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CHAPTER 1T

FUNCTIONS OF REAL VARTABLES

20. The idea of a function. Suppose that # and y are
ywo continuous real variables, which we may suppose to be repre-
sonted geometrically by distances 4,P =, B,Q =y measured
from fixed points 4,, B, along two straight lines A, M. And
jet us suppose that the positions of the points P and @ are not
independent, but connected by a relation which we can imagine
to be expressed as a relation between  and y: so that, \Yhen
P and z are known, @ and y are also known. We might,
for example, suppose that y ==, or y =2z, or {a,or 2+ 1. In
all of these cases the value of « determines that of . Qr
agdin, We might suppose that the relation between 2 and y is

jven, not by means of an explicit formula for ¥ in terms of z,
pub by means of a geometrical construction which enables us to
defermine ¢ when P is known.

In these circumstances y is said to be a function of x. This
potion of functional dependence of one variable upon another is
],erhaps the most important in the whole range of higher mathe-
matics. In order to enable the reader to be certain that he
ynderstands it clearly, we shall, in this chapter, illustrate it by
means of a large number of examples.

But before we proceed to do this, we must point out that
(he simple examples of functions mentioned above possess three
gharacteristics which are by no means involved in the general
|lea of a function, viz.: i

(1) v is determined for every value of x;

(2) to each value of « for which ¥ is given corresponds one
md only one value of vy;

(3) the relation between  and y is expressed by means of
an analytical formula, from which the value of y corresponding to
i given value of @ can be calculated by direct substitution of the
[nbber.
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It 15 indeed the case that these particular characteristics are
jiossensed by many of the most important functions. But the con-
#idoration of the following examples will make it clear that they
o by no means essential to a function. All that is essential is
(hit there should be some relation between  and y such that to
somo values of # at any rate correspond values of y.

Ixanmples X, 1. Let y=xor 2z or }x or 224+1 Nothing further need
b wnldd ab present about cases such as these.

9. Lot y=0 whatever be the value of #. Then ¥ is a function of , for we
#in grlve & any value, and the corresponding value of y (viz. 0) is known. In
thiin oano the functional relation makes the same value of y correspond to all

vilies of @, The same would be true were y equal to 1 or — % or ,/2 instead
ul 0, Such a function of # is called a constant.

4. Lot y?=x. Then if x is positive this equation defines ¢wo values of y
sirrenponding to each value of », viz. +./x. If #=0, y=0. Hence to the
partioular value 0 of  corresponds one and only one value of y. But if  is
nogativo there is no value of y which satisfies the equation, That is to say,
s function y is not defined for negative values of #. This function therefore

pumsenion tho characteristic (3), but neither (1) nor (2).

4. Consider a volume of gas maintained at a constant temperature and
sunitainod in a cylinder closed by a sliding piston®*,

Lot A Do the area of the cross section of the piston and W its weight.
ha gan, hold in a state of compression by the piston, exerts a certain pressure
#4 por unit of area on the piston, which balances the weight W, so that

W=4p,.

Liet vy bo the volume of the gas when the system is thus in equilibrium.
Howdditional weight is placed upon the piston the latter is forced downwards.
Thn volumo (v) of the gas diminishes; the pressure (p) which it exerts
Wpon inib area of the piston increases. Boyle’s experimental law asserts that
tis produot of p and v is very nearly constant, a correspondence which, if
s, would be represented by an equation of the type

PUV=® seasesnsnsssanessinsssiiosamsasersveiis i),
whero a i o number which can be determined approximately by experiment.

Huyla'n lnw, however, only gives a reasonable approximation to the facts
providad the gas is not compressed too much. When v is decreased and p
tireanod boyond a certain point, the relation between them is no longer
Sapeanod with tolerable exactness by the equation (i). It is known that a

I horrow this instructive example from Prof. H. S. Carslaw’s Introduction to
the Valowlua,
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much better approximation to the true relation can then be found by means
of what is known as ‘van der Waalg’ law’, expressed by the equation

where a, 3, y are numbers which can also be determined approximately by
experiment.

Of course the two equations, even taken together, do not give anything
like a complete account of the relation between p and v. This relation is no
doubt in reality much more complicated, and its form changes, as » varies,
from a form nearly equivalent to (i) to a form nearly equivalent to (ii). But,
from a mathematical point of view, there is nothing to prevent us from con-
templating an ideal state of things in which, for all values of » not less than
a certain value V, (i) would be exactly true, and (ii) exactly true for all
values of » less than V. And then we might regard the two equations as
together defining p as a function of ». It is an example of a function which
for some values of v is defined by one formula and for other values of » is
defined by another.

This function possesses the characteristic (2). to any valuc of » only one
value of p corresponds: but it does not possess (1). For pis not defined as
a function of v for negative values of v; a ‘negative volume’ means
nothing, and so negative values of » do not present themselves for considera-
tion at all.

B. Suppose that a perfectly elastic ball is dropped (without rotation)
from a height 1gr? on to a fixed horizontal plane, and rebounds continually.

The ordinary formulae of elementary dynamics, with which the reader is
probably,familiar, show that h=}g¢? if 0=t =r, h=%g (@r—¢)?if 1=t =3r, and
generally

h=2%g (2nr —t)?
if (2n—1)r=t=<(2n+1)r, & being the depth of the ball, at time ¢, below its
original position. Obviously % is a function of ¢ which is only defined for
positive values of ¢

6. Suppose that y is defined as being the largest prime factor of . This
is an instance of a definition which only applies to a particular class of values
of x, viz. integral values. ‘The largest prime factor of 13- or of /2 or of «’
means nothing, and so our defining relation fails to define for such values of »
as these. Thus this function does not possess-the characteristic (1). It does
possess (2), but not (3), as there is no simple formula which expresses y in
terms of .

7. Let y be defined as the denominator of & when z is expressed in s
lowest terms. This is an example of a function which is defined if and only
if & is rational. Thus y="7 if = —11/7: but y is not defined for £=4/2, ‘the
denominator of /2’ being a meaningless form of words.
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B Lot y be defined as the height in inches of policeman Cxz, in the
Maotropolitan Police, at 5.30 p.m. on 8 Aug. 1907. Then y is defined for a
vertnin number of integral values of z, viz. 1, 2, ..., &V, where & is the total
nimbor of policemen in division € at that particular moment of time.

21. The graphical representation of functions. Sup-
pono that the variable y is a function of the variable z. It will

jonorally be open to us also to regard z as a function of y, in virtue
of the functional relation between # andy. But for the present we
uhall look at this relation from the first point of view. We shall

then eall @ the ndependent variable and y the dependent variable;
and, when the particular form of the functional relation is not
npecilied, we shall express it by writing
y=r()
(or I'(2), ¢ (x), ¥ (@), ..., as the case may be).
I'he nature of particular functions may, in very many cases, be

illuntrated and made easily intelligible as follows. Draw two lines
0OX, OY at right angles to one another v
and produced indefinitely in both direc- ]
flonn. We can represent values of @ 5 |°
nnid y by distances measured from O
wlong the lines 0X, OY respectively, B P
togard being paid, of course, to sign, 5
ind the positive directions of measure- s
ment being those indicated by arrows . @ A TR
in g, 6. J

Lot @ be any value of # for which
¥ i defined and has (let us suppose)
the wingle value b Take 0A = aq, g p"
Ol = b, and complete the rectangle Fig. 6.

OAPB. Imagine the point P markéd on the diagram. This
mirlking of the point P may be regarded as showing that the
villio of y for z=a is b.

Il to the value @ of @ correspond several values of y (say

hy I, 1"), we have, instead of the single point P, a number of
.u-mlm« I), I)I, P”.

Wo shall call P the point (@, b); a and b the coordinates of P
raforred to the ares OX, OY ;5 a the abscissa, b the ordinate of P;
0N und OY the aavs of # and the axis of y, or together the
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azes of coordinates, and O the origin of coordinates, or simply
the origin.

Let us now suppose that for all values @ of # for which y is
defined, the value b (or values b, ¥, b”,...) of y, and the corre-
sponding point P (or points P, P, P”, ...), have been determined.
We call the aggregate of all these points the graph of the
function .

To take a very simple example, suppose that y is defined as

a function of # by the equation

Az+By+C=0..cc0iierevivrnrenenne. (1),

where A, B, C arc any fixed numbers*. Then y is a function of z
which possesses all the characteristics (1), (2), (3) of § 20. It is
easy to show that the graph of y 1s a straight line. The reader is
in all probability familiar with one or other of the various proofs
of this proposition which are given in text-books of Analytical
Geometry.

We shall sometimes use another mode of expression. We
shall say that when # and y vary in such a way that equation (1)
is always true, the locus of the point (z, y) is a straight line, and
we shall call (1) the equation of the locus,and say that the equation
represents the locus. This use of the terms ‘locus’, ‘equation of
the locus’ is quite general, and may be applied whenever the
relation between « and y is capable of being represented by an
analytical formula.

The equation Az + By + C' =0 is the general equation of the first
degree, for Az + By + C is the most general polynomial in # and y
which does not involve any terms of degree higher than the first
in z and y. Hence the general equation of the first degree repre-
sents a straight line. It is equally easy to prove the converse
proposition that the equation of any straight line is of the first
degree. "

We may mention a few further examples of interesting geo-
metrical loci defined by equations. An equation of the form

(z—a)+(y—By=p
* If B=0, y does not occur in the equation. We must then regard y as a

function of z defined for one value only of z, viz. x= — C/4, and then having all
values.

21, 22] FUNCTIONS OF REAL VARIABLES 43

or w’+y’-’+ 2G-7}+2Fy+0=0,

where G2 4 F2 — C > 0, represents a circle. The equation
Aa*+2Hzy + Byt +2Gz+2Fy + C=0

(the general equation of the second degree) represents, assuming

that the coefficients satisfy certain inequalities, a conic section,

ve. an ellipse, parabola, or hyperbola. For further discussion of

these loci we must refer to books on Analytical Geometry.

22. Polar coordinates. In what precedes we have determined
the position of P by the lengths of its coordinates OM =g, MP =y.
Il OP=r and MOP =6, 6 being an
nngle between 0 and 27 (measured in
the positive direction), it is evident that N

@« =1cos 0, y =rsin6,
r=+(a?+y%), cosf:sinf:lum:y:m y
and that the position of P is equally well 0
determined by a knowledge of 7 and . © z M
We call » and € the polar coordinates Tig. 7.
of . The former, it should be observed, is essentially positive*.

If P moves on a locus there will be some relation between 7
and 0, say r =f(0) or = F (r). This we call the polar equation
of the locus.  The polar equation may be deduced from the (=, )
equation (or vice versa) by means of the formulae above.

Thus the polar equation of a straight line is of the form

4 rcos (0 —a)=p,
where p and a are constants. The equation = 2a cos  represents
w circle passing through the origin; and the general equation of
o circle is of the form

7?4 ¢ —2rccos (0 —a) = 4?2,
where 4, ¢, and a are constants.

* Polar coordinates are sometimes defined so that » may be positive or negative.
I this case two pairs of coordinates—e.g. (1,0) and (-1, m)—correspond to the
e point.  The distinetion between the two systems may be illustrated by means
ol the equation I/r=1-ecos 6, where >0, e>1. According to our definitions r
munl be positive and therefore cos <1/e: the equation represents one branch only
of n hyperbola, the other having the equation —I/r=1~ecosd. With the system
of voordinates which admits negative values of r, the equation represents the whole
liyporbola.
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23. Further examples of functions and their graphical
representation. The examples which follow will give the
reader a better notion of the infinite variety of possible types of
functions.

A. Polynomials. A polynomial in « is a function of the
form
Q2™ + 2™+ L+ Ay,

where a,, a,, ..., @, are constants. The simplest polynomials are
the simple powers y =z, 2% 4%, ..., ™, .... The graph of the function
a™ 1s of two distinct types, according as m is even or odd.

First let m=2. Then three points on the graph are (0, 0),
(1,1), (=1,1). Any number of additional points on the graph
may be found by assigning other special values to x: thus the
values

=14, 2,8-3 -2, 3
give y=%449 1 4, 0.

If the reader will plot off a fair number of points on the graph, he
will be led to conjecture that the

form of the graph is something

like that shown in Fig. 8. If

he draws a curve through the

special points which he has proved (-1,1)
to lie on the graph and then tests
its accuracy by giving x new
values, and calculating the cor-
responding values of g, he will
find that they lie as near to the curve as it is reasonable to expect,
when the inevitable inaccuracies of drawing are considered. The
curve is of course a parabola.

y_—.:x:’

{0,0)
Fig. 8.

There is, however, one fundamental question which we cannot
answer adequately at present. The reader has no doubt some
notion as to what is meant by a continuous curve, a curve without
breaks or jumps; such a curve, in fact, as is roughly represented
in Fig. 8. The question is whether the graph of the function
y=2a"is in fact such a curve. This cannot be proved by merely
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constructing any number of isolated points on the curve, although
the more such points we construct the more probable it will
appear.

This question cannot be discussed properly until Ch. V. In
that chapter we shall consider in detail what our common sense
idea of continuity really means, and how we can prove that such
graphs as the one now considered, and others which we shall
consider later on in this chapter, are really continuous curves.
I'or the present the reader may be content to draw his curves as
common sense dictates.

It is easy to see that the curve y =22 is everywhere convex to the axis of z.
Let Py, Py (Fig. 8) be the points (2, #?), (#1, 12). Then the coordinates of
o point on the chord Py Py are # =A%+ px, ¥ =A2*+px,% where X and p are
positive numbers whose sum is 1. And

¥ — 2=\ +p) A2’ + pz1) — (o + p21)* = Mt (21— Zo)* Z 0,
#o that the chord lies entirely above the curve.

The curve y = a# is similar to y =42 in general appearance, but
flatter near O, and steeper beyond the points 4, A’ (Fig. 9),
and y = z™, where m is even and greater than 4, is still more so.
As m gets larger and larger the flatness and steepness grow
more and more pronounced, until the curve is practically indis-
tinguishable from the thick line in the figure.

-t

Y=x2

Fig. 9. Fig. 10.

The reader should next consider the curves given by y=a™,
when m is odd. The fundamental difference between the two
cases is that whereas when m is even (— &)™ =a™, so that the
curve is symmetrical about OY, when m is odd (— z)" = — a™, so
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that % is negative when « is negative. Fig. 10 shows the curves
y==z, y=2a°% and the form to which y=2a™ approximates for
larger odd values of m

It is now easy to see how (theoretically at any rate) the graph
of any polynomial may be constructed. In the first place, from
the graph of y = 2™ we can at once derive that of Ca™, where C is
a constant, by multiplying the ordinate of every point of the
curve by C. And if we know the graphs of f(z) and F (), we
can find that of £ (z) + F () by taking the ordinate of every point
to be the sum of the ordinates of the corresponding points on the
two original curves.

The drawing of graphs of polynomials is however so much
facilitated by the use of more advanced methods, which will be
explained later on, that we shall not pursue the subject further
here.

Examples XI. 1. Trace the curves y="7a%, y =35 y=21.

[The reader should draw the curves carefully, and all three should be
drawn in one figure*. He will then realise how rapidly the higher powers
of x increase, as x gets larger and larger, and will see that, in such a

polynomial as )

21043254 Tt
(or even 29+ 3025+7004%), it is the first term which is of really preponderant
importance when # is fairly large. Thus even when x=4, 29> 1,000,000,
while 3025 < 35,000 and 7002*< 180,000; while if #=10 the prepondcrance
of the first term is still more marked.]

2. Compare the relative magnitudcs of 22, 1,000,0002%, 1,000,000,000,000z
when =1, 10, 100, etc.
. [The reader should make up a number of examples of this type for himself.
This idea of the relative rate of growth of different functions of # is one with
which we shall often be concerned in the following chapters.]

3. Draw the graph of aa?+ 2bx+c

[Here y —{(ac—b?)/a} = a{x+ b/a)}2 If we take new axes parallel to the
old and passing through the point #= —b/a, y=(ac—b?)/a, the new equation
is y=aa’%. The curve is a parabola.]

4. Trace the curves y=a -3z +1, y=2% (- 1), y=2 (x-1)%

* It will be found convenient to take the scale of measurement along the axis
of y a good deal smaller than that along the axis of z, in order to prevent the
figure becoming of an awkward size.
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24. B. Rational Functions. The class of functions which
ranks next to that of polynomials in simplicity and importance
i (hat of rational functions. A rational function is the quotient
ol one polynomial by another: thus if P (z), @ () are polynomials,
wo may denote the general rational function by

P ()
Q@)’

[ the particular case when @ (z) reduces to unity or any other
constant (z.e. does not involve z), R () reduces to a polynomial :
thus the class of rational functions includes that of polynomials

wn w sub-class.  The following points concerning the definition
should be noticed.

R(z)=

(1) We usually suppose that P (z) and @ () have no common factor z+a
Oralfax?= 14 bgP =24 +£, all such factors being removed by division.

() It should however be observed that this removal of common factors
ioon as @ rule change the function. Consider for example the function z/z,

wluuh is a rational function. On removing the common factor z we obtain -
1/I=1.  But the original function is not afways equal to 1: it is equal to 1
nnl_y #o long as #+0. If x=0 it takes the form 0/0, which is meaningless.

Thuw the function #/z is equal to 1 if #+0 and is undefined when z=0. It
thoeroforo differs from the function 1, which is always equal to 1.

(3) Such a function as

(;}?1 + ﬁ)/ G o ;ié>

iy bo reduced, by the ordinary rules of algebra, to the form
2% (x~2)
(#-17(@+1)’

wlhioh is a rational function of the standard form. But here again it must be
fiofblood that the reduction is not always legitimate. In order to calculate the
virluo of a function for a given value of # we must substitute the value for #
i tho function <n the form in which ¢ is given. In the case of this function
(o values 2= —~1,1, 0, 2 all lead to a meaningless expression, and so the
funotion is not defined for these values. The same is true of the reduced
fovm, no far as the values —1 and 1 are concerned. But #=0 and =2 give
o value 0. Thus once more the two functions are not the same.

(1) But, as appears from the particular example considered under (3),
oo will generally be a certain number of values of z for which the function
I not defined even when it has been reduced to a rational function of the
slandard form. These are the values of z (if any) for which the de-
ioiinntor vanishes,  Thus (22—7)/(22—3x+2) is not defined when z=1

Hi

K
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(5) Generally we agree, in dealing with expressions such as those con-
sidered in (2) and (3), to disregard the exceptional values of & for which such
processes of simplification as were used there are illegitimate, and to reduce
our function to the standard form of rational function. The reader will
easily verify that (on this understanding) the sum, product, or quotient of
two rational functions may themselves be reduced to rational functions of
the standard type. And generally @ rational Sfunction of a rational function
is itself a rational function: i.e. if in z=P (y)/Q (y), where P and @ are
polynomials, we substitute y =7 (¢)/@, (), we obtain on simplification an
equation of the form z=P, (2)/ @z (®).

(6) It is in no way presupposed in the definition of a rational function
that the constants which occur as coefficients should be rational nwmbers.
The word rational has reference solely to the way in which the variable z
appears in the function. Thus

22+ +a/3
z2-m
is a rational function

The use of the word rational arises as follows. The rational function
P (2)/Q (#) may be generated from z by a finite number of operations upon
, including only multiplication of 2 by itself or a constant, addition of terms
thus obtained, and division of one function, obtained by such multiplications
and additions, by another. In so far as the variable # is concerned, this pro-
cedure is very much like that by which all rational numbers can be obtained
from unity, a procedure exemplified in the equation

5 14141+1+1
377 14141
Again, any function which can be deduced from z by the elementary
operations mentioned above, using at each stage of the process functions
which have already been obtained from z in the same way, can be reduced to
the standard type of rational function. The most general kind of function
which can be obtained in this way is sufficiently illustrated by the example

x 22 +7 2

<x2+1 * z2+11x—3 Jz)/(17+53) !
9zr+1

which can obviously be reduced to the standard type of rational function.

95. The drawing of graphs of rational functions, even more
than that of polynomials, is immensely facilitated by the use of
methods depending upon the differential “calculus. We shall
therefore content ourselves at present with a very few examples.

Examples XII. 1. Draw the graphs of y=1/z, y=1/2% y=1/2%....

[The figures show the graphs of the first two curves. It should be
obscrved that, since 1/0, 1/0%, ... are meaningless expressions, these functions
are not defined for #=0.]
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2. Trace y=z P — :
laling vm-iousyvalu-:s(,lé‘?;it‘i’;re (;r/lg)’n:gzati(vle/,x?(;r f;r(lii/‘zf) ik bR
3. Trace '
_o+1 (L'H B 1 2?41
z-=1" \z-— 1) P (@—1®? P_1c
1. Trace y=1/(z—a)(z—b), 1/(z—a) (# - b) (x—¢), where a<b<e
b. Sketch the general form assumed by .

hocomes larger and larger,
uldd or even.

the curves y=1/2m as
. . N n
considering separately the cases in which  is

(1,1

1-1)
y=1/z

y=1/2?

Fig. 11, Fig. 12

26. C. Explici.t Algebraical Functions. The next im-
!»:n‘.:ml, ul:Ls.s of Ifunctlons is that of emplicit algebraical Sunctrons.
I'howo are functions which can be generated from z by a ﬁnite.
limml‘n-‘r of operations such as those used in generating rational
linotions, together with a finite number of operations of
uxbrnotion.  Thus oo

VA +2)— (1 —x)
I+ Fid—e) Vorv@a)
(w’ +2+ «/3)3
&2 —a
are oxplicit algebraical functions, and so is 4™/ (7.,
mnid noare any integers. , ’ (’L.e. '\/mm), e

I th'ul(l be noticed that there is an ambiguity of notation
ivolved in such an equation as y =4z We have up to the
|n|u\ju|~|lly, ntg:u.rded (e.9.) ¥/2 as denoting the positive ’square root
ol % and 1t would be natural to denote by v, where z is any

I,
4
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in which case

p t1 Sq T s
()Sltlve rlll“lbel, blle pOSl ve uare 1()0‘} ()f X,

- function of .
=z would be a one-valued ' i
:therl\l/ more convenient to regard /@ as standing for the two value

iti ative square
function whose two values are the positive and negab q

roots of . . .

The reader will observe thati w;len thl: co:lrs:u;sc ;(izfs)t?g, :V};E

] 1 rom rations

S— &/‘; dglfzrsfif;;ni?;;:n:all‘a);ional function is always deﬁned
resPeCtS-‘l o of z with a certain number of isolated exceptnons.
2 i uelsl’ndeﬁned for a whole range of values of z (v.e. all
o ‘\/‘” B lues). Secondly the function, when = has.; a .value
?igj\flll‘i’:h ‘1,: is de'ﬁned has generally two values of opposite signs.
0 )

The function &/, on the other hand, is one-valued and defined

for all values of .

1. J{(z—a)(b—=)}, where a<b, is defined only for

e if £=a or b only one, viz. 0.

a<x=b If a<w<bithastwo values :

2. Consider similarly
Ji@—-a) (@) w0} (a<b<e)

Jw @ -ad), Ye—aP -2} (@<d)

N1 +2)=(L=2) ).
vira ey VR

3, Trace the curves  92=2, ¥°=2, y2=a3. ] o
4 ;)raw the graphs of the functions y=nl(a?—2?), y=bA { 5
97. D. Implicit Algebraical Functions. It is easy to

verify that if J(La)— (1 )

Y= VAT i)’
(Lryf-Gre,

then \i=y) =a=o
or if y =N+ V(@ + V)

then yt— 4y +4y+1)z=0.

Each of these equations may be expressed in the form

g™+ Byt ooe + B = 0eennnninnniananne 1),

1 1 T anc reader
R, R, are rational functions of @: and the :
it At eloie {unctions considered

will easily verify that, if y is any one of the

in the last set of examples, y satisfies an equation of this form.
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It is naturally suggested that the same is true of any explicit
algebraic function. And this is in fact true, and indeed not
difficult to prove, though we shall not delay to write out a formal
proof here.  An example should make clear to the reader the lines
on which such a proof would proceed. Let

_w+N/w+\/{m+\/a:}+{/(1+£)
YT Va et e = +a)

Then we have the equations

_rtutv4w
Cr—utv—w’
W=z, v=z+u, w=1+g,
and we have only to eliminate u, v, w between these equations in
order to obtain an equation of the form desired.

We are therefore led to give the following definition : a_function
Y=/ (&) will be said to be an algebraical Junction of x if it is the
700t of an equation such as (1), .. the root of an equation of the
m!* degree in y, whose coefficients are rational JSunctions of . There
15 plainly no loss of generality in supposing the first coefficient to
be unity.

This class of functions includes all the explicit algebraical
functions considered in § 26. But it also includes other functions
which cannot be expressed as explicit algebraical functions. For
it is known that in general such an equation as (1) cannot be
#olved explicitly for y in terms of #, when m is greater than 4,
though such a solution is always possible if m=1, 2, 3, or 4 and
in special cases for higher values of .

The definition of an algebraical function should be compared
with that of an algebraical number given in the last chapter
(Misc. Exs. 82). ’

Examples XIV, ¥ If m=1, y is a rational function.
2. If m=2, the equation is Y2+ Ry + Ry=0, so that
y=3{- By £ J(R2-4R,)).
"I'his function is defined for all values of 2 for which R2Z4R,. Tt has two
values if B)2>4R, and one if Ri2=4R,.

If m=3 or 4, we can use the methods explained in treatises on Algebra for
the solution of cubic and biquadratic equations. But as a rule the process is
vomplicated and the results inconvenient in form, and we can generally study
the properties of the function better by means of the original equation.

4—2
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3. Consider the functions defined by the equations
Y2—-2—22=0, ¥*-2y+2?=0, y'-2y’+a?=0,

in each case obtaining y as an explicit function of #, and stating for what
values of z it is defined.

A " Find algebraical equations, with coefficients rational in z, satisfied by
each of the functions

Naz+N(1[z), Ne+¥lz), N@+Nz), N{E+V (@)

/5./ Consider the equation yi=a2

[Here y2= +a. If x is positive, y=~x: if negative, y=~(—2). Thus the
function has two values for all values of & save #=0.]

6. An algebraical function of an algebraical function of z is itself an
algebraical function of .
[For we have
Y+ By (@) Y e+ By (2)=0,
where 2248 ()2~ ...+, (2) =0,
Eliminating z we find an equation of the form
P+ T (2) yp~14...4+ T (2)=0.
Here all the capital letters denote rational functions.]

% An example should perhaps be given of an algebraical function which
cannot be expressed in an explicit algebraical form. Such an example is the
function y defined by the equation

» Pl
But the proof that we cannot find an explicit algebraical expression for y in
terms of # is difficult, and cannot be attempted here.

28. Trafiscendental functions. All functions of « which
are not rational or even algebraical are called transcendental
functions. This class of functions, being defined in so purely
negative a manner, naturally includes an infinite variety of whole
kinds of functions of varying degrees of simplicity and importance.
Among these we can at present distinguish two kinds which are
particularly interesting.

E. The direct and invefrse trigonometrical or circular
functions. These are the sine and cosine functions of elementary
trigonometry, and their inverses, and the functions derived from
them. We may assume provisionally that the reader is familiar
with their most important properties*.

* The definitions of the circular functions given in elementary trigonometry pre-

suppose that any sector of a circle has associated with it a definite nvmber called its .

area. How this assumption is justified will appear in Ch. VIL.
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Examples XV. Y. Draw the graphs of "c(:)s‘,z',‘sin 2,/and @ cos 2+ b sin .

|Since acosz+ b sin #=p cos (x — a), where B=a/(a?+02), and « is an angle
whono cosine and sine are a/n/ (02 +0%) and b/s/(a?+b2), the graphs of these
throo functions are similar in character. ]

)
s

Draw the graphs of cos?z, sin?x, acos?z+bsin?z.

3. Suppose the graphs of £(z) aud 7 (#) drawn, Then the graph of
J (@) cos? x4+ F () sin? »
Inn wavy curve which oscillates between the curves 7 — v r
< S =Jj\r), y=1L"(v). Dr:
tho graph when f ()=, F(z)=a2 vy : “ o

4. Show that the graph of cos pr+cosqgr lies between those of
Boond(p-g)a and —2cos §(p+q) 2, touching each in turn. Sketch the
raph when (p—g)/(p+¢) is small. (Math. Trip. 1908.)

b. Draw the graphs of #4sin , (1 [x)+sinz, zsinz, (sin z)/a.

6. Draw the graph of sin (1/z).

[ I 7=sin (1)), theny =0 when #=1 [m, where m is any integer. Similarly
v .I when 2=1/(2m+4) = and y=—1 when z=1/(2m-4) =. The curve is
ontirely comprised between the lines y=—1and y=1 (Fig. 13). Tt oscillates
iip and down, the rapidity of the oscillations becoming greater and greater as

@ approaches 0. For #=0 the function is undefined. When 2 is large y is
nmall®. The negative half of the curve is similar in character to the posi};ive

half.]
7. Draw the graph of # sin (1/z).

[ This curve is comprised between the lines y=-2 and y=z just as the
Il curve is comprised between the lines y=-—1and y=1 (Fig. 14).]

Tig. 13. Fig. 14.

* Sce Chs. IV and V for explanations as to the precise meaning of this phrase,
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8. Draw the graphs of 2%sin (1/2), (1/2)sin (1/), sin?(1/z), {zsin (1/x)}?,
a cos? (1/x)+bsin? (1/x), sin 2+sin (1/z), sinzsin (1/2).

9. Draw the graphs of cosa?, sina? acosa?+bsina?

10. Draw the graphs of arccosx and arcsin .

[If y=arccosa, #=cosy. This enables us to draw the graph of z, con-
sidered as a function of 7, and the same curve shows 7 as a function of .
It is clear that g is only defined for —1=<a<1, and is infinitely many-
valued for these values of #. As the reader no doubt remembers, there is,
when - 1<#<1, a value of y between 0 and =, say a, and the other values
of y are given by the formula 2nm+a, where # is any integer, positive or
negative.]

11. Draw the graphs of

tanz, cotx, secw, cosecw, tan?x, cot?x, sec?w, cosec?z.

12. Draw the graphs of arctanz, arccotz, arcseca, arccosecz. Give
formulae (as in Ex. 10) expressing all the values of each of these functions
in terms of any particular value.

13. Draw the graphs of tan(1/z), cot (1/x), sec(1/z), cosec(1/x)

14. Show that cos # and sin # are not rational functions of z.

[A function is said to be periodic, with period a,if f(2)=Ff (2+a) for all
values of & for which f(z) is defined. Thus cos# and sin & have the period
2m. It is easy to see that no periodic function can be a rational function,
unless it is a constant. For suppose that

. S (@)=P(2)[Q (v),

where P and @ are polynomials, and that f(#) =f (z + a), each of these equations
holding for all values of 2. Let f(0)=*#. Then the equation P (#)—4¢) (z)=0
is satisfied by an infinite number of values of z, viz. #=0, a, 2a, etc., and
therefore for all values of . Thus f(z)=*% for all values of z, ¢.e. f(z) is a
constant.]

15. Show, more generally, that no function with a period can be an
algcbraical function of .
[Let the equation which defines the algebraical function be
PR Ve o By = 0 suissnssmsanesvussanes (1)
where Ry, ... are rational functions of #. This may be put in the form
Poym+ Pyym—14...+ P,=0,
where Py, Py, ... are polynomials in . Arguing as above, we sen that
Pykm+Prlm=14... 4+ Pp=0
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for all values of #. Hence y=*# satisfies the equation (1) for all values of z,
and one set of values of our algebraical function reduces to a constant.

Now divide (1) by y — % and repeat the argument. Our final conclusion is
that our algebraical function has, for any value of z, the same set of values
ky, Ky ...; Ze. it is composed of a certain number of constants. ]

16. The inverse sine and inverse cosine are not rational or algebraical
functions.  [This follows from the fact that, for any value of # between — 1
and +1, are sin and arc cos # have infinitely many values.]

29. F. Other classes of transcendental functions. Next
in importance to the trigonometrical functions come the expo-
nential and logarithmic functions, which will be discussed in
Chs. IX and X. But these functions are beyond our range at
present.  And most of the other classes of transcendental func-
tions whose properties have been studied, such as the elliptic
functions, Bessel's and Legendre’s functions, Gamma-functions,
and so forth, lie altogether beyond the scope of this book.
There are however some elementary types of functions which,
though of much less importance theoretically than the rational,
algebraical, or trigonometrical functions, are particularly instruc-
tive as illustrations of the possible varieties of the functional
relation.

Examples XVI. 1. Let y=[x], where [#] denotes the greatest integer
not greater than # The graph is shown in Fig. 15a. The left-hand end
points of the thick lines, but not the right-hand ones, belong to the graph.

2. y=x-[x]. (Fig. 15b.)

N
\

Fig. 15a. Fig. 15b.
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3. y=u{z-[z]}. (Fig. 15¢) 4. y=[z]+J{&-[»]}. (Fig. 1564d.)

- y=@@-[2]7 [2]+ (v -[2]
6. y=[Jzl, (7], NERS Vel 22— [#%], [1-—a2]

Q

=

=

O -,

[ FOS—

Fig. 15¢. Fig. 15d.

7. Let y be defined as the largest prime factor of x (cf. Exs. X. 6).
Then y is defined only for integral values of . If

z=1,2,34,56,78,9, 10,11, 12, 13, ...,
then ¥=1,2,3,92,5/3"723, 511, 313, ....

The graph consists of a number of isolated points.

8. Let y be the denominator of # (Exs. X. 7). In this case y is defined
only for rational values of #. We can mark off as many points on the graph
as we please, but the regult is not in any ordinary sense of the word a curve,
and there are no poaints corresponding to any irrational values of z.

Draw the straight line joining the points (N —1, ), (&, &), where V is a
positive integer. Show that the number of points of the locus which lie on
this line is equal to the number of positive integers less than and prime to .

9. Let y=0 when z is an integer, y=2 when  is not an integer. The
graph is derived from the straight line y =2 by taking out the points

L] (—15 ‘1)) (0, O)a (11 1)7 (2a 2), oo
and adding the points (—1, 0), (0, 0), (1, 0), ... on the axis of 2.

The reader may possibly regard this as an unreasonable function. Why,
he may ask, if y is equal to & for all values of # save integral values, should it
not be equal to  for integral values too? The answer is simply, why should
7?7 The function y does in point of fact answer to the definition of a
function: there is a relation between # and y such that when z is known y is
known. We are perfectly at liberty to take this relation to be what we plcase,
however arbitrary and apparently futile. This function y is, of course, a quite
different function from that one which is always equal to x, whaidver value,
integral or otherwise, # may have.
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10. Let y=1 when x is rational, but =0 when « isirrational. The graph
consists of two series of points arranged upon the lines y=1 and y=0. To
the eye it is not distinguishable from two continuous straight lines, but in
reality an infinite number of points are missing from each line.

11. Let y=# when & is irrational and y=/{(1+4p?/(1+¢?} when z is a
rational fraction p/g.

Fig. 16.

The irrational values of & contribute to the graph a curve in reality dis-
continuous, but apparently not to be distinguished from the straight line y=a.

Now consider the rational values of .  First let # be positive. Then
J{(14p%)/(14+¢%)} cannot be equal to p/g unless p=g¢, 7.e. #=1. Thus all
(ho points which correspond to rational values of # lie off the line, except
the one point (1, 1). Again, if p<g, J{(1+p?)/1+¢)} >plg; if p>gq,
JI(14p?)/(1+9%} < p/g. Thus the points lie above the line y=z if 0 <z <1,
helowif 2 >1. If p and ¢ are large, J/{(1+p?)/(1+¢?)} is nearly equal to p/q.
Near any value of # we can find any number of rational fractions with large
numerators and denominators. Hence the graph contains a large number of
points which crowd round the line y=2. Its general appearance (for positive
values of z) is that of a line surrounded by a swarm of isolated points which
pobs denser and denser as the points approach the line.

The part of the graph which corresponds to negative values of « consists
of the rest of the discontinuous line together with the reflections of all these
inolated points in the axis of y. Thus to the left of the axis of y the swarm
of points is not round y =« but round y = —, which is not itself part of the
graph.  See Fig. 16.
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30. Graphical solution of equations containing a single
unknown number. Many equations can be expressed in the
form

where f (z) and ¢ («) are functions whose graphs are easy to draw.
And if the curves

y=r@), y=9¢(@)
intersect in a point P whose abscissa is & then £ is a root of the
equation (1).
Examples XVII. 1. The quadratic equation aa?+2bx+c¢=0. This

may be solved graphically in a variety of ways. For instance we may draw

the graphs of
grp y=ax+2b, y=-—clz,

whose intersections, if any, give the roots. Or we may take

y=a% y=-—(20x+c)a.
But the most elementary method is probably to draw the circle

a (22 +y%)+2bxr+c=0,
whose centre is (—b/a, 0) and radius {J/(0®—ac)}/a. The abscissao of its
intersections with the axis of 2 are the roots of the equation,
2. Solve by any of these methods
. 224+ 20 -3=0, 22—-Tx+4=0, 322+22r-2=0.

3. The equation 2™+ax+b=0. This may be solved by constructing
the curves y=a™, y=—ax—b. Verify the following table for the number of

roots of
amtax+b=0:

b positive, two or none,
(@) m even p
b negative, two*

a positive, one,
() m od {a negative, three or one.

Construct numerical examples to illustrate all possible cases.

4. Show that the equation tan z=ax+b has always an infinite number
of roots.

5. Determine the number of roots of

sinz=2, sinz=}z, sinz=}r, sinzr= iz
6. Show that if a is small and positive (e.g. @ ="01), the equation
z—a=4%mrsin?z

has three roots. Consider also the case in which a is small and negative.
Explain how the number of roots varies as a varies.
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31. Functions of two variables and their graphical
representation. In § 20 we considered two variables connected
by a relation. We may similarly consider three variables (=, 7,
and 2z) connected by a relation such that when the values of # and
y are both given, the value or values of z are known. In this case
we call z a function of the two variables # and y; « and y the
independent variables, z the dependent variable; and we express
this dependence of z upon # and y by writing

z2=f(z, y).
The remarks of § 20 may all be applied, mutatis mutandis, to this
more complicated case.

The method of representing such functions of two variables
graphically is exactly the same in principle as in the case of
functions of a single variable. We must take three axes, 0X, 07,
0Z in space of three dimensions, each axis being perpendicular
to the other two. The point (a, b, ¢) is the point whose distances
from the planes Y0Z, ZOX, X0Y, measured parallel to 0X, 07,
07, are a, b, and ¢. Regard must of course be paid to sign,
lengths measured in the directions OX, OY, OZ being regarded
as positive. The definitions of coordinates, awes, origin are the
same as before.

Now let z2=f (%, y)

As x and y vary, the point («, y, z) will move in space. The
aggregate of all the positions it assumes is called the locus of the
point (z, y, z) or the graph of the function z=f(z,y). When the
relation between @, y, and z which defines z can be expressed in an
analytical formula, this formula is called the equation of the locus.
It is easy to show, for example, that the equation

Az+ By+Cz+D=0
(the gemeral equation of the first degree) represents a plane, and
that the equation of any plane is of this form. The equation
(@=a)+@y-Br+(E—v)=pr,
or 2+ 2+ 22+ 2+ 2Gy +2Hz + C=0,
where F? + G*+ H? — 0 > 0, represents a sphere; and so on. For

proofs of these propositions we must again refer to text-books of
Analytical Geometry.
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32. Curves in a plane. We have hitherto used the notation

to express functional dependence of y upon . It is evident that
this notation is most appropriate in the case in which y is ex-
pressed explicitly in terms of # by means of a formula, as when
for example
Y= ¥
y=a* ‘sine, " acos’x + bsin’x.

We have however very often to deal with functional relations
which it is impossible or inconvenient to express in this form.
If, for example, y*~y—2=0 or 2°+y*—ay=0, it is known
to be impossible to express y explicitly as an algebraical function
of w. If S

2+ 2+ 2Gz + 2Fy + C =0,
y can indeed be so expressed, viz. by the formula
y=—F+N({F?— 22— 2Gz - C);
but the functional dependence of y upon  is better and more
simply expressed by the original equation.
It will be observed that in these two cases the functional

relation is fulfy expressed by equating a jfunction of the two

variables & and y to zero, v.e. by means of an equation

We shdll adopt this equation as the standard method of

- expressing the functional relation. It includes the equation (1)
| as a special case, since y — f () is a special form of a function of =

and y. We can then fsgeak of the locus of the point (z, y) subject
to f(#, y) =0, the graph of the function y defined by f (=, y)=0,
the curve or locus f(«, y) =0, and the equation of this curve or
locus.

There is another method of representing curves which is often
useful. Suppose that # and y are both - functions of a third
variable ¢, which is to be regarded as essentially auxiliary and
devoid of any particular geometrical significance. We may write

@=Ft), Y=F(®) oerrrrererennns, (3).

If a particular value is assigned to ¢, the corresponding values of
z and of y are known. Each pair of such values defines a point
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(#, ). If we construct all the points which correspond in this
way to different values of ¢, we obtain ¢the graph of the locus
defined by the equations (3). Suppose for example

z=qacost, y=asint
et ¢ vary from O to 27 Then it is easy to see that the point
(@, y) describes the circle whose centre is the origin and whose
radius is @. If ¢ varies beyond these limits, (z, y) describes the
circle over and over again. We can in this case at once obtain
n direct relation between # and y by squaring and adding: we
find that 22+ 4* = a? ¢ being now eliminated.

Examples XVIII. 1. The points of intersection of the two curves whose
equations are f(z, ¥)=0, ¢ (#, y)=0, where f and ¢ are polynomials, can be
dotermined if these equations can be solved as a pair of simultaneous equations
in # and . The solution generally consists of a finite number of pairs of
vilues of # and y. The two equations therefore generally represent a finite
number of isolated points.

2. Trace the curves (x+y)?=1, ay=1, 2?—32=1.

3. The curve f(z, )+ (z, y)=0 represents a curve passing through
tho points of intersection of /=0 and ¢=0.

4. What loci are represented by

(a) w=at+b, y=c+d, (B) zla=2(/(1+8), yla=(1-2)(1+8),

when ¢ varies through all real values ?

33. Loci in space. In space of three dimensions there are
two fundamentally different kinds of loci, of which the simplest
oxnmples are the plane and the straight line.

A particle which moves along a straight line has only one
dugree of freedom. TIts direction of motion is fixed; its position
can be completely fixed by one measurement of position, e.g. by
itw distance from a fixed point on the line. If we take the line as
our fundamental line A of Chap. I, the position of any of its points
in determined by a single coordinate . A particle which moves
in o plane, on the other hand, has two degrees of freedom; its
position can only be fixed by the determination of two coordinates.

A locus represented by a single equation

z =f(w; )]

plainly belongs to the second of these two classes of loci, and is
onlled o surfuce. It may or may not (in the obvious simple cases
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it will) satisfy our common-sense notion of what a surface
should be.

The considerations of § 31 may evidently be generalised so
as to give definitions of a function f(w, y, 2) of three variables (or
of functions of any number of variables). And as in § 32 we
agreed to adopt f(w, y) =0 as the standard form of the equation
of a plane curve, so now we shall agree to adopt

f (7, 9,2)=0
as the standard form of equation of a surface.

The locus represented by two equations of the form z=f (=, y)
or f(z, vy, 2)=0 belongs to the first class of loci, and is called
a curve. Thus a straight line may be represented by two equations
of the type Az+By+Cz+D=0. A circle in space may be
regarded as the intersection of a sphere and a plane; it may
therefore be represented by two equations of the forms

(w—ap+(y—Br+(e—q)=p% da+By+0z+D=0.

FExamples XIX. 1. What is represented by ¢Aree equations of the type
f (@ y,2)=0%

2. . Three linear equations in general represent a single point. What are
the exceptional cases ?

3. What are the equations of a plane curve f(, 7)=0 in the plane X07,
when regarded as a curve in space? [f(z, ¥)=0, 2=0.]

4. Cylinders. What is the meaning of a single equation f(z, y)=0,
considered as a locus in space of three dimensions ?

[All points on the surface satisfy f («, y)=0, whatever be the value of 2. The
curve f(#, y)=0, z=0 is the curve in which the locus cuts the plane X0Y.
The locus is the surface formed by drawing lines parallel to OZ through all
points of this curve. Such a surface is called a ¢ylinder.]

5 Graphical representation of a surface on a plane. Contour Maps.
It might seem to be impossible to represent-a surface adequately by a
drawing on a plane; and so indeed it is: but a very fair notion of the
nature of the surface may often be obtained as follows. Let the equation of
the surface be z=71(z, ¥).

If we give z a particular value @, we have an equation f(#, y)=a, which
we may regard as determining a plane curve on the pap:r. We trace this
curve and mark it (a). Actually the curve (a) is the projection on the plane
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N0V of the section of the surface by the plane z=a. We do this for all
vilues of @ (practically, of course, for a selection of values of a). We obtain
nome such figure as is shown in Fig. 17. It will at once suggest a contoured
Ordnance Survey map: and in fact this is the principle on which such maps
nro constructed. The contour line 1000 is the projection, on the plane of the
non level, of the section of the surface of the land by the plane parallel to the
plane of the sea level and 1000 ft. above it*,

\/1/006’/

Fig. 17.

6. Draw a series of contour lines to illustrate the form of the surface
Sre= 32y,

7. Right circular cones. Take the origin of coordinates at the
vortex of the cone and the axis of z along the axis of the cone; and let a be
tho semi-vertical angle of the cone. The equation of the cone (which must
bo regarded as extending both ways from its vertex) is 2?4 y2— 2% tan? a=0.

8. Surfaces of revolution in general. The cone of Ex. 7 cuts Z0OX in
two lines whose equations may be combined in the equation #2=z2tan’a.
That is to say, the equation of the surface generated by the revolution of
the curve y=0, #2=2%tan? a round the axis of z is derived from the second of
these equations by changing 22 into #2432 Show generally that the equation
of the surface generated by the revolution of the, curve y=0, 2=#(z), round
the axis of ¢, is

V(@ +y%) =1 (2).

9. Cones in general. A surface formed by straight lines passing
through a fixed point is called a cone: the point is called the werter. A
particular case is given by the right circular cone of Ex. 7. Show that the
cquation of a cone whose vertex is O is of the form f(z/,2/y)=0, and that any
cquation of this form represents a cone. [If (x, g, 2) lies on the cone, so must
(A2, Ay, X2), for any value of \.]

* We assume that the effects of the earth’s curvature may be neglected.
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10. Ruled surfaces. Cylinders and cones are special cases of surfaces
composed, of straight lines. Such surfaces are called ruled surfaces.

The two equations
T=az+b, Y=cztd...cciiiiiiiiiniiiiiiiiii 1)

represent the intersection of two planes, 7.e. a straight line. Now suppose
that @, b, ¢, d instead of being fixed are functions of an auwiliary variable t.
For any particular value of ¢ the equations (1) give a line. As ¢ varies,
this line moves and generates a surface, whose equation may be found by
eliminating ¢ between the two equations (1). For instance, in Ex. 7 the
equations of the line which generates the cone are

x=ztanacos?, y=ztanasint,

where ¢ is the angle between the plane X0Z and a plane through the line and
the axis of 2.

Another simple example of a ruled surface may be constructed as follows.
Take two sections of a right circular cylinder perpendicular to the axis and
at a distance 7 apart (Fig. 18a). We can imagine the surface of the cylinder
to be made up of a number of thin parallel rigid rods of length /, such as PQ,
the ends of the rods being fastened to two circular rods of radius a.

Now let us take a third circular rod of the same radius and place it
round the surface of the cylinder at a distance % from one of the first two
rods (see Fig. 18 a, where Pg=£). Unfasten the end @ of the rod P@ and
turn PQ about P until @ can be fastened to the third circular rod in the
position @. The angle 0@ =a in the figure is evidently given by

- h2=qQ@*=(2a sin }a)%
Let all the,other rods of which the cylinder was composed be treated in the
same way. We obtain a ruled surface whose form is indicated in Fig. 18 b.

It is entirely built up of straight lines; but the surface is curved everywhere,
and is in general shape not unlike certain forms of table-napkin rings (Fig. 18¢).

Fig. 180, Fig. 18¢c.
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MISCELLANEOUS EXAMPLES ON CHAPTER IL

I. Show that if y=Ff ()= (az+b)/(cx — a) then z=f(y).

If f(z)=f(—2) for all values of @, f(x) is called an evern function.
Il /(v)=—f(—a), it is called an odd function. Show that any function of =,
ilefinod for all values of x, is the sum of an even and an odd function of .
[Uso the identity f(2) =4 {f (@) +/ (-2} +{f (@) -/ (- 2)}.]
3. Draw the graphs of the functions

3sinz+4cosz, sin (% sin x> . (Math. Trip. 1896.)

4. Draw the graphs of the functions

; . sinz . sin 2\2
sin x (@ cos? x+ b sin? z), T(a cos? z+bsin? ), ( ) ;
x

b, Draw the graphs of the functions #[1/z], [#]/z.
6. Draw the graphs of the functions
(i) arccos (222—1)— 2 arc cos z,
(ii) arctan a+s —arctan a —arc tan ,
1—ax

whoro the symbols arccosa, arctana denote, for any value of a, the least
positive (or zero) angle, whose cosine or tangent is a.

7. Verify the following method of constructing the graph of f{¢ (z)} by
moans of the line y=x and the graphs of f(x) and ¢ (): take 04 = along
0., draw AB parallel to OY to meet y=¢ (#) in B, BC parallel to OX to
ool y =2 in €, CD parallel to OY to, meet y=f () in D, and DP parallel to
00X Lo meet AB in P; then P is a point on the graph required.

"#, Show that the roots of #3+pz+¢=0 are the abscissae of the points of

Intorsoction (other than the origin) of the parabola y=2? and the circle

22+y*+(p—1)y+g2=0.

). The roots of #*+na®+pa?+ gr+r=0 are the abscissae of the points of

intorsoction of the parabola #?=y —4nx and the circle
Sk (= dpntin+) o+ (p—1- 1) y+r =0,
10.  Discuss the graphical solution of the equation
_ P+ ax?+br+4c=0

liy means of the curves y=a™, y= —aa?—bxr—c. Draw up a table of the
various possible numbers of roots.

I'l.  Solve the equation sec +cosec §=24/2; and show that the equation
wee () | cosee @=c has two roots between 0 and 27 if ¢2<8 and four if ¢2>8.
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