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1. INTRODUCTION

Among the many factors that have prompted and sustained inquiry in the
diverse fields of empirical science, two enduring human concerns have provided
the principal stimulus for man’s scientific efforts.

One of them is of a practical nature. Man wants not only to survive in the
world, but also to improve his strategic position in it. This makes it important
for him to find reliable ways of foreseeing changes in his environment and, if
possible, controlling them tohis advantage. The formulation of laws and theories
that permit the prediction of future occurrences are among the proudest
achievements of empirical science; and the extent to which they answer man’s
quest for foresight and control is indicated by the vast scope of their practical
applications, which range from astronomic predictions to meteorological,
demographic,and economic forecasts,and from physico-chemical and biological
technology to psychological and social control.

The second basic motive for man’s scientific quest is independent of such
practical concerns; it lies in his sheer intellectual curiosity, in his deep and per-
sistent desire to know and to understand himself and his world. So strong, indeed,
is this urge that in the absence of more reliable knowledge, myths are often
invoked to fill the gap. But in time, many such myths give way to scientific
conceptions of the what and the why of empirical phenomena.

What is the nature of the explanations empirical science can provide: What
understanding of empirical phenomena do they convey? This essay attempts to
shed light on these questions by examining in some detail the form and the
function of some of the major types of explanatory account that have been
advanced in different areas of empirical science.

The terms ‘empirical science’ and ‘scientific explanation’ will here be under-
stood to refer to the entire field of empirical inquiry, including the natural and
the social sciences as well as historical research. This broad use of the two terms
is not intended to prejudge the question of the logical and methodological

This essay has not previously appeared in print. It includes, however, some passages from the
following articles:

“Deductive-Nomological vs. Statistical Explar
of Science, Vol. III, edited by Herbert Feigl and Gr
Press, Minneapolis. Copyright 1962 by the University
by permission of the publisher.

“Explanation in Science and in History,” R. Colodny

i the Philosophy
y of Minnesota
rta.—Excerpts reprinted

1. s of Science and Philosophy,
Pittsburgh: University of Pittsburgh Press, 1962; pp. 9-33. Excerpts reprinted by permission
of the publisher.

“Rational Action,” from Proceedings and Addresses of the American Philosophical Asso-
ciation, Vol. 35 (1961-62), pp. 5-23. Yellow Springs, Ohio: The Antioch Press, 1962. Ex-
cerpts reprinted by permission of the American Philosophical Association.
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similarities and differences between different areas of empirical inquiry, except
for indicating that the procedures used in those different areas will be taken to
conform to certain basic standards of objectivity. According to these standards,
hypotheses and theories—including those invoked for explanatory purposes—
must be capable of test by reference to publicly ascertainable evidence, and
their acceptance is always subject to the proviso that they may have to be
abandoned if adverse evidence or more adequate hypotheses or theories should
be found.

A scientific explanation may be regarded as an answer to a why-question,
such as: “Why do the planets move in elliptical orbits with the sun at one focus 2,
“Why does the moon look much larger when it is near the horizon than when
it is high in the sky?’, “Why did the television apparatus on Ranger VI fail ",
“Why are children of blue-eyed parents always blue-eyed?’, “Why did Hitler
go to war against Russiaz’. There are other modes of formulating what we
will call explanation-secking questions: we might ask what caused the failure
of the television apparatus on Ranger VI, or what led Hitler to his fateful
decision. But a why-question always provides an adequate, if perhaps some-
times awkward, standard phrasing.

Sometimes the subject matter of an explanation, or the explanandum, is
indicated by a noun, as when we ask for an explanation of the aurora borealis,
It is important to realize that this kind of phrasing has a clear meaning only in
so far as it can be restated in terms of why-questions. Thus, in the context of
an explanation, the aurora borealis must be taken to be characterized by certain
distinctive general features, cach of them describable by a that-clause, for
example: that it is normally found only in fairly high northern latitudes; that
it occurs intermittently; that sunspot maxima, with their eleven-year cycle,
are regularly accompanied by maxima in the frequency and brightness of
aurora borealis displays; that an aurora shows characteristic spectral lines of rare
atmospheric gases, and so on. And to ask for an explanation of the aurora borealis
is to request an explanation of why auroral displays occur in the fashion indicated
and why they have physical characteristics such as those just mentioned. Indeed,
requests for an explanation of the aurora borealis, of the tides, of solar eclipses
in general or of some individual solar eclipse in particular, orof a given influenza
epidemic, and the like have a clear meaning only if it is understood what
aspects of the phenomenon in question are to be explained; and in that case the
explanatory problem can again be expressed in the form “Why is it the case
that p2", where the place of ‘p’ is occupied by an empirical statement specifying
the explanandum. Questions of this type will be called explanation-secking
why-questions.

Not all why-questions call for explanations, however. Some of them solicit
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reasons in support of an assertion. Thus, statements such as ‘Hurricane Delila
will veer out into the Atlantic’, ‘He must have died of a heart attack’, ‘Plato
would have disliked Stravinsky’s music’ might be met with the question “Why
should this be so?’, which secks to elicit, not an explanation, but evidence or
grounds or reasons in support of the given assertion. Questions of this kind
will be called reason-secking or epistemic. To put them into the form “Why
should it be the case that p2’ is misleading; their intent is more adequately
conveyed by a phrasing such as “Why should it be believed that p2’ or “What
reasons are there for believing that p?’.

An explanation-secking why-question normally presupposes that the
statement occupying the place of ‘p’ is true, and asks for an explanation of the
presumptive fact, event, or state of affairs described by it; an epistemic why-
question does not presuppose the truth of the corresponding statement, but on
the contrary, solicits reasons for believing it true. An appropriate answer to the
former will therefore offer an explanation of a presumptive empirical phenom-
enon; whereas an appropriate answer to the latter will offer validating or
justifying grounds in support of a statement. Despite these differences in pre-
suppositions and objectives, there are also important connections between the
two kinds of question; in particular, as will be argued later (in sections 2.4
and 3.5), any adequate answer to an explanation-secking question “Why is it
the case that p2” must also provide a potential answer to the corresponding
epistemic question “What grounds are there for believing that p?’

In the discussion that follows, I will first distinguish two basic types of
scientific explanation, deductive-nomological and inductive-statistical, each
characterized by a schematic “model”; and I will examine certain logical
and methodological questions to which these models give rise, including a
number of objections that have been raised against them. Following this, I
propose to assess the significance and adequacy of the basic conceptions in-
herent in those models by exploring the extent to which they can serve to
analyze the structure and to illuminate the rationale of different kinds of
explanation offered in empirical science.

2. DEDUCTIVE-NOMOLOGICAL EXPLANATION

21. FUNDAMENTALS: D-N EXPLANATION AND THE CONCEPT OF LAW. In his
book, How We Think,! John Dewey describes a phenomenon he observed one
day while washing dishes. Having removed some glass tumblers from the hot
suds and placed them upside down on a plate, he noticed that soap bubbles
emerged from under the tumbler’s rims, grew for a while, came to a standstill

1. Dewey (1910), chap. VI
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and finally receded into the tumblers. Why did this happen: Dewey outlines
an explanation to this effect: Transferring the tumblers to the plate, he had
trapped cool air in them; that air was gradually warmed by the glass, which
initially had the temperature of the hot suds. This led to an increase in the
volume of the trapped air, and thus to an expansion of the soap film that had
formed between the plate and the tumblers’ rims. But gradually, the glass
cooled off, and so did the air inside, and as a result, the soap bubbles receded.

The explanation here outlined may be regarded as an argument to the
_effect that the phenomenon to be explained, the explanandum phenomenon, was
to be expected in virtue of certain explanatory facts. These fall into two groups:
(i) particular facts and (ii) uniformitics expressible by means of general laws.
The first group includes facts such as these: the tumblers had been immersed
in soap suds of a temperature considerably higher than that of the surrounding
air; they were put, upside down, on a plate on which a puddle of soapy water
had formed that provided a connecting soap film, and so on. The second group
of explanatory facts would be expressed by the gas laws and by various other
laws concerning the exchange of heat between bodies of different temper-
ature, the elastic behavior of soap bubbles, and so on. While some of these
laws are only hinted at by such phrasings as ‘the warming of the trapped air
led to an increase in its pressure’, and others are not referred to even in this
oblique fashion, they are clearly presupposed in the claim that certain stages
in the process yielded others as their results. If we imagine the various explicit
or tacit explanatory assumptions to be fully stated, then the explanation may
be conceived as a deductive argument of the form

el e
Explanans S
(D-N) LyL....L

E Explanandum-sentence

Here, C;, C,, ..., C, are sentences describing the particular facts invoked;
Ly, L,,. .., L, arc the general laws on which the explanation rests. Jointly these
sentences will be said to form the explanans S, where S may be thought of
alternatively as the set of the explanatory sentences or as their conjunction.
The conclusion E of the argument is a sentence describing the explanandum-
phenomenon; I will call E the explanandum-sentence or explanandum-
statement; the word ‘explanandum’ alone will be used to refer either to the
explanandum-phenomenon or to the explanandum-sentence: the context will
show which is meant.

The kind of explanation whose logical structure is suggested by the schema
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(D-N) will be called deductive-nomological explanation or D-N explanation for
short; for it effects a deductive subsumption of the explanandum under princi-
ples that have the character of general laws. Thus a D-N explanation answers
the question ‘Why did the explanandum-phenomenon occur?’ by showing that
the phenomenon resulted from certain particular circumstances, specified in
Gy, Cy, . .., Cp,inaccordance with thelaws Ly, Lo, . . ., L,. By pointing this out,
the argument shows that, given the particular circumstances and the laws in
question, the occurrence of the phenomenon was to be expected; and it is in this
sense that the explanation enables us to understand why the phenomenon oc-
curred.?

In a D-N explanation, then, the explanandum is a logical consequence of
the explanans. Furthermore, reliance on general laws is essential to a D-N
explanation; it is in virtue of such laws that the particular facts cited in the
explanans possess explanatory relevance to the explanandum phenomenon.
Thus, in the case of Dewey’s soap bubbles, the gradual warming of the cool air
trapped under the hot tumblers would constitute a mere accidental antecedent
rather than an explanatory factor for the growth of the bubbles, if it were not
for the gas laws, which connect the two events. But what if the explanandum
sentence E in an argument of the form (D-N) is a logical consequence of the
sentences Cy, Cy, . .., C, alone: Then, surely, no empirical laws are required
to deduce E from the explanans; and any laws included in the latter are gratui-
tous, dispensable premises. Quite so; but in this case, the argument would not
count as an explanation. For example, the argument:

The soap bubbles first expanded and then receded

The soap bubbles first expanded

2. A general conception of scientific explanation as involving a deductive subsumption
under general laws was espoused, though not always clearly stated, by various thinkers
in the past, and has been advocated by several recent or contemporary writers, among them
N. R. Campbell [(1920), (1921)], who developed the idea in considerable detail. In a text-
book published in 1934, the conception was concisely stated as follows: “*Scientific explan-
ation consists in subsuming under some rule or law which expresses an invariant character
of a group of events, the particular events it is said to explain. Laws themselves may be
explained, and in the same manner, by showing that they are consequences of more com-
prehensive ‘theories.” (Cohen and Nagel 1934, p. 397.) Popper has set forth this construal
of explanation in several of his publications; ¢f. the note at the end of section 3 in Hempel
and Oppenheim (1948). His earliest statement appears in section 12 of his book (1935), of
which his work (1959) is an expanded English version. His book (1962) contains further
observations on scientific explanation. For some additional references to other proponents
of the general idea, see Donagan (1957), footnote 2; Scriven (1959), footnote 3. However,
as will be shown in section 3, deductive subsumption under general laws does not constitute
the only form of scientific explanation.
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though deductively valid, clearly cannot qualify as an explanation of why
the bubbles first expanded. The same remark applies to all other cases of this
kind. A D-N explanation will have to contain, in its explanans, some general
laws that are required for the deduction of the explanandum, i.e. whose deletion
would make the argument invalid.

If the explanans of a given D-N explanation is true, i.e. if the conjunction
of its constituent sentences is true, we will call the explanation true; a true
explanation, of course, has a true explanandum as well. Next, let us call a
D-N explanation more or less strongly supported or confirmed by a given body of
evidence according as its explanans is more or less strongly confirmed by the
given evidence. (One factor to be considered in appraising the empirical
soundness of a given explanation will be the extent to which its explanans is
supported by the total relevant evidence available.) Finally, by a potential D-N
explanation, let us understand any argument that has the character of a D-N
explanation except that the sentences constituting its explanans need not be
true. In a potential D-N explanation, therefore, L;, L, ..., L, will be what
Goodman has called lawlike sentences, i.e. sentences that are like laws except
for possibly being false. Sentences of this kind will also be referred to as #omic
or nomological. We use the notion of a potential explanation, for example,
when we ask whether a novel and as yet untested law or theory would provide
an explanation for some empirical phenomenon; or when we say that the
phlogiston theory, though now discarded, afforded an explanation for certain
aspects of combustion.? Strictly speaking, only true lawlike statements can
count as laws—one would hardly want to speak of false laws of nature. But
for convenience I will occasionally use the term ‘law’ without implying that
the sentence in question is true, as in fact, I have done already in the preceding
sentence.

The characterization of laws as true lawlike sentences raises the important
and intriguing problem of giving a clear characterization of lawlike sentences
without, in turn, using the concept of law. This problem has proved to be
highly recalcitrant, and I will make here only a few observations on certain
aspects of it that are relevant also to the analysis of scientific explanation.

Lawlike sentences can have many different logical forms. Some paradigms
of nomic sentences, such as ‘All gases expand when heated under constant
pressure’ may be construed as having the simple universal conditional form
‘(x)(Fx D Gx)’; others involve universal as well as existential generalization,

3. The explanatory role of the phlogiston theory is described in Conant (1951), pp. 164-71.
The concept of potential explanation was introduced in Hempel and Oppenheim (1948),
section 7. The concept of lawlike sentence, in the sense here indicated, is due to Goodman

(1947).
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as does the sentence ‘For every chemical compound there exists a range of
temperatures and pressures at which the compound is liquid’; many of the
lawlike sentences and theoretical principles of the physical sciences assert more
or less complex mathematical relationships between different quantitative
variables.

But lawlike sentences cannot be characterized in terms of their form alone.
For example, not all sentences of the simple universal conditional form just
mentioned are lawlike; hence, even if true, they are not laws. The sentences
‘All members of the Greenbury School Board for.1964 are bald’ and ‘All pears
in this basket are sweet’ illustrate this point. Goodman® has pointed out a
characteristic that distinguishes laws from such nonlaws: The former can,
whereas the latter cannot, sustain counterfactual and subjunctive conditional
statements. Thus the law about the expansion of gases can serve to support
statements such as ‘If the oxygen in this cylinder had been heated (were heated)
under constant pressure then it would have expanded (would expand)’; whereas
the statement about the School Board lends no support at all to the subjunctive
conditional ‘If Robert Crocker were a member of the Greenbury School
Board for 1964 then he would be bald’.

We might add that the two kinds of sentence differ analogously in explan-
atory power. The gas law, in combination with suitable particular data, such
as that the oxygen in the cylinder was heated under constant pressure, can
serve to explain why the volume of the gas increased; but the statement about
the School Board, analogously combined with a statement such as ‘Harry
Smith is a member of the Greenbury School Board for 1964’ cannot explain
why Harry Smith is bald.

But though these observations shed light on the concept of lawlikeness
they afford no satisfactory explication of it; for one of them presupposes an
understanding of counterfactual and of subjunctive conditional statements,
which present notorious philosophical difficulties; the other makes use of the
idea of explanation to clarify the concept of a lawlike statement; and we are

4, Fain (1963), p. 524, strangely claims that “Hempel and Oppenheim failed to consider”
(in their essay, 1948) ‘“‘generalizations that are basically of the form (x) (3y) Pxy”. But in
section 7 of the essay in question, we specifically admitted laws and theories of any of the
quantificational types expressible in the lower functional calculus, and we required that
they be essentially generalized sentences containing “‘one or more quantifiers.” Similarly,
when Scriven speaks of “the deductive model, with its syllogistic form, where no student
of elementary logic could fail to complete the inference, given the premise” (1959, p. 462),
he imposes upon the model an entirely unwarranted oversimplified construal; for the schema
(D-N) clearly allows for the use of highly complex general lawsof the kind specified in the text
above; and where these occur in the explanans, the explanandum cannot, of course, be
deduced by syllogistic methods.

5. Goodman (1955), p. 25; for certain qualifications, ¢f. ibid., p. 118.
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here trying conversely to characterize a certain type of explanation with the
help of concepts which include that of lawlike statement.

Now, our examples of non-lawlike sentences share a characteristic that
might seem to afford a criterion for the distinction we seck to draw; namely,
each of them applies to only a finite number of individual cases or instances.
Must not a general law be conceived as admitting of indefinitely many in-
stances?

Surely a lawlike sentence must not be logically limited to a finite number of
instances: it must not be logically equivalent to a finite conjunction of singular
sentences, or, briefly, it must be of essentially generalized form. Thus, the sentence
‘Every element of the class consisting of the objects a, b, and c has the property
P’ is not lawlike; for it is logically equivalent to the conjunction ‘Pa - Pb - Pc’,
and clearly a sentence of this kind cannot support counterfactual conditionals
or provide explanations.®

But our two earlier nonlawlike generalizations are not ruled out by this
condition: they are not logically equivalent to corresponding finite conjunc-
tions since they do not state specifically who are the members of the School
Board, or what particular pears are in the basket. Should we, then, deny
lawlike status also to any general sentence which—by empirical accident, so to
speak—has only a finite number of instances: This would surely be ill-advised.
Suppose, for example, that from the basic laws of celestial mechanics a general
statement is derived concerning the relative motion of the components of a
double star in the special case where those components are of exactly equal
mass. Is this statement to be termed a law only if it has been established that
there exist at least two (or perhaps more) instances of this special kind of double
star2 Or consider the general statement, derivable from Newton’s laws of
gravitation and of motion, which deals, in a manner similar to Galileo’s law,
with the free fall of physical bodies near the surface of a spherical mass having
the same density as the Earth, but twice its radius. Should this statement not
be called a law unless it had been shown to have several instances—even though
it is a logical consequence of a set of laws with many instances:

6. Insuch references to “‘the form” of a sentence, there lurks another difficulty: that form is
clearly determined only if the sentence is expressed in a formalized language. An English
sentence such as “This object is soluble in water’ may be construed as a singular sentence
of the form ‘Pa’, but alternatively also as a sentence of generalized form stating that if at
any time the object is put into any (sufficiently large) body of water, it will dissolve. (This
will be elaborated further in section 2.3.1.) Our remark about a sentence of the form ‘For all
x, if x is a, b; or ¢, then x has property P’ might be stated more circumspectly by saying
that that kind of sentence is not a law in terms of P; it cannot serve to explain the occur-
rence of Pin any particular case; nor can it support counterfactual or subjunctive conditionals
about particular occurrences of P.
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Besides, there appears to be only an inessential “difference in degree”
between a general statement that happens to have just one instance and another
which happens to have two or some other finite number. But, then, how many
instances would a law be required to have: To insist on some particular finite
number would be arbitrary; and the requirement of an infinite number of
actual instances would raise obvious difficulties. Clearly, the concept of scientific
law cannot reasonably be subjected to any condition concerning the number
of instances, except for the requirement barring logical equivalence with
singular statements.

Besides, we should note that the concept, presupposed in the preceding
discussion, of a “case” or an “instance’” of a general statement is by no means
as clear as it might scem. Consider, for example, general statements of the form,
‘All objects with the property F also have the property G, or briefly ‘All F
are G, It seems natural to accept the criterion that a particular object i is an
instance of such a statement if and only if  has the property F and the property
G, or briefly, if i is both F and G. This would imply that if there are no objects
with the property F at all, the general statement has no instances. Yet, the
statement is logically equivalent with ‘All non-G are non-F’, which, under the
contemplated criterion, may well have instances even if there are no F. Thus,
the general statement, ‘All unicorns feed on clover’ would have no instance,
but its equivalent ‘Anything that does not feed on clover is not a unicorn’
would have many—perhaps infinitely many—instances. An analogous remark
might well be true of the law mentioned carlicr concerning double stars whose
components have equal mass. Hence, the contemplated criterion of instantiation,
which seems quite obvious at first, has the consequence that of two logically
equivalent gencral statements, one may have no instances, the other, infinitely
many. But this makes the criterion unacceptable since such equivalent sentences
express the same law and thus should be instantiated by the same objects.

For laws of the simple kind just considered, the following alternative
definition of instantiation will suffice to assign the same instances to equivalent
statements: an object i is an instance of the statement ‘All F are G if and only
if it is not the case that i is F but not G. However, for laws of more complex
logical form, the concept of instance raises further problems.” But these

7. These difficultics concerning the intuitive idea of instanti erallaw are closely

related to the paradoxes of confirmation set forth in Hempel (1945). The inadequacy of the
initially contemplated intuitive criterion is further illustrated by the following consequence:
The sentence ‘All F are G’ is logically equivalent to ‘Anything that is F but not G is both
Gand not G’;and on the criterion in question, this sentence clearly cannot have anyinstances—
cvenif ‘All Fare G’ is true and is instantiated by infinitely many objects that are both F and G.
Our modified criterion of instantiation avoids this difficulty: the sets of instances, thus construed,

of any two logically equivalent universally quantified sentences in one variable are identical.
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need not be pursued here, for I am not proposing that a law must satisfy certain
minimum conditions concerning the number of its instances.

There is yet another common trait of our non-lawlike generalizations that
seems to hold promise as a criterion for the distinction here under discussion:
they contain terms, such as ‘this basket’ and ‘the Greenbury School Board for
1964’, which directly or indirectly refer to particular objects, persons, or places;
whereas the terms occurring in Newton’s laws or in the gas laws involve no
such reference. In an earlier article on the subject, Oppenheim and I suggested,
therefore, that the constituent predicates of what we called fundamental law-
like sentences must all be such that the specification of their meaning requires
no reference to any one particular object or location.® We noted, however,
that this characterization still is not satisfactory for purposes of explication
because the idea of “the meaning” of a given term is itself far from being clear.

Besides, reference to particular individuals does not always deprive a
general statement of explanatory power, as is illustrated by Galileo’s law for
free fall, whose full formulation makes reference to the carth. Now it is true
that, with qualifications soon to be stated, Galileo’s law may be regarded as
derivable from the laws of Newtonian theory, which have the character of
fundamental lawlike sentences, so that an explanation based on Galileo’s law
can also be effected by means of fundamental laws. But it certainly cannot be
taken for granted that all other laws mentioning particular individuals can
similarly be derived from fundamental laws.

Goodman, in a searching exploration of the concept of law, has argued
that, in contrast to non-lawlike generalizations, lawlike sentences are capable
of being supported by observed instances and hence of being “projected” from
examined to unexamined cases; and he has argued further that the relative
“projectibiltiy” of generalizations is determined primarily by the relative
“entrenchment” of their constituent predicates, i.e. by the extent to which
those predicates have been used in previously projected generalizations.® Thus,
terms, like ‘member of the Greenbury School Board for 1964” and “pear in this
basket” would be disqualified, for the purposes of formulating lawlike sentences,
on the ground that they lack adequate entrenchment.

8. Hempel and Oppenheim (1948), section 6. “Specification of meaning” might be
conceived as effected by definition or perhaps by weaker means, such as Carnap’s reduction
sentences. See Carnap (1938) and, for more details, (1936-37). The distinction thus attempted
between those terms which in some way refer to particular individuals and those which do
not is closely akin to the distinction made by Popper, in section 14 of (1935) and (1959),
between individual concepts, “in the definition of which proper names (or equivalent signs)
are indispensable,” and universal concepts, for which this is not the case.

9. For details, and for further considerations that affect projectibility, see Goodman
(1955), especially chapters III and IV.
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But while Goodman’s criterion thus succeeds in barring from the class of
lawlike sentences such generalizations as our two examples, the class of lawlike
sentences it delimits still seems too inclusive for our purposes. For according
to Goodman, the “entrenchment of a predicate results from the actual pro-
jection not merely of that predicate alone but also of all predicates coextensive
with it. In a sense, not the word itself but the class it selects is what becomes
entrenched . . "1 Hence, replacing a predicate in a lawlike sentence by a
coextensive one should yield a lawlike sentence again. Is this generally the
case? Suppose that the hypothesis h: ‘(x)(PxD Qx)’ is lawlike, but that as a
matter of empirical fact there happen to be just three clements in the class
selected by ‘P’, namely a, b, and ¢. Then ‘Px’ is coextensive with x = a v
x = bv x = ¢.’ Replacement of ‘Px’ by this expression, however, turns  into the
sentence ‘(x)[(x=avx=bvx=c) D Qx|’, which, being logically equivalent
with ‘Qa - Qb - Qc’, is not lawlike on our understanding that a lawlike sentence
must be of essentially generalized form, so as to be able to serve in an explan-
atory role. Our conception of lawlikeness differs at this point from that en-
visaged by Goodman, who introduces the notion principally in an effort
to establish a dividing line between sentences that are confirmable by their
instances and those that are not.!! It may not be necessary to require of the
former that they be of essentially general form, and Goodman does not impose
this requirement on lawlike sentences. For laws, however, that are to function
in an explanatory capacity, the requirement scems to me indispensable.

Though the preceding discussion has not led to a fully satisfactory general
characterization of lawlike sentences and thus of laws, it will, I hope, have
clarified to some extent the sense in which those concepts will be understood
in the present study.'?

The examples we have considered so far illustrate the deductive explanation
of particular occurrences by means of empirical laws. But empirical science
raises the question “Why:” also in regard to the uniformities expressed by
such laws and often answers it, again, by means of a deductive-nomological
explanation, in which the uniformity in question is subsumed under more
inclusive laws or under theoretical principles. For example, the questions of
why freely falling bodies move in accordance with Galileo’s law and why the
motion of the planets exhibit the uniformities expressed by Kepler’s laws are
answered by showing that these laws are but special consequences of the
Newtonian laws of gravitation and of motion. Similarly, the uniformities

10. Goodman (1955), pp. 95-96.

11. On this distinction, see the Postscript to the article ““Studies in the Logic of Confirm~
ation” in this volume.

12. For further discussions of the problems here referred to see Braithwaite (1953), chap.
IX and Nagel (1961), chap. 4.
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expressed by the laws of geometrical optics, such as those of the rectilinear
propagation of light and of reflection and refraction, are accounted for by
subsumption under the principles of wave optics. For brevity, an explanation
of a uniformity expressed by a law will sometimes be elliptically referred to as
an explantion of the law in question.

It should be noted, however, that in the illustrations just mentioned, the
theory invoked does not, strictly speaking, imply the presumptive general laws
to be explained; rather, it implies that those laws hold only within a limited
range, and even there, only approximately. Thus, Newton’s law of gravitation
implies that the acceleration of a freely falling body is not constant, as Galileo’s
law asserts, but undergoes a very slight but steady increase as the body ap-
proaches the ground. But while, strictly speaking, Newton’s law contradicts
Galileo’s, it shows that the latter is almost exactly satisfied in free fall over
short distances. In slightly greater detail, we might say that the Newtonian
theory of gravitation and of motion implies its own laws concerning free
fall under various circumstances. According to one of these, the acceleration
of a small object falling freely toward a homogeneous spherical body varies
inversely as the square of its distance from the center of the sphere, and thus
increases in the course of the fall; and the uniformity expressed by this law is
explained in a strictly deductive sense by the Newtonian theory. But when
conjoined with the assumption that the earth is a homogeneous sphere of
specified mass and radius, the law in question implies that for free fall over short
distances near the surface of the earth, Galileo’s law holds to a high degree of
approximation; in this sense, the theory might be said to provide an approxi-
mative D-N explanation of Galileo’s law.

Again, in the case of planetary motion, the Newtonian theory implies
that since a planet is subject to gravitational attraction not only from the Sun,
but also from the other planets, its orbit will not be exactly elliptical, but will
show certain perturbations. Hence, as Duhem'® noted, Newton’s law of gravi-
tation, far from being an inductive generalization based on Kepler’s laws, is,
strictly speaking, incompatible with them. One of its important credentials
is precisely the fact that it enables the astronomer to compute the deviations
of the planets from the elliptic orbits Kepler had assigned to them.

A similar relation obtains between the principles of wave optics and the
laws of geometrical optics. For example, the former calls for a diffractive
“bending” of light around obstacles—a phenomenon ruled out by the con-

13. See Duhem (1906), pp. 312 ff. Duhem’s remarks on this subject are included in
those excerpts from P. P. Wiener’s translation of Duhem’s work that are reprinted in Feigl
and Brodbeck (1953). The point has recently been re-emphasized by several writers, among
them Popper (1957a), pp. 29-34, and Feyerabend (1962), pp. 46-48.
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ception of light as composed of rays traveling in straight lines. But in analogy
to the preceding illustration, the wave-theoretical account implies that the
laws of rectilinear propagation, of reflection, and of refraction as formulated
in geometrical optics are satisfied to a very high degree of approximation
within a limited range of cases, including those which provided experimental
support for the laws in their original formulation.

In general, an explanation based on theoretical principles will both broaden
and deepen our understanding of the empirical phenomena concerned. It will
achieve an increase in breadth because the theory will usually cover a wider
range of occurrences than do the empirical laws previously established. For
example, Newton’s theory of gravitation and of motion governs free fall not
only on the earth, but also on other celestial bodies; and not only planetary
motions, but also the relative motion of double stars, the orbits of comets and
of artificial satellites, the movements of pendulums, certain aspects of the tides,
and many other phenomena. And a theoretical explanation deepens our under-
standing for at least two reasons. First, it reveals the different regularities ex-
hibited by a variety of phenomena, such as those just mentioned in reference
to Newton’s theory, as manifestations of a few basic laws. Secondly, as we
noted, the generalizations previously accepted as correct statements of empirical
regularities will usually appear as approximations only of certain lawlike
statements implied by the explanatory theory, and to be very nearly satisfied
only within a certain limited range. And in so far as tests of the laws in their
earlier formulation were confined to cases in that range, the theoretical account
also indicates why those laws, though not generally true, should have been
found confirmed.

When a scientific theory is superseded by another in the sense in which
classical mechanics and electrodynamics were superseded by the special theory
of relativity, then the succeeding theory will generally have a wider explanatory
range, including phenomena the earlier theory could not account for; and it
will as a rule provide approximative explanations for the empirical laws implied
by its predecessor. Thus, special relativity theory implies that the laws of the
classical theory are very nearly satisfied in cases involving motion only at
velocities which are small compared to that of light.

The general conception of explanation by deductive subsumption under
general laws or theoretical principles, as it has been outlined in this section,
will be called the deductive nomological-model, or the D-N model of explanation;
the laws invoked in such an explanation will also be referred to, in William
Dray’s suggestive phrase, as covering laws.** Unlike Dray, however, I will not

14, For Dray’s use of the terms ‘covering law’ and ‘covering law model’, see Dray
(1957), and also (1963), p. 106.
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refer to the D-N model as the covering-law model, for I will subsequently
introduce a second basic model of scientific explanation which also relies on
covering laws, but which is not of deductive-nomological form. The term
‘covering-law model’ will then serve to refer to both of those models.

As the schema (D-N) plainly indicates, a deductive-nomological explanation
is not conceived as invoking only one covering law; and our illustrations show
how indeed many different laws may be invoked in explaining one phenomenon.
A purely logical point should be noted here, however. If an explanation is of
the form (D-N), then the laws Ly, Lo, . . ., L, invoked in its explanans logically
imply a law L* which by itself would suffice to explain the explanandumevent
by reference to the particular conditions noted in the sentences C;, C,, . . ., C;.
This law L* is to the effect that whenever conditions of the kind described
in the sentences C;, C,, . . . , C, are realized then an event of the kind described
by the explanandum-sentence occurs.’® Consider an example: A chunk of
ice floats in a large beaker of water at room temperature. Since the ice extends
above the surface, one might expect the water level to rise as the ice melts;
actually, it remainsunchanged. Briefly, this can be explained as follows: Accord-
ing to Archimedes’ principle, a solid body floating in a liquid displaces a volume
of liquid that has the same weight as the body itself. Hence, the chunk of ice has
the same weight as the water displaced by its submerged portion. Since melting
does not change the weight, the ice turns into a mass of water of the same weight,
and hence also of the same volume, as the water initially displaced by its sub-
merged portion; consequently, the water level remains unchanged. The laws
on which this account is based include Archimedes’ principle, a law concerning
the melting of ice at room temperature; the principle of the conservation of
mass; and so on. None of these laws mentions the particular glass of water or
the particular piece of ice with which the explanation is concerned. Hence the
laws imply not only that as this particular piece of ice melts in this particular
glass, the water level remains unchanged, but rather the general statement L*
that under the same kind of circumstance, i.c., when any piece of ice floats
in water in any glass at room temperature, the same kind of phenomenon
will occur, i.e., the water level will remain unchanged. The law L* will usually
be “weaker” than the laws L, L, . . ., L ; i.e., while being logically implied
by the conjunction of those laws, it will not, in general, imply that conjunction.
Thus, in our illustration one of the original explanatory laws applies also to
the floating of a piece of marble on mercury or of a boat on water, whereas
L* deals only with the case of ice floating on water. But clearly, L* in con-
junction with Cy, C,, . .., C, logically implies E and could indeed be used to

15. This was noted already in Hempel (1942), section 2.1.
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explain, in this context, the event described by E. We might therefore refer to
L* as a minimal covering law implicit in a given D-N explanation.’® But while
such laws might be used for explanatory purposes, the D-N model by no
means restricts deductive-nomological explanations to the use of minimal laws.
Indeed such a restriction would fail to do justice to one important objective
of scientific inquiry, namely, that of establishing laws and theories of broad
scope, under which narrower generalizations may then be subsumed as special
cases or as close approximations of such.'?

2.2 CausaL ExpLANATION AND THE D-N MODEL. An explanation of a particular
occurrence is often conceived as pointing out what “caused” it. Thus, the
initial expansion of the soap bubbles described by John Dewey might be said
to have been caused by the warming of the air caught in the tumblers. But
causal attributions of this kind presuppose appropriate laws, such as that under

16. The problem of formulating a precise definition of this notion need not detain
us: it can be solved only by reference to some formalized language, and for our purposes
the rough characterization here given will suffice. Incidentally, the notion of “the number
oflaws” invoked in a given explanation is not as clear as it might seem, for one law may some-
times be quite plausibly rewritten as a conjunction of two or more, and, conversely, several
laws may sometimes be plausibly conjoined into one. But again, it is not necessary for us to
pursue this problem.

17. In a recent essay, Feyerabend has criticized the deductive model of explanation for
leading “to the demand. . . that all successful theories in a given domain must be mutually
consistent”” (1962, p. 30), or, more fully, that “only such theories are admissible (for ex-
planation and prediction) in a given domain which either confain the theories already used in
this domain, or are at least consistent with them” (1962, p. 44, italics the author’s). Feyerabend
rightly argues that this demand conflicts with actual scientific procedure and is unsound
on methodological grounds. But he is completely mistaken in his allegation—for which he
offers no support—that the conception of explanation by deductive subsumption under
general laws or theoretical principles entails the incriminated methodological maxim.
Indeed, the D-N model of explanation concerns simply the relation between explanans and
explanandum and implies nothing whatever about the compatibility of different explanatory
principles that might be accepted successively in a given field of empirical science. In par-
ticular, it does not imply that a new explanatory theory may be accepted only on con-

logically incompatible, laws or theories. To illustrate this schemat
objects a, b, ¢, each of which has the property P, also have the property
tively accounted for by the hypothesis H; that all and only P’s Q’s, and alternatively

P Q’s; i.e., the explanandum-

by the hypothesis H, that all P’s and also some n
sentence ‘Qa.Qb.Qc’ can be deduced from ‘Pa.Pb.P¢
although H, and H, are logically incompatible. Thus a
given class of phenomena may deductively account for those phenomena even though

iction with either H; or H,,
new” explanatory theory for a

1
it is logically incompatible with an earlier theory which also deductively accounts for them.
But the conflicting theories cannot both be true, and it may well be that the earlier theory
is false. Hence the maxim criticized by Feyerabend is indeed unsound. But this observation
does not affect the D-N model of explanation, which does not imply that maxim at all.
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constant pressure the volume of a gas increases as its temperature rises. And
by virtue of thus presupposing general laws which connect “cause” and “effect,”
causal explanation conforms to the D-N model. Let me briefly amplify and
substantiate this remark.

Consider first the explanatory use of what may be called general statements
of causal connection: these are to the effect that an event of some kind A (e.g.,
motion of a magnet through a closed wire loop) causes an event of a certain
other kind, B (e.g., flow of an electric current in the wire). Without entering
into a more detailed analysis, we may say that in the simplest case a statement
of this type affirms a law to the effect that whenever an event of kind A takes
place then there occurs, at the same location or at a specifiable different one,
a corresponding event of kind B. This construal fits, for example, the statements
that motion of a magnet causes the flow of a current in a neighboring wire loop,
and that raising the temperature of a gas under constant pressure increases its
volume. Many general statements of causal connection call for a more complex
analysis, however. Thus, the statement that in a mammal, stoppage of the
heart will cause death presupposes certain “‘standard” conditions that are not
explicitly stated, but that are surely meant to preclude, for example, the use of
a heart-lung machine. “To say that X causes Y is to say that under proper
conditions, an X will be followed by a ¥, as Scriven!® puts it. When this kind
of causal locution is used, there usually is some understanding of what “proper”
or “standard” background conditions are presupposed in the given context.
But to the extent that those conditions remain indeterminate, a general statement
of causal connection amounts at best to the vague claim that there are certain
further unspecified background conditions whose explicit mention in the
given statement would yield a truly general law connecting the “cause” and the
“effect” in question.

Next, consider statements of causal connections between individual events.
Take, for example, the assertion that the expansion and subsequent shrinkage
of Dewey’s soap bubbles were caused by a rise and subsequent drop of the
temperature of the air trapped in the tumblers. Clearly, those temperature
changes afford the requisite explanation only in conjunction with certain other
conditions, such as the presence of a soap film, practically constant temperature
and pressure of the air outside the glasses, and so on. Accordingly, in the context
of explanation, a “cause” must be allowed to be a more or less complex set of
circumstances and events, which might be described by a set of statements
Cy, C,, . .., C,. And, as is suggested by the principle “Same cause, same effect,”
the assertion that those circumstances jointly caused a given event implies that

18. Scriven (1958), p. 185.
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whenever and wherever circumstances of the kind in question occur, an event
of the kind to be explained takes place. Thus the causal explanation implicitly
claims that there are general laws—let us say, Ly, L, . . . , L,—in virtue of which
the occurrence of the causal antecedents mentioned in Gy, C,, ..., C, is a
sufficient condition for the occurrence of the explanandum event. This relation
between causal factors and effect is reflected in our schema (D-N): causal ex-
planation is, at least implicitly, deductive-nomological.

Let me restate the point in more general terms. When an individual event
b is said to have been caused by another individual event a4, then surely the
claim is implied that whenever “‘the same cause” is realized, “the same effect”
will occur. But this claim cannot be taken to mean that whenever a recurs then
so does b; for a and b are individual events at particular spatiotemporal locations
and thus occur only once. Rather, a and b must be viewed as particular events
of certain kinds (such as heating or cooling of a gas, expansion or shrinking of
a gas) of which there may be further instances. And the law tacitly implied by
the assertion that b, as an event of kind B, was caused by a as an event of kind A
is a general statement of causal connection to the effect that, under suitable
circumstances, an instance of A is invariably accompanied by an instance of B.
In most causal explanations the requisite circumstances are not fully stated;
the import of the claim that b was caused by @ may then be suggested by the
following approximate formulation: Event b was in fact preceded by event a
in circumstances which, though not fully specified, were of such a kind that an
occurrence of an event of kind A under such circumstances is universally
followed by an event of kind B. For example, the statement that the burning
(event of kind B) of a particular haystack was caused by a lighted cigarette
dropped into the hay (particular event of kind A) asserts, first of all, that the
latter event did take place; but a burning cigarette will set a haystack on fire
only if certain further conditions are satisfied, which cannot at present be fully
stated; and thus, the causal attribution at hand implies secondly that further
conditions of a not fully specified kind were realized, under which an event
of kind A is invariably followed by an event of kind B.

To the extent that a statement of individual causation leaves the relevant
antecedent conditions, and thus also the requisite explanatory laws, indefinite
it is like a note saying that there is a treasure hidden somewhere. Its significance
and utility will increase as the location of the treasure is more narrowly circum-
scribed, as the relevant conditions and the corresponding covering laws are
made increasingly explicit. In some cases, this can be done quite satisfactorily;
the covering-law structure then emerges, and the statement of individual
causal connection becomes amenable to test. When, on the other hand, the
relevant conditions or laws remain largely indefinite, a statement of causal
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connection is rather in the nature of a program, or of a sketch, for an expla-
nation in terms of causal laws; it might also be viewed as a “working hypothesis”
which may prove its worth by giving new, and fruitful, direction to further
research.

The view here taken of statements of individual causation might be further
clarified by some comments on the thesis that “when one asserts that X causes
Y one is certainly committed to the generalization that an identical cause would
produce an identical effect, but this in no way commits one to any necessity
for producing laws not involving the term ‘identical,” which justify this claim.
Producing laws is one way, not necessarily more conclusive, and usually less
casy than other ways of supporting the causal statement. ... (The idea of
individual causation has, I think, this not inconsiderable basis.)”*® Two ques-
tions must be clearly distinguished here, namely (i) what is being claimed by
the statement that X causes Y (where, in the case of “individual causation,”
X and Y are individual events), and in particular, whether asserting it commits
one to a generalization, and (ii) what kind of evidence would support the
causal statement, and in particular, whether support can be provided only by
producing generalizations in the form of laws.

Concerning the first question, I have argued that the given causal statement
must be taken to claim by implication that an appropriate law or set of laws
holds by virtue of which X causes Y. But, as noted carlier, the laws in question
cannot be expressed by saying that an identical cause would produce an identical
effect; for if X and Y are individual events with specific spatiotemporal locations,
the recurrence of a cause identical with X, or of an effect identical with Y, is
logically impossible. Rather, the general claim implied by the statement of
individual causation that X caused Y is of the kind suggested in our discussion
of the assertion that individual event a, as an instance of A, caused individual
event b, as an instance of B.

We turn now to the second question. In certain cases, such as that of the
soap bubbles observed by Dewey, some of the laws connecting the individual
events X and Y may be explicitly stateable; and then, it may be possible to
secure supporting cvidence for them by appropriate experiments or obser-
vations. Hence, while the statement of individual causal connection implicitly
claims the existence of underlying laws, the claim may well be supported by
evidence consisting of particular confirming instances rather than of general
laws. In other cases, when the nomological claim implicit in a causal statement
is merely to the effect that there are relevant factors and suitable laws connecting
X and Y, it may be possible to lend some credibility to this claim by showing

19. Scriven (1958), p. 194.
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that under certain conditions, an event of kind X is at least very frequently
accompanied by an event of kind Y: this might justify the working hypothesis
that the background conditions could be further narrowed down in a way that
would eventually yield a strictly causal connection. It is this kind of statistical
evidence, for example, that is adduced in support of such claims as that cig-
arette smoking is “a cause of’ or “a causative factor in” cancer of the lungs.
In this case, the supposed causal laws cannot at* present be explicitly stated.
Thus, the nomological claim implied by this causal conjecture is of the existen-
tial type; it has the character of a working hypothesis for further rescarch. The
statistical evidence adduced lends support to the hypothesis and suggests
further investigation, aimed at determining more precisely the conditions
under which smoking will lead to cancer of the lungs.

The best examples of explanations conforming to the D-N model are based
on physical theories of deterministic character. Briefly, a deterministic theory
deals with the changes of “state” in physical systems of some specified kind.
The state of such a system at any given time is characterized by the values
assumed at that time by certain quantitative characteristics of the system, the
so-called variables of state; and the laws specified by such a theory for the
changes of state are deterministic in the sense that, given the state of the system
at any one time, they determine its state at any other, carlier or later, time.
For example, classical mechanics offers a deterministic theory for a system
of point masses (or, practically, bodies that are small in relation to their distances)
which move under the influence of their mutual gravitational attraction alone.
The state of such a system at a given time is defined as determined by the
positions and momenta of its component bodies at that time and does not
include other aspects that might undergo change, such as the color or the chem-
ical constitution of the moving bodies. The theory provides a set of laws—
essentially, the Newtonian laws of gravitation and of motion—which, given
the positions and momenta of the elements of such a system at any one time,
mathematically determine their positions and momenta at any other time.
In particular, those laws make it possible to offer a D-N explanation of the
system’s bcing in a certain state at a given time, by specifying, in the sentences
C,, C, ..., C,of the schema (D-N), the state of the system at some earlier
time. The theory here referred to has been applied, for example, in account-
ing for the motions of planets and comets, and for solar and lunar
eclipses.

In the explanatory or predictive use of a deterministic theory, then, the
notion of a cause as a more or less narrowly circumscribed antecedent event
has been replaced by that of some antecedent state of the total system, which
provides the “initial conditions™ for the computation, by means of the theory,
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of the later state that is to be explained. If the system is not isolated, i.e., if
relevant outside influences act upon the system during the period of time
from the initial state invoked to the state to be explained, then the particular
circumstances that must be stated in the explanans include also those outside
influences; and it is these “boundary conditions” in conjunction with the
“initial” conditions which replace the everyday notion of cause, and which
are specified by the statements Cy, C,, ..., Gy in the schematic representation
(D-N) of deductive-nomological explanation.?

Causal explanation in its various degrees of explicitness and precision is not,
however, the only mode of explanation on which the D-N model has a bearing.
For example, the explanation of a general law by deductive subsumption under
theoretical principles is clearly not an explanation by causes. But even when
used to account for individual events, D-N explanations are not always causal.
For example, the fact that a given simple pendulum takes two seconds to
complete one full swing might be explained by pointing out that its length
is 100 centimeters, and that the period f (in seconds), of any simple pendulum
is connected with its length [ (in centimeters) by the law that t=2m+/I/g, where
g is the acceleration of free fall. This law expresses a mathematical relationship
between the length and the period (which is a quantitative dispositional charac-
teristic) of the pendulum at one and the same time; laws of this kind, of which
the laws of Boyle and of Charles, as well as Ohm’s law are other examples,
are sometimes called laws of coexistence, in contradistinction to laws of succession,
which concern temporal changes in a system. These latter include, for example,
Galileo’s law and the laws for the changes of state in systems covered by a
deterministic theory. Causal explanation by reference to antecedent events
clearly presupposes laws of succession; in the case of the pendulum, where
only a law of coexistence 1s invoked, one surely would not say that the pendu-
lum’s having a period of two seconds was caused by the fact that it had a length
of 100 centimeters.

One further point deserves notice here. The law for the simple pendulum
makes it possible not only to infer the period of a pendulum from its length,
but also conversely to infer its length from its period; in either case, the inference
is of the form (D-N). Yet a sentence stating the length of a given pendulum,
in conjunction with the law, will be much more readily regarded as explaining
the pendulum’s period than a sentence stating the period, in conjunction with
the law, would be considered as explaining the pendulum’s length. This
distinction appears to reflect the idea that we might change the length of the

20. For more detailed accounts of the notions of causality and of deterministic theory
and deterministic system, see, for example, Feigl (1953); Frank (1957), chapters 11 and 12;
Margenau (1950), chapter 19; Nagel (1961), pp. 73-78 and chapters 7 and 10.
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pendulum at will and thus control its period as a “dependent variable,” where-
as the reverse procedure does not seem possible.?! This conception is questionable,
however; for we can also change the period of a given pendulum at will,
namely, by changing its length. It cannot validly be argued that in the first
case we have a change of length independently of a change of the period, for
if the location of the pendulum remains fixed, then its length cannot be changed
without also changing the period. In cases such as this, the common-sense
conception of explanation appears to provide no clear grounds, on which to
decide whether a given argument that deductively subsumes an occurrence
under laws is to qualify as an explanation.

In the instance just considered, a particular fact was explained, not by
causal antecedents but by reference to another contemporancous fact. It might
even be argued that sometimes a particular event can be satisfactorily explained
by reference to subsequent occurrences. Consider, for example, a beam of light
that travels from a point A in one optical medium to a point B in another,
which borders upon the first along a plane. Then, according to Fermat’s
principle of least time, the beam will follow a path that makes the traveling
time from A to B a minimum as compared with alternative paths available.
Which path this is will depend on the refractive indices of the two media;
we will assume that these are given. Suppose now that the path from A4 to
B determined by Fermat’s principle passes through an intermediate point
C. Then this fact may be said to be D-N explainable by means of Fermat’s law
in conjunction with the relevant data concerning the optical media and the
information that the light traveled from 4 to B. But its “arrival at B,” which
thus serves as one of the explanatory factors, occurs only after the event to be
explained, namely, the beam’s passing through C.

Any uneasiness at explaining an event by reference to factors that include
later occurrences might spring from the idea that explanations of the more fami-
liar sort, such as our earlier examples, seem to exhibit the explanandum event as
having been brought about by earlier occurrences; whereas no event can be
said to have been brought about by factors some of which were not even
realized at the time of its occurrence. Perhaps this idea also seems to cast
doubt upon purported explanations by reference to simultaneous circum-
stances. But, while such considerations may well make our earlier examples of
explanation, and all causal explanations, seem more natural or plausible, it
is not clear what precise construal could be given to the notion of factors
“bringing about” a given event, and what reason there would be for denying

21. In this connection, ¢f. the discussion of causal statements as recipes for producing
a given effect, in Gasking (1955).
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the status of explanation to all accounts invoking occurrences that temporally
succeed the event to be explained.??

2.3 THE ROLE OF LAws IN ExpPLANATION. The D-N model, as we have seen,
assigns to laws or theoretical principles the role of indispensable premises in
explanatory arguments. I will now consider some alternative conceptions of
the role of laws in explanation.

2.3.1. The Conception of Laws as Inference Rules. One recently influential view
construes laws and theoretical principles as inference rules in accordance with
which particular statements of empirical fact may be inferred from other such
statements.

Thus Schlick once held the view, for which he gave credit to Wittgenstein,
that “basically a natural law does not have the logical character of a ‘proposi-
tion’ but represents ‘a direction for the formulation of propositions’.”2* Schlick
espoused this idea largely because he held at the time that a genuine statement
must be capable of strict verification by particular experiential findings—a
requirement evidently not met by general laws, which pertain to indefinitely
many particular cases. But the requirement of strict verifiability for sentences
that are to qualify as empirically significant has long since been abandoned as
too restrictive,2* and it surely constitutes no good reason for construing laws as
rules rather than as statements.

In a somewhat different vein, Ryle has characterized law statements as
statements which are true or false, but which characteristically function
as inference licenses authorizing inferential moves from the assertion of some
factual statements to the assertion of others.? This conception has influenced
the views of several others writers on the role of laws in scientific and historical
explanation. Dray, for example, has offered some interesting considerations in
support of it with special reference to historical explanation. He points out
that since an explanation of a concrete historical event will usually have to take
into account a large set of relevant factors, the corresponding covering law may
well be so highly qualified as to possess only one single instance, namely, the

22. For further observations on this issue, ¢f. Schefler (1957).

23. Schlick (1931), p. 190 of English translation. See also the discussion of this idea by
Toulmin, who accepts it with certain qualifications (1953, pp. 90-105), and who develops,
in a somewhat similar spirit, an extensive analogy between physical theories and maps
(1953, chapter 4). For illuminating comments on Toulmin’s views, and on the problem
in general, see Nagel’s review of Toulmin’s book in Mind 63, pp. 403-12 (1954), reprinted in
Nagel (1956), pp. 303-15.

24. For details, see the essay “Empiricist Criteria of Cognitive Significance: Problems
and Changes,” in this volume.

25. Cf. Ryle (1949), pp. 121-123 and Ryle (1950).
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occurrence it explains. But under these circumstances, Dray questions the
propriety of applying the term ‘law’, whose ordinary use “has ‘other cases’
built right into it.”’26 He holds, therefore, that though, when offering the ex-
planation ‘E because C,, C,, ..., C/, the historian “commits himself to the
truth of the covering general statement, If C; . . . C, then E’, . . . the statement
thus elicited . . . is surely nothing more than a formulation of the principle
of the historian’s inference when he says that from the set’of factors specified, a
result of this kind could reasonably be predicted. The historian’s inference may
be said to be in accordance with this principle. But it is quite another matter to
say that his explanation entails a corresponding empirical law.”’?” Dray conceives
of such principles of inference as being “general hypotheticals” of the form
‘if p then ¢’; and he holds that “to claim simply that a ‘genecral hypothetical’
lurks implicitly in the historian’s explanation is to claim considerably less than
covering law theorists generally do”; for if the general hypothetical is con-
strued as an inference license in Ryle’s sense, then “to say that the historian’s
explanation commits him to the covering ‘law’ is merely to say that it commits
him....to reasoning in a similar way in any further cases which may turn up,
since he claims universal validity for the corresponding argument, ‘p so ¢.”’2¢

But surely, to claim universal validity for this argument scheme is to assert
by implictaion, the general statement “Whenever p then ¢, and vice versa:
there is no difference in the strength of the claims, but only in the mode of
expressing them. And if the general statement has only one instance, then so
does the corresponding rule, and one might with equal justice question the
propriety of qualifying the latter as a principle of inference, on the ground that
the idea of such a principle or rule, no less than the idea of a law, carries with
it a suggestion of generality.

In his remarks on the number of instances of a law, Dray seems to view a
historical explanation as using only one general hypothetical, namely, in effect,
a “minimum covering law” of the kind mentioned earlier. As a rule, however,
f laws, each of

an explanation will rely on a more or less comprel
which has many instances, and of which the narrower covering law is simply
a highly specific consequence. But suppose that a given explanation does rely
on just one highly specific generalization that has only one instance. Can that
generalization be qualified as a law: Our discussion in section 2.1 bears on this
question, and it will suffice to add here only a few brief remarks. Suppose that
an attempt were made to explain Hitler’s decision to invade Russia by means
of the generalizatoin ‘Anyone exactly like Hitler in all respects, and facing

26. Dray (1957), p. 40.
27. Dray (1957), p. 39. Italics the author’s.
28. Dray (1957), p. 41. Italics supplied.
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exactly the same circumstances, decides to invade Russia’. This clearly affords
no explanation because the general statement invoked is equivalent to the
sentence ‘Hitler decided to invade Russia’, which is not a general sentence at all,
and which simply restates the explanandum; for being exactly like Hitler in
all respects is the same thing as being identical with Hitler. Thus, the proposed
generalization is nonlawlike because it is not essentially generalized.

But a general statement—such as one of the highly specific covering laws
envisaged by Dray—may well have only one instance without being logically
equivalent to a singular sentence. This feature, as we noted carlier, would not
deprive the generalization of lawlike status and potential explanatory power.

The arguments here briefly considered, then, do not lend much support to
the conception of laws and theoretical principles as rules or principles of in-
ference. On the other hand, there are some considerations which clearly mili-
tate against this construal.

First, in the writings of scientists, laws and theoretical principles are treated
as statements. For example, general statements are used in conjunction with
singular statements about particular facts to serve as premises from which other
statements about particular facts are inferred; similarly, statements of general
form, such as laws of narrower scope, often appear as conclusions derived from
more comprehensive laws. Again, general laws or theoretical principles are
accepted or rejected on the basis of empirical tests in much the same way as
statements of particular facts, such as those concerning the constitution of the
earth’s interior, for example.

Indeed—and this brings us to a second difficulty—the distinction here
presupposed between singular sentences on the one hand and general sentences
on the other has no precise meaning in reference to statements formulated in
a natural language. For example, the statement that the earth is a sphere may
be regarded as a singular sentence of the form “Se’, which assigns to a particular
object, the earth, a certain property, sphericity. But it may also be construed as
a general statement, e.g., as asserting that there is a point in the interior of the
earth from which all the points on its surface have the same distance. Similarly,
the statement that a given crystal of salt is soluble in water may be construed
as a singular statement ascribing solubility to a particular object, or, alterna-
tively, as a statement of general character, asserting or implying that the given
crystal will dissolve at any time upon being put into water.

A precise distinction of the kind here in question can be drawn if (i) the
statements to be classified are expressed in a suitably formalized language that
provides for quantificational notation, and (i) every extra-logical term of the
language is characterized either as primitive or as defined, cach defined term
possessing a unique definition in terms of primitives. A sentence of such a lan-
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guage may then be said to be essentially singular if it is logically equivalent to
a sentence containing no defined terms and no quantifiers; all other sentences
will be essentially general. The sentence “The earth is spherical” will then be
essentially singular if, for example, both ‘the earth’ and ‘spherical’ count as
primitive terms of the language in which our statements are formulated; it will
be essentially general if, for example, ‘spherical’ is defined by an expression
containing one or more noneliminable quantifiers.

But even if we assume that a precise dividing line between singular and
general statements has been drawn in this or a similar manner, the proposal
to construe general statements as inference rules connecting singular statements
still faces another, more serious difficulty: the formulation of law statements as
inference rules proves difficult, if not impossible, and the resulting system
of rules is awkward, to say the least. To be sure, a statement of the simple
form ‘All Fare G, or ‘(x) (FxD Gx)’, where ‘F” and ‘G’ are primitive predicates
in the sense just explained, might be replaced by a rule licensing inferential
transition from any sentence of the form ‘Fi’ (which is singular, i.e., quantifier-
free) to the corresponding sentence of the form ‘Gi’. But scientific explanations
are often based on laws of a more complex structure; and for these, recasting
in the form of inference rules connecting singular statements becomes proble-
matic. Take the law, for example, that every metal has a specific melting
point (at atmospheric pressure); i.e., that for every metal there exists a temp-
erature T such that at any lower temperature and at no higher temperature
the metal is solid at atmospheric pressure. The corresponding inference rule
could not be construed as authorizing the transition from any sentence of the
form ‘i is a metal’ to the sentence ‘there is a temperature T such that at any lower
temperature, but at no higher one, i is solid at atmospheric pressure’; for the
conclusion thus obtained is not a sentence of singular form, but a statement
involving both existential and universal quantifiers. Indeed, the subclauses ‘at
any temperature below T, i is solid’ and ‘at any temperature above T, i is
nonsolid” have themselves the universal form of a law, and the general con-
ception here under discussion would therefore seem to require that they in
turn be construed as inference rules rather than as statements. But in the given
context, this is not possible since they are qualified by the existential-quantifier
phrase ‘there is a temperature T such that. .. .". In sum, the given law cannot
be construed as tantamount to a rule establishing certain inferential connections
among singular sentences. This is not to say that the law permits no such
inferences: indeed, with its help (i.e., using it as an additional premise), we can
infer from the statement ‘this key is metal and is not liquid at 80°C and atmos-
pheric pressure’ further descriptive statements to the effect that the key won’t
be liquid at 74°C, 30°C, and other specific temperatures below 80°C, at at-
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mospheric pressure. But these and similar inferential connections among
singulér statements which are mediated by the given law clearly do not exhaust
its content; for, as we noted, the law also establishes connections, for example,
between singular sentences (‘i is a metal’) and quantified ones (‘there is a tem-
perature T' such that. .. iy

It may even happen that of two or more laws of complex form, none taken
by itself establishes any inferential connections among singular sentences,
whereas jointly they do. For example, two sentences of the form ‘(x) [FxD
(3y)Rxy]” and ‘(x)[(3y)(Rxy)D Gx]’ jointly permit the inference from ‘Fi’ to
‘Gi’; but, individually, neither of them establishes any connection among
singular sentences. Thus, the totality of inferential transitions among singular
sentences that are made possible by a set of laws or theoretical principles may
far exceed the (logical- or class-) sum of the inferential connections established,
among the same singular sentences, by the laws or theoretical principles indi-
vidually. Hence, if one were to insist on construing scientific laws and theo-
retical principles as extralogical inference rules, licensing certain transitions
among singular sentences, then one would have to do so, not for each of the
laws and theoretical principles individually, but at once for the entire set of
laws and principles assumed in a given context. No doubt the simplest way
of doing this would be to formulate just one extralogical rule, authorizing
all and only those transitions among singular statements which can be effected
by using only purely logical rules of inference and by treating the laws and
theoretical principles “as if” they were statements capable of functioning as
additional premises in deductive arguments. But to adopt this rule would be
simply to pay lip service to the construal of laws as rules rather than as state-
ments.2®

In sum, then, there is serious doubt, on purely logical grounds, whether
all laws and theoretical principles can be adequately construed as inference
rules. And even in the cases where this is possible, the preceding considerations

29. It is of interest to note here that Carnap, in his theory of logical syntax, explicitly
provides for the possibility of constructing languages with extralogical rules of inference;
see Carnap (1937), section 51. He calls the latter physical rules or P-rules. But he does not claim
that all gencral laws or theoretical principles can be construed as such rules; and he emphasizes
that the extent to which P-rules are to be countenanced in constructing a language will be a
matter of convenience. For example, if we use P-rules, then the discovery of empirical
phenomena that “conflict” with our previously accepted theories may oblige us to alter the
rules of inference, and thus the entire formal structure, of our scientific language; whereas in
the absence of P-rules, only a modification of some previously accepted theoretical statements
is called for. W. Sellars (1953), (1958), also has advocated the admission of material rules
of inference in connection with his analysis of subjunctive conditionals.

For alucid survey and critical appraisal of various reasons that have been adduced in support
of construing general laws as inference rules see Alexander (1958).
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suggest that it would be simpler and more helpful, for a clarification of the
issues with which we are here concerned, to construe general laws and theo-
retical principles as statements: hence this course will be followed from here on.
2.3.2 The Conception of Laws as Role=Justifying Grounds for Explanations. Another
conception that would normally preclude the mention of laws in an explanation
has been set forth by Scriven,® who argues that in so far as laws are relevant
to an explanation, they will usually function as “role-justifying grounds™ for it.
This conception doubtless reflects the view that, as Ryle has put it, “Explana-
tions are not arguments but statements. They are true or false.”®! Explanations
might then take the form ‘g because p’, where the “p’-clause mentions particular
facts but no laws; and the kind of explanation represented as an argument in
our schema (D-N) would be expressed by a statement of the form ‘E because
C,, C,, ..., C,. The citation of laws is appropriate, according to Scriven,
not in response to the question “Why ¢:’, which ‘g because p’ serves to answer,
but rather in response to the quite different question as to the grounds on which
the facts mentioned in the ‘p’~clause may be claimed to explain the facts referred
to in the ‘qg’-clause. To include the relevant laws in the statement of the expla-
nation itself would be, according to Scriven, to confound the statement of an
explanation with a statement of its grounds.

Now it is quite true that in ordinary discourse and also in scientific contexts,
a question of the form ‘“Why did such-and-such an event happen:’ is often
answered by a because-statement that cites only certain particular facts—even
in cases where the relevant laws could be stated. The explanation statement
‘The ice cube melted because it was floating in water at room temperature’ is
an example. But as this sentence equally illustrates, an explanation as ordinarily
formulated will often mention only some of a larger set of particular facts
which jointly could explain the occurrence in question. It will forego mention
of other factors, which are taken for granted, such as that the water as well as
the surrounding air remained approximately at room temperature for an
adequate time. Hence, in order to justify attributing an explanatory role to
the facts actually specified, one would have to cite here not only certain laws,
but also the relevant particulars that had not been explicitly mentioned among
the explanatory facts. Thus it is not clear why only laws should be singled out
for the function of role-justification.? And if statements of particular fact were
equally allowed to serve as role-justifying grounds in explanations, then the
distinction between explanatory facts and role-justifying grounds would
become obscure and arbitrary.

30. Scriven (1959), especially section 3.1.
31. Ryle (1950), p. 330.
32. The same point has been made by Alexander (1958, section I).
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Scriven goes beyond relegating explanatory laws to the place of role-
justifying grounds: He holds that we can sometimes be quite certain of a given
explanation without being able to justify it by reference to any laws; in his own
words, “certain evidence is adequate to guarantee certain explanations without
the benefit of deduction from laws.”® One of his examples is this:

As you reach for the dictionary, your knee catches the edge of the table and thus
turns over the ink-bottle, the contents of which proceed to run over the table’s
edge and ruin the carpet. If you are subsequently asked to explain how the carpet
was damaged you have a complete explanation. You did it, by knocking over the
ink. The certainty of this explanation is primeval. It has absolutely nothing to do
with your knowledge of the relevant laws of physics; a cave-man could supply

the same account and be quite as certain of it. . . . If you were asked to produce the
role-justifying grounds for your explanation, what could you do: You could not
produce any true universal hypothesis in which the antecedent was identifiably present

(i.e., which avoids such terms as “knock hard enough”), and the consequent is the
effect to be explained.34

At best, Scriven continues, one could offer a vague generalization to the
effect that if you knock a table hard enough, it will cause an ink-bottle not too
securely placed on it to spill over provided that there is enough ink in it. But
this needs tightening in many ways, and, Scriven claims, it cannot be turned
into a true universal hypothesis which, for the example in question, would
“save the deductive model.” In particular, physics cannot be expected to yield
such a hypothesis, for “the explanation has become not one whit more certain
since the laws of elasticity and inertia were discovered.”’s?

Undeniably, in our everyday pursuits and also in scientific discussions, we
often offer or accept explanatory accounts of the sort illustrated by Scriven’s
example. But an analytic study of explanation cannot content itself with simply
registering this fact: it must treat it as material for analysis; it must seck to
clarify what is claimed by an explanatory statement of this sort, and how the
claim might be supported. And, at least to the first question, Scriven offers no ex-
plicit answer. He does not tell us just what, on his construal, is asserted by the
given law-free explanation; and it remains unclear, therefore, precisely what
claim he regards as having primeval certainty, for cave-man and modern
physicist alike. Presumably the explanation he has in mind would be expressed
by a statement roughly to the effect that the carpet was stained with ink
because the table was knocked. But, surely, this statement claims by impli-
cation that the antecedent circumstances invoked were of a kind which generally
yields effects of the sort to be explained. Indeed, it is just this implicit claim

33, Scriven (1959), p. 456.

34. Loc. cit., italics the author’s.
35. Loc. cit.
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of covering uniform connections which distinguishes the causal attribution here
made from a mere sequential narrative to the effect that first the table was
knocked, then the bottle tipped over, and finally the ink dripped on the rug.
Now, in a case such as the spilling of the ink, we feel familiar, at least in a general
manner, with the relevant uniform connections even though we may not be able
to state them precisely, and thus we are willing to take them for granted without
explicit mention. On the other hand, there are various conceivable, particular
antecedents any one of which might, by virtue of roughly the same general
uniformities, account for the tipping over of the ink bottle: I might have
knocked the table, the cat might have pushed the ink bottle, the curtain might
have brushed against the bottle in a breeze, and so forth. Thus, the question of
how the ink spot got on the rug will usually be aimed at eliciting information
about the particular antecedents that led to the damage; and it might seem,
therefore, that an explanation need have nothing to do with uniformities or laws.
But this appearance surely does not refute the view that any particular explan-
atory claim made in terms of antecedent circumstances still presupposes suitable
covering laws.

This brings us to a crucial question posed by Scriven’s argument. Is it
possible to specify, in the given case, a sct of laws which would actually provide
role-justification, by enabling us to deduce the explanandum, given the infor-
mation about the antecedent explanatory events: The question cannot be
answered unequivocally because it is too vague. Assuming that the explanatory
statement takes the form ‘g because p’, we have not been told precisely what
takes the places of ‘p” and of ‘q’ in the case of the overturned ink bottle. If,
for example, the ‘p’-statement were taken to include the information that a
full, uncorked, ink bottle was in fact knocked over, and if the ‘¢’-statement
reported merely that the ink leaked out, then some elementary laws in the
mechanics of fluids might well provide adequate nomological support for the

explanatory statement. If, by contrast, the ‘g’-statement is taken to specify,

produced a stain of specificd

not only that the ink spilled out, but also that it

sizc and shape on the rug, then, to be sure, no laws are known that would
ble construal) to this

permit the inference from the ‘p’-statement (in any pl

)

q’-statement. But, just for this reason, an account of the sort suggested by

goes
Scriven’s example would not be regarded as explaining the size or the shape of
the ink stain at all.

No doubt, the explanatory claim envisaged by Scriven lies between these
extremes and is roughly to the effect that the rug was stained because the table,
with an open bottle of ink standing on it, was caught and lifted by my knee.
This claim might be paraphrased by saying that there are laws connecting the

presence of an ink stain on the rug with certain antecedent circumstances,
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which include an open bottle of ink standing on the table, and the fact that the
table’s edge was lifted. And there seems to be no reason to doubt the possibility
of adducing or establishing a gradually expanding set of laws which would
afford an increasingly accurate and detailed explanation of the phenomenon
at hand.

We might say, in agreement with Scriven, that these laws would lend
support or justification to the given because-statement. But we should note
also that an expansion of the set of supporting laws will normally call for a
corresponding expansion of the set of antecedent circumstances which have
to be taken into account, and thus, strictly, for a modification of the explanatory
because-statement itself.

Furthermore, the task of establishing the statements, whether of laws or of
particular facts, which may thus be invoked in support of a becausc-statement
comes clearly within the domain of scientific inquiry; hence it cannot reasonably
be argued that progress in physical or chemical reaserch has no significance for
the explanation at hand. Thus Scriven’s cave man, or perhaps a child, might
well assume that when any opaque liquid is poured on any kind of textile it
will soak in and produce a stain; which would lead him to expect a stain when
mercury is dropped on a rug or when ink is poured on a specially treated
nonstaining textile. And if his explanation or understanding of the ink stain
on the rug presupposes that assumption then it would plainly be far from
primevally certain: it would be false.

In sum then, the claim that the cave man could explain the staining of the
rug with the same “certainty” as a modern scientist loses its initial striking
plausibility when we ask ourselves preciscly what the explanation would
assert and what it would imply, and when we make sure it is not simply taken
to be a narration of sclected stages in the process concerned. An explanation
may well be put into the form of a sequential narrative, but it will explain
only if it at least tacitly presupposes certain nomic conncctions between the
different stages cited. Such “genetic” explanations will be examined more
closely later in this essay.

In the preceding discussion we have construed an explanatory statement of
the form ‘g because p’ as an assertion to this effect: p is (or was) the case, and
there are laws (not explicitly specified) such that the statement that g is (or was)
the case follows logically from those laws taken in conjunction with the state-
ment of p and perhaps other statements, which specify antecedents not included
in p but tacitly presupposed in the explanation. In his discussion of the ex-
planatory role of laws, Scriven considers the closely related idea that when we
arc able to specify the cause of a particular event such as the staining of the rug,
“we are in a position to judge, not that certain specifiable laws apply, but that
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some laws must apply.” And he objects that “it is very odd to say this rather than
that we can sometimes be quite sure of causal statements even when we do not
know any relevant laws. This capacity for identifying causes is learnt, is better
developed in some people than in others, can be tested, and is the basis for
what we call judgments.’’3

But this surely is no telling objection. For first of all, if the thesis is to have
a clear meaning we need to know exactly what is meant by ‘identifying the
cause of a particular event’, and how, accordingly, the capacity for identifying
causes may be tested: and Scriven does not provide this information.

Secondly, the conception that a statement of the form ‘g because p’ asserts,
by implication, the existence of certain covering laws is by no means incom-
patible with the view that pcople may have a capacity for causal judgment
even when they are unable to specify suitable covering laws or to explicate
the notion of cause they are using. Consider a parallel: An experienced carpen-
ter or gardener may have a capacity for judging very accurately the size of the
area enclosed by a given circular line without being able to give an analytic
defmition of the area of a circle in terms of the convergent serics formed by the
areas of certain inscribed or circumscribed polygons. But this surely would not
justify the claim that therefore, at least in the specific cases accessible to the
judgments of skilled craftsmen, the mathematical analysis of the concept of the
area of a circle is irrelevant or does not apply. Similarly a physician, a garage
mechanic, or an clectrician may have a remarkable capacity for judging what
causes trouble in a particular case without always being able to adduce general
laws supporting the diagnosis, and indeed without even believing that the latter
presupposes the existence of such laws. But this acknowledgment does not

warrant the conclusion that it is impossible or inappropriate to construe the
1

ne

causal statements in question as making reference to, or at least implying t
existence of, corresponding laws.

Even the way in which causal statements based on such practical “'ju
are tested and substantiated indicates that they make, at least implicitls
of general character. Thus, the assertion that a certain therapeutic measure

caused improvement in a given case would require corroboration by similar
results in similar cases, so as to rule out the possibility of a mere coincidence
as contradistinguished from a causal conncction.

“because’-statements,

But, since explanatory accounts are often formula
which construes explanations

should we not at least introduce a further model,

as statements of the form ‘q because p’ rathe 1ents: To characterize

a certain type of explanation simply as having that form would surely be

36. Loc. cit., italics the author’s.
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insufticient: the chief task of the contemplated model would be to clarify the
meaning of the word ‘because’ in explanatory contexts, and this requires
further analysis. To claim that we can sometimes proffer explanations of the
form ‘q because p’ with complete certainty, or that they can be guaranteed by
suitable kinds of evidence without the benefit of laws, is to sidestep this issue;
indeed, the claim cannot even be assessed independently of an analysis of the
explanatory use of the word ‘because’. The paraphrasing of becausce-statements
suggested above is rather vague and no doubt capable of improvement, but
at least it seems to me correct in exhibiting the assumption of lawlike connections
implicit in such explanatory formulations.

2.4 EXPLANATION AS POTENTIALLY PREDICTIVE. Because of its essential reliance
on laws and theoretical principles, D-N explanation may be expected to show
a close affinity to scientific prediction; for laws and theoretical principles,
making general claims, range also over cases not as yet examined and have
definite implications for them.

The affinity in question is vividly illustrated in the fourth part of the Dia-
logies Concerning Two New Sciences. Here, Galilco develops his laws for the
motion of projectiles and deduces from them the corollary that if projectiles
are fired from the same point with equal initial velocity, but different clevations,
the maximum range will be attained when the elevation is45°. Then, Galileo has
Sagredo remark: “From accounts given by gunners, I was already aware of
the fact that in the use of cannon and mortars, the maximum range. . . is
obtained when the elevation is 45°. . .; but to understand why this happens far
outweighs the mere information obtained by the testimony of others or even
by repeated experiment.” The reasoning that affords such understanding can
readily be put into the form (D-N); it amounts to a deduction, by logical and
mathematical means, of the corollary from a set of premises that contains (i)
the fundamental laws of Galileo’s theory for the motion of projectiles and (ii)
particular statements specifying that all the missiles considered are fired from
the same place with the same initial velocity. Clearly, then, the phenomenon
previously noted by the gunners is here explained, and thus understood, by
showing that its occurrence was to be expected under the specified circumstances
in view of certain general laws set forth in Galileo’s theory. And Galileo himself
points with obvious pride to the predictions that may in like fashion be obtained
by deduction from his laws; the latter imply “what has perhaps never been
observed in experience, namely, that of other shots those which exceed or fall
short of 45° by equal amounts have cqual ranges.” Thus, the explanation

37. Galilei (1946), p. 265.
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afforded by Galileo’s theory "prepares the mind to understand and ascertain
other facts without need of recourse to experiment,”® namely, by deductive
subsumption under the laws on which the explanation is based.

Checking the predictions thus derived from the general laws or theoretical
principles invoked in an explanation is an important way of testing those
“covering” generalizations, and a favorable outcome may lend strong support
to them. Consider, for example, the explanation offered by Torricelli for a fact
that had intrigued his teacher Galileo; namely, that a lift pump drawing water
from a well will not raise the water more than about 34 feet above the surface
of the well.3® To account for this, Torricelli advanced the idea that the air
above the water has weight and thus exerts pressure on the water in the well,
forcing it up the pump barrel when the piston is raised, for there is no air
inside to balance the outside pressure. On this assumption the water can rise
only to the point where its pressure on the surface of the well equals the pressure
of the outside air on that surface, and the latter will therefore equal that of a
water column about 34 feet high.

The explanatory force of this account hinges on the conception that the
earth is surrounded by a “sea of air” that conforms to the basic laws governing
the equilibrium of liquids in communicating vesscls. And because Torricelli’s
explanation presupposed such general laws it yielded predictions concerning as
yet unexamined phenomena. One of these was that if the water were replaced
by mercury, whose specific gravity is about 14 tmes that of water, the air
should counterbalance a column about 34/14 fect, or somewhat less than 23
feet, in length. This prediction was confirmed by Torricelli in the classic experi-
ment that bears his name. In addition, the proposed explanation implies that at
increasing altitudes above sea level, the length of the mercury column sup-
ported by air pressure should decrease because the weight of the counter-
balancing air decreases. A careful test of this prediction was performed at the
suggestion of Pascal only a few years after Torricelli had offered his explanation:
Pascal’s brother-in-law carried a mercury barometer (i.e., essentially a mercury
column counterbalanced by the air pressure) to the top of the Puy-de-Dome,
measuring the length of the column at various elevations during the ascent
and again during the descent; the readings were in splendid accord with the
prediction.*?

The inferences by which such predictions are obtained are again of deductive-

38. Loc. cit.

39. The following account is based on the presentation of this case in Conant (1951),
chapter 4.

40. Pascal’s own account and appraisal of the “‘great experiment” is reprinted in English
translation in Moulton and Schifferes (1945), pp. 145-53.
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nomological form: The premises comprise the explanatory laws in question
(in our last example, especially Torricelli’s hypothesis) and certain statements
of particular fact (e.g., that a barometer of such and such construction will be
carried to the top of a mountain). Let us refer to predictive arguments of the
form (D-N) as D-N predictions. In empirical science many predictive argu-
ments are of this kind. Among the most striking examples are forecasts, based
on the principles of celestial mechanics and of optics, concerning the relative
positions of the Sun, the Moon, and the planets at a given time, and concerning
solar and lunar eclipses.

It may be well to stress here that while the principles of classical mechanics
or other deterministic laws or theories afford the basis for very impressive
D-N explanations and predictions, the additional premises required for this
purpose must provide not only a specification of the state of the system at some
time ¢, carlier than the time # for which the state of the system is to be inferred,
but also a statement of the boundary conditions prevailing between £, and #;
these specify the external influences acting upon the system during the time
interval in question. For certain purposes in astronomy the disturbing influence
of celestial objects other than those explicitly considered may be neglected
as insignificant, and the system under consideration may be treated as “isolated”;
but this should not lead us to overlook the fact that even those exemplars of
deductive-nomological prediction do not enable us to forecast future events
strictly on the basis of information about the present: the predictive argument
also requires certain premises concerning the future—e.g., absence of disturbing
influences, such as a collision of Mars with an unexpected comet; and the
temporal scope of these boundary conditions must extend up to the very time
of occurrence of the predicted event. The assertion therefore that laws and
theories of deterministic form enable us to predict certain aspects of the future
from information about the present has to be taken with a grain of salt. Anal-
ogous remarks apply to deductive-nomological explanation.

Since in a fully stated D-N explanation of a particular event the explanans
logically implies the explanandum, we say may that the explanatory argument
might have been used for a deductive prediction of the explanandum-event if
the laws and the particular facts adduced in its explanans had been known and
taken into account at a suitable earlier time. In this sense, a D-N explanation
is a potential D-N prediction.

This point was made already in an earlier article by Oppenheim and myself,**
where we added that scientific explanation (of the deductive-nomological
kind) differs from scientific prediction not in logical structure, but in certain

41. Hempel and Oppenheim (1948), section 3.
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pragmatic respects. In one case, the event described in the conclusion is known
to have occurred, and suitable statements of general law and particular fact
are sought to account for it; in the other, the latter statements are given and the
statement about the event in question is derived from them before the time
of its presumptive occurrence. This conception, which has sometimes been
referred to as the thesis of the structural identity (or of the symmetry) of expla-
nation and prediction, has recently been questioned by several writers. A consider-
ation of some of their arguments may help to shed further light on the issuse
involved.

To begin with, some writers*2 have noted that what is usually called a
prediction is not an argument but a sentence. More precisely, as Scheffler has
pointed out, it is a sentence-token, i.e., a concrete utterance or inscription of
a sentence purporting to describe some event that is to occur after the produc-
tion of the token.®® This is certainly so. But in empirical science predictive
sentences are normally established on the basis of available information by
means of arguments that may be deductive or inductive in character; and the
thesis under discussion should be understood, of course, to refer to explanatory
and predictive arguments.

Thus construed, the thesis of structural identity amounts to the conjunction of
two sub-theses, namely (i) that every adequate explanation is potentially a prediction
in the sense indicated above; (i) that conversely every adequate prediction is
potentially an explanation. T will now examine a number of objections that have
been raised against the thesis, dealing first with those which, in effect, concern
the first sub-thesis, and then with those concerning the second sub-thesis. I
will argue that the first sub-thesis is sound, whereas the second one is indeed
open to question. Though the following considerations are concerned princi-
pally with D-N explanation, some of them are applicable to other types of
explanation as well. The adequacy of the structural identity thesis for the case
of statistical explanation will be examined in detail in section 3.5.

The first sub-thesis, as has already been noted, is an almost trivial truth
the case of D-N explanation, since here the explanans logically implies the
explanandum. But it is supported also by a more general principle, which
applies to other types of explanation as well, and which expresses, I would
submit, a general condition of adequacy for any rationally acceptable explanation
of a particular event. That condition is the following: Any rationally acceptable
answer to the question “Why did event X occur:’ must offer information

42. See SchefHler (1957), section 1 and (1963), Part I, sections 3 and 4; Scriven (1962), p.
177,

43. Cf. SchefHler (1957), section 1. For a more detailed study of explanation and pre-
diction in the light of the type-token distinction, see Kim (1962).
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which shows that X was to be expected—if not definitely, as in the case of
D-N explanation, then at least with reasonable probability. Thus, the expla-
natory information must provide good grounds for believing that X did in
fact occur; otherwise, that information would give us no adequate reason for
saying: “That explains it—that does show why X occurred.” And an expla-
natory account that satisfies this condition constitutes, of course, a potential
prediction in the sense that it could have served to predict the occurrence of X
(deductively or with more or less high probability) if the information contained
in the explanans had been available at a suitable earlier time.

The condition of adequacy just stated can be extended, in an obvious
manner, to explanations concerned, not with individual events, but with
empirical uniformities expressed by putative laws. But such explanations can-
not well be spoken of as potential predictions since law-statements purport to
express timeless uniformities and thus make no reference to any particular time,
whether past, present, or future.*

It will hardly be necessary to emphasize that it is not, of course, the purpose
of an explanation to provide grounds in support of the explanandum-statement;
for, as was noted in the first section of this essay, a request for an explanation
normally presupposes that the explanandum-statement is true. The point of the
preceding remarks is rather that an adequate explanation cannot help providing
information which, if properly established, also provides grounds in support
of the explanandum-statement. In the terminology of section 1, we may say
that an adequate answer to an explanation-seeking why-question is always
also a potential answer to the corresponding epistemic why-question.

The converse, however, does not hold; the condition of adequacy is neces-
sary but not sufficient for an acceptable explanation. For example, certain
empirical findings may give excellent grounds for the belief that the orientation
of the earth’s magnetic field shows diurnal and secular variations, without in
the least explaining why. Similarly, a set of experimental data may strongly
support the assumption that the electric resistence of metals increases with their
temperature or that a certain chemical inhibits the growth of cancer cells,
without providing any explanation for these presumptive empirical regularities.
The predictive inferences here involved are inductive rather than deductive;
but what bars them from the status of potential explanations is not their in-
ductive character (in section 3, we will deal with inductive arguments that
afford perfectly good scientific explanations), but the fact that they invoke no
laws or theoretical principles, no explanatory statements that make a general
claim. Reliance on general connecting principles, while not indispensable for

44. This point is made, for example, by Scriven (1962), pp. 179ff.
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prediction, is required in any explanation: such principles alone can give to
whatever particular circumstances may be adduced the status of explanatory
factors for the event to be explained.

Some of the objections recently raised against the thesis of the structural
identity of explanation and prediction concern in effect the first of its two
sub-theses, which has now been presented in some detail: the claim that any
adequate explanatory argument is also potentially predictive. I will consider
three objections to the effect that there are certain perfectly satisfactory ex-
planations that do not constitute potential predictions.

Scriven has argued that the occurrence of an event X is sometimes quite
adequately explained by means of a “proposition of the form “The only cause
of Xis A" ... for example, “The only cause of paresis is syphilis’;” this pro-
position enables us to explain why a certain patient has paresis by pointing out
that he previously suffered from syphilis. And this explanation holds good,
according to Scriven, even though only quite a small percentage of syphilitic
patients develop paresis, so that “we must, on the evidence [that a given person
has syphilis], still predict that [paresis] will not occur.”# But if it does occur,
then the principle that the only cause of paresis is syphilis can “provide and
guarantee our explanation” in terms of antecedent syphilitic infection.*® Thus
we have here a presumptive explanation which indeed is not adequate as a
potential prediction. But precisely because paresis is such a rare sequel of
syphilis, prior syphilitic infection surely cannot by itself provide an adequate
explanation for it. A condition that is nomically necessary for the occurrence
of an event does not, in general, explain it; or else we would be able to explain
a man’s winning the first prize in the Irish sweepstakes by pointing out that

45. Scriven (1959a), p. 480, italics the author’s.

46. Loc. cit. Barker has argued analogously that “it can be correct to speak of explan-
ation in many cases where specific prediction is not possible. Thus, for instance, if the patient
his death—I

shows all the symptoms of pneumonia, sickens and dies, I can then e

know what killed him—but I could not have definitely predicted in advance that he was

going to die; for usually pneumonia fails to be fatal.”” (1961, p. 271). This a nt seems to
lustration. First

ronia killed the

me open to questions similar to those just raised in reference to Scriven’
of all, it is not clear just what would be claimed by the assertion that pr

patient. Surcly the mere information that the patient had pneumonia does not suffice to

explain his death, precisely because in most cases pneumonia is not fatal. And if the ex-
planans is taken to state that the patient was suffering from very severe pneumonia (and
perhaps that he was elderly or weak) then it may well provide a basis at least for a prob-
abilistic explanation of the patient’s death—but in this case it obviously also permits pre-
diction of his death with the same probability. For some further observations on Barker’s
argument, sce the comments by Feyerabend and by Rudner, and Barker’s rejoinders, in
Feigl and Maxwell (1961), pp. 278-85. A detailed critical discussion that sheds further light
on Scriven’s paresis example will be found in Griinbaum (1963) and (1963a), chapter 9; see
also Scriven’s rejoinder (1963).
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he had previously bought a ticket, and that only a person who owns a ticket
can win the first prize.

A second argument which, like Scriven’s, has considerable initial plausibility
has been advanced by Toulmin” by reference to “Darwin’s theory, explaining
the origin of species by variation and natural selection. No scientist has ever
used this theory to foretell the coming-into-existence of creatures of a novel
species, still less verified his forecast. Yet many competent scientists have
accepted Darwin’s theory as having great explanatory power.” In examining
this argument, let me distinguish what might be called the story of evolution
from the theory of the underlying mechanisms of mutation and natural selection.
The story of evolution, as a hypothesis about the gradual development of
various types of organisms, and about the subsequent extinction of many of
these, has the character of a hypothetical historical narrative describing the
putative stages of the evolutionary process; it is the associated theory which
provides what explanatory insight we have into this process. The story of evo-
lution might tell us, for example, that at a certain stage in the process dinosaurs
made their appearance and that, so much later, they died out. Such a narrative
account does not, of course, explain why the various kinds of dinosaurs with
their distinctive characteristics came into existence, nor does it explain why
they became extinct. Indeed even the associated theory of mutation and natural
selection does not answer the first of these questions, though it might be held
to shed some light on the latter. Yet, even to account for the extinction of the
dinosaurs, we need a vast array of additional hypotheses about their physical
and biological environment and about the species with which they had to
compete for survival. But if we have hypotheses of this kind that are specific
enough to provide, in combination with the theory of natural selection, at
least a probabilistic explanation for the extinction of the dinosaurs, then clearly
the explanans adduced is also qualified as a basis for a potential probabilistic
prediction. The undeniably great persuasiveness of Toulmin’s argument would
seem to derive from two sources, a widespread tendency to regard the basically
descriptive story of evolution as explaining the various states of the process,
and a similarly widespread tendency to overestimate the extent to which even
the theory of mutation and natural selection can account for the details of
the evolutionary sequence.

I now turn to a third objection to the claim that an adequate explanation is
also a potential prediction. It is based on the observation that sometimes the
only ground we have for asserting some essential statement in the explanans lies

47. Toulmin (1961), pp. 24-25. Scriven (1959a) and Barker (1961) have offered argu-
ments in the same vein. For a critical discussion of Scriven’s version, see Griinbaum (1963) and
(1963a), chapter 9.
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in the knowledge that the explanandum event did in fact occur. In such cases,
the explanatory argument clearly could not have been used to predict that
event. Consider one of Scriven’s examples.*8 Suppose that a man has killed his
wife whom he knew to have been unfaithful to him, and that his action is
explained as the result of intense jealousy. The fact that the man was jealous
might well have been ascertainable before the deed, but to explain the latter,
we need to know that his jealousy was intense enough to drive him to murder;
and this we can know only after the deed has actually been committed. Here
then, the occurrence of the explanandum event provides the only grounds we
have for asserting one important part of the explanans; the explanandum event
could not therefore have been predicted by means of the explanatory argument.
In another example,* Scriven considers an explanation to the effect that the
collapse of a bridge was caused by metal fatigue. This account, he argues, might
be supported by pointing out that the failure could have been caused only by
an excessive load, by external damage, or by metal fatigue, and that the first
two factors were not present in the case at hand, whereas there is evidence of
metal fatigue. Given the information that the bridge did in fact collapse, this would
establish not only that metal fatigue was at fault but that it was strong enough
to cause the failure. While Scriven’s notion of “the only possible cause” of a
given event surely requires further elucidation, his example does afford another
illustration of an explanatory account one of whose constituent hypotheses
is supported only by the occurrence of the event to be explained—so that the
latter could not have been predicted by means of the explanatory argument.

However, the point thus illustrated does not affect at all the conditional
thesis that an adequate explanatory argument must be such that it could have
served to predict the explanandum event if the information included in the
explanans had been known and taken into account before the occurrence of
that event. What Scriven’s cases show is that sometimes we do not know in-
dependently of the occurrence of the explanandum event that all the conditions
listed in the explanans are realized. However, this means only that in such
cases our conditional thesis is counterfactual, i.e., that its if-clause is not satisfied,
but not that the thesis itself is false. Moreover, Scriven’s argument does not
even show that in the kind of case he mentions it is logically or nomologically
impossible (impossible by reason of the laws of logic or the laws of nature) for
us to know the critical explanatory factor before, or independently of, the
occurrence of the explanandum-event; the impossibility appears to be rather a
practical and perhaps temporary one, reflecting present limitations of knowledge
or technology.

48. Scriven (1959), pp. 468-69.
49. Scriven (1962), pp. 181-87.
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But while it thus leaves our thesis unaffected, Scriven’s observation is of
methodological interest in its own right: it shows that sometimes an event is
explained by means of hypotheses for some of which the fact of its occurrence
affords the only available evidential support. This may happen, as we saw,
when one of the explanatory hypotheses states that a certain relevant factor
was strong enough to bring about the event in question; but the observation
applies also to other cases. Thus the explanation, outlined in section 2.1, of
the appearance and initial growth of the soap bubbles, includes in its explanans
the assumption that a soap film had formed between the plate and the rims of
the tumblers; and practically the only evidence available in support of this
explanatory assumption is the fact that soap bubbles did emerge from under
the tumblers. Or consider the explanation of the characteristic dark lines in
the absorption spectrum of a particular star. The key assumption in the expla-
nans is that the star’s atmosphere contains certain elements, such as hydrogen,
helium, and calcium, whose atoms absorb radiation of the wave lengths cor-
responding to the dark lines; the explanation relies, of course, on many other
assumptions, including the optical theory that forms the basis for spectroscopy,
and the assumption that the apparatus used is a properly constructed spectro-
scope. But while these latter explanans statements are capable of independent
test and corroboration, it may well be that the only evidence available in
support of the key explanatory hypothesis is the occurrence of the very lines
whose appearance in the spectrum the argument serves to explain. Strictly
speaking, the explanandum event here provides support for the key explanatory
hypothesis only by virtue of the background theory, which connects the pre-
sence of certain elements in the atmosphere of a star with the appearance of
corresponding absorption lines in its spectrum. Thus, the information that the
explanandum event has occurred does not by itself support the explanatory
hypothesis in question, but it constitutes, as we might say, an essential part of
the only evidence available in support of that hypothesis.

Explanations of the kind here considered may be schematically character-
ized as arguments of the form (D-N) in which the information or assumption
that E is true provides an indispensable part of the only available evidential
support for one of the explanans statements, say, C;. Let us call such expla-
nations self-evidencing. It might be held that the actual occurrence of the expla-
nandum event always provides some slight additional support even for an
explanans whose constituent sentences have been accepted on the basis of
independent evidence, and that in this sense every D-N explanation with
true explanandum is in some measure self-evidencing; but we will apply this
appellation to an explanatory account only if, at the time of its presentation,
the occurrence of the explanandum event provides the only evidence, or an
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indispensable part of the only evidence, available in support of some of the
explanans-statements.

An explanatory argument of the form (D-N) which is self-evidencing
is not for that reason circular or pointless. To be sure, if the same argument
were adduced in support of the assertion that the explanandum-event did
occur (or, that E is true), then it would be open to the charge of epistemic
circularity. If the argument is to achieve its objective then all the grounds it
adduces in support of E—ie., G, Cy,..., C;; Ly, Ly, ..., L—would have
to be established independently of E; and this condition is violated here since
the only ground we have for believing or asserting C; includes the assumption
that E is true. But when the same argument is used for explanatory purposes it
does not claim to establish that E is true; that is presupposed by the question
‘“Why did the event described by E occurz’. Nor need a self-evidencing explan-
ation involve an explanatory circle. The information that the explanandum
event has occurred is not included in the explanans (so that the occurrence of
the event is not “explained by itself”); rather it serves, quite outside the ex-
planatory context, as evidence supporting one of the explanans statements.
Thus, an acceptable self-evidencing explanation benefits, as it were, by the
wisdom of hindsight derived from the information that the explanandum event
has occurred, but it does not misuse that information so as to produce a circular
explanation.

An explanation that is self-evidencing may for that reason rest on a poorly
supported explanans and may therefore have no strong claim to empirical
soundness. But even this is not inevitable. In the case of the absorption spectrum
of a star, for example, the previously accepted background information, in-
cluding the relevant theories, may indicate that the dark lines observed occur
only if the specified elements are present in the star’s atmosphere; and then
the explanandum, in conjunction with the background information, lends
very strong support to the crucial explanatory hypothesis.

The notion of a self-evidencing explanation can, I think, shed some further
light on the puzzleillustrated by the explanationof paresis in termsof antecedent
syphilitic infection. Consider another illustration. Some cases of skin cancer
are attributed to intensive ultraviolet irradiation. But this factor very often
does not lead to cancer, so that the information that a person has been ex-
posed to such radiation does not permit the prediction of cancer. Is that infor-
mation alone nevertheless sufficient to explain the development of skin cancer
when it does follow intensive irradiation: No doubt, an explanation will often
be formulated so as to mention only the antecedent irradiation; but the under-
lying rationale surely must be more complex. Leaving aside the important
quantitative aspects of the problem, the crucial point in that rationale can, I
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suggest, be schematically stated as follows: Some, though by no means all,
individuals have the disposition to develop skin cancer upon exposure to
strong ultraviolet irradiation; let us call these radiation-sensitive. Now, in the
case of explanation, we know that the given individual was exposed to strong
radiation (C;) and did develop cancer of the skin in the affected area (E). But
jointly, these two pieces of information lend support to the assumption that
the individual is radiation-sensitive (C,)—an hypothesis that is not supported
in the case of prediction, where C, is available, but not E. And the two state-
ments C; and C, (in combination with the general statement that sensitive
individuals will develop skin cancer when exposed to intensive radiation) do
provide an adequate explanans for E. If the explanation is thus construed as
invoking C, in addition to C;, it is seen to be self-evidencing, but also to possess
an explanans which would provide an adequate basis for prediction if C, could
be known in advance. That is impossible, of course, as long as the only available
test for radiation-sensitivity consists in checking whether an individual does
develop skin cancer upon intensive irradiation. But, clearly, it is conceivable
that other, independent, tests of radiation-sensitivity might be found and then
C, might well be established independently of, and even prior to, the occurrence
of the event described by E.

In discussing the structural identity of explanation and prediction, I have
so far considered only the first of the two sub-theses distinguished earlier,
namely, the claim that every adequate explanation is also a potential prediction.
I have argued that the objections raised against this claim fall short of their
mark, and that the first sub-thesis is sound and can indeed serve as a necessary
condition of adequacy for any explicitly stated, rationally acceptable expla-
nation.

= Ttuen now to the second sub-thesis, namely, that every adequate predictive
argument also affords a potential explanation. This claim is open to question
even in the case of certain predictive arguments that are of deductive-nomo-
logical character, as the following example illustrates. One of the early symp-
toms of measles is the appearance of small whitish spots, known as Koplik
spots, on the mucous linings of the cheeks. The statement, L, that the appear-
ance of Koplik spots is always followed by the later manifestations of the
measles might therefore be-taken to be a law, and it might then be used as a
premise in D-N arguments with a second premise of the form ‘Patient i has
Koplik spots at time ¢, and with a conclusion stating that i subsequently shows
the later manifestations of the measles. An argument of this type is adequate
for predictive purposes, but its explanatory adequacy might be questioned.
We would not want to say, for example, that i had developed high fever and
other symptoms of the measles because he had previously had Koplik spots.
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Yet this case—and others similar to it—does not constitute a decisive objection
against the second sub-thesis. For the reluctance to regard the appearance of
Koplik spots as explanatory may well reflect doubts as to whether, as a matter
of universal law, those spots are always followed by the later manifestations of
measles. Perhaps a local inoculation with a small amount of measles virus would
produce the spots without leading to a full-blown case of the measles. If this
were so, the appearance of the spots would still afford a usually reliable basis
for predicting the occurrence of further symptoms, since exceptional conditions
of the kind just mentioned would be extremely rare; but the generalization
that Koplik spots are always followed by later symptoms of the measles would
not express a law and thus could not properly support a corresponding D-N
explanation.

The objection just considered concerns the explanatory potential of pre-
dictive arguments of the form (D-N). But the second sub-thesis, in its general
form, which is not limited to D-N predictions, has further been challenged,
particularly by Scheffler and by Scriven,*® on the ground that there are other
kinds of predictive argument that are adequate for scientific prediction, yet not
for explanation. Specifically, as Scheffler notes, a scientific prediction may be
based on a finite set of data which includes no laws and which would have no
explanatory force. For example, a finite set of data obtained in an extensive
test of the hypothesis that the electric resistance of metals increases with their
temperature may afford good support for that hypothesis and may thus provide
an acceptable basis for the prediction that in an as yet unexamined instance, a
rise in temperature in a metal conductor will be accoumpanied by an increase
in resistance. But if this event then actually occurs, the test data clearly do not
provide an explanation for it. Similarly, a list of the results obtained in a long
series of tossings of a given coin may provide a good basis for predicting the
percentage of Heads and Tails to be expected in the next 1000 tossings of the
same coin; but again, that list of data provides no explanation for the subsequent
results. Cases like these raise the question of whether there are not sound modes
of scientific prediction that proceed from particulars to particulars without
benefit of general laws such as seem to be required for any adequate explanation.
Now, the predictive arguments just considered are not deductive but proba-
bilistic in character; and the role of probabilistic inference for explanation and
prediction will be considered more fully in section 3 of this essay. But in regard
to the second sub-thesis of the structural identity claim, let us note this much
here: the predictions in our illustrations proceed from an observed sample
of a population to another, as yet unobserved one; and on some current theories

50. See Scheffler (1957), p. 296 and (1963), p. 42; Scriven (195%a), p. 480.
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of probabilistic inference such arguments do not depend upon the assumption
of general empirical laws. According to Carnap’s theory of inductive logic,™
for example, such inferences are possible on purely logical grounds; the in-
formation about the given sample confers a definite logical probability upon
any proposed prediction concerning an as yet unobserved sample. On the
other hand, certain statistical theories of probabilistic inference eschew the
notion of purely logical probabilities and qualify predictions of the kind here
considered as sound only on the further assumption that the selection of indi-
vidual cases from the total population has the character of a random experiment
with certain general statistical characteristics. But that assumption, when
explicitly spelled out, has the form of a general law of statistic-probabilistic
form; hence, the predictions are effected by means of covering laws after all.
And though these laws do not have the strictly universal character of those
invoked in D-N explanations and predictions, they can serve in an explanatory
capacity as well. Thus construed, even the predictions here under discussion
turn out to be (incompletely formulated) potential explanations.

The basic questions at issue between these different conceptions of prob-
abilistic inference are still the subject of debate and research, and this essay is
not the place to attempt a fuller appraisal of the opposing views. The second
sub-thesis of the structural identity claim for explanation and prediction will
therefore be regarded here as an open question.

3. STATISTICAL EXPLANATION

3.1 Laws oF StaTisTicAL Form. We now turn our attention to explanations
based on nomological statements of a kind we have not so far considered,
which have come to play an increasingly important role in empirical science.
I will refer to them as laws or theoretical principles of statistic-probabilistic form, or
as statistical laws, for short.

Most of our discussion will be concerned with the explanatory use of
statistical Jaws of a very simple kind; we will call them laws of basic statistical form.
These are statements to the effect that the statistical probability for an event of
kind F to be also of kind G is r, or that

p(GF)=r

for short. Broadly speaking, this statement asserts that in the long run the
proportion of those instances of F which are also instances of G is approximately
r. (A fuller account will be given in section 3.3.)

For example, the statement that the rolling of a given slightly irregular die

51. Carnap (1950), section 110.
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(event of kind F) yields an ace (event of kind G) with a probability of .15, i.e.,
in about 15 per cent of all cases in the long run, has this basic statistical form.
And so does the law that the half-life of radon is 3.82 days, i.e., that the statistical
probability for a radon atom to disintegrate during any given period of 3.82
days is 1/2, which means, roughly, that of a sample of radon containing a large
number of atoms, very close to one half of the atoms decay within 3.82 days.

Laws of basic statistical form may be regarded as less stringent counterparts
of laws that have the universal conditional form

() (Fx DG

asserting that any instance of F is an instance of G, as for example: ‘Any gas
expands when heated under constant pressure’. Indeed, the two kinds of law
share an important feature, which is symptomatic of their nomological char-
acter: both make general claims concerning a class of cases that might be said
to be potentially infinite. As we noted earlier, a statement which is logically
equivalent to a finite conjunction of singular sentences, and which in this sense
makes a claim concerning only a finite class of cases, does not qualify as a law
and lacks the explanatory force of a nomological statement. Lawlike sentences,
whether true or false, are not just conveniently telescoped summaries of finite
sets of data concerning particular instances.

For example, the law that gases expand when heated under constant pressure
is not tantamount to the statement that in all instances that have so far been
observed, or perhaps in all instances that have so far occurred, an increase in
the temperature of a gas under constant pressure has been accompanied by an
increase in volume. Rather it asserts that a growth in volume is associated with
the heating of a gas under constant pressure in any case, whether past, present, or
future, and whether actually observed or not. It even implies counterfactual
and subjunctive conditionals to the effect that if a given body of gas had been
heated or were to be heated under constant pressure, its volume would have
increased, or would increase, as well.

Similarly, the probabilistic laws of genetics or of radioactive decay are
not tantamount to descriptive reports of the frequencies with which some kind
of phenomenon has been found to occur in a finite class of observed cases:
they assert certain peculiar, namely probabilistic, modes of connection between
potentially infinite classes of occurrences. In a statistical law of basic form, as
contradistinguished from a statistical description specifying relative frequencies
in some finite set, the “reference class” F is not assumed to be finite. Indeed,
we might say that a law of the form ‘p (G,F) = r’ refers not only to all actual
instances of F, but, so to speak, to the class of all its potential instances. Suppose,
for example, that we are given a homogeneous regular tetrahedron whose
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faces are marked T, ‘I, ‘IIl’, TV’. We might then assert that the probability
of obtaining a III, i.e., of the tetrahedron’s coming to rest on that face upon
being tossed out of a dice box, is 1/4. But, while this assertion says something
about the frequency with which a III is obtained as a result of rolling the
tetrahedron, it cannot be construed as simply specifying that frequency for the
class of all tosses which are, in fact, ever performed with the tetrahedron. For
we might well maintain our hypothesis even if we were informed that the
tetrahedron would actually be tossed only a few times throughout its existence,
and in this case, our probability statement would surely not be meant to assert
that exactly, or even nearly, one-fourth of those tosses would yield the result IIL
Moreover, our statement would be perfectly meaningful and might, indeed,
be well supported (e.g., by results obtained with similar tetrahedra or with
other homogeneous bodies in the form of regular solids) even if the given
tetrahedron happened to be destroyed without ever having been tosed at all.
What the probability statement attributes to the tetrahedron is, therefore, not
the frequency with which the result III is obtained in actual past or future
rollings, but a certain disposition, namely, the disposition to yield the result III
in about one out of four cases, in the long run. This disposition might be
characterized by means of a subjunctive conditional phrase: if the tetrahedron
were to be tossed a large number of times, it would yield the result III in about
one-fourth of the cases.? Implications in the form of counterfactual and sub-
jective conditionals are thus hallmarks of lawlike statements both of strictly
universal and of statistical form.

As for the distinction between lawlike sentences of strictly universal form
and those of probabilistic or statistical form, it is sometimes thought that
statements asserting strictly universal connections, such as Galileo’s law or
Newton’s law of gravitation, rest, after all, only on a finite and thus inevitably
incomplete body of evidence; that, therefore, they may well have as yet

1. Carnap (1951-54, pp. 190-92) has argued in a similar vein that the statistical probability
of rolling an ace with a given die is a physical characteristic, which he also calls “the proba-
bility state” of the die, and that the relative frequency with which rollings of the die yield
an ace is a symptom of that state, much as the expansion of the mercury column in a ther-
mometer is a symptom of its temperature state.

The dispositional construal I have outlined for the concept of statistical probability
appears to be in close accord also with the “propensity interpretation” advocated by Popper.
The latter ““differs from the purely statistical or frequency interpretation only in this—that
it considers the probability as a characteristic property of the experimental arrangement
rather than as a property of a sequence”; the property in question is explicitly construed
as dispositional. (Popper 1957, pp. 67-68). See also the discussion of this paper in Korner
(1957), pp. 78-89, passim. However, the currently available statements of the propensity
interpretation are all rather brief; a fuller presentation is to be given in a forthcoming book
by Popper.
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undetected exceptions; and that accordingly they, too, should be qualified
as only probabilistic. But this argument confounds the claim made by a given
statement with the evidence available in support of it. On the latter score, all
empirical statements are only more or less well supported by the relevant
evidence at our disposal; or, in the parlance of some theorists, they have a
more or less high logical or inductive probability conferred upon them by that
evidence. But the distinction between lawlike statements of strictly universal
form and those of probabilistic form pertains, not to the evidential support of
the statements in question, but to the claims made by them: roughly speaking,
the former attribute (truly or falsely) a certain characteristic to all members
of a certain class; the latter, to a specified proportion of its members.

Even if all the supposedly universal laws of empirical science should even-
tually come to be regarded as reflections of underlying statistical uniformities—
an interpretation that the kinetic theory of matter gives to the classical laws
of thermodynamics, for exaxnplé—even then the distinction between the two
types of law and the corresponding explanations is not wiped out: in fact,
it is presupposed in the very formulation of the conjecture.

Nor is a statement of the universal conditional form

(x)(Fx> Gx)
logically equivalent to the corresponding statement of the basic statistical form
p(G F)=1

for, as will be shown more fully in section 3.3, the latter asserts only that it is
practically certain that in a large number of instances of F, almost all are
instances of G; hence the probability statement may be true even if the cor-
responding statement of strictly universal form is false.

So far, we have dealt only with statistical laws of basic form. Let us now
say more generally that a statement has the form of a statistical law, or is of prob-
abilistic-statistical character, if it is formulated in terms of statistical proba-
bilities, i.e., if it contains (nonvacuously) the term ‘statistical probability’ or
some notational equivalent, or a term—such as ‘half-life’—which is defined by
means of statistical probabilities.

Take, for example, the statement that when two coins are flipped simul-
taneously, the face shown by one is independent of that shown by the other.
This amounts to saying that the probability for the second coin to show heads
when the first shows heads is the same as when the first shows tails; and vice
versa. Generally, assertions of statistical independence have the form of statis-
tical laws, though they are not of basic statistical form. Similarly, a statement
asserting a statistical dependence or “aftereffect” has the form of a statistical
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law; for example, the statement that in any given area the probability for a day
to be cloudy when it follows a cloudy day is greater than when it follows a
noncloudy day. Still other laws of statistical form are formulated in terms of
mean values of certain variables, such as the mean kinetic energy and the mean
free path of the molecules in a gas; the notion of mean value here invoked is
defined by reference to statistical probabilities.

By a statistical explanation, let us now understand any explanation that
makes essential use of at least one law or theoretical principle of statistical form.
In the following subsections, we will examine the logical structure of such
explanations. We will find that there are two logically different types of sta-
tistical explanation. One of them amounts, basically, to the deductive sub-
sumption of a narrower statistical uniformity under more comprehensive
ones: I will call it deductive-statistical explanation. The other involves the sub-
sumption, in a peculiar nondeductive sense, of a particular occurrence under
statistical laws; for reasons to be given later, it will be called inductive-statistical

explanation.

3.2 DEDUCTIVE-STATISTICAL EXPLANATION. It is an instance of the so-called
gambler’s fallacy to assume that when several successive tossings of a fair coin
have yielded heads, the next toss will more probably yield tails than heads. Why
this is not the case can be explained by means of two hypotheses that have the
form of statistical laws. The first is that the random experiment of flipping
a fair coin yields heads with a statistical probability of 1/2. The second hypothesis
is that the outcomes of different tossings of the coin are statistically independent,
so that the probability of any specified sequence of outcomes—such as heads
twice, then tails, then heads, then tails three times—equals the product of the
probabilities of the constituent single outcomes. These two hypotheses in terms
of statistical probabilities imply deductively that the probabliity for heads to
come up after a long sequence of heads is still 1/2.

Certain statistical explanations offered in science are of the same deductive
character, though often quite complex mathematically. Consider, for example,
the hypothesis that for the atoms of every radioactive substance there is a
characteristic probability of disintegrating during a given unit time internal,
and that probability is independent of the age of the atom and of all external
circumstances. This complex statistical hypothesis explains, by deductive
implication, various other statistical aspects of radioactive decay, among them,
the following: Suppose that the decay of individual atoms of some radioactive
substance is recorded by means of the scintillations produced upon a sensitive
screen by the alpha particles emitted by the disintegrating atoms. Then the
time intervals separating successive scintillations will vary considerably in
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length, but intervals of different lengths will occur with different statistical
probabilities. Specifically, if the mean time interval between successive scintil-
lations is s seconds, then the probability for two successive scintillations to be
separated by more than n-s seconds is (1/e)", where e is the base of the natural
logarithms.?

Explanations of the kind here illustrated will be called deductive-statistical
explanations, or D-S explanations. They involve the deduction of a statement in
the form of a statistical law from an explanans that contains indispensably at
least one law or theoretical principle of statistical form. The deduction is
effected by means of the mathematical theory of statistical probability, which
makes it possible to calculate certain derivative probabilities (those referred to
in the explanandum) on the basis of other probabilities (specified in the expla-
nans) which have been empirically ascertained or hypothetically assumed.
What a D-S explanation accounts for is thus always a general uniformity
expressed by a presumptive law of statistical form.

Ultimately, however, statistical laws are meant to be applied to particular
occurrences and to establish explanatory and predictive connections among them.
In the next subsection, we will examine the statistical explanation of particular
events. Our discussion will be limited to the case where the explanatory
statistical laws are of basic form: this will suffice to exhibit the basic logical
differences between the statistical and the deductive-nomological explanation
of individual occurrences.

3.3 INDUCTIVE-STATISTICAL EXPLANATION. As an explanation of why patient
John Jones recovered from a streptococcus infection, we might be told that
Jones had been given penicillin. But if we try to amplify this explanatory claim
by indicating a general connection between penicillin treatment and the sub-
siding of a streptococcus infection we cannot justifiably invoke a general law
to the effect that in all cases of such infection, administration of penicillin will
lead to recovery. What can be asserted, and what surely is taken for granted
here, is only that penicillin will effect a cure in a high percentage of cases, or
with a high statistical probability. This statement has the general character of
a law of statistical form, and while the probability value is not specified, the

statement indicates that it is high. But in cont to the cases of deductive-

penicillin obviously does not imply the explanandum statement, ‘the patient

2. Cf. Mises (1939), pp. 272-78, where botl

argument are presented. This book also contains many other illustrations of what is here

2l findings and the explanatory

called deductive-statistical explanation.
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recovered’, with deductive certainty, but only, as we might say, with high
likelihood, or near-certainty. Briefly, then, the explanation amounts to this
argument:

(3a) The particular case of illness of John Jones—let us call it j—was an instance
of severe streptococcal infection (Sj) which was treated with large doses of
penicillin (Pf); and the statistical probability p (R, S-P) of recovery in cases
where S and P are present is close to 1; hence, the case was practically certain
to end in recovery (Rj).

This argument might invite the following schematization:

? (R, S'P) is close to 1
(3b) Sj- B -
(Therefore:) It is practically certain (very likely) that R;

In the literature on inductive inference, arguments thus based on statistical
hypotheses have often been construed as having this form or a similar one.
On this construal, the conclusion characteristically contains a modal qualifier
such as ‘almost certainly’, ‘with high probability’, ‘very likely’, etc. But the con-
ception of arguments having this character is untenable. For phrases of the
form ‘it is practically certain that p” or ‘Tt is very likely that p’, where the place
of ‘p’ is taken by some statement, are not complete self-contained sentences
that can be qualified as either true or false. The statement that takes the place
of ‘p’—for example, ‘Rj’—is either true or false, quite independently of what-
ever relevant evidence may be available, but it can be qualified as more or less
likely, probable, certain, or the like only relative to some body of evidence. One
and the same statement, such as ‘Rj’, will be certain, very likely, not very
likely, highly unlikely, and so forth, depending upon what evidence is consid-
ered. The phrase ‘it is almost certain that Rj’ taken by itself is therefore neither
true nor false; and it cannot be inferred from the premises specified in (3b) nor
from any other statements.

The confusion underlying the schematization (3b) might be further illu-
minated by considering its analogue for the case of deductive arguments. The
force of a deductive inference, such as that from ‘all F are G’ and ‘4 is F’ to
‘ais G, is sometimes indicated by saying that if the premises are true, then the
conclusion is necessarily true or is certain to be true—a phrasing that might
suggest the schematization

All F are G
ais F
(Therefore:) It is necessary (certain) that a is G.
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But clearly the given premises—which might be, for example, ‘all men
are mortal’ and ‘Socrates is a man’—do not establish the sentence ‘ais G’ (‘Soc-
rates is mortal’) as a necessary or certain turth. The certainty referred to in the
informal paraphrase of the argument is relational: the statement ‘a is G’ is
certain, or necessary, relative to the specified premises; i.e., their truth will guaran-
tee its truth—which means nothing more than that ‘a is G’ is a logical conse-
quence of those premises.

Analogously, to present our statistical explanation in the manner of schema
(3b) is to misconstrue the function of the words ‘almost certain’ or ‘very likely’
as they occur in the formal wording of the explanation. Those words clearly
must be taken to indicate that on the evidence provided by the explanans, or
relative to that evidence, the explanandum is practically certain or very likely,
ie., that

(3c) ‘Rj is practically certain (very likely) relative to the explanans
containing the sentences ‘p (R, S-P) is close to 1" and ‘Sj- Pj".?

The explanatory argument misrepresented by (3b) might therefore suitably
be schematized as follows:

p (R, §-P) is close to 1
5y Sj-Pj

[makes practically certain (very likely)]
Rj
In this schema, the double line separating the “premises” from the “con-
clusion” is to signify that the relation of the former to the latter is not that

of deductive implication but that of inductive support, the strength of which
is indicated in square brackets.s

3. Phrases such as ‘It is almost certain (very likely) that j recovers’, even when given
the relational construal here suggested, are ostensibly concerned with relations between
propositions, such as those expressed by the sentences forming the conclusion and the prem-
ises of an argument. For the purpose of the present discussion, however, involvement with
propositions can be avoided by construing the phrases in question as expressing logical rela-
tions between corresponding senfences, e.g., the conclusion-sentence and the premise-
sentence of an argument. This construal, which underlies the formulation of (3¢c), will be
adopted in this essay, though for the sake of convenience we may occasionally use a paraphrase.

4. In the familiar schematization of deductive arguments, with a single line separating
the premises from the conclusion, no explicit distinction is made between a weaker and
a stronger claim, either of which might be intended; namely (i) that the premises logically
imply the conclusion and (ii) that, in addition, the premises are true. In the case of our prob-
abilistic argument, (3c) expresses a weaker claim, analogcus to (i), whereas (3d) may be taken
to express a “proffered explanation” (the term is borrowed from Scheffler, (1957), section 1)
in which, in addition, the explanatory premises are—however tentatively—asserted as true.

5. The considerations here outlined concerning the use of terms like ‘probably’ and
‘certainly’ as modal qualifiers of individual statements seem to me to militate also against

(continued overleaf)
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Our schematization thus reflects explicitly the understanding that ‘almost
certain’, ‘very likely’, ‘practically impossible’ and similar expressions often
used in the phrasing of probabilistic arguments, including explanations, do
not stand for properties possessed by certain propositions or the corresponding
sentences, but for relations that some sentences bear to others. According to
this understanding, the notion of the explanans of (3d) making the explanandum
almost certain or very likely is but a special case of the idea of a given statement
or set of statements—let us call it the grounds or the evidence e—conferring
more or less strong inductive support or confirmation or credibility upon some
statement . To clarify and systematically to elaborate the idea here sketchily
characterized is, of course, the objective of various theories of inductive reason-

the notion of categorical probability statement that C. I. Lewis sets forth in the following

passage (italics the author’s):
Just as ‘If D then (certainly) P, and D is the fact,’ leads to the categorical consequence,
‘Therefore (certainly) P’; so too, ‘If D then probably P, and D is the fact’, leads to
a categorical consequence expressed by ‘It is probable that P’. And this conclusion is
not merely the statement over again of the probability relation between ‘P’ and ‘D’;
any more than ‘Therefore (certainly) P’ is the statement over again of ‘If D then
(certainly) P’. ‘If the barometer is high, tomorrow will probably be fair; and the barometer
is high’, categorically assures something expressed by “Tomorrow will probably be
fair’. This probability is still relative to the grounds of judgment; but if these grounds
are actual, and contain all the available evidence which is pertinent, then it is not only
categorical but may fairly be called the probability of the event in question. (1946, p. 319).

This position seems to me to be open to just those objections suggested in the main
text. If ‘P’ is a statement, then the expressions ‘certainly P’ and ‘probably P’ as envisaged
in the quoted passage are not statements. If we ask how one would go about trying to as-
certain whether they were true, we realize that we are entirely at a loss unless and until
a reference set of statements or assumptions has been specified relative to which P may then
be found to be certain, or to be highly probable, or neither. The expressions in question,
then, are essentially incomplete; they are elliptic formulations of relational statements;
neither of them can be the conclusion of an inference. However plausible Lewis’s suggestion
may seem, there is no analogue in inductive logic to modus ponens, or the “rule of detach-
ment,” of deductive logic, which, given the information that ‘D’, and also ‘if D then P’, are
true statements, authorizes us to detach the consequent ‘P’ in the conditional premise and
to assert it as a self-contained statement which must then be true as well,

At the end of the quoted passage, Lewis suggests the important idea that ‘probably P’
might be taken to mean that the total relevant evidence available at the time confers high
probability upon P. But even this statement is relational in that it tacitly refers to some
unspecified time, and, besides, his general notion of a categorical probability statement
as a conclusion of an argument is not made dependent on the assumption that the premises
of the argument include all the relevant evidence available.

It must be stressed, however, that elsewhere in his discussion, Lewis emphasizes the
relativity of (logical) probability, and, thus, the very characteristic that rules out the con-
ception of categorical probability statements.

Similar objections apply, I think, to Toulmin’s construal of probabilistic arguments; cf.
Toulmin (1958) and the discussion in Hempel (1960), sections 1-3.
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ing. It is still a matter of debate to what extent clear criteria and a precise
theory for the concept at issue can be developed. Several attempts have been
made to formulate rigorous logical theories for a concept of inductive support
that admits of numerical or nonnumerical gradations in strength: two out-
standing examples of such efforts are Keynes's theory of probability and,
especially, Carnap’s impressive system of inductive logic.® In the latter, the
degree to which a sentence, or hypothesis, h is confirmed by an evidence
sentence ¢ is represented by a function ¢(h,e), whose values lie in the interval
from 0 to 1 inclusive, and which satisfies all the basic principles of abstract
probability theory; c(hye) is therefore also referred to as the logical or inductive
probability of i on e. This concept of inductive probability as a quantitative
logical relation between statements must be sharply distinguished from the
concept of statistical probability as a quantitative empirical relation between
kinds or classes of events. The two concepts have a common formal structure,
however, in virtue of which both of them qualify as probabilities: both are
defined, in their respective formal theories, in terms of nonnegative additive
«ct functions whose values range from 0 to 1. Carnap’s theory provides an
explicit definition of ¢(h,e) for the case where the sentences h and e belong to
one or another of certain relatively simple kinds of formalized language; the
extension of his approach to languages whose logical apparatus would be
adequate for the formulation of advanced scientific theories is as yet an open
problem.

But, independently of the extent to which the relation of the explanandum
to the explanans can be analyzed in terms of Carnap’s quantitative concept
of inductive probability, probabilistic explanations must be viewed as inductive
in the broad sense here adumbrated. To refer to the general notion of inductive
support as capable of gradations, without commitment to any one particular
theory of inductive support or confirmation, we will use the phrase ‘(degree
of ) inductive support of h relative to €7

Explanations of particular facts or events by means of statistic-probabilistic
laws thus present themselves as arguments that are inductive or probabilistic in
the sense that the explanans confers upon the explanandum a more or less

high degree of inductive support or of logical (inductive) probability; they

6. See Keynes (1921); of Carnap’s numerous writings on the subject, ¢f. especially (1945),
(1950), (1952), (1962).

7. Some recent attempts to give precise explications of this general notion have led to
concepts that do not have all the formal characteristics of a probability function. One such
construal is presented in Helmer and Oppenheim (1945) and, less technically, in Hempel and
Oppenheim (1945). Another is the concept of degree of factual support propounded and theo-
retically developed in Kemeny and Oppenheim (1952). For a suggestive distinction and
comparison of different concepts of evidence, see Rescher (1958).
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will therefore be called inductive-statistical explanations, or I-S explanations.
Explanations, such as (3d), in which the statistical laws invoked are of basic
form, will also be called I-S explanations of basic form.

I will now try to show that the inductive construal here suggested for the
statistical explanation of particular facts is called for also by the empirical
interpretation that probabilistic laws have received in recent versions of the
theory of statistical probability and its applications.

The mathematical theory of statistical probability is intended to provide
a theoretical account of the statistical aspects of repeatable processes of a certain
kind, which are referred to as random processes or random experiments.
Roughly, a random experiment is a kind of process or event which can be
repeated indefinitely by man or by nature, and which yields in each case one
out of a certain finite or infinite set of “results” or “outcomes” in such a way
that while the outcomes vary from case to case in an irregular and unpredictable
manner, the relative frequencies with which the different outcomes occur
tend to become more or less constant as the number of performances increases.
The flipping of a coin, with heads and tails as the possible outcomes, is a familiar
example of a random experiment.

The theory of probability offers a “mathematical model” of the general
mathematical properties and interrelations of the long-run frequencies associated
with the outcomes of random experiments.

In the model, each of the different “possible outcomes™ assigned to a given
random experiment F is represented by a set G, which may be thought of as
the set of those performances of the experiment that yield the outcome in
question, while F may be viewed as the set of all performances of the random
experiment. The probability of obtaining an outcome of a given kind G as a
result of performing an experiment of kind Fis then represented as a measure,
pr (G), of the size of set G in relation to set F.

The postulates of the mathematical theory specify that p, is a nonnegative
additive set function whose maximum value is 1, i.e., for every possible out-
come G of F, p, (G) = 0; if Gy, G, are mutually exclusive outcomes of F,
then p (Gyv Gy) = pp\Gy) + pr (G,); and pp (F)=1. These stipulations permit
the proof of the theorems of elementary probability theory; to deal with
experiments that admit of infinitely many different outcomes, the requirement
of additivity is suitably extended to infinite sequences of mutually exclusive
outcome sets Gy, G, G, . .. .

The resulting abstract theory is applied to empirical subject matter by means
of an interpretation that relates statements in terms of probabilities as set-
measures to statements about long-run relative frequencies associated with the
outcomes of random experiments. I will now state this interpretation in a
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formulation which is essentially that given by Cramér.® For convenience,
the notation ‘P, (G)” will henceforth be replaced by ‘p(G,F)".

(3¢) Frequency interpretation of statistical probability. Let F be a given kind of
random experiment and G a possible result of it; then the statement that
p(G, F)=r means that in a long series of repetitions of F, it is practically certain
that the relative frequency of the result G will be approximately equal to r.

Cramér also states two corrollaries of this interpretation which refer to
those cases where r differs very little from 0 or from 1; they are of special
interest for our further discussion of probabilistic explanation. I will therefore
note them here, again following Cramér’s formulation in its essentials.®
(3e.1) If 1 - p(G,F) < &, where ¢ is some very small positive number, then if
random experiment F is performed one single time, it is practically certain
that the result G will occur.

(3e.2) If p(G,F)<e, where ¢ is some very small positive number, then if
random experiment F is performed one single time, it is practically certain
that result G will not occur.

As the frequency interpretation here formulated makes use of such vague
phrases as ‘a long series’, ‘practically certain’, ‘approximately equal’, and the
like, it clearly does not provide a precise definition of statistical probabilities
in terms of observable relative frequencies. But some vagueness appears to be
inevitable if the mathematical calculus of probability is to serve as a theoretical
representation of the mathematical relations among empirically ascertained
relative frequencies which remain only approximately constant when the
observed sample increases.!

8. See Cramér (1946), pp. 148-49. Cramér’s book includes a detailed discussion of the
foundations of statistical probability theory and its applications. Similar formulations of
the frequency interpretation have been given by earlier representatives of this measure-
theoretical conception of statistical probability; for example, by Kolmogoroff (1933, p. 4).

9. For (3e.1), see Cramér (1946), p. 150; for (3e.2), see Cramér (1946), p. 149 and the
very similar formulation in Kolmogoroff (1933), p. 4.

10. In certain forms of the mathematical theory, the statistical probability of a given

outcome is explicitly defined, namely, as the limit of the relative frequency of that ou
in an infinite series of performances of the pertinent random experiment. Two
variants of this approach were developed by Mises, ¢f. (1931), (1939) and by Re
of- (1949). But infinite series of performances are not realizable or observable
definition of statistical probability thus provides no criteria for the applicat

a statement specifying the limit of the relative frequency of tf
of performances of random experiment F has no deduct

continued overleaf)
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Of particular interest for an analysis of I-S explanation, however, is the
fact that the phrase ‘it is practically certain that” occurs in the general statement
(3e) of the statistical interpretation and that its two special corollaries (3e.1)
and (3e.2) still contain that phrase, though they manage to avoid the vague
expressions ‘a long series of repetitions” and “approximately equal’. The function
of the words ‘it is practically certain that’ is clear: they indicate that the logical
connection between statistical probability statements and the empirical fre-
quency statements associated with them is inductive rather than deductive.
This point can be made more explicit by restating (3e) as follows: The inform-
ation that p(G,F)=r and that § is a set of n performances of F, where # is a large
number, confers near-certainty (high inductive support) upon the statement
that the number of those performances in § whose outcome is G is approx-
imately n-r. The two corollaries admit of an analogous construal. Thus,
(3e.1) may be restated as follows: The information that 1-p(G,F) < ¢ (where &
is a small positive number) and that individual event i is a performance of
random experiment F (or that Fi, for short) lends strong inductive support
to the statement that i yields outcome G, or that Gi, for short. Or, in a slightly
different phrasing: ‘Gi’ is practically certain relative to the two sentences
‘Pp(G,F) is very close to 1" and ‘Fi’. This last version has the same form as (3c);
thus, in giving an inductive construal to the explanatory import of probabilistic
laws in the manner illustrated by (3d), we are in basic accord with the empirical
interpretation given to probabilistic laws in the contemporary theory of sta-
tistical probability.!*

In our example concerning recovery from a streptococcus infection, the
statistical law invoked did not specify a definite numerical value for the prob-
ability of effecting recovery by means of penicillin. Now we will consider
a simple case of I-S explanation in which the relevant probability statement is
quite specific. Let the experiment D (more exactly, an experiment of kind D)
consist in drawing, with subsequent replacement, a ball from an urn containing
999 white balls and one black, all of the same size and material. We might then
accept the statistical hypothesis that with respect to the outcomes “white ball”

11. However, the representatives of current statistical probability theory do not, in
general, take explicit notice of the inductive character of their statistical interpretation of
probability statements. Even less do they attempt to analyze the inductive concept of prac-
tical certainty, which clearly falls outside the mathematical theory that is their principal
concern.

probability statements thus construed and the corresponding statements about relative fre-
quencies in finite runs must therefore again be viewed as inductive.

For a concise account of the limit conception of statistical probability and a lucid dis-
cussion of some of its difficulties, see Nagel (1939), especially sections 4 and 7.
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and “black ball,” D is a random experiment in which the probability of ob-
taining a white ball is p(7W,D)=.999. According to the statistical interpretation,
this is a hypothesis susceptible of test by reference to finite statistical samples,
but for our present purposes, we need not consider the grounds we might have
for accepting the hypothesis; for we are concerned only with its explanatory use.
Our rule (3e.1) suggests that the hypothesis might indeed be used to explain
probabilistically the results of certain individual drawings from the urn, i.e., the
results of certain performances of D. Suppose, for example, that a particular
drawing, d, produces a white ball. Since p(WW,D) differs from 1 by less than,
say, .0011, which is quite a small amount, rule (3e.1) suggests the following
explanatory argument in analogy to (3d):

1 — p(W,D) < 0011
(3f) Dd
wd

[makes practically certain]

Again, the explanans here does not logically imply the explanandum; and
the argument does not show that, assuming the truth of the statements adduced
in the explanans, the explanandum phenomenon was to be expected “with
certainty.” Rather, the argument may be said to show that on the information
provided by the explanans, the explanandum event was to be expected with
“practical” certainty, or with very high likelihood.

Carnap’s conception of inductive logic suggests that the vague phrase
‘makes practically certain’, which appears between brackets in (3f), might be
replaced by a more definite quantitative one. This would call for an extension
of Carnap’s theory to languages in which statistical probability statements
can be formulated. While the logical apparatus of the languages covered by
Carnap’s published work is not rich enough for this purpose,*? it seems clear
that in cases of the simple kind exemplified by (3f), the numerical value of the
logical probability should equal thatof the corresponding statistical probability.
For example, the information that with statistical probability .999, a drawing
from the urn will produce a white ball, and that the particular event d is a
drawing from the urn, should confer a logical probability of .999 upon the
“conclusion” that the ball produced by d is white. More generally, this rule
may be stated as follows:

(3.g) If e is the statement ‘(p(G,F)=r)* Fb’, and h is ‘G ', then c(h, ¢)=r.

This rule is in keeping with the conception, set forth by Carnap, of logical
probability as a fair betting quotient for a bet on h on the basis of e. It accords

12. According to a personal communication from Professor Carnap, his system has
by now been extended in that direction.
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equally with Carnap’s view that the logical probability on evidence e of the
hypothesis that a particular case b will have a specified property M may be
regarded as an estimate, based on e, of the relative frequency of M in any
class K of cases on which the evidence e does not report. Indeed, Carnap adds
that the logical probability of ‘Mb’ on e may in certain cases be considered as
an estimate of the statistical probability of M.**If, therefore, e actually contains
the information that the statistical probability of M is r, then the estimate, on
e, of that statistical probability, and thus of the logical probability of ‘Mb’ on e,
should clearly be r as well.

And just as the rule (3e.1) provides the logical rationale for statistical ex-
planations such as (3f), so our rule (3g) provides the rationale for a similar kind
of probabilistic explanation, which invokes quantitatively definite statistical
laws and which may be schematized as follows:

p(GF)=r
(3h) Fi

Gi

[r]

An explanatory argument of this form would serve to account for the fact
that a given individual case i exhibits the characteristic G by pointing out that
i is a case of F; that the statistical probability for an F to exhibit characteristic
G is'r; and that, according to rule (3g), this explanatory information confers
the logical probability r upon the explanandum statement. I will refer to r
also as the probability associated with the explanation. Of course, an argument
of this kind will count as explanatory only if the number r is fairly close to 1.
But it seems impossible, without being arbitrary, to designate any particular
number, say .8, as the minimum value of the probability r permissible in an
explanation.

In our example, the probabilistic explanation of the drawing of a white
ball may now be put into the form (3h) as follows:

p(W,D) = .999
G)  Dd

[.999]

wd

Now, it is often said that probabilistic laws can serve to account for statistical
aspects of large samples, but surely can explain nothing about an individual
case. Examples like the following might seem to bear out this contention.
The law that the flipping of a regular coin yields heads with the probability 1/2

13. Carnap (1950), pp. 168-75.
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clearly does not enable us to explain why a particular flipping produced heads;
whereas the same law (plus the assumption that the results of different flippings
are statistically independent of each other) may be used to account for the fact
that the number of heads obtained in a particular series of 10,000 flippings fell
between 4,9000 and 5,100; for this outcome has a probability exceeding .95.
But if we count this outcome as explained because of the high probability the
explanans confers upon it, then clearly we must also grant explanatory status
to arguments such as (3i) whose explanans makes it highly probable that the
given outcome will occur if the relevant random experiment is performed
just once.

It is also sometimes thought that because probabilistic arguments are not
logically conclusive they cannot serve to explain; for even if the explanans is
true, it is still possible that the explanandum phenomenon might not have
come about; in the case of (3i), for example, drawing d might have produced
a black ball despite the high probability for a white one to be drawn. But this
objection to the idea of probabilistic explanation rests on a too restrictive
conception of scientific explanation; for many important eXplanatory accounts
offered by empirical science make quite explicit use of statistical laws which, in
conjunction with the rest of the explanatory information adduced, make the
explanandum no more than highly probable.

For example, by means of Mendelian genetic principles it can be shown to
be highly probable that in a random sample taken from a population of pea
plants each of whose parent plants represents a cross of a pure white-flowered
and a pure red-flowered strain, approximately 75 per cent of the plants will
have red flowers and the rest, white ones. This argument, which may be used
for explanatory or for predictive purposes, is inductive-statistical; what it
explains or predicts are the approximate percentages of red- and white-flowered
plants in the sample. The “premises” by reference to which the specified
percentages are shown to be highly probable include (1) the pertinent laws of
genetics, some of which have statistical, others strictly universal form; and
(2) information of the kind mentioned above about the genetic make-up of the
parent generation of the plants from which the sample is taken. The genetic
principles of strictly universal form include the laws that the colors in question
are tied to specific genes, that the red gene is dominant over the white one,

14. Thus Scriven (1959, p. 467), says that “statistical statements are too weak—they
abandon the hold on the individual case. ... An event can rattle around inside a network
of statistical laws.” Dray (1963, p. 119), expresses a similar view. These observations are
quite correct if they are simply meant to say that statistical laws have no deductive impli-
cations concerning particular events, but they are misleading if they are used to suggest
that statistical laws can have no explanatory significance for particular occurrences.
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and various other general laws concerning the transmission, by genes, of the
colors in question—or, perhaps, of a broader set of gene-linked traits. Among
the statistical generalizations invoked is the hypothesis that the four possible
combinations of color-determining genes—WW, WR, RW, RR—are sta-
tistically equiprobable in their occurrence in the offspring of two plants of the
hybrid generation.

Let us now examine somewhat more closely an explanatory use of the law
for radioactive decay of radon, which states that this element has a half-life
of 3.82 days. This law may be invoked for a statistical explanation of the fact
that within 7.64 days, a particular sample consisting of 10 milligrams of radon
was reduced, by radioactive decay, to a residual amount falling somewhere
within the interval from 2.4 to 2.6 milligrams; it could similarly be used for
predicting a particular outcome of this kind. The gist of the explanatory and
predictive arguments is this: The statement giving the half-life of radon conveys
two statistical laws, (i) the statistical probability for an atom of radon to undergo
radioactive decay within a period of 3.82 days is 1/2, and (ii) the decay of
different radon atoms constitutes statistically independent events. One further
premise used is the statement that the number of atoms in 10 milligrams of
radon is enormously large (in excess of 10'%). As mathematical probability
theory shows, the two laws in conjunction with this last statement imply -
deductively that the statistical probability is exceedingly high that the mass of
the radon atoms surviving after 7.64 days will not deviate from 2.5 milligrams
by more than .1 milligrams, i.e., that it will fall within the specified interval.
More explicitly, the consequence deducible from the two statistical laws in
conjunction with the information on the large number of atoms involved is
another statistical law to this effect: The statistical probability is very high that
the random experiment F of letting 10 milligrams of radon decay for 7.68
days will yield an outcome of kind G, namely a residual amount of radon whose
mass falls within the interval from 2.4 to 2.6 milligrams. Indeed, the probability
is so high that, according to the interpretation (9.2b), if the experiment F is
performed just one single time, it is “practically certain” that the outcome will
be of kind G. In this sense, it is rational on the basis of the given information
to expect the outcome G to occur as the result of a single performance of F.
Also in this sense, the information concerning the half-life of radon and the
large number of atoms involved in an experiment of kind F affords a statistical
explanation or prediction of the occurrence of G in a particular performance
of the experiment. :

By way of another illustration, take the problem of explaining certain
quantitative aspects of the Brownian movement displayed by small particles
suspended in a liquid—a phenomenon qualitatively explained as resulting from
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the irregular impacts, upon the suspended particles, of the surrounding mole-
cules in thermal agitation. From assumptions based on the probabilistic
principles of the kinetic theory of heat, Einstein derived a law to the effect that
the mean displacement of such particles is proportional to the square root of
the elapsed time.’® But the theoretical definition of the mean displacement is
formulated in terms of the statistical probabilities of the various possible
displacements, and Einstein’s law is therefore probabilistic in character. Hence
it does not logically imply definite values for the average displacement ex-
hibited by finite numbers of particles. But the law makes it highly probable,
in the sense discussed above, that the average displacements in finite samples
will be very nearly proportional to the square root of the elapsed time—and
this has indeed been found to be the case. Thus, Einstein’s law provides a
probabilistic explanation for observed aspects of Brownian movement.

As is illustrated by these examples and by others that will be considered
soon, accounts in terms of statistical laws or theories thus play a very important
role in science. Rather than deny them explanatory status on the ground that
nonrealization of the explanandum is compatible with the explanans, we have
to acknowledge that they constitute explanations of a distinct logical character,
reflecting, we might say, a different sense of the word ‘because’. Mises expresses
this point of view when, contemplating recent changes in the notion of causality,
he anticipates that “people will gradually come to be satisfied by causal state-
ments of this kind: It is because the die was loaded that the ‘six’ shows more
frequently (but we do not know what the next number will be); or: Because
the vacuum was heightened and the voltage increased, the radiation became
more intense (but we do not know the precise number of scintillations that
will occur in the next minute).”?® This passage clearly refers to statistical ex-
planation in the sense here under consideration; it sets forth what might be
called a statistical-probabilistic concept of “because,” in contradistinction to
a strictly deterministic one, which would correspond to deductive-nomological
explanation.

Our discussion of the statistical explanation of particular occurrences has
so far been concerned to exhibit its inductive character. In the next subsection,
we will consider a further important characteristic which sets I-S explanation
sharply apart from its deductive counterparts.

For details, and for a full accour
ber, 912), pp. 89 ff. The basic ideas of the probabilistic explanation of some other quanti-
tatiy -ects of Brownian movement are lucidly presented in Mises (1939), pp. 259-68.

16. Mises (1951), p. 188, italics the author’s.

“some experimental tests of this formula, see Sved-
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3.4 Tue AMBIGUITY OF INDUCTIVE-STATISTICAL EXPLANATION AND THE RE-
QUIREMENT OF MAXIMAL SPECIFICITY.

3.4.1. The Problem of Explanatory Ambiguity. Consider once more the explanation
(3d) of recovery in the particular case j of John Jones’s illness. The statistical
law there invoked claims recovery in response to penicillin only for a high
percentage of streptococcal infections, but not for all of them; and in fact,
certain streptococcus strains are resistant to penicillin. Let us say that an
occurrence, e.g., a particular case of illness, has the property S* (or belongs to
the class $*) if it is an instance of infection with a penicillin-resistant strept-
ococcus strain. Then the probability of recovery among randomly chosen
instances of S* which are treated with penicillin will be quite small, i.e.,
p (R, S*-P) will be close to 0 and the probability of non-recovery, p(R, S*-P)
will be close to 1. But suppose now that Jones’s illness is in fact a streptococcal
infection of the penicillin-resistant variety, and consider the following argument:

p(R, S*-P) is close to 1
(3k) S% .Pj

[makes practically certain]

%
This “rival” argument has the same form as (3d), and on our assumptions,
its premises are true, just like those of (3d). Yet its conclusion is the contra-
dictory of the conclusion of (3d).

Or suppose that Jones is an octogenarian with a weak heart, and that in this
group, S**, the probability of recovery from a streptococcus infection in
response to penicillin treatment, p(R, S**-P), is quite small. Then, there is the
following rival argument to (3d), which presents Jones’s nonrecovery as
practically certain in the light of premises which are true:

p(R, S**-P) is close to 1
@ 5% P

— [makes practically certain]
Rj

The peculiar logical phenomenon here illustrated will be called the am-
biguity of inductive-statistical explanation or, briefly, of statistical explanation. This
ambiguity derives from the fact that a given individual event (e.g., Jones’s
illness) will often be obtainable by random selection from any one of several
“reference classes” (such as S-P, S*-P, §**-P), with respect to which the kind
of occurrence (e.g., R) instantiated by the given event has very different
statistical probabilities. Hence, for a proposed probabilistic explanation with
true explanans which confers near-certainty upon a particular event, there will
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often exist a rival argument of the same probabilistic form and with equally
true premises which confers near-certainty upon the nonoccurrence of the
same event. And any statistical explanation for the occurrence of an event
must seem suspect if there is the possibility of a logically and empirically equally
sound probabilistic account for its nonoccurrence. This predicament has no
analogue in the case of deductive explanation; for if the premises of a proposed
deductive explanation are true then so is its conclusion; and its contradictory,
being false, cannot be a logical consequence of a rival set of premises that are
equally true.

Here is another example of the ambiguity of I-S explanation: Upon ex-
pressing surprise at finding the weather in Stanford warm and sunny on a date
as autumnal as November 27, I might be told, by way of explanation, that
this was rather to be expected because the probability of warm and sunny
weather (W) on a November day in Stanford (N) is, say, .95. Schematically, this
account would take the following form, where ‘n’ stands for ‘November 27:

p (W,N) = .95
Nn
(3m) - [.95]
Wn

But suppose it happens to be the case that the day before, November 26,
was cold and rainy, and that the probability for the immediate successors (S)
of cold and rainy days in Stanford to be warm and sunny is .2; then the
account (3m) has a rival in the following argument which, by reference to
equally true premises, presents it as fairly certain that November 27 is not
warm and sunny:

p (W,8) =38
Sn
(3n) [.8]

I_VII

In this form, the problem of ambiguity concerns I-S arguments whose
premises are in fact true, no matter whether we are aware of this or not. But,
as will now be shown, the problem has a variant that concerns explanations
whose explanans statements, no matter whether in fact true or not, are asserted
or accepted by empirical science at the time when the explanation is proffered
or contemplated. This variant will be called the problem of the epistemic am-
biguity of statistical explanation, since it refers to what is presumed to be known
in science rather than to what, perhaps unknown to anyone, is in fact the case.

Let K, be the class of all statements asserted or accepted by empirical science
at time . This class then represents the total scientific information, or “scien-
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tific knowledge” at time £. The word ‘knowledge’ is here used in the sense in
which we commonly speak of the scientific knowledge at a given time. It is
not meant to convey the claim that the elements of K, are true,and hence neither
that they are definitely known to be true. No such claim can justifiably be made
for any of the statements established by empirical science; and the basic standards
of scientific inquiry demand that an empirical statement, however well sup-
ported, be accepted and thus admitted to membership in K, only tentatively,
i.e., with the understanding that the privilege may be withdrawn if unfavorable
evidence should be discovered. The membership of K, therefore changes in the
course of time; for as a result of continuing research, new statements are ad-
mitted into that class; others may come to be discredited and dropped. Hence-
forth, the class of accepted statements will be referred to simply as K when
specific reference to the time in question is not required. We will assume that
K is logically consistent and that it is closed under logical implication, i.c., that
it contains every statement that is logcially implied by any of its subsets.

The epistemic ambiguity of I-S explanation can now be characterized as
follows: The total set K of accepted scientific statements contains different
subsets of statements which can be used as premises in arguments of the prob-
abilistic form just considered, and which confer high probabilities on logically
contradictory “‘conclusions.” Our earlier examples (3k), (3I) and (3m), (3n)
illustrate this point if we assume that the premises of those arguments all
belong to K rather than that they are all true. If one of two such rival arguments
with premises in K is proposed as an explanation of an event considered, or
acknowledged, in science to have occurred, then the conclusion of the argument,
i.c., the explanandum statement, will accordingly belong to K as well. And
since K is consistent, the conclusion of the rival argument will not belong to K.
Nonetheless it is disquieting that we should be able to say: No matter whether
we are informed that the event in question (e.g., warm and sunny weather on
November 27 in Stanford) did occur or that it did not occur, we can produce
an explanation of the reported outcome in either case; and an explanation,
moreover, whose premises are scientifically established statements that confer
a high logical probability upon the reported outcome.

This epistemic ambiguity, again, has no analogue for deductive explanation;
for since K is logically consistent, it cannot contain premise-sets that imply
logically contradictory conclusions.

Epistemic ambiguity also bedevils the predictive use of statistical arguments.
Here, it has the alarming aspect of presenting us with two rival arguments
whose premises are scientifically well established, but one of which characterizes
a contemplated future occurrence as practically certain, whereas the other
characterizes it as practically impossible. Which of such conflicting arguments,
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if any, are rationally to be relied on for explanation or for predictions

3.4.2 The Requirement of Maximal Specificity and the Epistemic Relativity of Inductive-
Statistical Explanation. Our illustrations of explanatory ambiguity suggest that
a decision on the acceptability of a proposed probabilistic explanation or pre-
diction will have to be made in the light of all the relevant information at our
disposal. This is indicated also by a general principle whose importance for
inductive reasoning has been acknowledged, if not always very explicitly, by
many writers, and which has recently been strongly emphasized by Carnap,
who calls it the requirement of total evidence. Carnap formulates it as follows:
“in the application of inductive logic to a given knowledge situation, the total
evidence available must be taken as basis for determining the degree of con-
firmation.”'? Using only a part of the total evidence is permissible if the
balance of the evidence is irrelevant to the inductive “conclusion,” i.e., if on
the partial evidence alone, the conclusion has the same confirmation, or logical
probability, as on the total evidence.®

The requirement of total evidence is not a postulate nor a theorem of
inductive logic; it is not concerned with the formal validity of inductive argu-
ments. Rather, as Carnap has stressed, it is a2 maxim for the application of in-
ductive logic; we might say that it states a necessary condition of rationality of
any such application in a given “knowledge situation,” which we will think
of as represented by the set K of all statements accepted in the situation.

But in what manner should the basic idea of this requirement be brought
to bear upon probabilistic explanation? Surely we should not insist that the
explanans must contain all and only the empirical information available at the
time. Not all the available information, because otherwise all probabilistic
explanations acceptable at time ¢t would have to have the same explanans, K;;
and not only the available information, because a proffered explanation may

17. Carnap (1950), p. 211.

The requirement is suggested, for example, in the passage from Lewis (1946) quoted
{ ntal of all rules

1

in note 5 for this section. Similarly Williams speaks of e most fu

its probability in relation

of probability logic, that ‘the’ probability of any prop
to the known premises and them only.” (Williams, 1947

I am greatly indebted to Professor Carnap for hav d out to me in 1945, when
I first noticed the ambiguity of probabilistic arguments, that t
apparent paradoxes of inductive logic that result from disregard of the requirement of total

9

g PO

1s was but one of several

evidence.

Barker (1957), pp. 70-78, has given a lucid independent presentation of the basic ambiguity
of probabilistic arguments, and a skeptical appraisal of the requirement of total evidence
as a means of dealing with the problem. However, I will presently suggest a way of remedying
the ambiguity of probabilistic explanation with the help of a rather severely modified version
of the requirement of total evidence. It will be called the requirement of maximal specificity,
and is not open to the same criticism.

18. Cf. Carnap (1950), p. 211 and p. 494.
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meet the intent of the requirement in not overlooking any relevant information
available, and may nevertheless invoke some explanans statements which have
not as yet been sufficiently tested to be included in K,.

The extent to which the requirement of total evidence should be imposed
upon statistical explanations is suggested by considerations such as the following.
A proffered explanation of Jones’s recovery based on the information that
Jones had a streptococcal infection and was treated with penicillin, and that the
statistical probability for recovery in such cases is very high is unacceptable if
K includes the further information that Jones’s streptococci were resistant to
penicillin, or that Jones was an octogenarian with a weak heart, and that in
these reference classes the probability of recovery is small. Indeed, one would
want an acceptable explanation to be based on a statistical probability statement
pertaining to the narrowest reference class of which, according to our total
information, the particular occurrence under consideration is a member. Thus,
if K tells us not only that Jones had a streptococcus infection and was treated
with penicillin, but also that he was an octogenarian with a weak heart (and
if K provides no information more specific than that) then we would require
that an acceptable explanation of Jones’s response to the treatment be based on
a statistical law stating the probability of that response in the narrowest reference
class to which our total information assigns Jones’s illness, i.e., the class of
streptococcal infections suffered by octogenarians with weak hearts.®

Let me amplify this suggestion by reference to our earlier example con-
cerning the use of the law that the half-life of radon is 3.82 days in accounting
for the fact that the residual amount of radon to which a sample of 10 milli-
grams was reduced in 7.64 days was within the range from 2.4 to 2.6 milli-
grams. According to present scientific knowledge, the rate of decay of a
radioactive element depends solely upon its atomic structure as characterized
by its atomic number and its mass number, and it is thus unaffected by the age
of the sample and by such factors as temperature, pressure, magnetic and elec-
tric forces, and chemical interactions. Thus, by specifying the half-life of radon
as well as the initial mass of the sample and the time interval in question, the
explanans takes into account all the available information that is relevant to

19. This idea is closely related to one used by Reichenbach (¢f. (1949), section 72) in an at-
tempt to show that it is possible to assign probabilities to individual events within the frame-
work of a strictly statistical conception of probability. Reichenbach proposed that the proba-
bility of a single event, such as the safe completion of a particular scheduled flight of a given
commercial plane, be construed as the statistical probability which the kind of event con-
sidered (safe completion of a flight) possesses within the narrowest reference class to which
the given case (the specified flight of the given plane) belongs, and for which reliable sta-
tistical information is available (for example, the class of scheduled flights undertaken so far

by planes of the line to which the given plane belongs, and under weather conditions similar
to those prevailing at the time of the flight in question).
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appraising the probability of the given outcome by means of statistical laws.
To state the point somewhat differently: Under the circumstances here assumed,
our total information K assigns the case under study first of all to the reference
class, say Fy, of cases where a 10 milligram sample of radon is allowed to decay
for 7.68 days; and the half-life law for radon assigns a very high probability,
within Fj, to the “outcome,” say G, consisting in the fact that the residual mass
of radon lies between 2.4 and 2.6 milligrams. Suppose now that K also contains
information about the temperature of the given sample, the pressure and relative
humidity under which it is kept, the surrounding electric and magnetic con-
ditions, and so forth, so that K assigns the given case to a reference class much
narrower than F, let us say, F,F,F;...F,. Now the theory of radioactive decay,
which is equally included in K, tells us that the statistical probability of G within
this narrower class is the same as within G. For this reason, it suffices in our
explanation to rely on the probability p(G,F).

Let us note, however, that “knowledge situations™ are conceivable in which
the same argument would not be an acceptable explanation. Suppose, for
example, that in the case of the radon sample under study, the amount re-
maining one hour before the end of the 7.68 day period happens to have been
measured and found to be 2.7 milligrams, and thus markedly in excess of 2.6
milligrams—an occurrence which, considering the decay law for radon, is
highly improbable, but not impossible. That finding, which then forms part of
the total evidence K, assigns the particular case at hand to a reference class, say
F*, within which, according to the decay law for radon, the outcome G is
highly improbable since it would require a quite unusual spurt in the decay
of the given sample to reduce the 2.7 milligrams, within the one final hour of
the test, to an amount falling between 2.4 and 2.6 milligrams. Hence, the
additional information here considered may not be disregarded, and an ex-
planation of the observed outcome will be acceptable only if it takes account
of the probability of G in the narrower reference class, i.e., p(G,F,F*). (The
theory of radioactive decay implies that this probability equals p(G,F*), so
that as a consequence the membership of the given case in F; need not be ex-
plicitly taken into account.)

The requirement suggested by the preceding considerations can now be
stated more explicitly; we will call it the requirement of maximal specificity for
inductive-statistical explanations. Consider a proposed explanation of the basic
statistical form

p(GF)=r
Fb

(30) ———11



[4 00 ] SCIENTIFIC EXPLANATION

Let s be the conjunction of the premises, and, if K is the set of all statements
accepted at the given time, let k be a sentence that is logically equivalent to
K (in the sense that k is implied by K and in turn implies every sentence in K).
Then, to be rationally acceptable in the knowledge situation represented by K,
the proposed explanation (30) must meet the following condition (the
requirement of maximal specificity): If s - k implies?® that b belongs to a class
F,, and that F, is a subclass of F, then s-k must also imply a statement specifying
the statistical probability of G in F, say

p(G F) =n,

Here, r; must equal r unless the probability statement just cited is simply a
theorem of mathematical probability theory.

The qualifying unless-clause here appended is quite proper, and its omission
would result in undesirable consequences. It is proper because theorems of
pure mathematical probability theory cannot provide an explanation of empiri-
cal subject matter. They may therefore be discounted when we inquire whether
s*k might not give us statistical laws specifying the probability of G in reference
classes narrower than F. And the omission of the clause would prove trouble-
some, for if (30) is proffered as an explanation, then it is presumably accepted
as a fact that Gb; hence ‘Gb’ belongs to K. Thus K assigns b to the narrower
class F-G, and concerning the probability of G in that class, sk trivially implies
the statement that p(G, F-G) = 1, whichis simply a consequence of the measure-
theoretical postulates for statistical probability. Since s-k thus implies a more
specific probability statement for G than that invoked in (30), the requirement
of maximal specificity would be violated by (30)—and analogously by any
proffered statistical explanation of an event that we take to have occurred—
were it not for the unless-clause, which, in effect, disqualifies the notion
that the statement ‘p(G, F-G) = 1 affords a more appropriate law to account
for the presumed fact that Gb.

The requirement of maximal specificity, then, is here tentatively put forward
as characterizing the extent to which the requirement of total evidence properly
applies to inductive-statistical explanations. The general idea thus suggested
comes to this: In formulating or appraising an I-S explanation, we should take
into account all that information provided by K which is of potential explanatory
relevance to the explanandum event; i.e., all pertinent statistical laws, and such

20. Reference to sk rather than to k is called for because, as was noted earlier, we do not
construe the condition here under discussion as requiring that all the explanans statements
invoked be scientifically accepted at the time in question, and thus be included in the cor-
responding class K.
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particular facts as might be connected, by the statistical laws, with the expla-
nandum event.?!

The requirement of maximal specificity disposes of the problem of epistemic
ambiguity; for it is readily seen that of two rival statistical arguments with
high associated probabilities and with premises that all belong to K, at least
one violates the requirement of maximum specificity. Indeed, let

p(GF) =n ?p(G H)=r,
Fb Hb
= [r]] and sl [rs]
G Gb

be the arguments in question, with r, and r, close to 1. Then, since K contains
the premises of both arguments, it assigns b to both F and H and hence to F-H.
Hence if both arguments satisfy the requirement of maximal specificity, K
must imply that

But p(G,
Hence =t it = 1

and this is an arithmetic falschood, since r, and r, are both close to 1; hence it
cannot be implied by the consistent class K.

Thus, for I-S explanations that meet the requirement of maximal specificity
the problem of epistemic ambiguity no longer arises. We are never in a position
to say: No matter whether this particular event did or did not occur, we can
produce an acceptable explanation of either outcome; and an explanation,
moreover, whose premises are scientifically accepted statements which confer
a high logical probability upon the given outcome.

21. By its reliance on this general idea, and specifically on the requirement of maximal
specificity, the method here suggested for eliminating the epistemic ambiguity of statis-
tical explanation differs substantially from the way in which I attempted in an earlier study
(Hempel, 1962, especially section 10) to deal with the same problem. In that study, which
did not distinguish explicitly between the two types of explanatory a

y character-
ized earlier in this section, I applied the requirement of total evidence to statistical explanations
in 2 manner which presupposed that the explanans of any acceptable explanation belongs to
the class K, and which then demanded that the probability which the explanans confers
upon the explanandum be equal to that which the total evidence, K, imparts to the explanan-
dum. The reasons why this approach seems unsatisfactory to me are suggested by the
arguments set forth in the present section. Note in particular that, if strictly enforced, the
requirement of total evidence would preclude the possibility of any significant statistical
explanation for events whose occurrence is regarded as an established fact in science; for any
sentence describing such an occurrence is logically implied by K and thus trivially has the
logical probability 1 relative to K.
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While the problem of epistemic ambiguity has thus been resolved, ambiguity
in the first sense discussed in this section remains unaffected by our requirement;
i.e., it remains the case that for a given statistical argument with true premises
and a high associated probability, there may exist a rival one with equally
true premises and with a high associated probability, whose conclusion con-
tradicts that of the first argument. And though the set K of statements accepted
at any time never includes all statements that are in fact true (and no doubt
many that are false), it is perfectly possible that K should contain the premises
of two such conflicting arguments; but as we have seen, at least one of the
latter will fail to be rationally acceptable because it violates the requirement
of maximal specificity.

The preceding considerations show that the concept of statistical explanation
for particular events is essentially relative to a given knowledge situation as represented
by a class K of accepted statements. Indeed, the requirement of maximal specificity
makes explicit and unavoidable reference to such a class, and it thus serves to
characterize the concept of “I-S explanation relative to the knowledge
situation represented by K.” We will refer to this characteristic as the epistemic
relativity of statistical explanation.

It might seem that the concept of deductive explanation possesses the same
kind of relativity, since whether a proposed D-N or D-S account is acceptable
will depend not only on whether it is deductively valid and makes essential
use of the proper type of general law, but also on whether its premises are well
supported by the relevant evidence at hand. Quite so; and this condition of
empirical confirmation applies equally to statistical explanations that are to be
acceptable in a given knowledge situation. But the epistemic relativity that
the requirement of maximal specificity implies for I-S explanations is of quite
a different kind and has no analogue for D-N explanations. For the specificity
requirement is not concerned with the evidential support that the total evidence
K affords for the explanans statements: it does not demand that the latter be
included in K, nor even that K supply supporting evidence for them. It rather
concerns what may be called the concept of a potential statistical explanation. For
it stipulates that no matter how much evidential support there may be for
the explanans, a proposed I-S explanation is not acceptable if its potential
explanatory force with respect to the specified explanandum is vitiated by
statistical laws which are included in K but not in the explanans, and which
might permit the production of rival statistical arguments. As we have seen,
this danger never arises for deductive explanations. Hence, these are not subject
to any such restrictive condition, and the notion of a potential deductive ex-
planation (as contradistinguished from a deductive explanation with well-
confirmed explanans) requires no relativization with respect to K.
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As a consequence, we can significantly speak of true D-N and D-S explana-

tions: they are those potential D-N and D-S explanations whose premises
(and hence also conclusions) are true—no matter whether this happens to be
known or believed, and thus no matter whether the premises are included in
K. But this idea has no significant analogue for I-S explanation since, as we
have seen, the concept of potential statistical explanation requires relativization
with respect to K.
3.4.3 Discrete State Systems and Explanatory Ambiguity. In a lucid and instructive
article, Rescher®? has shown that physical systems of a particular kind, which he
calls discrete state systems, afford excellent illustrations of deductive and prob-
abilistic explanation and prediction, and that a closer examination of such
systems can shed a good deal of light on the logical structure, the scope, and
the interrelations of those procedures. I propose to show that a study of those
systems also confronts one with the problem of explanatory ambiguity and
supports the solution here suggested.

By a discrete state system, or a DS system for short, Rescher understands a
physical system which at any moment isin one of several possible states, Sy, Sy, .. .,
each of whose occurrences occupies a finite, though perhaps very brief, period
of time; for the purpose at hand, the number of possible states for a DS system
is taken to be finite. The succession of states exhibited by a DS system is governed
by a set of laws, each of which may be deterministic or probabilistic (statistical).
A deterministic law has the form ‘State S, is always immediately followed by
state S;’; a probabilistic law has the form ‘The statistical probability for (an
occurrence of) state S; to be immediately followed by (an occurrence of) state
S;is ;" A DS system of this kind can be characterized by means of the matrix
of all the transition probabilities e

There are various physical examples of DS systems; among them Rescher
mentions an electronic digital computer; an atom of a radioactive element in
its successive states of decay; and—given a suitably schematized mode of des-
cription—a particle in Brownian motion. A ball rolling down a Galton Board?3
is yet another DS system; its state at a given time being represented by the
number of pins that separate it horizontally from the vertical center line of the
board.

A potential probabilistic explanation (of 2 momentary state of a DS system)
is defined by Rescher as an argument whose conclusion is of the form ‘the
state of the system in time-interval ¢ is S;, or ‘st(f) = S, for short, and whose
premises consist of the laws governing the system and of a set of statements
specifying the states exhibited by the system during certain other time intervals,

22. Rescher (1963).
23. For a discussion of this process, see Mises (1939), pp. 237-40.
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ty, tay ..., t, all of which are different from #.2* The argument may be “proba-
bilistic, either in the strong sense. . . that st(f) = S, is (conditionally) more likely
than not, or in the weak sense...that st(f) = S; is (conditionally) more likely
than st(f) = S, for any j#1.”% Finally, “A potentially explanatory argument
becomes an (actual) explanation if its premises are actually or probably true.”2

To see that probabilistic explanation thus construed again is plagued by
ambiguity, consider a DS system capable of just three states, S;, S,, S, with tran-
sition probabilities as specified in the following schema:

g B8
S, | 0 .99 .01
s, | 0 0o 1
S | 1 0 0

Thus, the probability of S, being immediately followed by S, is 0; by S,,
.99; by S, .01; and so forth.

Alternatively, DS systems can be characterized by what Rescher calls
transition-diagrams. In our case, the diagram takes the following form:

<99 Su(1) 50

As is readily seen, the transition laws here indicated imply the following
two derivative laws:
(L) The probability for the two-period successor of S; to be Sgis .99 X 1=
99,
(L,) The probability for the immediate successor of S3 to be again S is 0.
Suppose now that in two particular successive time intervals #, and f,, our

24. Rescher does not require of a potential explanation—as he does of a potential pre-
diction, which is otherwise characterized in the same manner—that the time intervals t;, t,,

., 1, must all precede t. As a result, every potential prediction is a potential explanation,
but not conversely. His reason for this construal will be examined in section 3.5.

25. Rescher (1963), p. 330, italics the author’s. The concept of conditional likelihood
here invoked is not further clarified ; but it evidently is meant to represent the likelihood which
the conclusion of the explanatory argument possesses relative to, or conditional upon, the
premises. In this case, likelihoods would have the general character of logical probabilities; and
Rescher does seem to operate with them in accordance with the conception reflected by
our schema (3h), where the “likelihood” in question is specified in square brackets next to
the double line separating the conclusion from the premises.

26. Rescher (1963), p. 329, italics the author’s.
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system exhibits the states S; and Sj respectively; i.e. that the following state-
ments are true:

(C) st{t) = &

(Co) st(ts) = Ss

Then C, jointly with L, provides the premises for a probabilistic argument
which gives the “likelihood” .99 to the conclusion that in the time interval ¢,
immediately following t,, the system is in state Sg; i.e., that st(f5) = S;. But
C, jointly with L, analogously gives the likelihood 1 to the conclusion that
st(ts) # Ss On our assumptions, the premises invoked in these conflicting
arguments are true; hence the arguments constitute strong probabilistic ex-
planations, in Rescher’s sense, of the occurrence and of the nonoccurrence of
S; during time interval f4; and both are actual explanations in Rescher’s sense
since all the explanatory premises are true. Thus we have explanatory ambiguity
in the first of our two senses. That ambiguity in the second, epistemic, sense
is present as well is clear when we consider that on our assumptions, all the
premises invoked may of course belong to the class K of statements that are

accepted at the time.?

To preclude this untenable consequence, Rescher’s definitions of prob-
abilistic explanation and prediction must be supplemented by a suitable addi-
tional requirement. In our example, the first of the two competing arguments
would clearly be rejected on the ground that it disregards some relevant in-
formation. But this is precisely the verdict of the requirement of maximal
specificity. For in our illustration, we may assume that the class K includes the
information conveyed by C;, C,, L;, and L,; but that K contains no more
specific information which would imply a probability assignment, on empirical
grounds, to the sentence ‘st(ts) = S3'. The first of the two probabilistic argu-
ments violates the requirement of maximal specificity, since it takes into
account only that the state of the system at £, is S, although K tells us further
that the occurrence of S, at 1, is directly followed by an occurrence of S,, and
that for an occurrence of S; that is followed by an occurrence of S, the prob-
ability of having S; as a two-period successor is 0. (For L, tells us quite generally
that the probability for an occurrence of S,—no matter what its predecessor
may be—to be followed by an occurrence of S; is 0.) Hence only the second
of the two rival arguments is acceptable under the requirement of maximal
specificity.

27. The same ambiguity would jeopardize the predictive use of these arguments:
though both based on accepted (and indeed, true) premises, they lead to contradictory pre-
dictions about the state of the system during t.
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3.5 PREDICTIVE ASPECTS OF STATISTICAL EXPLANATION. Can it be maintained
that an inductive-statistical explanation of a particular event, much like a
deductive-nomological one, constitutes a potential prediction of that event:?

If the statement describing the occurrence in question is included in the
class K of accepted statements, then the question of predicting the event clearly
cannot arise in the knowledge situation represented by K. Let us therefore
put our problem into this form: Suppose that an argument of the type (30)
meets the requirement of maximum specificity relative to K and that its
explanans is well confirmed by K; would it then be acceptable as a predictive
argument in the knowledge situation characterized by K: The answer will
depend, of course, on the conditions we think a statistical argument has to satisfy
if it is to be rationally acceptable for predictive purposes in a given knowledge
situation. Let us briefly consider this question.

Rationality clearly demands that in forming expectations concerning future
occurrences we take into account all the relevant information available at the
time: this is the gist of the requirement of total evidence. But how is this
requirement to be construed more specifically? If a general definition and
theory of logical, or inductive, probability is available, the condition comes to
this: the probability conferred upon the conclusion of the predictive argument
by the premises alone should equal the probability imparted to it by the total
evidence K; in that case, the balance of the total evidence is justifiably disre-
garded in the argument, for its addition to the premises would not change the
probability of the conclusion. At present, no definition and theory of inductive
probability is available which is sufficiently comprehensive to be applicable to
all the kinds of inductive argument that would have to be considered. If such
a definition should be constructed—for example, by generalizing Carnap’s
approach—it might turn out that a statistical argument whose premises are
well supported by K, and which does satisfy the requirement of maximal
specificity, still does not strictly meet the requirement of total evidence in the
precise quantitative form under consideration. For example, let K consist of
the premises of (30) and the further statement ‘Hd’, then, though intuitively
this latter statement is entirely irrelevant to the conclusion ‘Gb’, it is conceivable
that the logical probability, in the sense here assumed, of ‘Gb’ relative to K
should differ from the logical probability r of ‘Gb’ relative to the premises of
(30) alone. Or suppose that K consists of the statements p(G,F) = .9,
‘p(G,H)=.1","p(G,F-H)=.85", 'Fb’,"Hb’; then a statistical argument with the last
three of these statements as premises and ‘Gb’ as conclusion satisfies the re-
quirement of maximal specificity relative to K. Yet again, the logical proba-
bility of ‘Gb’ relative to K might differ from the logical probability, .85, of
‘Gb’ relative to the set of the three premise-statements.
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In the absence of a suitable general definition of logical probability, however,
it seems quite clear that the predictive argument just considered would indeed
by regarded as rationally acceptable in the knowledge situation represented by
K; the statistical law specifying the probability of G in F-H would count as
overriding the laws specifying the probability of G relative to F and to H,
respectively. Similarly, an argument of the type (30) whose premises are well
substantiated and which conforms to the requirement of maximum specificity
would surely be regarded as a rational way of forming expectations concerning
the event described by the conclusion. And in general, predictive arguments
in science which are based on probabilistic laws appear to be governed by the
requirement of maximum specificity and the requirement of adequate con-
firmation for the premises. To the extent thus indicated, then, an argument
that constitutes an acceptable statistical explanation relative to K also forms an
acceptable potential prediction relative to K.

Hanson?® has put forward an interesting view of the relation between
explanatory and predictive arguments in science, which gives me an occasion
as well as an opportunity to amplify the general position just outlined, and
to argue further in its support.

According to Hanson, the view that an adequate explanation also affords a
potential prediction conforms well to the character of the explanations and
predictions made possible by Newtonian classical mechanics, which is deter-
ministic in character; but it is quite inappropriate in reference to quantum
theory, which is fundamentally nondeterministic. More specifically, Hanson
holds that the laws of quantum theory do not permit the prediction of any
individual quantum phenomenon P, such as the emission of a beta-particle by
a radioactive substance, but that “P can be completely explained ex post facto;
one can understand fully just what kind of event occurred, in terms of the
well-established laws of . .. quantum theory. .. .These laws give the meaning
of ‘explaining single microevents’.”?®

It is indeed the case that because of their purely statistical character, the
laws of radioactive decay permit the prediction of events such as the emission
of beta-particles by disintegrating atoms only with probability and not with
deductive-nomological definiteness for an individual occurrence. But for
exactly the same reason, those laws permit only a probabilistic explanation of
a particular emission P rather than a “complete” explanation “ex post facto,”
as Hanson puts it. For if, as the phrase “‘ex post facto” might seem to suggest,
the information that P has occurred were included in the explanans, the

28. Hanson (1959) and (1963), chapter 2.
29. Hanson (1959), p. 354, italics the author’s; similarly in Hanson (1963), p. 29.
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resulting account would be unilluminatingly circular: surely Hanson does not
mean that. And if the explanans contains only statements about antecedent
conditions, plus the statistical laws of radioactive decay, then it can show at
best that the occurrence of P was highly probable; but this affords only an
inductive-statistical explanation, which has the same logical form as the prob-
abilistic, i.e., inductive-statistical, prediction of P.30

In the context of his argument, Hanson puts forward another assertion,
namely: “Every prediction, if inferentially respectable, must possess a corres-
ponding postdiction.”?" By a postdiction, Hanson means “simply the logical
reversal of a prediction”: a prediction proceeds “from initial conditions through
boundary conditions to a statement about some future event x,” and a post-
diction consists “in inferring from a statement about some present event x,
through the boundary conditions, back to already known initial conditions.”3?
But Hanson’s thesis is incorrect, as is shown by the tollowing counter-example.
Consider a discrete state system whose three possible states, S;, S,, S, are
linked by the following laws: S; as well as S, is always followed by Sj; S,
is followed, with a probability of .5, by S; and with the same probability by S,.
The corresponding transition diagram is this:

e

S0
s.(
/ 3('

Sz (1)

Then the information that in time-interval ¢; the system is in S, permits the
deductive-nomological, and thus clearly “inferentially respectable” prediction
that during tg, the system will be in S;; but no corresponding postdiction is
possible from the latter information to the former.33

In conclusion, I wish to consider an argument put forward by Rescher as
to the relation between explanation and prediction. The gist of it can most

ur D

)
)

30. For commentsin a similar vein, see Henson (1963); ¢f. also the critical response in Feyer-
abend (1964).

31. Hanson (1963), p. 193, ¢f. also p. 40. Hanson goes on to say: “This is part of Hempel’s
thesis, and it is sound, necessarily” (Ibid.). Actually, I have argued against this thesis, which is
true of predictions based on deterministic theories, but not true in general. See Hempel (1962),
pp. 114-15.

32. Hanson (1963), p. 193, italics the author’s.

33. On this point, see also Griinbaum (1963), p. 76. Griinbaum’s article presents a de-
tailed discussion of the structural identity of explanation and prediction and examines a
variety of objections to this idea.
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simply be stated by particular reference to Rescher’s study of discrete state
systems, which we considered in section 3.4. On Rescher’s definition, an
argument explaining the state of such a system in time interval ¢ may refer, in
the explanans, to the states exhibited by the system at certain other times,
which may be earlier or later than f; whercas an argument predicting the
state at ¢ is required to refer only to preceding states. As a consequence of these
definitional stipulations, “it follows that whenever a prediction . .. is given,
S0 a fortiori is an explanation,” but not conversely. “For our defining conditions
for prediction .. .. in effect add to the conditions for explanation . .. certain
added restrictions of a temporal character.”’3
In defense of imposing that additional requirement on prediction, Rescher
argues, in effect, as follows: Suppose that the premises of a proposed argument
predicting the state of the system at ¢ include a statement specifying the state
of that system for some later time interval f,. Then, since the argument is
predictive, ¢ is later than “the present,” f, and hence so is . Now there are
two possibilities. Either (i) the premise pertaining to f can itself be inferred,
by means of laws, from past states of the system: then the given predictive
argument can evidently be replaced by one that infers the state at ¢, with the
help of laws, solely from past states, so that the restrictive requirement is met;
or (ii) the explanatory premise about # cannot be inferred from statements
about past states: then “we do not actually have a proper prediction at all
—for we are basing our ‘predictive’ argument on a premise which cannot
be justified in terms of available information.”’3
But as the reference to justificatory evidence indicates, this consideration
has no bearing on the thesis that an explanatory argument is potentially also
a predictive one, i.e., that it could have been used to derive a predictive sentence
concerning the state of the system at ¢ if the statements forming the explanans
had been formulated and used as premises before . To be sure, we would
normally ask for an explanation of a given state only after its occurrence, i.c.,
in our case, after £;% and it is true, as the argument points out, that we may
then be able to support the critical premise by evidence that was not available
before ¢. But the empirical support for the premises has no bearing on the
structural relationships between explanatory and predictive arguments; nor,
I think, do considerations based on it afford good grounds for imposing a
restrictive formal condition upon predictive inferences.
34. Rescher (1963), p. 329.
35. Rescher (1963), p. 333, italics the author’s.
36. Indeed, by parity of reasoning, Rescher would seem obliged to say that the argu-
ment considered in our example, one of whose premises refers to f;, is not a proper ex-

planation either, if it is presented before ¢, (though after f), for it then rests on a premise that
is not justified by available evidence.
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It should also be remembered that, as was noted in section 2.4, even the
most perfect cases of scientific prediction normally make use of some statements
about the future that are not inferred by law from information about the past.
Thus, the prediction of the positions of the planets at a given time on the basis
of the requisite data concerning their locations and momenta a month earlier
requires an assumption concerning the boundary conditions during the inter-
vening time interval, normally to the effect that there will be no outside inter-
ference with the system. And though this is not inferred by law from other
particulars, the arguments presupposing those boundary conditions are not
regarded as therefore affording no proper predictions at all.

Finally, we might note with Scheffler that we may sometimes reasonably
speak of explaining a future event, and that indeed, in some cases, one and the
same argument may be considered as predicting a certain event and explaining
it; as, for example, when the question ‘Why will the sun rise tomorrow:’
is answered by offering some appropriate astronomical information.? For
this reason, too, it seems inadvisable to impose different formal requirements
upon explanatory and predictive arguments.

3.6 THE NONCONJUNCTIVENESS OF INDUCTIVE-STATISTICAL EXPLANATION.
Inductive-statistical explanation differs from its deductive counterparts in yet
another important respect. When a givenexplanans deductivelyaccounts for each
of several explananda, then it also deductively accounts for their conjunction;
but the analogue for I-S explanation does not generally hold because an expla-
nans that confers high probability on each of several explananda may confer a
very low probability on their conjunction. In this sense, then, I-S explanation,
in contrast to deductive explanation, is non-conjunctive.

Consider, for example, the random experiment F of flipping a fair coin ten
times in succession. Each performance of this experiment will yield, as its
outcome, one of the 2= 1024 different possible sequences of 10 individual
results each of which is either heads or tails. Let Oy, O,, . . ., Os024 be the
different possible kinds of outcome thus characterized. Then, according to the
standard statistical hypothesis—let us call it S—for this kind of experiment,
the probability of obtaining heads by flipping the coin is 1/2, and the results
of different flippings are statistically independent of each other. It follows
therefore deductively that the statistical probability of obtaining outcome
Oy as a result of performing F is p(O,, F) = 1/1024, and the probability of
getting a result other than O, is p(O,, F) = 1-1/1024 = 1023/1024, for any
one of the different possible outcomes O,.

Il

37. Scheffler (1957), p. 300.
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Suppose now that a particular performance, f, of F has yielded Oy, as its
outcome: Oj, (f). This result can also be described by saying that f did not
yield any of the other possible outcomes:

61 (f)'62m---6499 (f)'asol (f) '(_)1024 (f)

Now, our statistical hypothesis S in conjunction with the information that
fwas a particular performance of F, i.e., that F(f), provides an I-S explanation
with high associated probability for (the facts described by) each of the 1023
sentences here conjoined as follows:

p(O,,F) = 1023/1024
E(f)

O

The requirement of maximal specificity is satisfied by these accounts since
for such further information about the particular experiment f as may be
available to us under the circumstances, S may be taken to imply that it does
not affect the probability of O,. But though S in combination with the infor-
mation that F(f) thus confers a high probability on each of the 1023 conjoined
statements just listed, it assigns the very low probability of 1/1024 to their
conjunction, which is tantamount to the statement ‘O (f);

For we have .

P (Ojgs F) = 1/1024
F(f)

0500 (_f)

Thus, while S together with ‘F(f)’ provides an I-S explanation with high
associated probability for (the facts described by) any of the 1023 sentences
cited above, it does not do so for (the facts described by) their conjunction.3®

This nonconjunctiveness of I-S explanation thus springs from the fact that
one and the same set of sentences may confirm to a very high degree each of
n alternative statements while confirming with similar strength the negation of
their conjunction. This fact, in turn, is rooted in the general multiplication
theorem for probabilities, which implies that the probability of the conjunction
of two items (i.e., characteristics or sentences, according as statistical or logical
probabilities are concerned) is, in general, less than the probability of either
item taken by itself. Hence, once the connection between explanans and ex-
planandum in the statistical explanation of particular phenomena is viewed as

- [1023/1024]

[1/1024]

38. For another illustration, ¢f. Hempel (1962), p. 165.
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inductive, nonconjunctiveness presents itself as an inevitable aspect of it, and
thus as one of the fundamental characteristics that set I-S explanation apart
from its deductive counterparts.

4, THE CONCEPTS OF COVERING-LAW EXPLANATION AS
EXPLICATORY MODELS

4.1 GeNerAL CHARACTER AND INTENT OF THE MobELs. We have by now dis-
tinguished three basic types of scientific explanative: deductive-nomological,
inductive-statistical, and deductive-statistical. The first of these is often referred
to as the covering-law model or the deductive model of explanation, but since
the other two types also involve reference to covering laws, and since one of
them is deductive as well, we will call the first more specifically the deductive-
nomological model; analogously, we will speak of the others as the inductive-
statistical and the deductive statistical models of explanation.

As is made clear by our earlier discussions, these models are not meant to de-
scribe how working scientists actually formulate their explanatory accounts.
Their purpose is rather to indicate in reasonably precise terms the logical
structure and the rationale of various ways in which empirical science answers
explanation-secking why-questions. The construction of our models therefore
involves some measure of abstraction and of logical schematization.

In these respects, our concepts of explanation resemble the concept, or
concepts, of mathematical proof (within a given mathematical theory) as
construed in metamathematics. Let us note the principal points of resem-
blance.

In ecither case, the models seek to explicate the use and function of certain
“explicandum” terms—'proof” and its cognates in one case, ‘explanation’ and
its cognates in the other. However, the models are selective; they are not meant
to illuminate all the different customary uses of the terms in question, but only
certain special ones. Thus, metamathematical proof theory is concerned only
with the notion of proof in mathematics. To put the theory forward is not to
deny that there are other contexts in which we speak of proofs and proving,
nor is it to assert that the metamathematical concepts are relevant to those
contexts.

Similarly, to put forward the covering-law models of scientific explanation
is not to deny that there are other contexts in which we speak of explanation,
nor is it to assert that the corresponding uses of the word ‘explain’ conform to
one or another of our models. Obviously, those models are not intended to
reflect the various senses of ‘explain’ that are involved when we speak of
explaining the rules of a contest, explaining the meaning of a cuneiform in-
scription or of a complex legal clause or of a passage in a symbolist poem,



