boolean class-logic. Here we shall do no more than describe
the general nature of formal systems. They are machines for the
production of physical objects of various kinds, machines whose
properties have been made the subject of extensive and detailed
inquiries by Hilbert, Bernays, Post, Carnap, Quine, Church, Turing,
Kleene and many others. As the result of the work done by these
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authors the terms ‘machine’ and ‘mechanical properties’ have in
logical contexts long ceased to be metaphorical. (Indeed, most
important insights into the nature of formalisms, that is to say the
most important theorems of metamathematics or, as it is also called,
proof-theory, can most simply and clearly be formulated as statements
to the effect that certain formula-producing machines can, and certain
others cannot, be constructed.)

Strict formalism regards, as we have seen, all mathematics as the
science of formal systems, whether they are formally consistent or not,
and whether or not they are intended to be formalizations of pre-
existing theories; and it has made the nature of formalisms per se
easier to grasp. To do this has become necessary for any philosophy of
mathematics. For there can be no doubt that whatever else mathe-
matics may mean, either now or in the future, it must always include
the science of formal systems.

A very clear characterization of formal systems in general is given
by Curry.! Each is defined by a set of conventions, its so-called
primitive frame. By indicating the primitive frame we are providing
an engineer with all the data he needs (apart from his knowledge of
engineering) for constructing the required formula-producing machine.
Curry distinguishes the following features in any primitive frame:

(i) Terms ’

These are (a) Tokens, which are specified by giving a list of objects
of different types, e.g. marks on paper, stones or other physical objects.
(b) Operations, i.e. modes of combination for forming new terms.
() Rules of formation specifying how new terms are to be constructed.
For example, if marbles and boxes are among our terms and the
enclosing of marbles in boxes among our operations, we might adopt
the rule of formation permitting the enclosure of each marble in a box,
and stipulate that the enclosed marbles belong to the same kind of
term as the loose ones. ,

(ii) Elementary Propositions }

These are specified by giving a list of ‘predicates’ with the number
and kind of ‘arguments’ for each. For example, we may specify as
predicates pieces of wood with » holes into which both enclosed and
loose marbles can be fitted and then determine that our elementary
propositions are all those pieces of wood the holes of which have been
duly filled in by enclosed or loose marbles.

1 Op. cit., chapter IV.
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(iii) Elementary Theorems

(a) Axioms, i.e. elementary ‘propositions’ which are stated to be
‘true’ unconditionally. (b) Rules of Procedure which are of the follow-

ing form: ‘If Py, P,, . .., P, are elementary theorems subject to such

and such conditions, and if Q is an elementary proposition having
such and such a relation to Py, P,, ..., P,, then Q is true.” For ex-
ample, if two pieces of wood with holes filled in by marbles are
elementary theorems, then any piece of wood which is produced from
the former by gluing them together is also ‘true’.

In order to be able to speak of the primitive frame we must have
names for the tokens, operations and predicates and also indications
of the way in which the predicates are applied to terms. Specification
of the features which constitute the primitive frame of a formal system
must be effective or definite (a term used by Carnap). This means that it
must be possible to determine after a finite number of steps whether
an object has or has not this feature. Indeed if a formal system is to
be capable of being treated by finite methods (2 la Hilbert), if in other
words what is to be proved about it can be proved by demonstrations
ad oculos, then the properties of being a formal predicate, of being a
formal axiom, of a formula’s being formally derived from another in
accordance with a rule of procedure, must all be definite. 4

The property of being a theorem-formula may be but it need not
be definite ; but the formal relation between a formula and the sequence
of formulae constituting its proof must, of course, be definite.
In most mathematical theories a formula does, so to speak, not bear
on its forehead the mark of being a theorem, but the proof of it, once
given, must be capable of being checked in a finite number of steps. »

Many formal Systems have been constructed by mathematicians in
the present century. The motive of the activity has usually been the
need so to embody propositions into formulae that the formal
properties and relations of the formulae guarantee corresponding
logical properties and relations of the propositions. Indeed, as we
have seen, the ultimate purpose of Hilbert’s programme, and what
would be its consummation, is a proof of the logical consistency of the
main body of classical mathematics reached via a proof of the formal
consistency of a suitable formal system. ¢

As has often happened before in other branches of mathematics,
the study of formal systems led to unexpected results, to new problems,
new techniques and to at least one new branch of pure mathematics,
namely the theory of recursive functions. The importance of this
theory is considered by the experts very great. Thus E. L. Post who has
not only made important contributions to this subject, but who also
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has expressed its main ideas in a manner which makes them accessible
to non-experts, expresses the view that the formulation of the notion
of recursive functions ‘may play a role in the history of combinatory
mathematics second to that of the formulation of natural number’.!

The reader of a book on the philosophy of mathematics cannot
expect that a full knowledge of these new ideas and techniques will be
conveyed in it. Yet he will readily see that the question how far the
correspondence between pre-existing theory and formal system can be
established is of great philosophical relevance; and he will expect a
report of results achieved by the mathematicians. Prima facie the
complete embodiment of mathematical theories in formalisms may
seem possible; and then it will at least be arguable that the pre-
existing theories are merely ‘intuitive’ in the somewhat disparaging
sense in which the term is used by mathematicians on the first few
pages of their treatises before they get down to business, and that the
said theories are merely heuristic preliminaries for the construction of
formalisms and statements about them. v

We must, therefore, attempt to give an account of some results in
the science of formal systems, trusting the mathematicians—as we
have always done so far—to have done their job efficiently.

4. Some results of metamathematics

Only a very brief and very rough outline of Gddel’s main result
and of some new developments connected with it can be given.2
Suppression of ‘technicalities’ must here inevitably mean suppression
of essential arguments and insights. To whet the appetite of the
reader without crass misstatements is perhaps the best that can be
done.

We assume with Hilbert that the method and results of elementary
arithmetic (see p. 77) need no justification; and we consider a consis-
tent formal system F which is sufficiently expressive to permit the form-
alization of elementary arithmetic in it. This implies the requirement

1 Bulletin of the American Mathematical Society, 1944, vol, 50, no, 5,

2 The fundamental paper is Godel’s ¢ Uber formal unentscheldbare Siitze der
Principia Mathematica und verwandter Systeme, I’ in Monatshefte filr Mathe-
matik und Physik, 1931, vol. 38. For ‘an informal exposition of Giédel's theorem
and Church’s theorem’ see J. B. Rosser’s article of this title, Journal of Symbolic
Logic, 1939, vol. IV, no. 2. An informal and formal account of Gddel's theory is
found in Sentences Undecidable in Formalized Arithmetic by Mostowskl, Amater-
dam, 1952; also in Kleene, op. cit., and Hilbert-Bernays, op. c¢it., vol,.2, 'The
theory of recursive functions is developed from first principles and without a
specialized logical symbolism in R. Péter’s Rekursive Funktionen, 2nd ed.,
Budapest, 1958. For an excellent general survey of the present state of the theory,
see John Myhill, Philosophy in Mid-Century, Florence, 1958.
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that all arithmetical expressions correspond to formal expressions
in such a fashion that no formal theorem of F corresponds to a
false arithmetical proposition. If a formal statement, say f, is the
formalization of an arithmetical proposition a, a is also said to be an
(arithmetical) interpretation of, or the intuitive meaning of, £, .

Let us say that F completely formalizes elementary arithmetic
provided that in the case of every formal statement f which is the
formalization of an arithmetical statement either f or ~f'is a formal
theorem of F; or briefly, provided that fis decidable. Hilbert aimed at
the complete formalization of (substantially) the whole of classical
mathematics. Godel has shown that even a formal system which
formalizes no more than elementary arithmetic does not formalize it
completely.

The incompleteness of F is established by the actual construction
of a formal statement f which formalizes an arithmetical proposition
while yet neither fnor ~fis a formal theorem of F, i.e. while f is
undecidable. The interpretation of f reminds one of the liar-paradox:
‘The proposition which I am now asserting is false.’ If the assertion of
the proposition is correct then the proposition is false, from which it
follows that the assertion is incorrect. The statement is ‘about’ itself,
It states its own falsehood, and states no more. It is this kind of self-
reference which Godel’s formal proposition possesses. But whereas in
the liar-paradox the relation between linguistic expression and its
meaning is far from clear, G6del’s formal proposition is as clear as F
and arithmetic. ’

We now turn to the construction of the undecidable f (following
Mostowski’s exposition). Since F formalizes elementary arithmetic,
the 1ntegers and properties of integers must have formal counterparts
in F.’The formal integers or numerals will be printed in bold-faced
type so that, e.g., 1 corresponds to 1. The formal properties of integers
will be expressed by W(.), different formal properties being distin-
guished by different subscripts. If Wy(.) is the formal counterpart of
‘x is a prime number’, then Wy(5) is the formal counterpart of the
arithmetical proposition that 5 is a prime number. The set of all formal
properties of integers can be ordered in many ways into a sequence
and we consider one of these sequences, say,

W) Wi, W), W), . ..

In order now to construct the self-referring formal proposition let us
formulate first any formal proposition arrived at by “saturating’ some
formal property with the numeral corresponding to its subscript.
Such formal propositions are W;(1), W,(2), W3(3), . . . . We next pick
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out, say, Ws(5). This formal proposition may or may not be a formal
theorem of F. Let us assume that it is not, i.e. that

Ws(5) is not a formal theorem of F.

This proposition is on the face of it not a formal proposition of F,
but is a real proposition about a formal proposition, namely about the
formal proposition Ws(5). It is in Hilbert’s sense a metastatement,
belonging to the metalanguage in which we talk about F. Similarly the
property:

(2) W,(n)isnot a formal theorem of F

is on the face of it not a formal property belonging to F but a meta-
property belonging to the metalanguage. It seems implausible that
this property has a formal counterpart among the formal properties
of F, in particular among the members of the sequence (1). .

But Godel shows that (2) must have such a counterpart in (1)—
that a member of the sequence (1) formalizes the metaproperty (2) or,
which amounts to the same thing, that this metaproperty is the
interpretation or intuitive meaning of a member of the sequence (1).
The method by which he shows this is known as the arithmetization
(also the ‘Godelization’) of the metalanguage or metamathematics, a
procedure which is quite analogous to Descartes’ arithmetization of
Euclidean geometry—the provision of numerical coordinates for non-
numerical objects, and of numerical relations for the non-numerical
relations between these objects. .

To each of the signs of F—e.g. ~, v, (—an integer is assigned so
that every finite sequence of signs corresponds to a finite sequence of
integers. It is easy to find functions which will establish a one-one
correspondence between finite sequences of numbers and numbers.
(For example, if we agree to assign to a sequence ny, 1, . . . , 1, the
product p;™1.p,"2 . . . p,/"m, where the p’s are the prime numbers in
their natural order, it is always possible to reconstruct the sequence
from the number by factorization.) In this way every sign, every
sequence of signs (e.g. every formal proposition) and every sequence
of sequences of signs is assigned its numerical coordinate or Godel
number. Statements about formal expressions can thus be replaced
by statements about integers. @

Again, to every class of expressions there corresponds a class of
Godel numbers. The classes of Godel numbers needed for the
incompleteness theorem are all defined recursively, i.e. each element
can be actually calculated from the previous ones. The same is true
of the required relations between Godel numbers and of the functions
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which take Gddel numbers for their arguments and values. It is in
particular possible to demarcate in this manner a class 7, the class of
all formal propositions which are formal theorems in F, (The state-
ment that p v~ pis a formal theorem of Fis then equivalently expressed
by ¢ € T, where c is the G6del number of p v~p in F.) It is equally
possible to indicate in this manner a recursive function &(n, p) of two
integral arguments whose value is the GSdel number of the formal
proposition W,(p), i.e. the formal proposition which we get by
‘saturating’ the nth member of the sequence (1) with the numeral p.
After these preparations (which, in the actual proof, naturally take
more time, space and effort, and give accordingly more insight into
its nature) we can give the Gddel translation of (2), i.e. of

W,(n) is not a formal theorem of F

as
(3) ¢(n,m)noneT,

i.e. the value of ¢(n, n) is a Gédel number which is not a member of
the class 7 of the Godel numbers of formal theorems of F, -

Now (3) is a property of integers belonging to elementary arith-
metic. It must, therefore, have a formalization in F, which must more-
over be found in the sequence (1) of W(.)’s; for this sequence contains
every formal property of numerals. Assume then that we have found
that (3) is formalized by the gth member of the sequence, i.e. by W,(.).

The formal property W,(.) takes numerals as its arguments,
among them also the numeral g. We consider therefore the formal

_propesition W,(g), which is the undecidable formal proposition we

wished to construct. The interpretation of W(q) is: the integer g has
the property formalized by W,(.), i.e. the arithmetical property:
¢(n, n) non € T; or equivalently: W,(q) is not a theorem of F. -

If W,(q) were a formal theorem of F it would formalize a false
arithmetical proposition. If ~ W,(q) were a formal theorem of F,
then W,(¢q) would formalize a true arithmetical proposition. But then
a false arithmetical proposition, namely ~ W,(g), would be formalized
by a formal theorem of E. Since ex Aypothesi F is a consistent forma-
lization of elementary arithmetic, neither case can arise. W) is
undecidable and Fis incomplete. ¢ -

Variants of Godel’s result are obtained by varying the assumptions
concerning’ F, and the methods of proof—all of which, however,
allow the actual construction of the desired formal propositions.

The ideas and techniques, especially the arithmetization of meta-
mathematics, which yield the incompleteness theorem and its “ariants
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also yield Godel’s second theorem concerning formalisms of type F.
If Fis consistent and if f'is a formalization of the statement that F is
consistent, then fis not a formal theorem of F. Briefly, the consistency
of Fis not provable in F. ¢

The second theorem implies the impossibility of proving the con-
sistency of formalized classical mathematics by finitist methods. For in
spite of a certain vagueness in demarcating the notion of finitist proofs,
any such proof can be arithmetized and incorporated into F. To prove
the consistency of F by finite or ‘finitary’ means is thus equivalent to
proving the consistency of F in F—which by Godel’s second theorem
is impossible. The original programme for a consistency proof has to
be abandoned, or it has to be relaxed by redefining ‘finitist proof”. -

We may now make some brief remarks on the theory of recursive
functions which was the main instrument of Goédel’s proofs. (The
remarks follow in the main R. Péter’s treatment.) A recursive function
is a function which takes non-negative integers as arguments, whose
values are again non-negative integers and which is so defined that its
values can be ‘effectively’ calculated. The meaning of ‘effective calcu-
lation’ or ‘computability’ itself is clarified in developing the theory.
The definition of a recursive function does not depend on any assump-
tion either that there exists among the totality of integers one which is
specified only as having a certain property, or that all members of this
totality have a certain property. The theory of recursive functions can
thus be developed without the universal or existential quantifier. That

a large part of arithmetic and logic can be developed in this manner
was recognized by Skolem as early as 1923.' A main motive for
developing this theorv was the fact that by abandoning unrestricted
quantification, the set-theoretical antinomies can be avoided—
‘existence of a set’ becoming equivalent with computability of its
members.?2 ¢

One of the simplest recursive functions can serve as the definition
of adding to a fixed non-negative integer a another integer », Consider

$0,a) = a
d(n+1,a) = ¢(n,a)+1.
The first equation, here, tells us the value of the addition of 0 to a. 'T'he

second tells us how to find the value of the addition of 7+ 1 to & when
the value of the addition of n to a has already been found, We ciun

1 Begriindung der elementaren Arithmetik durch die rekurrierende Denk weive
ohne Anwendung scheinbarer Verdnderlichen mit unendlichen Ausdehnungshereiih,
Videnskapsselskapets Skrifter 1, Math.—Naturw. K1. 6, 1923.

2 Sce also R. L. Goodstein, Recursive Number Theory, Amsterdam, 1947,
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thus find the values of the function for n=0, n=1, n=2, n=3, etc.
They are a, a+1, a+2, a+3, etc. If we write B(a) for a+ 1, then S(a)
expresses the operation of forming the immediate successor of a
non-negative integer. Our recursive function can then be written

$0,a) = a
$(B(n), a) = B($(n, a)).

In similar fashion we can define multiplication of a fixed positive
integer a by a positive integer n. If ¢ (n, @)=n.a, we have

#0,a) =0
d(n+1, a) = ¢(n, a)+a.

In the same way we can define exponentiation and other functions of
arithmetic. ¢
The form of these recursive functions is:

$(0) = K
$(n+1) = Bn, $(n)

Here ¢ is a function of one variable, 8 a function of two variables, and
K a constant or function with no variable. The variable » for which
successively 0, 1, 2, etc. are substituted is called the recursion variable.
But the values of ¢ and, therefore, 8 may depend also on other
variables which, however, do not enter into the process of recursion,
during which they are treated as constants—different values being
substituted for them either before or after the recursion, i.e. the calcu-
lation consisting in the successive substitutions for n. These other
variables are, in accordance with the usual terminology of mathe-
matics, called ‘parameters’. A definition of the form

¢(09 A1, A2+« « ar) = a(ah A2y e e ey ar)
¢(n+ 1, Aly e vy ar) = B(I‘l, A1, A2y « « « 5 Ay, ¢(n1: ag, Azy .« ., ar))

is called a primitive recursion.

If two functions are given we may form a new function by substi-
tuting one function for one variable in the other, e.g. from ¢(x, y, z)
and Y(u) we can get by substitution ¢@l(w),,z), ¢(x,y, $w),
Y($(x, ¥, 2)), etc. Primitive recursions and substitutions yield a large
and important class of functions called primitive recursive functions
characterized! as those functions whose arguments and values are
non-negative integers and which starting from 0 and 7+ 1 are defined
by a finite number of substitutions and primitive recursions.

1 Péter, op. cit., p. 32.
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In his proofs Gédel used only primitive recursive functions. To see
how formal properties can be arithmetized we consider the definition
of recursive relations. A relation B(ay, . . ., a,) is primitive recursive
if there exists a primitive recursive function B(a, . . . , a,), such that it
equals 0, if and only if the relation B holds between ajy,..., a,.
If W(a) is a property, it is primitive recursive provided there exists a
primitive recursive function which equals 0, if and only if a has W.
The complementary relation B(ay,...,a,) of B(ay,...,a,) is
also primitive recursive and holds only if B(ay, . . ., a,) # 0. In this
way the notions ‘being a complement’, ‘being a conjunction’ and
more complex notions of methamathematics including ‘being a
formal theorem of F’ become expressible as primitive recursive func-
tions, and relations between Godel numbers.

It follows from a theorem of Turing (1937) that the computation
of any primitive recursive function can be left to a machine. In fact he
showed that a wider class of functions, the so-called general recursive
functions, are computable by Turing-machines. Before this was
shown, Church had proposed that the rather vague notion of effective
computability should be analysed as solvability by general recursive
functions. This proposal was justified by Church’s own results and by
other results which, though at first sight unconnected, all proved
equivalent. As regards this problem of identifying effective comput-
ability with solvability by general recursive functions, expert opinion
is no longer undivided.! On this question nothing can profitably be
said in the present context by the present author, The theory is
developing into a new branch of pure mathematics whose relevance
to the problems raised by Hilbert is merely one of its important
aspects, and perhaps no longer the most important,?

1 See Péter, op. cit., §§ 20-22.
2 See Myhill, op. cit., p. 136.
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statement of the logical implication, is therefore of little importance.
But this is far from true. There are indeed trivial logical implica-
tions, e.g.: ‘Construction x possesses C’ logically implies ‘construc-
tion x conforms to » which prescribes that x should possess C’. But
there are others which are not trivial, e.g.: ‘Construction x possesses
C’ logically implies ‘construction x conforms to r which prescribes
that x should possess D’—where the question whether the possession
of C by a construction logically implies possession of D turns on the
validity of a complicated deduction from ‘x has C’* to ‘x has D’,
employing certain admissible principles of inference. (So-called con-
structive proofs are on the whole more, and not less, complex than
non-constructive.)

The situation then is this: Prima facie the formalist does not rely
on logical principles but merely on perceptual statements such as
‘a given construction of perceptual objects with perceptual charac-
teristics C ipso facto possesses characteristics D’. To this the quali-
fication has to be added that the construction has to be correct. The
proposition, however, that a construction is correct, i.e. that it con-
forms to an adopted rule, is no longer perceptual but involves a
logical implication or an inference the validity of which depends on
logical principles. These principles must be adopted before we can
decide the correctness of a construction.

In deducing statements about constructions from other such state-
ments one employs fewer logical principles than in classical mathe-
matics. But these principles though suggested by constructions—e.g.
of strokes and stroke-expressions—are not perceptual judgements.
Only if-we were to assume that the medium in which we make our
constructions is of a special kind so that they can be immediately
described by general and necessary propositions without raising the
question as to whether a particular construction is correct or incorrect,
could we dispense with logical principles. The intuitionists are aware
of the fact that ordinary perception is not the medium for such con-
structions and claim therefore that the general principles of reasoning
in mathematics are validated not by constructions in ordinary percep-
tion, but in a sui generis intuition.

The formalist logic is"a minimal logic—or better the minimum
logic needed for metamathematical reasoning. It is nor a system of
statements describing perceptual features of various constructions.
This conclusion is independent of the point urged earlier that mathe-
matical concepts, being exact, differ from perceptual characteristics
which are inexact or admit of border-line cases.

VI

MATHEMATICS AS THE ACTIVITY OF
INTUITIVE CONSTRUCTIONS: EXPOSITION

IT is one of the fundamental convictions of the intuitionist schoo},
whose doctrine is the subject of this chapter, that mathematics—if
properly understood and practised—is a wholly autonomous a_nd
self-sufficient activity. Its methods and insights are regarded as l?e]ng
neither capable of nor in need of the guarantees which the log.lclst.s
and the formalists each profess to provide. According to the intui-
tionists the impression that mathematics needs the support of an
extended logic or of rigorous formalization has arisen _only where
mathematics has not been properly pursued. Y '

Logicism and formalism have treated the antinomies of class!cal
mathematics as a malady capable of a cure which would leave classical
mathematics substantially intact, The intultionists consider the anti-
nomies as merely a symptom that mathematics has in many of its
branches not been true to itself. Logigism and formalism tried so to
reconstruct the building or to secure its foundation that the mathe-
matical work could go on in the upper storeys without much distur-
bance. The intuitionists attempt to build a new muathematics at all
levels by what they regard as the truly mathematical methods, «+

Both formalists and intuitionists and in particular thelr modern
leaders, Hilbert and Brouwer, acknowledge, as we saw; the Influence |
of Kant’s philosophy of mathematics and reject the Lelbnizlan tradi-
tion according to which all mathematical propositions are analytio in
the sense that their truth can be demonstrated..merely by an appli-
¢cation of the principles of logigﬁoth Brouwer and Hiibert regnrd
mathematical theories as Synthetic, in a sense of the term which is
based on a mutually exclusive and jointly exhaustive classifieation of
propositions into analytic and synthetic. * ‘-

Yet Brouwer’s conception of the synthetic character of minthe
matics is very different from Hilbert’s, and nearer to Kant, Acoording
to Kant, it will be remembered, the axioms and theorems of arithmet ¢
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and geometry are synthetic a priori—i.e. they are descriptive of the
pure intuition of space and time and of constructions in it. Brouwer
accepts without reservation Kant’s doctrine of the pure intuition of
time—time apart from any perceptual content—and regards this as
the substratum of mathematics. Like Kant he regards such intuition
as independent of sense-perception, including in sense-perception in
particular the perception of such symbols and operations upon them,
as are the strokes and stroke-operations of Hilbert which, together
with other marks and operations, constitute the subject-matter of
formalist metamathematics.

The subject-matter of metamathematics is perceptual objects and
constructions, of so simple and transparent a structure that we can be
certain of the truth of the synthetic empirical judgements which are
descriptive of them. The subject-matter of intuitionist mathematics, on
the other hand, is intuited non-perceptual objects and constructions
which are introspectively self-evident. Brouwer does appeal, not
indeed to the inspection of external objects, but to ‘close intro-
spection’.! The distinction between perceptual and intuitive construc-
tions is of some philosophical importance since we can with more
plausibility claim that the latter can be apprehended as universal and
necessary without the application of the notion of correctness and thus
without employing logical principles. (This point was discussed at the
end of the last chapter.) ‘

In spite of the differences between the inspectible data of meta-
mathematics and the introspectible data of intuitionist mathematics,
they have much in common. The most important common feature is
that a completed infinite totality can neither be inspected nor intro-
spected. In other words neither metamathematics nor intuitionist
mathematics can admit statements about actual infinities, only about
potential ones.

For a better understanding of intuitionism it is worth asking
whether it would reduce to formalist metamathematics if one were to
ignore the difference of the substrata, real or alleged, between the two
activities. As one would expect, both would employ on the whole the
same finite methods—methods such as were described earlier, in our
exposition of formalism. However, the formalist would not use them
beyond the point at which, having established the consistency of a for-
mal system, he could start using it. For the intuitionist, on the other
hand, since he cannot find, or hope for, refuge in a formal system, the
incentive to use finite methods even in spite of increasing complexity

1 See, e.g., ‘ Historical Background, Principles and Methods of Intuitionism*
in South African Journal of Science, Oct.—Nov., 1952, p. 142, footnote.
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and difficulty is much greater. Finitist intuitionist mathematic_s has in
fact been developed much further than finitist metamathematics.

Contained in the first chapter of Heyting’s Intuitionism—An Intro-
duction?is a disputation in which one disputant called ‘Int’ addresses
another called ‘Form’ in the following words: . ..you a_lso use
meaningful reasoning in what Hilbert called metamathematics, but
your purpose is to separate these reasonings from pur;ly formal ma_the-
matics, and to confine yourselves to the most simple reasonings
possible. We, on the contrary, are interested not in the formal side 9f
mathematics, but exactly in that type of reasoning which appears in
metamathematics; we try to develop it to its farthest consequences.
This preference arises from the conviction that we find there one of
the most fundamental faculties of the human mind.’ )

For a brief exposition of intuitionism, it will be well first to explain
its conception of pure mathematics and the programme b.asec.l upon
this conception; and then to give some examples ot: the 1ntu1t10n}st
method at work especially in dealing with the notion gf ppfcenpal
infinity. As to the problem of applied mathematics, the .1r-1tu1tlomsts
have shown even less interest in it than either the logicists or the
formalists.

1. The programme

Brouwer in one of his more recent English papers? describes the
situation of the philosophy of mathematics as formulated .by the old
and new formalists and pre-intuitionists, as he calls those thinkers who
in some ways anticipated him, in particular Poincaré, Borel and Lebes-
gue- . . .
As it presented itself to Brouwer, the situation was this: mathe-
matics, as practised by the pre-intuitionists and f:ormahsts, cons1sted'of
two separate parts—an autonomous mathematics anq a mathematics
dependent for its trustworthiness on language and lo_glc: For the auto-
nomous mathematics, ‘exact existence, absolute reliability, and non-
contradictority were universally acknowledged, independently of
language and without proof”. It embraced ‘the eler_nentary theory of
natural numbers, the principle of complete induction, and more or
less considerable parts of algebra and theory of numbers’. Ihenon—
autonomous mathematics embraced the theory of the continuum of
real numbers. For this a proof of non-contradictory existence was
lacking and, as was more or less generally agreed, was needed.

The fundamental theses of the intuitionist philosophy of mathe-
matics are clearly formulated by Brouwer. He describes them as ‘two

1 Amsterdam, 1956. 2 Op. cit.
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acts’ by which intuitionism ‘intervened’ in the situation created by its
predecessors and the formalists. The acts could also be called ¢ insights’
—a term used frequently by Brouwer. It is best to quote here verbatim
and at length from his paper.!

“The first act of intuitionism completely separates mathematics
from mathematical language, in particular from the phenomena of
language which are described by theoretical logic, and recognizes that
intuitionist mathematics is an essentially languageless activity of the

mind having its origin in the perception of a move of time, i.e. of the ,/‘

falling apart of a life moment into two distinct things, one of which
gives way to the other, but is retained by memory. If the two-ity thus
bsin is divested of all quality, there remains the empty form of the
common substratum of all two-ities. It is this common substratum, this
empty form, which is the basic intuition of mathematics.’

The doctrine of this and similar passages in Brouwer’s writings is
substantially that of The Critique of Pure Reason—the main difference
being that according to Brouwer Kant’s intuition of space and the
(Euclidean) constructions in it are not part of the intuition which
underlies mathematics (see chapter I). Mathematics according to Kant
and Brouwer presupposes an intuition which is different on the one
hand from sense-perception, of which it is the invariant form, and on
the other hand from the apprehension of logical connections between
concepts or statements. Just as the experience of, say, climbing a
mountain is not to be confused with its linguistic description and
communication to others, so the experience of mathematical intuitions
and constructions must not be confused with its linguistic description
and communication (although such linguistic formulation may be of
great help to the climber or mathematician and to those who wish to
follow his example). ’ 3

In the same sense in which climbing is not dependent on language,
the mathematical activity, with its intuitive insights and constructions,
is languageless. According to Brouwer the principles of classical logic
are linguistic rules in that those who ‘linguistically follow’ them may
but need not ‘be guided by experience’. This means that the rules of
classical logic are employed in description and communication but not
in the activity itself of constructing; as they are not employed, except
as inessential aids, in the activity of mountain climbing. Mathematics
is essentially independent, in this sense, not only of language but also
of logic.

We must thus according to Brouwer distinguish sharply between
two different activities: on the one hand the mathematical construc-

1 Op. cit.
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tion; and on the other the linguistic activity, i.e. all statem;ntg. of the
results of construction and all application of logical prmglples of
reasoning to these statements. In view of the fundamental dlﬁ'erqnce
between the two it makes very good sense to ask whether the _loglcp-
linguistic representation is always adequate to the construction; in
particular whether the representation does not outrun tl}e const'rt_lc-
tion. That language sometimes outruns its subject-matter is a familiar
fact. Usually the danger of its doing so had been regarded as very great
in the case of philosophical language and very small in mathematlcal.
But according to Brouwer there is much of it in mathematics too.

(Thus in the case of all mathematicians who employ the law of

excluded middle in reasoning about infinite systems of mathemat@cal
objects, language is outrunning and misrepresenting the mathematical
reality. ) ,

It is again convenient here to quote part of Brouwer’s own cl.ear
formulation, verbatim: ‘Suppose that an intuitionist mathematical
construction has been carefully described by means of words, and th;n,
the introspective character of the mathematicz}l cons_truction t?emg
ignored for a moment, its linguistic description is con§1dered by 1t§elf
and s itted to a linguistic application of a principle of classical
logic.EIs it then always possible to perform a languageless ma.thc.a-
matical construction finding its expression in the logico-linguistic

{ figure in question?

| ¢After a careful examination one answers the question in the
i affirmative (if one allows for the inevitable inadequacy of la_ng'uage as
|a mode of description) as far as the principles of contradiction and
\syllogism are concerned; but in the negative (except in special casgs)
'with regard to the principle of excluded third, so lhut_ the latter prin-
ciple, as an instrument for discovering new mathematical truths must
be rejected.’ . '

We shall presently consider some mathematical constructions, the
examination of which led Brouwer and his followers to reject the law
of excluded middle and certain other principles of reasoning for
infinite sets of objects. The same rejection we have found in.thc
original limitation of concrete metamathematics by t_he formu!nst.s,
who however admit the formal application of these principles within
the formalized theories of classical mathematics. This way of saving
classical mathematics is not open to the intuitionists since it is in
conflict with their conception of mathematics as languageless con-
struction. oy _

The limitation of mathematics to the finite methods of formalist
metamathematics—whether these be applied to objects of ordinary

»
!
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percepti.on or of intuition—would be a crippling bl
of classical mathematics. But, and this i I:ll:e 'u;itsct)lt.‘ui(x:ltturie-=
tionism, there is a mathematics of th which while
m the perceptually and intuitively €émpty notion of actual pre-
existing 1nﬁnite totalities, constitutes a firm, intuitive foundatioxi of a
new analysis and opens a field of development which ‘in several places
far excpeds the frontiers of classical mathematics. . . .’
. 'I:hlS' field of a new autonomous mathematics of the potential
infinite is 9pcncd by “the second act of intuitionism which recognizes
the possibility of generating new mathematical entities: first in the
form of infinitely proceeding sequences p,, P2, ... whose terms are
chosgn more or less freely from mathematical entities previously
acqu{rcd. in such a way that the freedom of choice existing perhaps for
the (ll‘{il element 2y may be subjected to a lasting restriction at some
follo'wlmg Py, and again and again to sharper lasting restrictions or even
abol,tlon at further subsequent p,’s, while all these restricting inter-
ventions, as well as the choice of the p,’s themselves, at any stage may
be rpade to depend on future mathematical experiences of the creating
subject; secondly in the form of mathematical species, i.e. properties
supposable for mathematical entities previously acquired, and satisfyin
the condition that, (' they hold for a certain mathemati’cal entity theg
also hold for all mathematical entities which have been defined ’to bz
equal to it, relutions of equality having to be symmetric, reflexive and
transitive; mathematical entities previously acquired f,or which the
property holds are called elements of the species.’ e ¢

As we shall see in more detail, intuitionist mathematics differs
gx;eatly from classical, whether as practised ‘naively’, as supported
by a loglolst substructure, or as safeguarded by forr’nalization Its
programme is formulated simply enough, even if its execution in.vol-
ves difficult, or at least very unfamiliar, procedures and concepts and
even If the nature of intuitionist construction may not be prima facie
clear to the non-intuitionist. It is to make mathematical constructions
in the medium of pure intuition and then to communicate them to
others as clearly as possible so that they can repeat them. ¢

Not every mathematical construction is of equal interest and
importance. But there is never much doubt as to which constructions
Are important, since the motives for finding constructions arise, as in
non ll\lllllllOIllSt mathematics, from the curiosity of pure n’lathe-
maticians and the needs of those who employ mathematics for other
purposes/ The programme of the intuitionist is to practise intuitionis
mathematics, i.e. to create or construct mathematical objects_si
only constructed objects have mathematical existence. It is not to
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show the legitimacy of these constructions by either logic or formali-
zation. For they are legitimate in themselves, they are self-validating.
Y
2. Intuitionist mathematics
To the intuitionist mathematics is the construction of entities in
pure intuition, not the promise of such a construction or the enquiry
whether it is logically possible. o1 ¢

The classical mathematician, the logicist and formalist allow as
legitimate statements to the effect that ‘there exists’ a number with
certain properties although so far no method for constructing this
number is known. Such statements—pure existence-theorems—the
intuitionist does not allow into his mathematics. He is consequently
quite unworried if one finds it odd that a mathematical theorem show-
ing the actual constructibility of some number should only become
true after it has been (by his methods) proven. There is no oddity in it
to him nor should there be to anybody who understands the intuitionist
position, for which ‘mathematical existence’ means the same as
“actual constructibility’. What is to count as actual constructibility
is indeed never quite precisely defined in general terms, but—the
intuitionist asserts—it is made clear in practice. ‘'

In explaining some of the elementary ideas of intuitionist mathe-
matics—which is all that can be attempted here—I shall be following
closely the exposition of Heyting’s Intuitionism—An Introduction.
Heyting leads his reader very much further by explaining the intui-
tionist approach to special topics of advanced mathematics, such as the
ty;i‘e\s. of algebraic fields and the theory of measure and integration. -
~ Intuitionist mathematics starts, then, with thenotion-of anabstract

‘entity and of the sequence of such entities. It starts in other words
with the sequence of natural numbers. There is no need to formulate
a deductive system of elementary arithmetic—for such formulation
would be adequate only if it formulated what is self-evident without
it. It confers neither self-evidence nor security. It only, at best, reflects
it linguistically. For the intuitionist Peano’s axioms (see Appendix A)
merely formulate self-evident results of the process of generating the
natural numbers. Osr

The difference between classical mathematics (equally in its ‘naive’
and in its logicized or formalized form) and the intuitionist shows
itself very clearly when it comes to defining real numbers. In classical
mathematics the notion of a real number can be defined in terms of a

so-called Cauchy sequence of rational numbers. A classical Cauchy
sequence is defined as follows: ay, az, a3, . .. or, briefly, {a,} or a,
where every term is a rational number, is a Cauchy sequence if for
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every natural number k (and therefore for every fraction, however
small, 1/k) there exists a natural number n=n(k) such that, for every
natural number p,|a,,,—a,| <1/k. *"

Roughly speaking this means that if we consider any fraction 1/k
there always exists a term, say the sth, such that on subtraction of it
from any of its successors, the absolute value of the difference is
smaller than 1/k. (The absolute value of a non-negative number is this
number itself, the absolute value of a negative number is that number
which results from changing its minus sign into a plus sign.) The
absolute value of the difference of pairs of rational numbers thus
becomes smaller as we choose them from ‘later’ members of the
sequence. A

The definition of the notion of an intuitionist Cauchy sequence
can be formulated in almost the same words. The only difference
consists in replacing the phrase ‘there exists’ by the phrase  there can
effectively be found' or ‘there can effectively be constructed’. It is
worthwhile to attend to the difference of meaning between these two
phrases sinoe It leads to the core of intuitionist mathematics. *s-

Heyting brings it out by means of the following example. Consider
the following definitions of classical Cauchy sequences. The first
sequence {(a,) In: 2/1, 2/2, 2/3, . . . or {2/n}. In this series each compo-
nent can be effectively constructed, e.g. the thousandth member is
2/1000, Cansider now a second sequence {b,} defined as follows: if
the nth digit after the decimal point in the decimal expansion of
w=31415 , . Is the 9 of the first sequence 0123456789 in this expan-
sion, b= |, in every other case b,=2/n=a,. Y

Sinee (he sequence {b,} differs from {a,} in at most one term, it is a
Cauchy sequence in the classical sense. But since we do not know of
any eonstruction which would show whether or not the critical term
oceurs in {b,}—whether a sequence 0123456789 occurs in m—we
have no right to assert that {b,} is a Cauchy sequence in the intuitionist
sense, An intuitionist Cauchy sequence, which like {a,} must be
conatructible, is also called a  (real) number generator’. It is clear that
the Intuitionist cannot allow the idea of all number-generators into his
mathematics—even if it could be shown to lead to no inconsistency
in a given formal system. « e,

The identification of the existence with the actual constructibility of
number-generators must lead to a thorough modification of the classi-
cal notion of the equality and difference of two real numbers. Heyting
defines two equality-relations between real number generators, namely
‘identity’ and (the more important relation of) ‘coincidence’. Two
number generators {a,} and {b,} are identical—in symbols a = b—if for
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every n, a,=b,. They coincide—in symbols a=b—if for every k we
can find an integer n=n(k) such that |a,,,— b, ,| <1/k for every p.

That we cannot find the required n=n(k) for every k, does not
entitle us to say that a and b do not coincide: for an intuitionist
negation, just as an intuitionist affirmation, must be based on a con-
struction—not on the absence of a construction. Only if a=b is
contradictory, i.e. ‘only if we can effect a construction which deduces a
contradiction from the supposition that a=b’, are we entitled to assert
that @ and b do not coincide, i.e. a# b.

It might be thought that proving in turn that a# b is contradictory
(impossible) is ipso facto a proof that a=b. As a matter of fact it is a
theorem of intuitionist mathematics that the contradictoriness
(impossibility) of a# b does amount to a=b.! But—and this is a very
mportant feature of intuitionist mathematics—*a proof of the impos-
sibility of the impossibility of a property is not in every case a proof
of the property itself’. In other words if we write ‘—’ for ‘is con-
tradictory’ or ‘is impossible’~—in the sense in which this notion must
be backed by constructive proof——and ‘p’ for any mathematical affirma-
tion (which is not the affirmation of an impossibility!), then —— p
does not as in classical logic in general imply p. The following example,
which shows that this principle is not valid in intuitionist logic, has
been given by Brouwer and is also found in Heyting’s recent book.

‘I write the decimal expansion of # and under it the decimal

fraction p=0-333 ..., which I break off as soon as a sequence of"

digits 0123456789 has appeared in =. If the 9 of the first sequence
0123456789 in = is the kth digit after the decimal point,
p=10%k—1/3.10%¥. Now suppose that p could not be rational; then
p=10%—1/3.10% would be impossible and no sequence could appear
in 7r; but then p=4%, which is also impossible. The assumption that p
cannot be rational has led to a contradiction; yet we have no right
to assert that p is rational, for this would mean that we could calcu-

late integers p and g so that p=£; this evidently requires that we

can either indicate a sequence 0123456789 in 7 or demonstrate that
no such sequence can appear.’

If two number-generators do not coincide (i.e. if a#b) a stronger
inequality relation may hold between them. This is the relation of
apartness. That ‘a lies apart from b’—in symbols a # b—means that
‘n and k can be found such that |a,,— b, ,| 2> 1/k for every p'. It is
evident that whereas a # b entails in general that a# b, the converse

/is not true. To the classical mathematician a mathematics which

1 For the proof see Heyting, op. cit., p. 17.
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distinguishes between non-coincidence and apartness in this way
would very likely seem unnecessarily complicated and prolix. But this
prolixity may be due to mere unfamiliarity. Just as, in philosophy,
apparently lucid writers are sometimes confused thinkers, so classical
mathematicians may for all their apparent lucidity be fundamentally
unclear.(Indeed no antinomies have so far been discovered in intui-
tionist mathematics.)

The fundamental operations with real number-generators can be
explained in a perfectly straightforward manner. But it must be noted
that a real number-generator is not a real number. In classical mathe-
matics one might, having defined a certain number-generator, pro-
ceed to define a corresponding real number as * the set of all number-
generators which coincide with the given number-generator’. But the
phrase ‘the set of all . . .” does not here refer to a constructible entity
and has to be given a new intuitionist content. Indeed to the classical
notion of a set there correspond two intuitionist notions, that of a
spread and that of a species—a spread being defined by a common
mode of generating its (constructible) elements, and a species being
defined by a characteristic property which can be assigned to mathe-
matical entities, which have been or could have been constructed
before defining the species.

In defining a spread the first step consists in conceiving the very
general notion of an infinitely proceeding sequence, i.e. a sequence
which can be continued ad infinitum no matter how the components of
the sequence are determined, whether by law, free choice or what you
will. Of such sequences the above defined Cauchy sequences or
number-generators are special cases. The intuition of them, and the
insight which reveals their mathematical usefulness is—as we have
seen (section 1)—claimed to be one of the basic ‘acts’ of intuitionism,

To the intuitionist the continuum of real numbers is not the
completed totality of dimensionless points on a line, but rather the
‘possibility of a gradual determination of points ’—points describable
in terms of the notions of infinitely proceeding sequence and of spread.
A spread M is defined by two laws which Heyting ! whose definitions
I am almost literally repeating calls ‘ spread-law A M> and ‘ complemen-
tary law I'y,. 4

A spread law is a rule A which divides the finite sequences of
natural numbers into admissible and inadmissible sequences according
to the following four prescriptions, namely

(i) By the rule 4 it can be decided for every natural number k.
whether it is a one-member admissible sequence or not.

1 Op. cit., pp. 34 ff.
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(A one-member sequence consists of one natural number, and an
n-member sequence of n such numbers. The sequence ay, az, as 18
called an immediate descendant of the sequence ay, a; and a, a an
immediate ascendant of a;, a,, a3. And the same terminology is used
in the general case of ay, @y, . . . , @n, Apy1and ay, az, . . o a,,..) _

(ii) Every admissible sgluence ai, azy . .. 5 0y, a‘,;“ is an immediate

ndant of an admissible sequence aj, az, . . . , dn-
df:S(Zeizii) If an admissible sequence aj, . . . , a, is given, the rule A al}ows
us to decide for every natural number k whether ay, . . ., a,, k is an
missible sequence or not.
ad (iv) To ar?y admissible sequence ay, ..., a, at lgast one ngtgral
number % can be found such that ay,...,a,, k is an admissible
ce. .
seq"lf?lllle 3omplementary law I'y of a spread M assi gns a definite mathe-
matical entity to any finite sequence which is admissible according to
d law of M. . o

the (SZI:)rr?;der now an infinitely proceeding sequence, and subjcc_t 1? to
the restriction that, for every n, ay, az, . .., @, n"msl be gn‘a‘.lmlssnblc
sequence in accordance with a spread law Aps, _.Such an infinitely pro-
ceeding sequence—briefly ips-—is no longer a free ips; hlllt an u.dn'usl-
sible ips (admissible by /). The complementary law assigns to each
admissible sequence ay; ay, az; ay, az, ay; . . . & mathematical cl‘mtyr- -
it assigns, say, by to ay; byto ay, azy ... bytoay, ay, .. oyl Fach of
these infinitely proceeding sequences of assigned entities such as ‘
by, by, bs, . . ., b, is called an element of the spread M' with b, u‘s its
nth component. Two elements of spreads are eg}lttl I thelr nth com-
ponents are equal; and two spreads are equal if to every element of
one of them, an equal element of the other can be found,

If we understand the notion of spread we can u.ndcrsland the
intuitionist notion of the continuum as a possibility of certain ucl‘uul
constructions. Let us—closely following Heyting’s exposition ns before
—consider an enumeration of rational numbers: iy P2y oo (l.e, wo
assign to every natural number 1, 2, 3, ... —after its construction
a rational number, in a manner which guarantees that no rational
number is left out). ‘ 7

We now define the spread M, which represents the Intultionist
continuum, as follows: its spread-law A, determines that every natur “l,
number shall form an admissible one-member sequence; and i
ai,...,a,is an admissible sequence, then ay, az, .. ., @y, tly ) I8 40

admissible sequence if and only if |r, —r,, | <5 (Pays Payyy W1 the
rational numbers which, in our enumeration of rational numbers, have
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the indices a, and a,,, respectively). The complementary law Iy
assigns to every admissible sequence the rational number Tay i

I’y thus generates infinitely proceeding sequences of rational
numbers. Every such ips is an element of M and a real number-
generator. Indeed, to any real number-generator c, an element m of
M can be found, such that c=m. It is worth emphasizing again that
nowhere in all this chain of definitions have we assumed an actually
given infinity or relinquished the principle that only constructible
entities exist.

Just as the notion of a spread does not allow us to assume a com-
pleted infinite totality of mathematical entities—being, as it were, a
set always in the making but never made—so the notion of a species
(a mathematical property) does not allow us to assume actually infinite
sets. Obviously the exclusion of ‘infinite totality’ from mathematics
implies the prohibition of properties of infinite totalities.

A species is a property which mathematical entities can be supposed
to possess. After a species S has been defined, any mathematical entity
which has been or might have been defined before S was defined, and
satisfies the condition S, is a member of the species S.! For example,
the property of coinciding with a real number-generator is the species
‘real number’,

It is important to emphasize with Heyting that the vicious-circle-
antinomy (of the set of all sets which do not contain themselves as
elements) cannot arise in intuitionist mathematics. For the intuitionist

' 80 defines ‘species’ that only entities which are definable independently

of the definition of any given species can be members of that species.

The identification of intuitionist existence with actual constructi-
bility also accqunts for fundamental differences between the classical
theory of sets or classes on the one hand and the intuitionist theory of
species on the other. Thus whereas ‘a € S° means that a is an element
of S—if a is definable independently of S—‘a ¢ S° means that it is
imgpossible for a to be a member of S, in other words that the assump-
tion a € S leads to a contradiction. Again if T is a subspecies of S
(every member of T being a member of S) S— T is not the species of
those members of S which are not members of 7'but of those members
of S which cannot possibly be members of 7. In classical set theory
‘TU (S—T)’ means the class of all entities which are members of
T or of S— T or both and this class is equal to S. In view of the stronger,
constructive, definition of S— T, the species T'U (S — T) may but need
not be equal to S. (In the former case T is called a detachable species
of S.)

1 Heyting, op. cit., p. 37.
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It is clear that the intuitionist theory of cardinal numbers will differ
greatly from the classical theory. Thu_s the requirer_nent of const.r}lc-
tibility and the intuitionist conception of negation, as requiring
together to be backed up by the actual construct}oq ofa contrafhctu_)n,
leads to the denial that a species which is not finite is therqfore .1nﬁmte.
(An ‘infinite species’ is one which has denumerably infinite sub-
species, ‘denumerable’ meaning constructible one-one correspondence
with the species of natural numbers.)

3. Intuitionist logic o
The intuitionist logic is a post factum record of the prmc:plc.‘.s of
reasoning which have been employed in mqthemfitlcal construgtlons.
Whereas the logicist formulates these principles in order to ab}de by
them, the intuitionist admits that future mathcx:nat:cal construc'tlopsl——-—
a notion which to him is L}nproblcmntlc—-mlght emboc.iy_ principles
so far unformulated and unforeseen. thrc.us thg lc_)glc‘lst Justlﬁgs
his mathematics by an appeal to logic, the .mtmtlomst justifies his
i an appeal to mathematical constructions, .
toe %?g' intuitri’gnist is not concerned with logic in gencrql 'b'ut only with
the logic of mathematics, f.e. with 'mmhemul.lcul ‘Iognc in the sense
not of a mathematized general logic, put of a formulation of .the
principles employed in the activity ol_ mathematical construction.
Although intuitionists have produced formal systems, which can be
made and have been made objects of metamathematical investigation,
these systems are regarded by them as linguistic by-products of 'the
“essentially languageless’ activity of mathematics; and as being mainly
ogical value. ‘
o p;;l;ri ;; purely formal point of view—that is to say apart from any
intended interpretation of the symbols, formulae and tramformuu?n
rules—intuitionist logic appears as a subsystem of the classieal logic.
This is particularly obvious in the case of certain formal systems which
have been constructed for the purpose inter alia of separating Inlul-_
tionist principles and rules of inference from the wider class of
principles and rules which have been adopted by classical and
-intuitionist logicians.! : i
nong;xet;’ intuitionigst proposition p, whether or not Phc (intuitionist)
negation occurs in it, is the record of a constrqctxon. As Hoytlng
in effect puts it, it says: ‘I have effected a construction 4 in my mind,
An intuitionist negation — p is also the record of a construction, and

1 See for example the formal system of Kleeqe’s Metamathematics, §§j 19 21.
where intuitionistically valid principles, rule_s of mfeljence and proofs are clearly
distinguished from those that are only classically valid.
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thus really an affirmation. It says: ‘I have effected in my mind a
construction B which deduces a contradiction from the supposition
that the construction A4 were brought to an end.” The proposition
‘I have not effected a construction . ..’ is of no interest to either the
intuitionist or the classical mathematician. But whereas the classical
mathematician admits ‘there exists a mathematical construction. . .’,
even if nobody has so far been able to effect it, such a proposition could
from the intuitionist point of view only be an empty promise—perhaps
an incitement to research, but not a piece of mathematics.

Considering the intuitionist meaning of p and — p we can see
at once that if, with the intuitionist, we are to regard mathematics as
the science of intuitive constructions then, taking ‘—* in its required
meaning, the proposition (p or — p) is not a universally valid principle
of the logic of mathematics. By the meaning of the various intuitionist
symbols and by the examples of the previous section we see that if
we adopt the conception and programme of intuitionist mathematics
there is nothing at all strange in intuitionist logic. In what follows we
shall briefly consider the vocabulary and some theorems of intuitionist
logic without attempting a rigid systematization such as would be,
in any case, foreign to its spirit.

P Aq(p and g) can be asserted if, and only if, both can be asserted;
pVvq (porg)if, and only if, p or g or both can be asserted. The mean-
ing of ‘— p’ has been explained already. It is worth noting here that
even the strong negation of intuitionist logic has been rejected by some
intuitionists as too weak—the reason being that proof of the impossi-
bility of a construction does not seem to them to amount to an actual
construction which according to a more radical programme, is alone
mathematical. The radical intuitionist requires a completely negation-
less mathematics and logic. He seems to agree with Goethe’s Faust
that ‘a perfect contradiction remains as mysterious to wise men as it

. does to fools’.1

The intuitionist implication p — g is not a truth-function. Hey-
ting interprets it thus: p—g can be asserted if, and only if, we
possess a construction W which joined to any construction proving
P (supposing that the latter be effected) would automatically effect a

_ construction proving g¢. Or, as he puts it more concisely, a proof of D,

together with W, would form a proof of g. We may now put down
some intuitionist theorems and non-theorems placing the usual
assertion sign / in front of the former and * in front of the latter.
Reflection and the meaning of the symbols should ultimately justify the
distinction.

1 For details of this view and references see Heyting, op. cit.
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(i) /‘p—> =D

¥ 9 p—>p
G #A@—q9)—>(—g—>-p)
*(mg—>-p)—>P—9)
(i) Aap—>=—1——Pp
/‘—1—1—|P->“1P

(In other words, the assertion of the impossibility of p is eguivalc?n-t .to
the assertion of the impossibility of the impossibility of the zmposszblh ty
of p. Three intuitionist negations can always be contracted into one.)

(iv) *pv-—p

F=a=py-p) N
™) A=Y@+ pAaq

* = (PAQ =+ pY g

In Heyting’s formal system ¢ -+ (p-+¢) is an axiom and he
gives reasons ! why he considers it to be intuitively clear. We may qb-
serve at this point that at least one intuitionist or near-intuitionist
logician denies intuitive clarity to this proposition, Such disagreement
about the nature of mathematical intuition Is philosophically impor-
tant and will occupy us in the next chapter,

In developing the usual theory of quantification It ls, we have seen,
a useful heuristic consideration to regard the universal quantifier as
a kind of conjunction—and the existential quantifier as a kind of

_alternation-sign. If the members of the conjunction or alternation are

finite in number the quantifiers are merely abbreviative devices for the
formulation of truth-functional propositions, If' the transition to
infinite conjunctions and alternations is made, the analogy between
universally or existentially quantified propositions on the one hand
and conjunctions or alternations on the other, though helpful In some
cases, may be very misleading. An ‘infinite conjunction’ or an ‘Infinite
alternation’ are even in the usual theory quite different from a finite
conjunction or finite alternation. (See p. 48.)

In developing the intuitionist theory of quantification the heurlstic
derivation of the principles of quantification from the propositional
calculus must be used with even greater care. It must be constantly
checked against the principle that mathematical existence Is from the
intuitionist point of view actual constructibility; and agalnat the
particular notions of infinitely proceeding sequences and of spreads,
which two notions embody the intuitionist conception of potential

1 Op. cit. p. 102,
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infinity. We may again set down the meaning of some of the intui-
tionist key terms and some theorems and non-theorems.

If P(x) is a predicate of one variable ranging over a certain mathe-
matical species ¢ then

‘(%) P(x)’ means that we possess a general method of construction
wh(ich, if any element a of « is chosen, yields the construction P(a),
an

‘(3x) P(x)’ means that for some particular element a of « P(a) has
actually been constructed. By these definitions the following formulae
show themselves as theorems or non-theorems respectively.

i) /A (x) P(x) > — @x) = P(x)
* — (@x) = P(x) — (x) P(x)
(vii) #(@x) P(x) > — (x) = P(x)
* — (x) = P(x) — (3x) P(x)
(viii) #@x) = P(x) —> = (x) P(x)
* — (x) P(x) > (3x) - P(x)
@ix) A (x) 2= P(x)— — 3x) o P(x)
®) /A= @Ex) = P(x)— (x) == P(x)

These sections on intuitionist logic and intuitionist mathematics
are of course schematic and incomplete. They can at best convey some
of the spirit of intuitionist mathematics. Those interested in making
closer contact with its substance are advised to master Heyting’s work
and refer to its (extensive) bibliography. As to the relation between
formalism and intuitionism from the point of view of logic and

mathematig:s readers will find most of the available results in Kleene’s
Metamathematics.

VII

MATHEMATICS AS THE ACTIVITY OF
INTUITIVE CONSTRUCTIONS: CRITICISM

IN accordance with the plan of this essay we must now examine the
intuitionist philosophy of pure and of applied mathematics, and its
distinctive theory of mathematical infinity. To the problem of the
nature of applied mathematics modern intuitionists have, however,
given even less attention than have either the logicists or the forma-
lists. Indeed their philosophy of applied mathematics is something we
have largely to conjecture—the basis of the conjecture being chiefly,
(i) certain remarks of Brouwer and Weyl (of Brouwer on the affinity
of his philosophy to Kant's, of Weyl on the relation between intui-
tionist mathematics and the natural sciences) and (ii) the reasonable
presumption that the intuitionist philosophy of applied mathematics
and its philosophy of pure mathematics are consistent with each other.
These theories will be treated in the order indicated,

A concluding section will note some indications of new develop-
ments springing mainly from a fruitful clash between the formalist and
the intuitionist points of view. This section, though expository in
character, is best placed at the end of our discussion of formalism
and intuitionism as separate points of view.

1. Mathematical theorems as reports on intuitive constructiony

We have seen that the formalist metamathematician and the
intuitionist mathematician make the same claim, that their statements
are not statements of logic. They are about a subject matter which s
first produced (constructed) and then described. Consequently they
are not ‘analytic’ but ‘synthetic’. The constructions of the formalist
are made, or can be made, in the physical world; those of the Intui-
tionist in the mind, a medium which is different from sense-perception
and open to introspection only. The formalist’s statements are ayn-
thetic and empirical, the intuitionist’s synthetic and non-empirioal,
i.e. a priori.
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