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f g 11118 book has been designed primarily for the use of first year
students at the Universities whose abilities reach or approach

sumothing like what is usually described as ‘scholarship standard’.
I hopoe that it may be useful to other classes of readers, but it is
thin oluss whose wants I have considered first. It is in any case a
hoole for mathematicians: I have nowhere made any attempt to
muol the needs of students of engineering or indeed any class of
sbiiclonts whose interests are not primarily mathematical.

I regard the book as being really elementary. There are
plonty of hard examples (mainly at the ends of the chapters): to
these | have added, wherever space permitted, an outline of the
solution. But I have done my best to avoid the inclusion of
anything that involves really difficult ideas. For instance, I make
i e of the ‘principle of convergence’: uniform convergence,

dunble series, infinite products, are never alluded to: and I prove
i gonoral theorems whatever concerning the inversion of limit-
: 2 2
nperations—I never even deﬁne‘aag and a—f— In the last two.
20y 0y o
shaptors I have occasion once or'twice to integrate a power-series,
il I have confined myself to the very simplest cases and given
# #pecinl discussion in each instance. Anyone who has read this

boole will be in a position to read with profit Dr Bromwich’s
Lisimto Neries, where a full and adequate discussion of all these
puintn will be found.

G. H. H.
September 1908
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CHAPTER I F o
REAL VARIABLES

1, Rational numbers. A fraction r=p/q, where p and ¢
A0 puosibive or negative integers, is called af mtzonal number. We
Bl nppono (i) I,Imt p and ¢ have/no, common_factor, as if they
v o vommon factor we can divide each of them by it, and

401

[ 1 thils worion ovory rational number is repeated indefinitely.. Thus 1
oot B o Wo can of course avoid this by omitting every number
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2 REAL VARIABLES [1

which has already occurred in a simpler form, but then the problem of deter-
mining the precise position of p/g becomes more complicated.]

2. The representation of rational numbers by points
on a line. It is convenient, in many branches of mathematical
analysis, to make a good deal of use of geometrical illustrations.

The use of geometrical illustrations in this way does not, of
course, imply that analysis has any sort of ‘dependence upon
geometry : they are illustrations and nothing more, and are em-
ployed merely for the sake of clearness of exposition. This being
of the ordinary notions of elementary geometry; we may be content
to suppose, however far it may be from the truth, that we know
what they mean.

Assuming, then, that we know what is meant by a straight
line, a segment of a line, and the length of a segment, let us take

“a straight line A, produced indefinitely in both directions, and a

segment A,4, of any length. We call 4, the origin, or the point
0, and A, the pornt 1, and we regard these points as representing
the numbers 0 and 1.

In order to obtain a point which shall represent a positive
rational number 7 = p/q, we choose the point 4, such that

AoAr/AoAr: r, -

4,4, being a stretch of the line extending in the same direction
along the line as A4,4,, a direction which we shall suppose to be
from left to right when, as in Fig. 1, the line is drawn horizontally

across the paper. In order to obtain a point to represent a
b :

' ; { I ’ ;
A -3 Ay A Ay i As
" Fig. 1.
negative rational number 7= —s, it is natural to regard length as

a magnitude capable of sign, positive if the length is@je@suréd? in
one direction (that of A,4,), and negative if measured in the
other, so that AB=—BA; and to take as the point representing -

7 the point 4_, such that
A A= A_jAy=—4,A,.
—— . '," 7

¢

5 1y« & % - > 4 . ¢ \
v Ao Lo ! X /\) f'ﬁg‘”- (S rl\/i nt P Hs )
) \
F/(/\ 3 :
5 - .
A SRR AR v - //(;\

Q1N Vg, AMARAMANLATAD
’ 4

N

(4
=

7 - \
7 M Cle Oatgl QA anL WA -

(B REAL VARIABLES 3

W thuw obtain a point 4, on the line corresponding to every
gablunal valuo of », positive or negative, and such that
AyA, =1, Ay Ay —+UNIT DISTANCE
and 1F an v natural, we take A, 4, as our unit of length, and write
Ay = 1, then we have
A4, =1

Wa ahiall enll le»{)giﬁ‘ﬁé:A, the gﬁ@ipndl points| of the line.

= .ot

#  Irrational numbers. If the reader will mark off on the

- e all tho points corresponding to the rational numbers whose

égnmniuulnm are 1, 2, 3, ... in succession, he will readily convince
Wwmolf that he can cover the line with rational points as closely
#4 b lilow. We can state this more precisely as follows: if we
ke Gy wegment BC on A, we can find as many rational points as
ﬂg]u’m’iaa on B o

Huppono, for example, that BC falls within the segment 4,4,.
6 dn ovidont that if we choose a positive integer & so that

E.BCO>T ... st o (1),*

wiil divido 4,4, into & equal parts, then at least one of the ﬁoints'
Wk divinion (say P) must fall inside BC, without coinciding with
sithor /1 or (. Yor if this were not so, BC' would be entirely
Weluded in one of the % parts into which 4,4, has been divided,

whioh contradicts the supposition (1). But_fﬁdh?iﬁus}y corre-
B to n rational number whose denominator is k. Thus at
fal ono rational point P lies between B and . But then we

s find another such point @ between B and P, another between
B ), and so on indefinitely ; 7.e., as we asserted above, we ' can
Wil wn miny as we please. ' We may express this by saying that
B noludos infinitely many rational points.

Tl menning of such phrases as “snfinitely many’ or ‘an infinity of’y in
sielinontonoon as ¢ B¢ includes infinitely many rational points’ or ‘there are
A ity of rational points on BC” or ‘there are an infinity of positive
ki will bo considered more closely in Ch. IV.  The assertion ¢there are
sty ol positive integers’ means ‘given any positive Aihtegiéi"n, however

Biie, wo oun find more than n positive integers’. This is plainly true

© e wanimiption that this is possible is equivalent to the assumption of what
i= Evown am Lhe Axiom of Archimedes.

I

)i B>l FL Iy 138
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whatever » may be, e.g. for 2=100,000 or 100,000,000. The assertion means
exac'bly the same as ‘ we can find as many positive integers as we please’,

The reader will easily convince himself of the truth of the following
assertion, which is substantially equivalent to what was proved in the second
paragraph of this section: given any rational number 7, and @any positive
_integet 7, we can find another rational number lying on either s1de of r and
differing from 7.by less than 1/n. Tt is mercly to express this dlﬁ'clently to
say that we can find a rational number lying on either side of r and differing
from r by as litile as we please. Again, given ‘any two rational numbers
r and s, we can mterpola,te between them a chain of rational numbers in
which any two consecutive terms differ by as little as we please, that is to
say by less than 1/n, where # is any posmve integer assigned beforehand.

From these considerations the reader might be tempted to
infer that an adequate view of the nature of the line could be
obtained by imagining it to be formed simply by the rational
points which lie on it. And it is certainly the case that if we
imagine the line to be made up solely of the rational points,
and all other points (if there are any such) to be eliminated,
the figure which remained would possess most of the properties
which common sense attributes to the straight line, and would,
to put the matter roughly, look and behave very much like
a line.

A little further consideration, however, shows that this view
would involve us in serious difficulties.

Let us look at the matter for a moment with the eye of

‘common sense, and consider some of the properties which we may

reasonably expect a straight line to possess if it is to satisfy the
idea which we have formed of it in elementary geometry.

The straight line must be composed of points, and any segment
of it by all the points which lie between its end points. With
any such segment must be associated a certain entity called its

> length which must b& a quantity capable of numerical measure-

ment in terms of any standard or unit length and these lengths
must be capable of combination with one another, according to
the ordinary rules of algebra, by means of addition or multipli-
cation. Again, it must be possible to construct a line whose
length is the sum or product of lany two given lengths. If the
length PQ, along a glven line, is @, and the length QR, along

the same straight line, is b, the length PR must be a+b.

i) REAL VARIABLES 5

Muroovor, if the lengths OP, 0Q, along one straight line, are
L wnd o, and the length OR along another straight line is b,
#il it wo determine the length OS by Euclid’s construction (Euc.
Vi 1¥) for o fourth proportional to the lines OP, 0@, OR, this
lngth must be ab, the algebraical fourth proportional to 1, a, b.
Andl i in hardly necessary to remark that the sums and products
thim doflined must obey the ordinary ‘ laws of algebra’; viz.

a+b=b+a a+(0+c)y=(+0b)+c,
ab=ba, a(bc)=(ab)e, a(d+c)=ab+ac.

The longths of our lines must also obey a number of obvious
liwn ooncerning  inequalities as well as equalities: thus if
A, 11, ) wro three points lying along A from left to right, we must
have A< AC, and so on. Moreover it must be possible, on our
Hundamental line A, to find a point P such that 4,P is equal to
Ay #mogment whatever taken along A or along any other straight
ln,  All these properties of a line, and more, are involved in the
pmmmnmbmns of our elementary geomet1y

s posod of a series of points, e::mh correspondmg to a rablonal

Himbor, cannot pos51bly samsfy&al],; these requirements. There are

yurloun clementary geometrical constructions, for example, which

purport to construct a length 2 such that 2? = 2. For instance, we
P

1 1] L 2 M 1 N

iy construct an isosceles right-angled triangle 4 BC' such that

ANl AC=1. Thenif B0=a, a*=2. Or we may determine
the Tength @ by means of Euclid’s construction (Eue. VI, 13) for
i tonn proportional to 1 and 2, as indicated in the figure. Our
fupiirements therefore involve the existence of a length measured
by w nimber @, and a point P on A such that

AP=z, a2=2,
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But it is easy to see that there is mo rational number such that
uts square s 2. In fact we may go further and say that.there
is no rational number whose square is m/n, where m/n is any
positﬁ(e fraction in its lowest terms, unless m and n are both
perfect squares,

For suppose, if possible, that

P°/q* = m/n.

p having no factor in common with ¢, and m no factc.)r.in common
with n. Then np*=mgq%. Every factor of ¢* must divide np*, a:nd
as p and q have no common factor, every factor of ¢? n%usi.: divide
n. Hence n=2q%, where N\ is an integer. But this 1nvol.ves
m=2Ap*: and as m and n have no common factor, 7\ must ‘be unity.
Thus m =p? n=¢* as was to be proved. In particular it fol}ows,
by taking n=1, that an integer cannot be thg square of a rational
number, unless that rational number is itself integral.

It appears then that our requirements involve the _existence of
a number « and a point P, not one of the rational points alreao-ly
constructed, such that 4,P =z, 2*=2; and (as the reader will
remember from elementary algebra) we write z = /2.

The following alternative proof that no rational number can have its
square equal to 2 is interesting.

Suppose, if poésible, that p/g is a positive fraction, in its lox.vesi.; terms,
such ' that Zp/q)2=2 or p?=2¢% It is easy to see that this 1.nvolves
(2¢—p)*=2(p—g)?; and so (2¢—p)/(p—¢) is another fraction having th.e
same property. But clearly ¢g<p<2¢, and so p—g<gq. He.nce there. is
another fraction equal to p/g and having a smaller denominator, which
contradicts the assumption that p/g is in its lowest terms.

Examples IT, 1. Show that no rational number can have its cube equal
to 2.

2 Prove generally that a rational fraction p/q in its lowest terms cannot
be the cube of a rational number unless p and ¢ are both perfect cubes.

3. A more general proposition, which is due to Gauss and.mcludes ?hose
which procodo as particular cases, is the following : an algebraical equation

an ’"/’l a1 Ai.P,‘xn- ’l+ eeet P (),
with integral coeflicients, cannot have a rational but non-integral root.

[For suppose that the equation has a root a/b, where a and b are integers

4] REAL VARIABLES 7

without a common factor, and b is positive. Writing a/b for %, and multiply-

- g by 0% 1 we obtain

- %:pla"'l+p2a"‘zb+... +pa b1
i frnotion in its lowest terms equal to an integer, which is absurd, Thus b=1,
wid tho root is @. It is evident that @ must be a divisor of p,,.]
4. Show that if p,=1 and neither of
Ltpitpetpsten, 1-pitpy—pyt..
I woro, then the equation cannot have a rational root.
b Iind the rational roots (if any) of
&t — 423 — 822 1324+ 10 =0,

['The roots can only be integral, and so +1, +2, *35, £10 are the only
pomsibilities : whether these are roots can be determined by trial. It is clear
(hat wo can in this way determine the rational roots of any such equation.]

4. Irrational numbers (continued). The result of our

juomelbrical representation of the rational numbers is therefore to
Miggost the desirability of enlarging our conception of ‘number’
by the introduction of further numbers of a new kind.

The same conclusion might have been reached without the use
OF geometrical language.  One of the central problems of algebra
I that of the solution of equations, such as
=1 22=29

i

Tho first equation has the two rational roots 1 and — 1. But,
Il our conception of number is to be limited to the rational

Bimbers, we can only say that the second equation has no roots;
and the same is the. case with such equations as a2*=2, g¢=1.
Thewo facts are plainly sufficient to make some generalisation of
oir idea of number desirable, if it should prove to be possible.

Lol us consider more closely the equation #2= 2,

Wo have already seen that there is no rational number z which

Mlinfics this equation. The square of any rational number is
pithor less than or greater than 2. We can therefore divide the
punitive rational numbers (to which for the present we confine our
atlention) into two classes, one containing the numbers whose
Sunres are less than 2, and the other those whose squares are
frontor than 2. We shall call these two classes the class L, or

the lower class, or the left-hand class, and the class R, or the upper
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class, or the right-hand class. It is obvious that every member of
R is greater than all the members of L. Moreover it is easy to
convince ourselves that we can find a member of the class L whose
square, though less than 2, differs from 2 by as little as we please,
and a member of B whose square, though greater than 2, also
differs from 2 by as little as we please. In fact, if we carry out
the ordinary arithmetical process for the extraction of the square
root of 2, we obtain a series of rational numbers, viz.

1, 14, 141. 1414, 14142,...
whose squares
1, 1:96, 19881, 1999396, 199996164, ...

are all less than 2, but approach nearer and nearer to it; and by
taking a sufficient number of the figures given by the process we
can obtain as close an approximation as we want. And if we
increase the last figure, in each of the approximations given above,
by unity, we obtain a series of rational numbers

2, 15, 142, 1415, 14143, ...
whose squares

4, 225, 20164, 2002225, 200024449, ...
are all greater than 2 but approximate to 2 as closely as we please.

The reasoning which precedes, although it will probably convince the
reader, is hardly of the precise character required by modern mathematics.
We can supply a formal proof as follows. In the first place, we can find
a member of L and a member of R, differing by as little as we please. TFor
we saw in § 3 that, given any two rational numbers @ and b, we can construct
a chain of rational numbers, of which @ and & are the first and last, and in
which any two consecutive numbers differ by as little as we please. Let us
then take a member # of L and a member y of R, and interpolate between
them a chain of rational numbers of which » is the first and y the last, and
in which any two consecutive numbers differ by less than §, § being any
positive rational number as small as we please, such as ‘01 or "0001 or ‘000001.
In this chain there must be a last which belongs to Z and a first which belongs
to R, and these two numbers differ by less than §.

‘We can now prove that an & can be found in L and a y in R such that
2—a? and y?—2 are as small as we please, say less than §. Substituting } 8
for & in the argument which precedes, we see that we can choose # and y so
that y—2<}8; and we may plainly suppose that both # and y are less
than 2. Thus

yte <4, yi-a2t=(y-=)(y+2)<4(y-2)<d;

4, 5] REAL VARIABLES 9

and since 22<2 and y2>2 it follows @ fortiori that 2—4? and »%—2 are each
loms than 8.

[t follows also that there can be mo largest member of L or
smallest member of R. For if z is any member of L, then 2*<2.
Huppose that a?=2 —8. Then we can find a member » of L
uich that a2 differs from 2 by less than §, and so #* > a* or @, > .
Ihus there are larger members of L than z; and as z is any
member of L, it follows that no member of L can be larger than
all the rest. Hence L has no largest, member, and similarly R has
no smallest.

' b. Irrational numbers (continued). We have thus divided
(ho positive rational numbers into two classes, L and R, such that
(1) ovory member of R is greater than every member of L, (ii) we
onn find a member of L and a member of R whose difference is as
mnnll as we please, (iii) L has no greatest and R no least member.
Our common-sense notion of the attributes of a straight line, the
poiuirements of our elementary geometry and our elementary
algobra, alike demand the existence of a number x greater than all
tho members of L and less than all the members of R, and.of
i vorresponding point P on A such that P divides the points which
sorrespond to members of L from those which correspond to members
o I :

?~
@
-+
=
o

Fig. 8.

It us suppose for a moment that there is such a number #,
wiid thit it may be operated upon in accordance with the laws of
wlgobira, wo that, for example, 2* has a definite meaning. Then 2?
puinot bo oither less than or greater than 2. For suppose, for
exainplo, that a? is less than 2. Then it follows from what pre-
poidon thit wo can find a positive rational number £ such that £ lies
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between a* and 2. That is to say, we can find a member of L
greater than «; and this contradicts the supposition that z divides
the members of L from those of B. Thus & cannot be less than
2, and similarly it cannot be greater than 2. We are therefore
driven to the conclusion that 2?=2, and that z is the number
which in algebra we denote by 4/2. And of course this number
«/2 is not rational, for no rational number has its square equal to
2. It is the simplest example of what is called an irrational
number.

But the preceding argument may be applied to equations
other than 2?=2, almost word for word; for example to a*=J,
where N is any integer which is not a perfect square, or to

#=3, a8=7, a*=23

or, as we shall see later on, to 2*=82z+ 8. We are thus led to
believe in the existence of irrational numbers « and points P on
A such that x satisfies equations such as these, even when these
lengths cannot (as 4/2 can) be constructed by means of elementary
geometrical methods.

- The reader will no doubt remember that in treatises on elementary algebra
the root of such an equation as 22=n is denoted by &z or 21/, and that a
meaning is attached to such symbols as

nPll, p-rla
by means of the equations
2 NP =(nlia)p, prlap-Prla=1,
And he will remember how, in virtue of these definitions, the ‘laws of indices’

such as
nr X 77/8 o nT + !’ (nf)ﬂ P nrs

are extended 8o as to cover the case in which r and s are any rational numbers
whatever.

The reader may now follow one or other of two alternative
courses. He may, if heé pleases, be content to assume that
‘irrational numbers’ such as 4/2, /3, ... exist and are amenable to
the algebraical laws with which he is familiar*. If he does this
he will be able to avoid the more abstract discussions of the next
few sections, and may pass on at once to §§ 18 et seq.

If, on the other hand, he is not disposed to adopt so maive an

* This is the point of view which was adopted in the first edition of this book.

b, 6] REAL VARIABLES 11

nbtitude, he will be well advised to pay careful attention to the

~neetions which follow, in which these questions receive fuller

consideration *,

Examples III, _t. Find the difference between 2 and the squares of the
decimals given in § 4 as approximations to /2.

2. Tind the differences between 2 and the squares of

Lé bR
3. Show that if m/n is a good approximation to /2, then (m+2n)/(m+n)

i a better one, and that the errors in the two cases are in opposite directions.

Apply this result to continue the series of approximations in the last
oxnmple.

4. 1If x and y are approximations to /2, by defect and by excess respec-
tively, and 2 —2?< 8, g2 —-2<8, then y — 2 <é.

b, The equation 2?=4 is satisfied by £=2. Examine how far the argu-
mont of the preceding sections applies to this equation (writing 4 for 2
throughout). [If we define the classes Z, 2 as before, they do not include all
iitional numbers. The rational number 2 is an exception, since 22 is neither
lonn than or greater than 4.]

6. Irrational numbers (continued). In § 4 we discussed
i npecial mode of division of the positive rational numbers # into
two classes, such that 22< 2 for the members of one class and
" == 2 for those of the others. ‘Such a mode of division is called a
section of the numbers in question. It is plain that we could
ounlly well construct a section in which the numbers of the two
elamnes were characterised by the inequalities #® < 2 and a* > 2, or
w7 and 2*>7. Let us now attempt to state the principles
of the construction of such ‘sections’ of the positive rational
numbers in quite general terms.

Huppose that P and @ stand for two properties which are
initunlly exclusive and one of which must be possessed by every
ponitive rational number.  Further, suppose that every such
iiimber which possesses P is less than any such number which

pomnernes Q. Thus P might be the property ‘a®< 2’ and @ the
property “a*>2 Then we call the numbers which possess P the
lower or left-hand class L and those which possess @ the upper or

* In these scctions I have borrowed freely from Appendix I of Bromwich’s
fufinite Neries.
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right-hand class R. In general both classes will exist; but it may
happen in special cases that one is non-existent and that every
number belongs to the other. This would obviously happen, for
example, if P (or Q) were the property of being rational, or of
being positive. For the present, however, we shall confine
ourselves to cases in which both classes do exist; and then it
follows, as in § 4, that we can find a member of L and a member
of R whose difference is as small as we please.

In the particular case which we considered in §4, L had no
greatest member and R no least. This question of the existence
of greatest or least members of the classes is of the utmost im-
portance. We observe first that it is impossible in any case that
L should have a greatest member and R a least. For if I were
the greatest member of L, and r the least of R, so that I <r, then
1 (I + ) would be a positive rational number lying between ! and
7, and so could belong neither to L nor to R; and this contradicts
our assumption that every such number belongs to one class or to
the other. This being so, there are but three possibilities, which
are mutually exclusive. Either (i) L has a greatest member [, or
(ii) R has a least member 7, or (iii) L has no greatest member and
R no least.

The section of § 4 gives an example of the last possibility. An example
of the first is obtained by taking P to be ‘2? =<1’ and @ to be ‘2?>1’;
here I=1. If Pis ‘a?< 1’ and @ is ‘a? =1, we have an example of the
second possibility, with #=1. It should be observed that we do not obtain
a section at all by taking P to be ‘22 <1’ and @ to be *22>1"; for the special
number 1 escapes classification (cf. Ex. 111. 5).

\/ 7. Irrational numbers (continued). In the first two cases
we say that the section corresponds to a positive rational number
a, which is [ in the one case and 7 in the other. Conversely, it is
clear that to any such number @ corresponds a section which
we shall denote by a*. TFor we might take P and @ to be the
properties expressed by :

z=a, >0

.

respectively, or by < a and # Za. In the first case @ would be
the greatest member of I,and in the second case the least member

* Tt will be convenient to denote a section, corresponding to a rational number
denoted by an English letter, by the corresponding Greek letter.
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of It. There are in fact just two sections corresponding to any
positive rational number. In order to avoid ambiguity we select

ono of them; let us select that in which the number itself belongs

(o the upper class. In other words, let us agree that we will consider
only scetions in which the lower class L has no greatest number. -

"T'here being this correspondence between the positive rational
numbers and the sections defined by means of them, it would be
porfectly legitimate, for mathematical purposes, to replace the
numbers by the sections, and to regard the symbols which occur
in our formulae as standing for the sections instead of for the
numbers.  Thus, for example, o >a’ would mean the same as
@ >« if a and a’ are the sections which correspond to a and o'

But when we have in this way substituted sections of rational
numbers for the rational numbers themselves, we are almost forced
lo o generalisation of our number system. For there are sections
(nich as that of § 4) which do not correspond to any rational
number. The aggregate of sections is a larger aggregate than that
of the positive rational numbers; it includes sections corresponding
o nll these numbers, and more besides. It is this fact which we
munke the basis of our generalisation of the idea of number. We
nocordingly frame the following definitions, which will however be
modified in the next section, and must therefore be regarded as
lemporary and provisional.

A section of the positive rational numbers, in which both classes
suint and the lower class has no greatest member, 1s called a
positive real number.

A positive real number which does not correspond to a positive
vitional number is called a positive irrational number.

8. Real numbers. We have confined ourselves so far to
sertnin sections of the positive rational numbers, which we have
nyroed provisionally to call ¢positive real numbers” Before we
frame our final definitions, we must alter our point of view a
little,  We shall consider sections, or divisions into two classes,
ol mercly of the positive rational numbers, but of all rational
nimboers, including zero. We may then repeat all that we have
sl about sections of the positive rational numbers in §§ 6, 7,
weroly omitting the word positive occasionally.
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DEFINITIONS. A section of the rational numbers, in which both
classes exist and the lower class has no greatest member, is called
a real number, or simply ¢ number.

A real number which does not correspond to a rational number
ts called an irrational number.

1f the real number does correspond to a rational number, we
shall use the term ‘rational’ as applying to the real number also.

The term ‘rational number’ will, as a result of our definitions, be
ambiguous; it may mean the rational number of § 1, or the corresponding
real number. If we say that 4 >%, we may be asserting cither of two different
propositions, one a proposition of elementary arithmetic, the other a proposition
concerning sections of the rational numbers. Ambiguities of this kind are
common in mathematics, and are perfectly harmless, since the relations
between different propositions are exactly the same whichever interpretation
is attached to the propositions themselves. From 4>3% and $>% we can
infer $ >} ; the inference is in no way affected by any doubt as to whether
4, 1, and } are arithmetical fractions or real numbers. Sometimes, of course,
the context in which (e.g.) ‘%’ occurs is sufficient to fix its interpretation.
When we say (see § 9) that § <u/(}), we must mean by ‘4’ the real number .

The reader should observe, moreover, that no particular logical importance
is to be attached to the precise form of definition of a ‘real number’ that we
have adopted. We defined a ‘real number’ as being a section, z.e. a pair of
classes. We might equally well have defined it as being the lower, or the
upper, class; indeed it would be easy to define an infinity of classes of
entities each of which would possess the properties of the class of real
numbers. What is essential in mathematics is that its symbols should be
capable of some interpretation; generally they are capable of many, and
then, so far as mathematics is concerned, it does not matter which we adopt.
Mr Bertrand Russell has said that ‘mathematics is the science in which
we do not know what we are talking about, and do not care whether what
we say about it is true’, a remark which is expressed in the form of a
paradox but which in reality embodies a number of important truths. It
would take too long to analyse the meaning of Mr Russell’s epigram in detail,
but one at any rate of its implications is this, that the symbols of mathe-
matics are capable of varyingdnterpretations, and that we are in general at
liberty to adopt whichever we prefer.

There are now three cases to distinguish. It may happen that
all negative rational numbers belong to the lower class and zero
and all positive rational numbers to the upper. We describe
this section as the real number zero. Or again it may happen
that the lower class includes some positive numbers. Such a section
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wo deseribe as a positive real number. Finally it may happen
(linl, some negative numbers belong to the upper class. Such
i feclion we describe as a negative real number*. .

"o difference between our present definition of a positive real number a
il that of § 7 amounts to the addition to the lower class of zero and all the
pogative rational numbers. An example of a negative real number is given
hy tuking the property P of § 6 to be #+1<0 and @ to be #+1>0.
I'li{n wection plainly corresponds to the negative rational number —1. If we
ool 77 to bo a%< —2 and @ to be 23> -2, we should obtain a negative real
wimbor which is not rational.

0. Relations of magnitude between real numbers. It
{4 plain that, now that we have extended our conception of
nimber, we are bound to make corresponding extensions of our
puncoplions of equality, inequality, addition, multiplication, and so
o, We have to show that these ideas can be applied to the new
nimbors, and that, when this extension of them is made, all the
oidinary laws of algebra retain their validity, so that we can
uperato with real numbers in general in exactly the same way

wi with the rational numbers of § 1. To do all this systematically
would occupy a considerable space, and we shall be content to
{nioato  summarily how a more systematic discussion would
lﬂlll‘(“‘(l.

Wo denote a real number by a Greek letter such as &, 8,1, ... ;
il rational numbers of its lower and upper classes by the corre-
aponding Iinglish letters a, 4 ; b, B; ¢, C;.... The classes them-
selven wo denote by (@), (4), ...

I{ @ and /3 are two real numbers, there are three possibilities :

(1) overy a is a b and every A a B; in this case (a) is identical
with (b) and (A4) with (B); .

® Thore nro nlso sections in which every number belongs to the lower or to
the wppor oluws, The reader may be tempted to ask why we do not regard these
geitionn alno ne defining numbers, which we might call the real numbers positive

Wi segative infinity.
ot [n no logical objection to such a procedure, but it proves to be incon-

cendent i pranotico. The most natural definitions of addition and multiplication do
Gok worlo b nntisfactory way. Moreover, for a beginner, the chief difficulty in the
siesenti of wnnlywis is that of learning to attach precise senses to phrases containing
the wond Cinfiniy ' and experience seems to show that he is likely to be confused by

Wiy wbiition to their number.
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(i1) every a is a b, but not all 4’s are B’s; in this case (a) is
a proper part of (b)*, and (B) a proper part of (4);

(ii1) every 4 is a B, but not all &’s are b’s.
These three cases may be indicated graphically as in Fig. 4.

In case (1) we write a=p, in case (ii) a< /3, and in case
@iii) a>B. Itis clear that, when

a and B are both rational, these # (i)
definitions agree with the ideas of ¢

equality and inequality between & £ (ii)
rational numbers which we began ~

by taking for granted; and that 4 + (iif)

any positive number is greater Fig. 4.
than any negative number.

It will be convenient to define at this stage the negative —a
of a positive number a. We suppose first that a is irrational. If
(a), (4) are the classes which constitute a, we can define another
section of the rational numbers by putting all numbers — 4 in the
lower class and all numbers —a in the upper. The real number
thus defined, which is clearly negative, we denote by — . Similarly
we can define —a when a is negative; if a is negative, —a is
positive. It is plain also that —(—a)=a. Of the two numbers
a and —a one is always positive. The one which is positive we
denote by |a| and call the modulus of a.

~ There is a complication if a is rational. In this case a belongs
to (4), and the classes (—A4), (— a) do not define a real number in
the sense of §8, since —a belongs to the lower class instead of
to the upper. We must therefore modify our definition of —a by
agreeing that, when a is rational, the rational —a is to be included
in the upper class.

Examples IV. _1. Prove that 0=-0.

,2’ Prove that B=a, ,8<a;:0r B> a according as a=f3, a>f3, or a < 3.
37 If a=f and B=y, then a=1y. A Ifa=p, B<y, then a<ry.

)";./ Prove that —B < —aif a<f.

67 Prove that a >0 if ¢ is positive, and a <0 if a is negative.

7 Prove that a=|a|. /B’ Prove that 1 <./2 <4/3 <2.

[All these results are immediate consequences of our definitions.]

* Le. is included in but not identical with (b).
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10, Algebraical operations with real numbers. We now

‘mf-;.vml Lo 4]('linc_bhe meaning of the elementary algebraical opera-
ot wich as addition, as applied to real numbers in general.
(1) Addition. In order to define the sum of two numbers

8 il /1, wo consider the following two classes: (i) the class (c)
Mo by all sums ¢ =a 45, (i) the class (C) formed by all sums
Usd | 1. Plainly c< € in all cases.

s

Ajuin, there cannot be more than one rational number which

s 1ot belong either to (¢) or to (C). < For suppose there were

IWo, may » and s, and let s be the greater. Then both r and s

- sk ho greater than every ¢ and less than every '; and so €' —¢
ol bo less than s — . Bug

C—c=(4d—a)+(B-1b):

{ Wil wo can choose a, b, 4, B so that both 4 —¢ and B—p
e e wnall as we like; and  this plainly contradicts our
hnml.lluniu. '

Il overy rational number belongs to (¢) or to (C), the classes (c)
() i u section of the rational numbers, that is to say, a numbexj
% I there is one which does not, we add it to (C).” We have
HOW i woction or real number «, which must clearly be rational,
#ilow 16 corresponds to the least member of (0). In any case
We vall vy the sum of a and B, and write

y=a+p.
I both a and B are rational, they are the least members of the upper

Blassns (A1) and (#). 1In this case it is clear that a+f is the least member
SF (1, w0 that our definition agrees with our previous ideas of addition,

(1) Nubtraction.  We define a— 8 by the equation
a—B=a+(-p).

The idon of subtraction accordingly presents no fresh difficulties,

Heamplos V. 1. Prove that a+(—a)=0.

8 ovo that a40=04ag=a.

& Prove that a+B=B+a. [This follows at once from the fact that the
Hisasa () and (b+a), or (4+4B) and (B+4), are the same, since, e.g.
S4h=h)awhen aand b are rational.] Y

& Vrove that u+(/3+7)=(a+:8)+7'



18 REAL VARIABLES [1

5. Prove that a—a=0.

6. Prove that a—f=—(8-a).

. % From the definition of subtraction, and Exs. 4, 1, and 2 above, it
follows that

(a=B)+B={a+(-B}+B=a+{(-B)+Bj=a+0=a
We might therefore define the difference a— 3=y by the equation y+B=a.

8. Prove that a— (B—y)=a—B+7-

97 Give a definition of subtraction which does not depend upon a previous
definition of addition. [To define y=a—f, form the classes (¢), (C) for which
¢=a-B, C=A-b. It is easy to show that this definition is equivalent to
that which we adopted in the text.]

10, Prove that
Hal=[Bl| =laxB|=|al+|B].

11. Algebraical operations with real numbers (con-
tinued). (ii1) Multiplication. When we come to multiplication,
it is most convenient to confine ourselves to positive numbers
(among which we may include 0) in the first instance, and to go
‘back for a moment to the sections of positive rational numbers
only which we considered in §§ 4—7. We may then follow practi-
cally the same road as in the case of addition, taking (c) to be (ab)
and (C) to be (AB). The argument is the same, except when we
are proving that all rational numbers with at most one exception
must belong to (c) or (C). This depends, as in the case of addi-
tion, on showing that we can choose a, A, b, and B so that C—c¢ is
as small as we please. Here we use the identity

C—c=AB—ab={(4—a)B+a(B-D).
Finally we include negative numbers within the scope of our
definition by agreeing that, if a and 3 are positive, then

(—0)B=—0aB, a(-B)=—aB, (-a)(-B)=aB.

(iv) Division. In order to define division, we begin by de-
fining the reciprocal 1/a of a number a (other than zero). Con-
fining ourselves in the first instance to positive numbers and
sections of positive rational numbers, we define the reciprocal of a
positive number & by means of the lower class (1 /A)and the upper
class (1/a). We then define the reciprocal of a negative number
—a by the equation 1/(—«)=—(1/a). Finally we define a/8 by

the equation
a/B=a x (1/6).
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Wo aro then in a position to apply to all real numbers, rational
8 drntional, the whole of the ideas and methods of elémentar
#lgobrn. Naturally we do not propose to carry out this task ifx
Hulail, Tt will be more profitable and more interesting to turn

O attention to some special, but particularly important, classes
ol frrational numbers. ,

Hxamples VI. Prove the theorems expressed by the following
(=]

Binloo ;

L ux0=0xa=0, 2. axl=1lxae=a. 3. ax(l/a)=1.

4 afl=pfa. 2. a(By)=(aB)y. 6. a(B+y)=aB+ay.

T (a1 B)y=ay+By. 8. |aB|=]al|B].

19, lThe r.lum?)er N2. Let us now return for a moment to
the particular irrational number which we discussed in § 4—5
Wa thoro constructed a section by means of the inequalities.

a0 a0~ s s
#' < ¥ 0> 2. This was a section of the positive rational numbers
wiily | Iml..wo replace it (as was explained in § 8) by a section of
#ll the rational numbers. We denote the section or number thus
Hefliod by the symbol /2.

Tho t'ln,ﬂﬂ'vs by means of which the product of 4/2 by itself is
tellnod are (i) (aa’), where @ and @’ are positive rational numbers
Whowo wquares are less than 2, (i1) (44’), where A and A’ are
ponilivo rational numbers whose ‘squares are greater than 2. These

#limnon oxhaust all positive rational numbers save one, which can
aily bo 2 itself.  Thus '

. W2r=42y2=2.
Agnin
(=V2)=(=v2) (= V2)="2Vy2=(y2)'=2.
Thim the equation a*= 2 has the two roots V2 and — /2. Similarly

e vould discuss the equations a*=8, 4°=17, ... and the corre-
Sponiding irrational numbers /8, — /3, YA (R

1 Quadratic surds. A number of the form + ya, where
# 44 ponibive rational number which is not the square—of ;nother
tabionnl number, is called a pure quadratic surd. A number of
the form a1 4/b, where @ is rational, and Vb is a pure quadratic
il i omometimes called a mixed quadratic surd.

2—2
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The two numbers a +.,/b are the roots of the quadratic equation
&2 —2ax+a?—b=0,

Conversely, the cquation a?+2px+¢=0, where p and ¢ are rational, and
p?*—¢>0, has as its roots the two quadratic surds —p+./(p2—g).

The only kind of irrational numbers whose existence was
suggested by the geometrical considerations of § 3 are these
quadratic surds, pure and mixed, and the more complicated
irrationals which may be expressed in a form involving the
repeated extraction of square roots, such as

W2+ (2 +V2)+ V{2 + V(2 + V)L

It 1s casy to construct geometrically a line whose length is
equal to any number of this form, as the reader will easily see for
himself. That irrational numbers of these kinds only can be con-
structed by Euclidean methods (z.e. by geometrical constructions
with ruler and compasses) 1s a point the proof of which must
be deferred for the present®. This property of quadratic surds
makes them especially interesting.

Examples VII. 1. Give geometrical constructions for

N2 JEHN2), V2NV @2+V2)

3

2. The quadratic equation a@a?+2bz+c¢=0 has two real rootst if
b?—ac>0. Suppose @, b ¢ rational. Nothing is lost by taking all three
to be integers, for we can multiply the equation by the least common
multiple of their denominators.

The rcader will remember that the roots arc {—b+/(b2—ac)}/a. It is
easy to construct these lengths geometrically, first constructing /(42— ac).
A much more elegant, though less straightforward, counstruction is the
following. *

* See Ch. II, Mise. Exs, 22.

+ IL.e. there are two values of x for which az?+42bx+¢=0. If 02— ac<0 there
are no such values of x. The reader will remember that in books on elementary
algebra the equation is said to have two ‘complex’ roots. The meaning to be
attached to this statement will be explained in Ch. 1II.

When %2=ac the equation has only one root. For the sake of uniformity

it is generally said in this case to have ‘two equal’ roots, but this is a mere

convention,
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Draw a cirele of unit radius, a diameter PQ, and the tangents at the ends
W the dicmeters.

P

Q' Y Q
Fig. 5.

X

Toika I'l'?-— -?’u,/b and QQ'= —c/2b, hawving regard to sign*. Join P'Q’
Pibting l/‘m oirelo in M and N.  Draw PM and PN, cutting QQ' in X and Y,
~ When YN and QY are the roots of the equation with their proper signs+. '

s proof s simple and we leave it as an exercise to the reader
Annthor, porhaps even simpler, construction is the followine Take a 7 :
AW o unit longth.  Draw BO— -2b 1 ;. Dol
L y /a perpendicular to AB, and CD=cla
pependioular to BC and in the same direction as BA. On AD as diameter
“Mi'vi worelo cutting BC in X and Y. Then BX and BY are the roots.

; a I w0 in |>mfil,ivo LP"and Q@' will be drawn in the same direction
: lefy fhat 7'Q" will not meet the circle if b?<ac, while if B2=ac it will b(;
B Bigont,  Vorify also that if b2=ae the circle in the second construction

WL toueh 20,
4  Provo that
Vra)=VpxJg, J(p%9)=piq.

14 Mome theorems concerning quadratic surds. Two

W undratio surds are said to be simglar if they can be ex-

gaoi na rolional multiples of the same surd, and otherwise to be
tlar,  "I'hus

V8=2v2, w3h=3y2,
Wl 0 /8, /30 nro similar surds,  On the other hand, if M and NV

Hitogors which have no common factor, and neither of which
B perioot wqunre, /M and /N are dissimilar surds. For suppose
pwé*a:ih’n, ;

N ARy,
v q w’ ‘\/N_—s u’

4 Whers all 1o lettors denote inb(‘.gers.

t Tha Nunre | i i i
" A Hire la 'rl‘nmvn to it the case in which b and ¢ have the same and a
B BppaEite slyn,  The rendor shonld draw figures for other cases
¥ F Bave bahon tiin conntraoti 1 (lein’ -
QR thit ‘| ition hjnn Klein’s Legons sur certaines questions de
;”. ¢ et (onoh translation by J. Griess, Paris, 1896).

'
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Then VMN is evidently rational, and therefore (Ex. 11. 3)
integral. Thus MN = I, where P is an integer. Leta, b, ¢, ...
be the prime factors of P, so that

MN = a*b*®c> ...,

where a, 8, vy, ... are positive integers. Then MN is divisible by
a*, and therefore either (1) M is divisible by a®, or (2) N is
divisible by a*, or (8) M and N are both divisible by a. The last
case may be ruled out, since M and N have no common factor.
This argument may be applied to each of the factors a®, 0%, ¢, ...,
so that M must be divisible by some of these factors and N by
the remainder. Thus

M=DP2 N=Pp

where P;? denotes the product of some of the factors a*, 0%, ¢#, ...
and P,? the product of the rest. Hence M and N are both perfect
squares, which is contrary to our hypothesis.

TueoreM. If A, B, C, D are rational and
A+B=C+4+D,
then either (i) A=C, B=D or (11) B and D are both squares of
rational numbers.
For B — D is rational, and so is
? VB —nD=C-A.

If B is not cqual to D (in which case it is obvious that 4 is also
equal to C), it follows that

VB +vD=(B-D)/(¥B-vD)

is also rational. Hence /B and /D are rational.

CoroLLARY. If A4+4/B=C++D, then A—+B=C—-4D
(unless /B and /D are both rational).

Examples VIII. 1. Prove ab initio that 4/2 and /3 are not similar

surds. )
2. Prove that \/a and \/(1/a), where @ is rational, are similar surds
(unless both are rational).
3. If @ and b are rational, then \/a44/b cannot be rational unless y/a and
/b are rational. 'The same is true of /a — /b, unless a=b.
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o JA+/B={C+D,
i elthor (@) A=Cand B=D, or (b) A=D and B=C, or (¢) N4, N B, /0,
W/ /1 wro ll rational or all similar surds. [Square the given equation and
apply tho theorem above.]

b, Noither (a+4/5)® nor (a - \/b)® can be rational unless /b is rational.

(i P'rove that if #=p+4/q, where p and ¢ are rational, then 2™, where
# In nny integer, can be expressed in the form P+ @+¢q, where P and @
&t inlional. - For example,
(P+VO=p"+q+2pJg, (p+Waf=p*+3pg+(Ep*+q) Ve
Duddiioo that any polynomial in & with rational coefficients (7.e. any expression
al tho form
QI+ a4, L+,

whoio @, ... @, are rational numbers) can be expressed in the form P+ QVg.

7. If a+4/b, where b is not a perfect square, is the root of an algebraical

#jtnblon with rational coefficients, then @—./b is another root of the same
#ijuation,

f. lixpress 1/(p+4/g) in the form prescribed in Ex. 6. [Multiply
filiorator and denominator by p -./¢.]

B, Doduce from Exs. 6 and 8 that any expression of the form @ (z)/H (z),
whore (/ (x) and H (z) are polynomials in « with rational coefficients, can be
s prossod in the form P+@/g, where P and @ are rational.

10, If p, ¢, and p®—g are positive, we can express »/(p+a/g) in the form

V1 /y, where
2= {p+N(P*-0)y, y=%{p-V@*-9}

11, Determine the conditions that it may be possible to express /(p+4/g),
wlioro p and g are rational, in the form 4/ +4/y, where & and y are rational.

19, If a®—b is positive, the necéssary and sufficient conditions that
V(@+b)+/(a—N/b)
#honld bo rational are that a®~b and 4 {a+4/(a%- )} should both be squares

ol vational numbers.

16, The continuum. The aggregzite of all real numbers,

mbional and irrational, is called the arithmetical continuum.

Il is convenient to suppose that the straight line A of § 2
I composed of points corresponding to all the numbers of the
arithmetical continuum, and of no others*. The points of the

* 'I'hin supposition is merely a hypothesis adopted (i) because it suffices for the
pirponon of our geometry and (ii) because it provides us with convenient geometrical
Hlinlintions of analytical processes. As we use geometrical language only for

purponon of illustration, it is not part of our business to study the foundations
af geomobry.
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line, the aggregate of which may be said to constitute the linear
continuum, then supply us with a convenient image of the
arithmetical continuum.

We have considered in some detail the chief properties of a
few classes of real numbers, such, for example, as rational numbers
or quadratic surds. We add a few further examples to show how
very special these particular classes of numbers are, and how, to
put it roughly, they comprise only a minute fraction of the infinite
variety of numbers which constitute the continuum.

(i) Let us consider a more complicated surd expression such as
2=2/(4+/15) + (4 —\/15).
Our argument for supposing that the expression for z has a meaning might be
as follows. We first show, as in § 12, that there is a number y=,/15 such that
92=15, and we can then, as in § 10, define the numbers 4+4./15, 4—./15.
Now consider the equation in z,,
23=4+4 J15.

The right-hand side of this equation is not rational: but exactly the same
reasoning which leads us to suppose that there is a real number 2 such that
#3=2 (or any other rational number) also leads us to the conclusion that there
is a number z; such that z;3=4+,/15. We thus define z;=4/(4+4/15), and
similarly we can define z;=3/(4—4/15) ; and then, as in § 10, we define z=2,+2z,.

Now it is easy to verify that
2=3z+8.

And we might have given a direct proof of the existence of a unique number
z such that z28=3:+48. It is easy to see that there cannot be two such
numbers. For if 23=3z+8 and 23=32+8, we find on subtracting and
dividing by 2 — 2, that z.2422+22=3. But if 2, and 2, are positive z;>> 8,
z3>8 and therefore z;>2, 2,>2, 7?+2z2+2°%>12, ahd so the equation
just found is impossible. And it is easy to see that neither z nor z, can
be negative. For if z is negative and equal to —¢, ¢ is positive and
(3—-3¢4+8=0, or 3—-¢2=8/¢{. Hence 3—¢2>0, and so (<2 But then
8/¢ >4, and so 8/¢ cannot be equal to 3 — ¢?, which is less than 3.

Hence there is at most one z such that 2*=32+38. And it cannot be
rational. For any rational root of this equation must be integral and a
factor of 8 (Ex. 11. 3), and it is easy to verify that no one of 1, 2, 4, 8 is a root,

Thus 23=32+48 has at most one root and that root, if it exists, is positive
and not rational. We can now divide the positive rational numbers z into
two classes Z, R according as #® <3z +8 or 23 >3z +8, It is easy to see that
if 23>32+8 and y is any number greater than x, then also y®>3y+48. TFor
suppose if possible 72 =<3y+8. Then since 2°>3x+8 we obtain on sub-
tracting y®—23 <3 (y —x), or ¥+ ay+x? <3, which is impossible ; for y is
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positive and #>2 (since 28> 8). Similarly we can show that if < 3x+8
nnd y <2 then also 3 < 3y +8,

I'inally, it is evident that the classes Z and R both exist ; and they form
fv nection of the positive rational numbers or positive real number z which
ntisfics the equation z*=3z+8. The reader who knows how to solve cubic
tuntions by Cardan’s method will be able to obtain the explicit expression of
# dircctly from the equation.

(i1) The direct argument applied above to the equation
~Jx+8 could be applied (though the application would be
i little more difficult) to the equation

o’ =x+ 16.

o]
it

nand would lead us to the conclusion that a unique positive real
nimber exists which satisfies this equation. In this case, how-
ovor, 16 s not possible to obtain a simple explicit expression
for @ composed of any combination of surds. It can in fact
bo proved (though the proof is difficult) that it is generally
tinpossible to find such an expression for the root of an equation
ol higher degree than 4. Thus, besides irrational numbers which
oan bo expressed as pure or mixed quadratic or other surds, or
eombinations of such surds, there are others which are roots of

lgobraical equations but cannot be so expressed. It is only in
vory npecial cases that such expressions can be found.

(i)  But even when we have added to our list of irrational
fimbers roots of equations (such 'as ® = + 16) which cannot be
sxplicitly expressed as surds, we have not exhausted the different
kil of irrational numbers contained in the continuum. Let us
dinw n circle whose diameter is equal to 4,4, t.e. to unity. It is
ninbiurnl to suppose*® that the circumference of such a circle has a

lonpth enpable of numerical measurement. This length is usually
dunoted by ar. - And it has been shown+ (though the proof is un-
futtunntely long and difficult) that this number 7 is not the
fool ol any algebraical equation with integral coefficients, such,
T rmml;l(', as

Tr=n, w=n, W=Tm+n,
le Hobuon’s Plane Trigonometry (5th edition), pp. 7 et seq.

I B Hobwon, loc. cit., pp. 305 et seq, or the same writer's Squaring the Circle
tiaimhinidpo, |'.”."»).
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where 7 is an integer. In this way it is possible to define a
number which is not rational nor yet belongs to any of the classes
of irrational numbers which we have so far considered. And this
number 7 is no isolated or exceptional case. Any number of other
examples can be constructed. In fact it is only special classes of
irrational numbers which are roots of equations of this kind, just
as it is only a still smaller class which can be expressed by means
of surds.

/' 16. The continuous real variable. The ‘real numbers’
may be regarded from two points of view. We may think f)f
them as an aggregate, the ‘arithmetical continuum’ deﬁr%ed in
the preceding section, or individually. And when we thml-c of
them individually, we may think either of a particular specified
number (such as 1, — 4, 4/2, or 7) or we may think of any number,
an unspecified number, the number x. This last is our point of
view when we make such assertions as ‘z is a number’, ‘z is the
measure of a length’, ‘z may be rational or irrational’, "I‘he z
which occurs in propositions such as these is called the continuous
real variable: and the individual numbers are called the values of

" the variable,

A ‘variable’, however, nced not necessarily be continuous.
Instead of considering the aggregate of all real numbers, we
might consider some partial aggregate contained in the former
aggregate, such as the aggregate of rational numbers, or the
aggregate of positive integers. Let us take the last case. ’l"h.en
in statements about any positive integer, or an unspecified positive
integer, such as ‘n is either odd or even’, n is called the variable,
a positive integral variable, and the individual positive integers
are its values.

Naturally ‘2’ and ‘n’ are only examples of variables, the
variable whose ‘field of variation’ is formed by all the real
numbers, and that whose field is formed by the positive integers.
These are the most important examples, but we have often to
consider other cases. In the theory of decimals, for instance, we
may denote by « any figure in the expression of any number as a
decimal. Then # is a variable, but a variable which has only ten
different values, viz. 0,1, 2,8, 4, 5,6,7,8,9. The reader should
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(hink of other examples of variables with different fields of varja.
tion. He will find interesting examples in ordinary life: policeman
@, the driver of cab =, the year z, the ath day of the week. The
values of these variables are naturally not numbers.

17. Sections of the real numbers. In §§ 4—7 we con-
nidered “sections’ of the rational numbers, 7.e. modes of division of
the rational numbers (or of the positive rational numbers only)

into two classes L and R possessing the following characteristic
|roperties:

(1)  that every number of the type considered belon gs to one
and only one of the two classes;

(i) that both classes exist;

(iii) that any member of I is less than any member of R.

It is plainly possible to apply the same idea to the aggregate
of all real numbers, and the process is, as the reader will find in
lnter chapters, of very great importance.

Lot us then suppose* that P and Q are two properties which
wro mutually exclusive, and one of which is possessed by every
toul number. Further let us suppose that any number which
posscsses P is less than any which possesses Q. We call the
ftimbers which possess P the lower or left-hand class I, and
those which possess @ the upper or right-hand class R.

"Ius £ might be # = 4/2 and @ be > /2. Ttis important to observe
thil o pair of properties which suffice to define a section of the rational
imbors may not suffice to define one of the real numbers. This is s0, for
oxamplo, with the pair ‘z < 4/2’ and ‘z > /2’ or (if we confine ourselves
to positive numbers) with ¢22< 2’ and ‘2 > 2’. Every rational number
I'onnonses one or other of the properties, but not every real number, since in
“lthor case /2 escapes classification.

There are now two possibilitiest. Either L has a greatest
momber f, or R has a least member 7, Both of these events

* T'ho discussion which follows is in many ways similar to that of §6. We
huvo not altempted to avoid a certain amount of repetition. The idea of a ‘section,’
fital brought into prominence in Dedekind’s famous pamphlet Stetigkeit und
iratlonale Zahlen, is one which can, and indeed must, be grasped by every reader
ul thin hook, even if he be one of those who prefer to omit the discussion of the
#olion of an irrational number contained in §§ 6—12,

I I'hore were three in § 6,
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cannot occur. For if L had a greatest member [, and R a least
member 7, the number §({+r) would be greater than all members
of L and less than all members of R, and so could not belong to
either class. On the other hand one evens must occur*,

For let L, and R, denote the classes formed from L and R by
taking only the rational members of L and R. Then the classes
L, and R, form a section of the rational numbers. There are now
two cases to distinguish.

It may happen that L, has a greatest member a. In this case
a must be also the greatest member of L. For if not, we could find
a greater, say 8. There are rational numbers lying between a and
B, and these, being less than B, belong to L, and therefore to L;
and this is plainly a contradiction. Hence a is the greatest
member of L.

On the other hand it may happen that I, has no greatest
member. In this casc the section of the rational numbers formed
by L, and R, is a real number a. This number a must belong
to L or to R. If it belongs to L we can shew, precisely as before,
that it is the greatest member of L, and similarly, if it belongs
to R, it is the least member of R.

Thus in any case either L has a greatest member or I a
least. Any section of the real numbers therefore ‘corresponds” to
a real number in the sense-in which a section of the rational
numbers’ sometimes, but not always, corresponds to a rational
number. This conclusion is of very great importance; for it shows
that the consideration of sections of all the real numbers does not
lead to any further generalisation of our idea of number. ~Starting
from the rational numbers, we found that the idea of a section of

the rational numbers led us to a new conception of a number, that

of a real number, more general than that of a rational number;
and it might have been expected that the idea of a section of the
real numbers would have led us to a conception more general still.
The discussion which precedes shows that this is not the case, and
that the aggregate of real numbers, or the continuum, has a kind
of completeness which the aggregate of the rational numbers
lacked, a completeness which is expressed in technical language
by saying that the continuum is closed.
* This was not the case in § 6.
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The result which we have just proved may be stated as follows:

Dedekind’s Theorem. If the real numbers are divided into
two classes L and R in such a way that

(1)  every number belongs to one or other of the two classes,

(11) each class contains at least one number,

(1) any member of L is less than any member of R,
then there s @ number e, which has the property that all the numbers
lews than it belong to L and all the numbers greater than it to R.
T'he number a wtself may belong to either class.

In applications we have often to consider sections not of @l numbers but

of all those contained in an interval (B, y), that is to say of all numbers
wnich that =z <y. A ‘section’ of such numbers is of course a division of
them into two classes possessing the properties (i), (i), and (iii). Such
# woolion may be converted into a section of all numbers by adding to Z all

fimbors less than 8 and to R all numbers greater than y. It is clear that
the vonclusion stated in Dedekind’s Theorem still holds if we substitute ¢ the
voal numbers of the interval (B, y)’ for ‘the rcal numbers’, and that the
uimbor a in this case satisfies the inequalities 8 <a=<y.

18. Points of accumulation. A syétem of real numbers, or
ul the points on a straight line corresponding to them, defined in
Uy woy whatever, is called an aggregate or set of numbers or

~puints. The set might consist, for example, of all the positive
Wilogors, or of all the rational points.

It in most convenient here to use the language of geometry*,
Hupporo then that we are given a set of points, which we will
dunoto by S, Take any point £ which may or may not belong to S.
Phon there are two possibilities.  Either (i) it is possible to choose
A positivo number & so that the interval (£— 8, £+ 8) does not con-
bt any point of S, other than £ itselft, or (ii) this is not possible.

Huppone, for example, that S consists of the points corresponding to all
His ponitivo integers.  If £ is itself a positive integer, we can take 8 to be any
b domn than 1, and (i) will be true; or, if £ is halfway between two
wEitive dntogers, we can take & to be any number less than 4.  On the other
sl A0 conmists of all the rational points, then, whatever the value of £,
Hi s o g for any interval whatever contains an infinity of rational points.

* Phe render will hardly require to be reminded that this course is adopted
ol B ronsonn of linguistie convenience,

b Fhin olwuno inof course unnecessary if § does not itself belong to S,
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Let us suppose that (ii) is true. Then any interval (£ — 8, £+ ),
however small its length, contains at least one point & which
belongs to S and does not coincide with &; and this whether £
itself be a member of S or not. In this case we shall say that £ is
a point of accumulation of S. It is easy to see that the interval
(E— 8, £+ 8) must contain, not merely one, but infinitely many
points of S. TFor, when we have determined &, we can take an
interval (£ —§,, £+ 8,) surrounding £ but not reaching as far as &,.
But this interval also must contain a point, say &, which is a
member of S and does not coincide with £ Obviously we may
repeat this argument, with £ in the place of £; and so on
indefinitely. In this way we can determine as many points

&y & Enposus
as we please, all belonging to S, and all lying inside the interval
(-8, E+0)
A point of accumulation of S may or may not be itself a point
of 8. The examples which follow illustrate the various possibilities.

Examples IX. X~ If S consists of the points corresponding to the
positive integers, or all the integers, there are no points of accumulation.
97 If S consists of all the rational points, every point of the line is a
point of accumulation.
3. If § consists of the points 1, 4, 3, ..., there is one point of accumula-
tion, viz. the origin.
/4."/ If S consists of all the positive rational points, the points of accumula-
tion are the origin and all positive points of the line. "

" 19, Weierstrass’s Theorem. The general theory of sets
of points is of the utmost interest and importance in the higher
branches of analysis; but it is for the most part too difficult to be
included in a book such as this. There is however one funda-
mental theorem which is 8asily deduced from Dedekind’s Theorem
and which we shall require later.

THEOREM. If a set S contains infinitely many points, and 1s
entirely sttuated in an interval (a, B), then at least one point of the
tnterval is a point of accumulation of S. '

We divide the points of the line A into two classes in the
following manner. The point P belongs to L if there are an
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ifinity of points of § to the right of P, and to R in the contrary
fiao, Then it is evident that conditions (i) and (iii) of Dedekind’s
Theorem are satisfied; and since a belongs to L and B to R,
sondition (i1) is satisfied also.

Ience there is a point £ such that, however small be §, £— 8
lmlnngu to L and £+8 to R, so that the interval (§—8, &+ §)
#anbning an infinity of points of S. Hence £ is a point of accumu-
lation of S.

Thin point may of course coincide with a or B, as for instance when a=0,
& " y . . ’
fA=1, and § consists of the points 1, 4, 1, .... In this case 0 is the sole
fuilut ol accumulation.,

MISCELLANEOUS EXAMPLES ON CHAPTER I.

, I, What are the conditions that az+by+cz=0, (1) for all values of
AT l(:!) for all values of z, y, z subject to az+By+yz=0; (3) for all
Vilues of , 7, z subject to both az 48y +yz=0 and Az+By+Cz=01

% Any positive rational number can be expressed in one and only one
Wiy i tho form

45 as Q,
a . et i .
1+1.2+1.2.3+"' +1.2.3.../s’
whove ay, ay, ..., @ ave integers, and

0=a, 0=ay<? O0=w3<3, ... 0<a <k

i, An.y-poml,ive rational number can be expressed in one and one way
#sily s nowimple continued fraction

1 1 1
et —— ’
G+ az+... +a,
whain iy, ay, ...are positive integers, of which the first only may be zero.

[ Aw:-nnl,u of the theory of such continued fractions will be found in text-
Bl of N'J:u!;m. For further information as to modes of representation of
f:‘““”f'l and irrational numbers, see Hobson, Theory of Functions of a Real
Fiariubla, 9nd odition, vol. 1, pp. 45-49.]

4 Vind the rational roots (if any) of 948 — 622+ 152 —10=0

A A lino ,‘1 B is divided at € in aurea sectione (Eue. 11. 11)—7.e. so that
A0 A0 " Show that the ratio AC|AB is irrational.

' l} A diroot goometrical proof will be found in Bromwich’s Infinite Series
8 LA, o303, ’
A dwireational.  In what circumstances can ‘ﬁ_'-—b, where a, b, ¢, d
3. ¥y vy
ate vablonal, bo rational ¢ cdtd



