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PREFACE TO THE SECOND EDITION

I'ur first edition of this book appeared in 1905 as a reprint
from the Annals of Mathematics, series 2 (vol. 6, pp. 151-184,
and vol. 7, pp. 15-43), under the title: The Continuum as a
Type of Order: an Exposition of the Modern Theory; with an
A ppendixz on the Transfinite Numbers (The Publication Office
of Harvard University, Cambridge, Mass.).

An Esperanto translation by R. Bricard, under the title:
La Kontinuo, appeared in 1907 (Paris, Gauthier-Villars).

. The following reviews (of the original or of the translation)
may be noted: by O. Veblen, in Bull. Amer. Math. Soc., vol.
12 (1906), pp. 302-305; by P. E. B. Jourdain, in the Mathe-
malical Gazette, vol. 3 (1906), pp. 348-349; by C. Bourlet, in
Nouvelles Annales de Mathématiques, ser. 4, vol. 7 (1907),
pp. 174-176; and by Hans Hahn, in Monatshefte fiir Math. u.
Phystk, vol. 21 (1910), Literaturber., p. 26. The author is
indebted to Professor Veblen and to Professor Hahn for
calling his attention to errors in § 62.

The principal modifications in the present edition are the
following: § 38 and § 64 have been enlarged; § 62 has been
rewritten, and § 62a has been added; the bibliographical
notes have been brought more nearly up to date; through-
out Chapter VII [formerly called the Appendix (§ 73§ 91)]
the term ‘“normal series’’ has been replaced by the term
“ well-ordered series ”’ (for reasons explained in a footnote
to §74); and in §89a a brief account has been inserted of
Hartogs’s recent proof of Zermelo’s theorem that every class
can be well-ordered.
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THE CONTINUUM
AND OTHER TYPES OF SERIAL ORDER

INTRODUCTION

I'ne main object of this book is to give a systematic elementary
feeount of the modern theory of the continuum as a type of serial
order — a theory which underlies the definition of irrational num-
bers and makes possible a rigorous treatment of the real number
system of algebra.

The mathematical theory of the continuous independent vari-
able, in anything like a rigorous form, may be said to date from the
yoar 1872, when Dedekind’s Stetigkeit und irrationale Zahlen ap-
peared;* and it reached a certain completion in 1895, when the first
part of Cantor’s Beitrage zur Begrindung der transfiniten Mengen-
lehre was published in the M athematische Annalen.t

While all earlier discussions of continuity had been based more or
less consciously on the notions of distance, number, or magnitude,
the Dedekind-Cantor theory is based solely on the relation of order.
The fact that a complete definition of the continuum has thus been
given in terms of order alone has been signalized by Russell fasone

* Third (unaltered) edition, 1905; English translation by W. W, Beman,
in o volume called Dedekind’s Essays on the Theory of Numbers, 1901.

I Georg Cantor, Math. Ann., vol. 46 ( 1895), pp. 481-512; French translation
by F. Marotte, in a volume called Sur les fondements de Ig théorie des ensembles
fransfinis, 1899; English translation by P. E. B. Jourdain, Contributions to the
Founding of the Theory of Transfinite N umbers, Open Court Publishing Co.,
1915. For further references to Cantor’s work, see §74. An interesting con-

I B. Russell, Principles of Mathematics, vol. 1 (1903), p. 303. See also A.
N. Whitehead and B. Russell, Principia Mathematica, especially vol. 2 (1912)
and vol. 3 (1913), where an elaborate account of the theory of order is given
in the symbolic notation of modern mathematical logic.
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2 TYPES OF SERIAL ORDER

of the notable achievements of modern pure mathematics;* and the
simplicity of the ordinal theory, which requires no technical knowl-
edge of mathematics whatever, renders it peculiarly accessible to
the increasing number of non-mathematical students of scientific
method who wish to keep in touch with recent developments in the
logic of mathematics.

The present work has therefore been prepared with the needs of
such students, as well as those of the more mathematical reader, in
view; the mathematical prerequisites have been reduced (except in
one or two illustrative examples) to a knowledge of the natural
numbers, 1,2, 3, . . ., and the simplest facts of elementary geom-
etry; the demonstrations are given in full, the longer or more
difficult ones being set in closer type; and in connection with
every definition numerous examples are given, to illustrate, in a
concrete way, not only the systems which have, but also those
which have not, the property in question.

Chapter I is introductory, concerned chiefly with the notion of
one-to-one correspondence between two classes or collections.
Chapter IT introduces simply ordered classes, or series,f and ex-
plains the notion of an ordinal correspondence between two series.
Chapters IIT and IV concern the special types of series known as
discrete and dense, and chapter V, which is the main part of the
book, contains the definition of continuous series. Chapter VI isa
supplementary chapter, defining multiply ordered classes, and
continuous series in more than one dimension. Chapter VII gives
a brief introduction to the theory of the so-called ‘‘ well-ordered "
series, and Cantor’s transfinite numbers. An index of all the
technical terms is given at the end of the volume.

* The fundamental importance of the subject of order may be inferred
from the fact that all the concepts required in geometry can be expressed in
terms of the concept of order alone; see, for example, O. Veblen, A system
of awioms for geometry, Trans. Amer. Math. Soc., vol. 5 (1904), pp. 343—
384; or E. V. Huntington, A set of postulates for abstract geometry, expressed in

terms of the simple relation of inclusion, Math. Ann., vol. 73 (1913), pp. 522~
559.

t The word series is here used not in the technical sense of a sum of numeri-
cal terms, but in a more general sense explained in § 12.

INTRODUCTION 3

[{, will be noticed that while the usual treatment of the con-
{inuum in mathematical text-books begins with a discussion of the
wyutem of real numbers, the present theory is based solely on a set
of postulates the statement of which is entirely independent of
numerical concepts (see § 12, § 21, §41, and § 54). The various
number-systems of algebra serve merely as examples of systems
which satisfy the postulates — important examples, indeed, but
nol by any means the only possible ones, as may be seen by in-
upection of the lists of examples given in each chapter (8§ 19, 28,
51, 63). For the benefit of the non-mathematical reader, I give'a
detailed explanation of each of the number-systems as it occurs, In
w0 far as the relation of order is concerned (see § 22 for the integers,
§51, 3 for the rationals, and §63, 3 for the reals); the operations of
addition and multiplication are mentioned only incidentally (see
§8 31, 53, and 65), since they are not relevant to the purely ordinal~
theory.*

In conclusion, I should say that the bibliographical references
{hroughout the book are not intended to be in any sense exhaus-
tive; for the most part they serve merely to indicate the sources of
my own information.

+ The reader who is interested in these extra-ordinal aspects of algebra may
refor to my paper on The Fundamental Laws of Addition and Multiplication
in llementary Algebra, reprinted from the Annals of Mathematics, vol. 8 (1906),
pp. 1-44 (Publication Office of Harvard University); or to my Fundamental
P'ropositions of Algebra, being monograph IV (pp. 149-207) in the volume
onlled Monographs on Topics of Modern Mathematics relevant to the Elementary
I"eld, edited by J. W. A. Young (Longmans, Green & Co., 1911). A more
olomentary treatment may be found in John Wesley Young's Lectures on
Jundamental Concepts of Algebra and Geometry (Macmillan, 1911).



CHAPTER 1

ON CrLaSsEs IN GENERAL

1. A class (Menge, ensemble) is said to be determined by any test
or condition which every entity (in the universe considered) must
either satisfy or not satisfy; any entity which satisfies the condi-
tion is said to belong to the class, and is called an element of the
class.* A null or empty class corresponds to a condition which is
satisfied by no entity in the universe considered.

For example, the class of prime numbers is a class of numbers
determined by the condition that every number which belongs to
it must have no factors other than itself and 1. Again, the class of
men is a class of living beings determined by certain conditions set
forth in works on biology. Finally, the class of perfect square
numbers which end in 7 is an empty class, since every perfect square
number must end in 0,1,4,5 6, 0r9.

2. If two elements a and b of given class are regarded as inter-
changeable throughout a given discussion, they are said to be equal;
otherwise they are said to be distinct. The notations commonly
used are @ = b and q = b, respectively.

3. A one-to-one correspondence between two classes is said to be
established when some rule is given whereby each element of one
class is paired with one and only one element of the other class, and
reciprocally each element of the second class is paired with one and
only one element of the first class,

For example, the class of soldiers in an army can be put into one-
to-one correspondence with the class of rifles which they carry,

* H. Weber, Algebra, vol. 1, p. 4. For the sake of uniformity with Peano’s
Formuwlaire de M, athématiques, 1 translate M. enge, or Mannigfaltigkert, by class
instead of by collection, mass, set, ensemble, or aggregate — all of which terms
are in use. For recent discussions of the concept class, see the articles cited in
§83.
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§ 4 CLASSES IN GENERAL 5

since (as we suppose) each soldier is the owner of one and or}ly one
rifle, and each rifle is the property of one and only one soldier.

Again, the class of natural numbers can be pu.t into one-to-one
correspondence with the class of even numbers, since each natural
number is half of some particular even number and each even
number is double some particular natural number; thus:

T i el S
AT NS R |

Again, the class of points on a line 4B three inches long can be
put into one-to-one correspondence with the class of points on a

]

B

line CD one inch long; for example by means of projecting rays
drawn from a point O as in the figure.

4. An example of a relation between two classes which is not a
one-to-one correspondence, is furnished by the relation of owner-
ship between the class of soldiers and the class of shoes which they
wear; we have here what may be called a two-to-one correspond-
ence between these classes, since each shoe is worn by one and only
one soldier, while each soldier wears two and only two shoes. The
consideration of this and similar examples shows that all the con-
ditions mentioned in the definition of one-to-one correspondence
are essential.

* That the class of square numbers can be put into one—to-one: correspon(_l-
ence with the class of all natural numbers was known to Gahleo‘; see his
Dialogs concerning two new Sciences, translation by Crew and de Salvio (1914),
pp. 18-40.



6 TYPES OF SERIAL ORDER §5

B. Obviously if two classes can be put into one-to-one corre-
spondence with any third class, they can be put into one-to-one
correspondence with each other.

6. A part (“ proper part,” echier Teil), of a class A is any class
which contains some but not all of the elements of A, and no other
element.

A subclass (Teil) of A is any class every element of which belongs
to A; that is, a subclass is either a part or the whole.

7. We now come to the definition of finite and infinite classes.

An infinite class is a class which can be put into one-to-one corre-
spondence with a part of itself. A finite class is then defined as any
class which is not infinite.

This fundamental property of infinite classes was clearly stated
in B. Bolzano’s Paradoxien des Unendlichen (published post-
humously in 1850), and has since been adopted as the definition of
infinity in the modern theory of classes.*

8. An example of an infinite class is the class of the natural
numbers, since it can be put into one-to-one correspondence with
the class of the even numbers, which is only a part of itself (§ 3).

P

Again, the class of points on a line AB is infinite, since it can be
put into one-to-one correspondence with the class of points on a
segment CD of AB (by first putting both these classes into one-to-

* See G. Cantor, Crelle's Journ. fir Math., vol. 84 (1877), p. 242; and espe-

cially R. Dedekind: Was sind und was sollen die Zahlen, 1887 (English trans-
lation by W. W. Beman, under the title Essays on the theory of Numbers, 1901);

410 CLASSES IN GENERAL 7

one correspondence with the class of points on an auxiliary line
K, as in the figure). :

The class of the first n natural numbers, on the other hand, 1s
finite, since if we attempt to set up a correspondence between the
whole class and any one of its parts, we shall always find that one
or more elements of the whole class will be left over after all the
slements of the partial class have been asmgned. (see § 27). O

9. The most important elementary theorems in regard to infinite
olagses are the following: 459 WY "

(1) If any subclass of @ given class 18 infinite then the class ttself 18
infinate. : -

Ior, let A be the given class, A’ the infinite subclass, a,nfl Al 1.:he
subelass of all the elements of A which do not belong to A’ (noting
{hat A” may be a null class). ' )

By hypothesis, there is a part, A’ of A’ which can be put into
one-to-one correspondence with the whole of A’ ; therefore the c_lass
composed of A’y and A" will be a part of A which can be put into
one-to-one correspondence with the whole (?f A.. ;

(2) If any one element is excluded from an infinite class, the remain-
ing class is also infinite.

[For, let A be the given class, « the element to be excluded, and. B
the class remaining. By hypothesis, there is‘a part, A, of 4, which
¢an be put into one-to-one correspondence with the whole'of A, and
is therefore itself infinite. If this part 4, does not fzontaln the elt?-
ment z, it will be a subclass in B, and our theorem 18 proved. If it
does contain z, there will be at least one element y which belongs to
B and not to A, and by replacing x by ¥ In A, we shall have another
part of A, say As, which will be an infinite part of A and at the same
{ime a subclass in B. o Dk

10. As a corollary of this last theorem we see that no infinite
class can ever be exhausted by taking away 1ts elemer'zts one by one.

Ior, the class which remains after each subtraction 18 always an
infinite class, by § 9, 2, and therefore can never be an empty class,
compare B. Russell, Principles of Mathematics, vol. 1, p. 315, and Whitehead

and Russell, Principia Mathematica, vol. 2 (1912), pp- 187-192. See also § 27
of the present paper.



8 TYPES OF SERIAL ORDER §11

or a class containing merely a single element (these classes being
obviously finite according to the definition of § 7).

This result will be used in § 27, below, where another, more
familiar, definition of finite and infinite classes will be given.

The further study of the theory of classes as such, leading to the
introduction of Cantor’s transfinite cardinal numbers, need not
concern us here; the definitions of the principal terms which are
used in this theory will be found in chapter VII.

11. After the theory of classes, as such, which is logically the
simplest branch of mathematics, the next in order of complexity is
the theory of classes in which a relation or an operation among the
elements is defined. For example, in the class of numbers we have
the relation of ““less than’ and the operations of addition and
multiplication;* in the class of points, the relation of collinearity,
etc.; in the class of human beings, the relations “ brother of,”
‘“ debtor of,” etc.

If we use the term system to denote a class together with any
relations or operations which may be defined among its elements
we may say that the simplest mathematical systems are:

(1) a class with a single relation, and

(2) a class with a single operation.

The most important example of the first kind is the theory of
simply ordered classes, which forms the subject of the present
paper; the most important example of the second kind is the theory
of abstract groups.t The ordinary algebra of real or complex
numbers is a combination of the two.}

* As M. Bécher has pointed out [Bull. Amer. Math. Soc., vol. 11 (1904),
p. 126], any operation or rule of combination by which two elements determine
a third may be interpreted as a triadic relation; for example, instead of saying
that two given numbers ¢ and b determine a third number c called their sum
(@ + b = c), we may say that the three elements a, b, and ¢ satisfy a certain
relation R (a, b, c).

T For a bibliographical account of the definitions of an abstract group, see
Trans. Amer. Math. Soc., vol. 6 (1905), pp. 181-193.

1 For a definition of ordinary algebra by a set of independent postulates, see
Trans. Amer. Math. Soc., vol. 6 (1905), pp. 209-229, or my two monographs
cited in the introduction. For a similar definition of the Boolean algebra of

§11 CLASSES IN GENERAL 9

We proceed in the next chapter to explain the condi’i,;ions or
¢ postulates ”” which a class, K, and a relation, < (or “R ),.must
satisfy in order that the system (K, <) may be called a simply
ordered class.

logic, see Trans. Amer. Math. Soc., vol. 5 (1904), pp. 288-309 [cOmPazg ;
recent note by B. A. Bernstein, Bull. Amer. Math. Soc., vol. 22 (1916), pp1.913)

459]; also papers by H. M. Sheffer, Trans. Amer. Math. Soq., \tol. 1-4 (M , :
pp. 481-488, and B. A. Bernstein, Univ. of California Publications in a5 ()_’
vol. 1 (1914), pp. 87-96, and Trans. Amer. Math. Soc., vol. 17 (1916), pp-

52.



CHAPTER 1II

GENERAL PrOPERTIES OoF SiMPLY ORDERED CLASSES
OR SERIES

12. If a class, K, and a relation, < (called the relation of order),
satisfy the conditions expressed in postulates 0, 1-3, below, then
the system (K, <) is called a simply ordered class, or a series.*
The notation a < b or (b > a, which means the same thing), may
be read: “ a precedes b’ (or ““ b follows @ ”’). The class K is said
to be arranged, or set in order, by the relation <, and the relation
< is called a serial relation within the class K.

PosturaTE 0. The class K s not an empty class, nor a class con-
tarming merely a single element.

This postulate is intended to exclude obviously trivial cases, and
will be assumed without further mention throughout the paper.

PosturaTE 1. If a and b are distinct elements of K, then either
a<borb<a.f

PosturaTE 2. If @ < b, then a and b are distinct.]

PosturaTE 3. Ifa < bandb < ¢, thena < c.§

The consistency and independence of these postulates will be
established in § 19 and § 20.

13. As an immediate consequence of postulates 2 and 3, we
have

Theorem 1. If a < b is true, then b < a s false.||

* ¢ Einfach geordnete Menge:’’ G. Cantor, Math. Ann., vol. 46 (1895),
p. 496; “ series:”’ B. Russell, Principles of Mathematics, vol. 1 (1903), p. 199.

+ This postulate 1 has been called by Russell the postulate of connexity;
loc. cit., p. 239.

i Any relation < which satisfies postulate 2 is said to be urreflexive
throughout the chss; this term is due to Peano; see Russell, loc. cit., p. 219.

§ Any relation < which satisfies postulate 3 is said to be transitive through-
out the class. This term has been in common use since the time of DeMorgan.

|| Any relation < which has this property is said to be asymmetrical through-
out the class; see Russell, loc. cit., p. 218.
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(For, if a < b and b < a were both true, we should have, by 3,
a < a, whence, by 2, a # a, which is absurd).

If desired, this theorem I may be used in place of postulate 2 in
the definition of a serial relation. i '

14. The general properties of series may now be summarized as
follows:

If a and b are any elements of K, then either

-

a=>bora<borb<a,

and these three conditions are mutually exclusive; further, if a < b
and b < ¢, then a < c.

These are the properties which characterize a serial relation
within the class K.* N

16. As the most familiar examples of series we mention the
following: (1) the class of all the natural numbers (or the first n of
them), arranged in the usual order; and (2) the class of all the
points on a line, the relation “a < b 7 signifying ““ a on the left
of b.” Many other examples will occur in the course of our
work.

16. If two series can be brought into one-to-one correspondence
in such a way that the order of any two elements in one is the same
as the order of the corresponding elements in the other, then the
two series are said to be ordinally similar, or to belong to the same
type of order (Ordnungstypus).t ,

For example, the class of all the natural numbers, arranged in
the usual order, is ordinally similar to the class of all the even
numbers, arranged in the usual order (compare § 3).

Again, the class of all the points on a line one inch long, arranged
from left to right, is ordinally similar to the class of all the points
on a line three inches long, arranged from left to right (compare

§ 8). . /

* A gerial relation may also be described as one which is (1) connected;
(2) irreflexive; (3’) transitive for distinct elements; and (4’) asymmetrical
for distinct elements; these four properties [(3') and (4') being weaker forms
of postulate 3 and theorem I respectively] are readily shown to be independent.
See a forthcoming paper by E. V. Huntington cited in § 20, below.

t Cantor, Math. Ann., vol. 46 (1895), p. 497. A



12 TYPES OF SERIAL ORDER §17

It will be noticed that in the first of these examples the corre-
spondence between the two series can be set up in only one way,
while in the second example, the correspondence can be set up in an
infinite number of ways. This distinction is an important one, for
which, unfortunately, no satisfactory terminology has yet been
proposed.*

17. Before giving further examples of the various types of
simply ordered classes, it will be convenient to give here the defi-
nitions of a few useful technical terms.

DerintTion 1. In any series, if @ < x and x < b, then z is said
to lie between a and b.}

DerintTioN 2. In any series, if ¢ < x and no element exists
between a and z, then z is called the element next following a, or the
(immediate) successor of a. Similarly, if ¥ < a and no element
exists between y and a, then y is called the element next preceding a,
or the (immediate) predecessor of a.}

For example, in the class of natural numbers in the usual order
every element has a successor, and every element except the first
has a predecessor; but in the class of points on a line, in the usual
order, every two points have other points between them, so that
no point has either a successor or a predecessor.

DeriniTioN 3. In any series, if one element x precedes all the
other elements, then this z is called the first element of the series.
Similarly, if one element y follows all the others, then this y is
called the last element. ‘

18. With regard to the existence of first and last elements, all
series may be divided into four groups: (1) those that have neither
a first element nor a last element; (2) those that have a first ele-
ment, but no last\(3) those that have a last element, but no first;
and (4) those that have both a first and a last.

* Cf. Trans. Amer. Math. Soc., vol. 6 (1905), p. 41; or O. Veblen, Bull.
Amer. Math. Soc., vol. 12 (1906), p. 303. One might speak of a determinate
correspondence and an indeterminate correspondence (Bricard).

t For an elaborate analysis of this concept, see a forthcoming paper called
 Sets of independent postulates for betweenness,” by E. V. Huntington and
J. R. Kline, Trans. Amer. Math. Soc.

I See footnote { under § 31.

§19 SIMPLY ORDERED CLASSES OR SERIES 13

For example, the class of all the points on a line between A and B,
arranged from A to B, has no first point, 1) 4 ————— B
and no last point, since if any point-C of 2) 4 ¢——— B
the class be chosen there will be points of 3) A ———— = B

i g R

the class between C and A and also be- 4) A ®
tween C and B. If, however, we consider a new class, comprising all
the points between 4 and B, and also the point A (or B, or both),
arranged from A to B, then this new class will have a first el(?ment
(or a last element, or both). The four cases are represented in the
accompanying diagram.

Examples of sertes

19. In this section we give some miscellaneous examples of
simply ordered classes, to illustrate some of the more important
types of serial order. Most of these examples will be discussed at
length in later chapters.

In each case a class K and a relation < are so defined that the
system (K, <) satisfies the conditions expressed in postulates 1-3
(§12). The existence of any one of these systems is sufficient to

| show that the postulates are consistent, that is, that no two con-

tradictory propositions can be deduced from them. ForZ the
postulates and all their logical consequences express propert'les of
these systems, and no really existent system can have contradictory
properties.* :

(1) K = the class of all the natural numbers (or the first n» of
them), with < defined as “‘ less than.”

This is an example of a  discrete series ”’ (see chapter I1T).

(2) K = the class of all the points on a line (with or without
end-points), with < defined as “ on the left of.”

This is an example of a ¢ continuous series "’ (see chapter V).

* On the consistency of a set of postulates, see a problem of D. Hilbert's,
translated in Bull. Amer. Math. Soc., vol. 8 (1902), p. 447, and a paper by
A. Padoa, I’ Enseignement Mathématique, vol. 5 (1903), pp. 85-91. Also D.
Hilbert, Verhandl. des. 8. internat. Math.-Kongresses in Heidelberg, 1904, pp.
174-185; French translation, Ens. Math., vol. 7 (1905), pp. 89-103; English
translation, Monist, vol. 15 (1905), pp. 338-352.
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(3) K = the class of all the poi
j points on a square (with or without
thre pomts on the. boundary), with < defined as follows: let z and
Ze Ile;r):;sient tzl}? dlst?nces of any point of the square from two adja
es; then of two points which hav ! )
having the smaller  shall Ao s A
precede, and of two points which h
;lllletf,me z, the one having the smaller y shall precede. In this v?: ‘
> e é)om’@ o.f the square are arranged as a simply ordered clasgr
il ;( a anl;,r (Iieylce, the points of all space can be arranged as'
ordered class. Thus, let z, y, and 2 be the di
. J : e distances of
?rilty pollqr'lt Ifrom three ﬁxed. p.lanes; then in each of the eight, oétan(;s
~ Oiotw.lc all space is 'le1ded by the three planes, arrange the
grdrérsolfn orde.rt 0(1; maf.gmtude of the z’s, or in case of equal 2’s, in
. magnitude of the y’s, or in case of equal 2’ i
in order of magnitude of the’ 2’s; TP
] ; and finally arrange th
themselves in order from 1 i A e
( up to 8, payi i
poznts on the bounding planes. Rl R
5) K = the cl i i
. ] ass of all proper fractions, arranged in the usual
This is an example of a serie
S C 11 (13 »
Py alled ‘ denumerable and dense

By a proper fraction (written m/n) we mean an ordered pair of

b

natural numbers, of which the fir.
st number, m, called th
Eg;‘ \1 and the second number, 7, called the denominatore :;,llini*ell‘a-
ki I}Irt;})lrlme, and m is less than n; and by the “ usual order B
i theat a, dfractlon m/n is to precede another fraction p/ q wh::le
iy ordgigdl::(it ml X qt}s éess than the product n X p. The clasé
early sa iti '
Bl o ca,lculatio}; : isfies the conditions 1-3, as one sees by a
(6) K = the class of all i
proper fractions arranged in a i
;);(‘iserl,c l?s foll(ilws : of two fractions which have unequal dencs)ifi;l:l
, the one having the smaller denominator shal i
two fractions which haye th il S
e same deno g i
smaller numerator shallprecede dpae ke
I . . .
Serizscz?g?:tnwith elxampll()a (5), this series is of the same type as the
of t atural numbers arranged in the usual
following correspondence will show (compare § 42):* i 3

* Cf. G. Cantor, loc. cit. (1895), p. 496.
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§ 10
| 2] 4 5 6 7 8 9 .10 11
el et o S W B
2 8 3 4 4 5 5 5 5 6 6

These two examples, (5) and (6), illustrate the obvious fact that,
(he same class may be capable of being arranged in various different
ordoers. ‘

(7) As another example, let K be a class whose elements are
nntural numbers affected with other natural numbers as subscripts;
for example, 1,, 5, ete.; and let the relation of order be defined as
follows: of two numbers which have unequal subscripts, the one
having the smaller subscript shall precede, and of two numbers

the same subscript, the smaller number shall precede.

which have
ented thus, the relation < being read as

The system may be repres
“on the left of:”’
11, 21, 31; oW ey 12, 22, 32, e 13, 23, 33, . ., o e g
This is an example of what Cantor has called, in a technical
sense, a  well-ordered series "’ (see chapter VII). '/ ;
(8) An example of a somewhat different character is the follow-
*Jot K be the class of all possible infinite classes of the natural
numbers, no number being repeated in any one class; T and let
these classes be arranged, or set in order, as follows: any class a
shall precede another class b when the smallest number in a is less’
than the smallest number in b, or, if the smallest n numbers of
a and b are the same, when the (n + 1)st number of a is less than
the (n 4 1)st number of b.
A moment’s reflection sh
tions for an ordered class; it will appear later
type of series called continuous (see § 63, 5). ‘
A more familiar example of the same type is the following:
(9) K = the class of all non-terminating decimal fractions be-
{ween 0 and 1, arranged in the usual order. (Compare § 40.)

ing:

ows that this system satisfies the condi-
that it belongs to the

* B. Russell, Principles of Mathematics, vol. 1, p. 299.

t Tor example, the class of all prime numbers, or the class of all even num-
bers, or the class of all even numbers greater than 1000, or the class of all perfect
cube numbers, or the class of all numbers that begin with 9, or the class of all
numbers that do not contain the digit 5, would be an element of K.
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By a non-terminating decimal fraction between 0 and 1, we mean
a rule or agreement by which every natural number has agsigned to
it some one of the ten digits 0, 1,2, . . ., 9, excluding, however,
the rules which would assign a 0 to every number after any given
number (these excluded rules giving rise to the terminating deci-
mals).* The digit assigned to any particular number # is called the
nth digit of the decimal, or the digit in the nth place. By the
“usual order ”” within this class, we mean that any decimal a is to
precede another decimal b when the first digit of a is less than the
first digit of b, or, if the first » digits of @ and b are the same, when
the (n + 1)st digit of a is less than the (n + 1)st digit of b (the
digits being taken in the order of magnitude from 0 to 9).

All these examples of simply ordered classes have been chosen
from the domains of arithmetic and geometry; among the other
examples which readily suggest themselves the following may be
mentioned :

(10) The class of all instants of time, arranged in order of
priority.

(11) The class of all one’s distinct sensations, of any particular
kind, as of pleasure, pain, color, warmth, sound, ete., arranged in
order of intensity.

(12) The class of all events in any causal chain, arranged in order
of cause and €ffect.

(13) The class of all moral or commercial values, arranged in
order of superiority.

(14) The class of all measurable magnitudes of any particular
kind, as lengths, weights, volumes, etc., arranged in order of size.

- Ezamples of systems (K, <) which are not series

20. In this section we give some examples of systems (K, <)
which are not series because they satisfy only two of the three con-
ditions expressed in postulates 1-3 (§12). The existence of these
Systems proves that the three postulates are independent — that
Is, that no one of them can be deduced from the other two. (For,

,* It should be noticed that what we are here required to grasp is not the
infinite totality of digits in the decimal fraction, but simply the rule by which
those digits are determined.
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if any one of the three properties were a logical consequence of the
other two, every system which had the first two properties v'vould
have the third property also, which, as these examples show', is not
the case.) In other words, no one of the thre.e postulaftes is a re-
dundant part of the definition of a serial relation.*

(1) Systems not satisfying postulate 1 (namely: if a #= b, then
a<borb < a). :

(a) Let K be the class of all natural numbers, with < so defined
that a precedes b when and only when 2a. is less than b. '

(b) Let K be the class of all human beings, throughout history,
with < defined as “ ancestor of.” . _ .

(¢) Let K be the class of all points (z, y) in a given square, with
(21, 1) < (&2, y2) when and only when z; is less than z» and y, less
than ys. S .

In all these systems, postulates 2 and 3 are clearly satisfied.f

(2) Systems not satisfying postulate 2 (namely: if a < b, then
a#b). ‘ L

(a) Let K be the class of all natural numbers witha < b signify-
ing “ a less than or equal to b.” -t il 1) :

(b) Let K be any class, with a < b signifying * a is co-existent

with b.”
Both these systems satisfy postulates 1 and 3.

(3) Systems not satisfying postulate 3 (namely: if ¢ < b and

b < ¢, then a < ¢). . '
(a) Let K be the class of all natural numbers, with < meaning

“ different from.” A

* This method of proving the independence of a set of postulates is the
method which has been made familiar in recent years by the WOI'I‘{‘ of Peano
(1889), Padoa, Pieri, and Hilbert (1899). For a discussion of the “ complete
independence ”’ of these postulates in the sense defined by E H. 'Moore (1910),
400 o forthcoming paper by E. V. Huntington, Complete existential theory of the
postulates for serial order, Bull. Amer. Math. Soc. (1917). A

| Another very interesting example of a syster.n of this kind is the so-
onlled ““ conical order ”” studied by A. A. Robb in his book: A Theory of Time
and Space (Cambridge, Eng., 1914).
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(b) Let K be a class of any odd number of points distributed at
equal distances around the circumference of a circle, with @ < b
meaning that the arc from a to b, in the counter-clockwise direction
of rotation, is less than a semi-circle.

(c) Let K be a family of brothers, with a < b signifying “ a is a
brother of b.”” This relation is not transitive, since from ¢ < b and
b < a it does not follow that a < a.

All three of these systems clearly satisfy postulates 1 and 2.

In the following chapters we consider in detail those types of
series which are especially important in the study of algebra.

/
CHAPTER III

DISCRETE SERIES: ESPECIALLY THE TYPE w OF THE
NaTuraL NUMBERS

21. A discrete series may be defined as any series (K, <) which
satisfies not only the general conditions 1-3 of § 12, but also the
special conditions expressed in postulates N1-N3, below:

PostuLate N1. (Dedekind’s postulate.*) If K, and K, are any
two non-empty parts of K, such that every element of K belongs
either to K, or to K, and every element of K, precedes every element of
K, then there is at least one element X in K such that:

(1) any element that precedes X belongs to Ky, and

(2) any element that follows X belongs to K.

The significance of this postulate N1 will be best explained by
the examples, given below, of series which have and those which do
not have the property in question. | For the present it is sufficient
to remark that whenever the postulate is satisfied, K, will have a
last element, or K, will have a first element, or both;) whichever
one of these elements exists (or either of them if theyr both exist)
will serve as the element X required, and may be said to “divide”
the two parts K, and K.

PosTuLaTE N2. Every element of K, unless it be the last, has an
immediate successor (§ 17).

PostuLaTE N3. Every element of K, unless it be the first, has an
immediate predecessor (§ 17).

The consistency and independence of these postulates are shown
in §§ 28-29.

* R. Dedekind, Stetigkeit und irrationale Zahlen, 1872; cf. § 62, below. The
nelootion of postulates here given for discrete series is the same as that adopted
by O. Veblen, Trans. Amer. Math. Soc., vol. 6 (1905), pp. 165-171. AsfarasI
linow, Dedekind’s postulate had not been used by earlier writers in this con-
noction,

19
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22. An example of a discrete series is the class of all integers
(positive, negative, and zero), arranged in the usual order:

o0 73,72, 7L, 0, H1, +2, 43,

The elements of this system are of three kinds: (1) the positive
integers, which are natural numbers affected with the sign +; (2)
the negative integers, which are natural numbers affected with the
sign —; and (3) an extra, element called zero. The usual order "
is more preci,sely\de%ned as follows: of two positive integers, the
one that is numerica y smaller precedes; of two negative integers,
the one that is numerically greater brecedes; every negative in-
teger precedes:and every positive integer follows the integer zero;

and -of two integers. of opposite signs, the negative precedes the
—positive.

By making this series terminate in one or both directions we
have an example of a discrete series with a first element or  last
element or both. (For another example, see § 28.).

23. The most important property of discrete series is expressed

in the often cited “ theorem of mathematical induction,” which
may be stated in the following form :

Theorem of mathematical tnduction. If @ and b are any two ele-
ments of g discrete series, and @ < b, then: if we start from a and
form the sequence of elements p,, p,, D3, . . ., in which p, is the
successor of a, p, the successor of P1, and so on, some one of these p’s
will be the element b; or again, if we start from b and form the
sequence ¢y, g, g3, . . ,, in which ¢1 is the predecessor of b, ¢ the
predecessor of ¢;, and so on, some one of these q’s will be the element q.

In other words, the class of elements between any two elements of
a discrete series can be exhausted by taking away its elements one
by one, and is therefore a finite class (by § 10).

The significance of this theorem will be clearer after g study of
the examples in § 29 of series in which the theorem does not hold.
The formal proof from postulates 1-3 and N1-N3 is as follows:

Suppose, in the first case considered in the theorem, that the
sequence a, py, pa, ps, . . . (which we shall call the sequence P)
did 7ot contain the element b. On this supposition, b would come
after all the elements of P, and we could divide the whole series K
into two non-empty parts, namely: K, containing every element
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ich i K ; and K, con-
) »qualled or surpassed by any element of P; an :

quulilrl: 1::;;”(?‘;101:; elerhent which (like the element b) comes aftelf:l aim)ll
the clements of P. Then by Dedekind’s postulate there wou ) )((e
nn clement X ¢ dividing ”’ K from K, so that the predecessor }?’ ,
would belong to P while the successor of X would not. ]3;11} this rlﬁ
impossible, since, by the way in which the sequence : llsf C;nd
ntructed, if the predecessor of X belonged to P, then X i i% i
hence the successor of X, would also belong to P. _Thus edstlll)e
position with which we started has led to contradiction, an
first half of the theorem is proved. N

The second half is proved in a similar way. ‘ F

All discrete series may be divided into four groups, dlstm.gulshed
by the presence or absence of extreme elements; We‘ consider the
four cases separately, as follows:

1. Progressions: series of the type “ w.”

24. A discrete series (§ 21) which has a first element, but no last,
is called a progression.* ik : »

All progressions are ordinally similar, that Is, any two of them
can be brought into one-to-one correspondenge in a way that pre-
serves the relations of order. .

For, we can assign the first element of one of the progressions to
the first element of the other, the successor of that element in one
to the successor of that element in the other, and so on; and_by t}'lﬁ
theorem of mathematical induction no elemenf; bf either series wi
be inaccessible to this process. ‘ e

We may therefore speak of the progressions as constituting a
definite type of order, which Cantor 1 has called the typ'e w. Mors-
over, the ordinal correspondence between two ‘progressions cap e
set u’p in only one way; this fact will be usef.ul to us la:ter (see § 31)i

The simplest example of a progression is the series of natura.
numbers in the usual order:

1) 2) 3) :

Other examples are: the even numbers, or the prime numbers, or
the perfect square numbers, in the usual orde{‘ ; or the proper frac-
tions arranged in the special order described in § 19, 6.

* B. Russell, Principles of Mathemaiics, vol. 1, p. 239.
t G. Cantor, Math. Ann., vol. 46 (1895), p. 499.
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2. Regressions: series of the type “ *w.”

26. A diserete series (§ 21) which has a last element but no first
is called a regression.

The regressions, like the progressions, constitute a definite type
of order, which Cantor has called the type *w (read: star omega).
The simplest example of a regression is the series of negative
integers with or without zero, arranged in the usual order, thus:

e P e b

3. Series of the type‘ “Ey 4w’

'26. A discrete series (§ 21) which has neither a first nor a last
element may be called an unlimited discrete series, the simplest
example being the series of all integers in the usual order (§ 22).

In any unlimited discrete series, if any element is chosen as an
‘ origin,” the elements preceding this element form a regression
and those following it a progression; hence all unlimited discrete
series are ordihally similar, and constitute a third definite type of
order. Cantor denotes this type by *w + w, the plus sign being
used to indicate that a series of the type *w is to be followed by a
series of the type w, and the whole regarded as a single series.

It should be noticed that the correspondence between two series
of the type *w -+ w can be set up in an infinite number of ways,
since any element may be taken as the origin; compare the follow-
ing scheme: 8

ey 4, 73,7271, 0, H, 2R3 4
A tesatd o ST S IS L ey sl Ly S e

4. Finite series

27. A discrete series (§ 21) which has a first element and a last
element will be simply a finite series, the word finite being used in
the sense defined in § 7.

For, by the theorem of mathematical induction (§ 23), the class
of elements in such a series can be exhausted by taking the elements
away one by one; therefore, by § 10, it cannot be an infinite class.
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And converseYy," every finite class can be put into one-to-one corre-
spondence with a terminated portion of a discrete series.

These theorems may be used, if one prefers, as the definition of a
finite class (compare § 7); an infinite class would then be defined
as one which is not finite.

Other examples of discrete series

28. The examples of a discrete series so far mentioned have all
been drawn from the domain of arithmetic (as the series of all
integers, the series of all positive integers, the series of all negative
integers, and series containing onl{ a finite number of elements).

The existence of any one of these systems is sufficient fo establish

the consistency of the postulates of this chapter (compare § 19). ©

In this section we give a non-numerical example, due essentially to
Dedekind, and phrased in its present form by Royce: *

Suppose a complete map of London could be laid out on the
pavement of one of the squares of the city; then the city of London
would be represented an infinite number of times in this map, and
the successive representations would form a progression. For the
map itself would form a part of the object which it represents, and
would therefore include a miniature rep_x;esentation of itself; this
representation being again a complete map of the city would con-
tain a still smaller representation of itself; and so on, ad infinitum.t

Examples of series which are not discrete

929, In this section we give some examples of series (§ 12) which
are not discrete (§ 21), each example being a series (K, <) which

satisfies two of the postulates N1-N3 but not the third. The' "
existence of these systems proves (see § 20) that the- postulates:

N1-N3 are independent, that is, that no one of them is redundant
in the definition of a discrete series. e

* R. Dedekind, Was sind und was sollen die Zahlen, 1887; J. Royce, The
World-and the Individual, vol. 1, 1900, p. 503.

t Another example of such a self-represeniative system is a label on a can of
baking-powder, containing a picture of the can. Another example is pro-
vided by the images observed in a pair of parallel mirrors.

>
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(1) A system not satisfying N1 (Dedekind’s postulate). Let K
consist of two sets of integers — call them red and blue — the
integers of each set being positive, negative, or zero; and let the
elements be arranged along a line from left to right, as follows:

red blue
WO o R T RS e e T ) i

This system is a series in which every element has a successor,
and every element has a predecessor; but Dedekind’s postulate,
although it holds in general, fails in case K contains all the red
elements and K, all the blue.

By leaving out the negative integers in the red set, or the positive
integers in the blue set, or both, we can readily construct a series
of the same sort having either or both extreme elements; the series
as it stands has neither. .

(2) A system not satisfying N2 (on successors). Let K consist of
a set of negative integers (in red), followed by a set of all integers
(in blue), arranged in the usual order, as indicated here:

red blue
bR, B L, s a2 kg B N8, i

In this series every element has a predecessor, and Dedekind’s
postulate is satisfied in all cases; but the element 1 of the red set
has no immediate successor.

Systems of the same sort, with one or both extreme elements, can
be at once derived. ‘

(8) A system not satisfying N3 (on predecessors). Similarly, let
K consist of a set of all integers (in red), followed by a set of positive
integers (in blue), arranged as follows:

red blue
R i e R
The theorem of mathematical induction is false in all these sys-

tems, since we cannot pass from a red element to a blue element by
a finite number of steps.

Examples of series which satisfy none of the postulates N 1-N3
will occur in the following chapter (§ 51).
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Numbering the elements of a discrete series

30. By “ numbering "’ the elements of a discrete series, we mean
simply attaching to each element some label or tag, by which it can
be permanently recognized, and distinguished from any other
element.

If the given series has a first element or a last element (or both),
this may be accomplished as follows, by the use of ten characters
called digits, 1,2, 3,4,5,6,7,8,9,0.

In the case of a progression, denote the first element by 1; the
successor of 1 by 2; the successor of 2 by 3; and so on, until the
successor of 8 is denoted by 9. Then denote the successor of 9by 10
(read “‘ one, zero”’); the succéssor of 10 by 11 (read ““ one, one”);
the successor of 11 by 12; and so on, until the successor of 18 is
denoted by 19. Then denote the successor of 19 by 20; the suc-
cessor of 20 by 21; and so on, the successor of 99 being denoted by
100, etc.:

1.2 A3t
By carrying the process far enough any given element of the progres-
gion can be reached, in virtue of the theorem of mathematical
induction.

In the case of a regression, we can number the elements in a
similar way, if wg begin with the last element and run backward.
In this case it is customary to attach the sign — to each label, the
last element of the series being denoted by ~1, the predecessor of
-1 by —2, the predecessor of ~2 by —3, and so on:

=30l
SO0 ) )
In the case of a finite discrete series, the elements may be num-
bered in either way, forward or backward:
17 2! 37 i 47 53
~5, ~4, =8, =2, ~1. |
If, however, the given series is unlimited (§ 26), there is no ele-
ment which we can take as an absolute starting point, since no

element is distihguished from the rest by any ordinal property.
The best we can’ do in this case is to choose arbitrarily some element
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as an origin, denoted by 0, and then number the elements following
0 as a progression, and the elements preceding 0 as a regression; in
this way each element has attached to it a label which indicates its
position in the series, not absolutely, but with reference to the
arbitrarily chosen origin:

) Ll Bt L0, S eta R E R M

It should be noticed in all these cases that the process of labelling
the elements does not involve the notion of “ counting ”’ in the
sense of ascertaining ‘‘ how many ”’; the combination of digits
attached to each element is simply a tag by which it can be recog-
nized, like the numbers in a telephone book ; when any two
elements thus labelled are given, we can determine at once which
precedes the other in the series without concerning ourselves at all
with the question “ how many ”’ elements may lie between them.*

Drigression on sums and products of the elements of a
discrete $eries

31. The same principle of mathematical induction which made
it possible to ““ number ”’ each el¢ment of a discrete series (§ 30),
makes it possible to define the sum and the product of any two
elements of such a series in terms of the relation of order.f If the

* Instead of the decimal system of numeration here described we can use
also the less familiar, but often more convenient, binary system, in which-only
two digits are required. Thus, in the binary system the successive elements of
a progression would be denoted by: 1; 10, 11; 100, 101, 110, 111; 1000, 1001,
1010, 1011, 1100, 1101, 1110, 1111; 10000, ete. (The digits are read separately:
101 = “ one, zero, one,” etc.) The advantage of any such system of numera-
tion over the primitive system of strokes (/, //, ///, // //, ete.) lies in the fact
that each digit acquires a special value by virtue of the place which it oceupies in
the symbol. {

1 The following sections (§§ 32-35) are due essentially to Peano (1889),
although Peano’s postulates for a progréssion are based not on the notion of
order, but on the notion of “successor of.” The postulates adopted in the
present paper seem to me preferable in several respects to those employed by
Peano, especially in the use of Dedekind’s postulate in place of the more obvious
postulate of mathematical induction (cf. footnote under § 21). A brief
account, of Peano’s postulates will be found in Bull. Amer. Math. Soc., vol. 9
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series has a first element or a last element (or both), the sums and
products are defined absolutely; if the series is unlimited, the sums
and products are defined with reference to an arbitrarily chosen
origin. b 43}

32. We begin with the general case of an unlimited discrete
series, and suppose that an origin has been chosen and the elements
labelled as in the preceding section:

ne 8y T2 Tly 0, ¥1, 42 48 L
The sum, a 4+ b of two elements @ and b, with respect to the
origin 0, is then defined as follows:
(1ha -0 = zand 04+ g = a.
(2) a + *1 = the successor of a; a -+ *2 = the successor of
a+ *1; a + *3 = the successor of @ ++2; and so on ; in general,
a + (the successor of +n) = the successor of (a + *n).

1

(3) @ + ~1 = the predecessor of a; @+ ~2 = the predecessor
of a +~1; a+ -3 = the predecessor of a + ~2; and so on; in
general,

a + (the predecessor of ~n) = the predecessor of (a + —n).

In this way the sum of any two elements can be determined, by
virtue of the theorem of mathemagtical induction (§ 23). .

On the basis of this definition of the sum, the product a X b
(or a . b, or ab) of a and b, with respect to the origin 0, is defined as
follows: /

(1) 0Xa=0anda X0 =0.

W a~tqgr 12 gl (*la) + a; *3 X a = (*2a) + a;
and so on; in general (the successor of tm) X @ = (*na) + a.

(3) ™ X @ = *n X a with its sign reversed.

By these rules the product of any two elements can be deter-
mined.

33. From these definitions the following fundamental theorems *
can be readily established:

(1902), p. 41, and an extended discussion in Russell, loc. cit., chap. 14. A re-
vised list, in which the number of postulates is reduced to four, is given by
A. Padoa, Rev. de Math. vol. 8 (1902), p. 48.

* See my two {onographs cited in the introduction.
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M (@+b)+c=aq+ (b + ¢). (Associative law for addition.)

42) a+b = b . (Commutative law for addition.)

(3) (ab)c = a(bc). (Associative law for multiplication.)

(4) ab = ba. (Commutative law for multiplication.)

(5) ad + ¢) = ab + ac. (Distributive law for multiplication
with respect to addition.)

- (6) If z follows 0, then @ + z follows ¢ ; and if x precedes 0, then
a + z precedes a.

(7) If a precedes 8, there is an element 2 which comes after 0 such
that @ + 2 = b, and anelement Yy which comes before 0 such that
a=0b+4y.

(8) If @ and b both come after 0, then their product, ab, also
comes after Q.

34. As examples of the use of mathematical induction, I give
the proofs of the first two theorems in § 33.

Proof of theorem 1. First, if the theorem is true for ¢ = n, then
it will be true for ¢ = 7/, where n’ denotes, for the moment, the
successor of n.

For, if we denote +1 simply by 1, we have:

@+b)+n = [@4+08) +n]+1 (by definition)
=la+G+n)]+1 (by hypothesis)
=a+[b+n) + 1] (by definition)
=a+[b+ (n+ 1) (by definition)
=a+ (b+ n).

Secondly, the theorem is clearly true for ¢ = 1, by the definition
m. Therefore, by the first part of the proof, since it is true for
¢ = 1, it will be true forc = 2 ; and being true for ¢ = 2, it will be
true forc = 3; and soon. In this way the truth of the theorem for
any given value of ¢ can be established, since by the theorem of
mathematical induction there is no element, ¢ which cannot be
reached in this manner.
Proof of theorem 2. We establish first the lemma that 1 + ¢ =
a + 1 by the same method of * proof from n ton 4 1,” using the
equations '

n’+1=!(n+1)+1=(1+n)+1=1—|—(n+1)=1+n’.

/

P
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The proof of the main theorem, that a 4 b = b - a, then follows
in a similar way from the equations
& s e (b ) < (o) 0 e ‘
=n-+(a+1) =n+(1+4+a) = n+1)+a=n+a.

The proofs of the remaining theorems involve no new difficulty
and can be readily supplied by the reader; when these eight theo-
rems have once been established, the further development of the
theory follows lines that are familiar from any text-book of arith-
metic and need not be repeated here.* The system (§ 11) thus de-
termined is called, with reference to the arbitrary origin 0, the
algebra of all integens, with regard to <, +, and X.

356. Turning now to the progressions,t there are two principal
methods of introducing the notions of sum and product, leading to
two different systems (K, <, +, X). In both systems the sums
and products are defined absolutely, in terms of the relation of order
(see § 31). i

In the first theory, the progression is denoted\by

12003
the sums and products being defined as follows:

Sum: @ 4+ 1 = the successor of a; a -+ 2 = the successor of
@+ 1; and so on; in general,

a + (the successor of n) = the successor of (o + n).

Product: 1 Xa=a; 2Xa=1q =+ a@; and so on; in general,
(the successor of 7) X @ = na + a.
This system is called the algebra of the positive integers, with
regard’to <, 4, and X.
In the second theory, the progression is denoted by
00102, 80 i, {

the sums and products for elements other than 0 being defined as
above,ande + 0 =0 + g = aandaX0=0Xa =0,

* See O. Stolz and G. A. Gmeiner, Theoretische Arithmetik (1901~ ).

T We pass over the regressions without separate discussion, since whatever

18 true of a progression is true of a regression if the words “ before ”’ and *¢ after,”
ete., are interchanged.

\



30 TYPES OF SERIAL ORDER §36

This system is called the algebra, of the positive integers with zero,

with regard to <, +, and X.
“ In both theories, theorems 1-5 of § 33 hold without change,
theorems 6-7 have to be slightly modified (in an obvious way), and
theorem 8 is superfluous; the further development of the subject
need not detain us here.,

36. In view of §§ 30-35 it is interesting to note the relation
between the system of natural numbers (which has been assumed
as familiar, for purposes of illustration, throughout the book), and
the ordinal theory of progressions (§ 24). 'This relation may be
stated as follows:

If the class of natural numbers in the usual order — from what-
ever source it may be derived — is assumed to be a system which
satisfies the conditions 1-3, and N1-N3, and has a first element but
no last, then it may be regarded as the typical example of a progres-
sion, and all the theorems which can be established for any progres-
sion will apply to the system of natural numbers, The question
whether the system of natural numbers, as commonly conceived,
does actually possess the properties demanded in these eight, postu-
lates is a question for the psychologist or the epistemologist to
decide; as far as the mathematician is concerned, the theory of the
natural numbers, in its abstract form, can be derived wholly from
the set of postulates just mentioned, the concrete, empirical system

i
Denumerable classes

37. Any infinite class the elements of which can be put into one-
to-one correspondence with the elements of a progression (§24) is
said to be denumerable (abzdhlbar, dénombrable, enumerable, numer-
able, countable).* 7

In other words, if we assume that the natural numbers in their
usual order form g progression (§ 36), a denumerable class is one

* This notion wag introduced by Cantor; see Crelle’s J, ourn. fir Math., vol.

77 (1873), p. 258, and Math. Ann., wql. 15 (1879), p. 4. Foran extension of the
notion, see Math. Ann., vol, 23 (18%;). 456.

¢
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which can be put into one-to-one correspondencewith the class of
all natural numbers. ;

Every class which appears already ordered in £he form of a pro-
gression is 7pso facto a denumerable class;  other classes may have
to be ingeniously arranged before they can be shov.vn t(_) be de-
numerable; for example, the class of all proper fractions is shown
to be denumerable by the device given in § 19, 6.*

Since any infinite discrete series can b.e arra_nged as a progres-
sion, it is obvious that the term progression might be re'pl-a,ced by
regression or by unlin_r}ited discrete series, in the definition of a
denumerable clags. Ly : _

38. The following are the principal theorems concerning de-
numerable classes:} 4

(1) If any finite class is added to a denumerable class, the result-
ing class will still be denumerable. .

For, a progression remains a progression when a finite number of
elements are added at the beginning.

(2) A class composed of any finite number of . den.umerable
classes, or even a class composed of a denumerable infinity of de-
numerable classes, will itself be a denumerable class.

For, if @i, a5, @s, . . . ; by, by, by, . . ., etc., are the component
classes, we have merely to arrange the elements of the whole class
in a two-dimensional array, as in the diagram,

| Qi, G, Az, . .
biebay by N
Gy Coy C3y o o

and then read the table diagonally thus:
1 2 3 4 5 6
ay 4/ b1 asz bz C1
* Cf. G. Faber, Math. Ann., vol. 60 (1905), p. 196. f
| T'o arrange an unlimited discrete series as a progression, t.ake the elements
alternately. Df course the correspondence will not be one which preserves the

relations of order.
I G. Cantor, Crelle’s Journ. fir Math., vol. 84 (1877), p. 243.
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(3) Any collection of non-overlapping three-dimensional regions
of space is at most denumerably infinite.*

From this theorem we have the important corollary that every
collection of material objects is at most denumerably infinite; hence,
if we wish to find an example of a non-denumerably infinite class,
we must seek it among the classes whose elements are ideal, not
material, entities.

The proof of the theorem is as follows:

Case I, when the given collection C lies wholly inside a finite
sphere, with center at O and radius r. — Consider the denumerable
series of intervals between the numbers

V., V/2, V/4 V8P vie\ . .,
where V is the volume of the sphere. The number of elements of C'
which lie between V /2 and V/2» in volume is at most finite
(since otherwise the volume of the whole collection C' would be
greater than V); therefore, by theorem 2, the number of elements
- In the whole collection C is at most denumerably infinite.

Case II, when the given collection C lies wholly outside the
sphere. — This case can be reduced to Case I by an * inversion ”
of space with respect to the sphere. (An “inversion ” transforms
every point P outside the sphere into another point P’ inside the
sphere, such that P’ lies on the line OP, and OP’ X OP = r2; this
transformation is clearly continuous, so that points which form a
connected region outside the sphere will be transformed into points
which form a connected region inside the sphere.)

Case I11, when the given collection lies partly within and partly
without the sphere. — Since each part of the collection is at most
denumerably infinite, by Cases I and II, the whole collection will
be at most denumerably infinite, by theorem 2.

Analogous theorems hold for areas in a plane, or for segments on
a line.

39. A striking example of a denumerable class (though it in-
volves more knowledge of algebra than I wish to assume in this
book) is the clasg of all  algebraic numbers,”” that is, the class of
all complex quantities which can be rootls of any algebraic equation
with }'p_tegral coefficients.t

- * Cantor, Math. Ann., vol. 20 (1882), p. 117.
t G. Cantor, Crelle’s Journ. fir Math., vol. 77 (1873), p. 258.
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For, the class of values any coefficient can take on is denumer-
able, hence the class of different equations of the nt® degree is de-
numerable; and since an equation of the nt® degree cannot have
more than n roots, the class of all the roots of all equations of the
nth degree is denumerable; and finally the class of possible degrees
is denumerable, so that the whole class of all the roots of all alge-
braic equations is denumerable.

40. An example of a non-denumerable class is the class of all
non-terminating decimal fractions (see § 19, 9). For, if we suppose
that this class is denumerable, every non-terminating decimal
fraction would have a definite rank in a certain progression; but if

we represent this progression as follows: é
1. 0 ay Qo dz . « »
2. 0. by by bs . . .
3. 0.0102'%...

where each letter (with subscript) denotes one of the digits 0, 1, 2,
..., 9, we can at once describe non-terminating decimals which
do not belong to this }ist. Thus the decimal

L 0 T :

where z; is different from a,, x, different from b,, z; different from
¢3, ete., has no place in the progression, since it differs from the nth
decimal in at least the nt* digit.*

Therefore the class of decimals cannot be denumerable.

* G. Cantor, Jahresbericht der D. Math.-Ver., vol. 1 (1892), p. 75.



CHAPTER IV
" N
Dense Series: EspEciaty THE TYPE n OF THE
RATIONAL NUMBERS

41. In this chapter we consider series (K, <) which satisfy the
general postulates 1-3 of § 12, and also the special postulates H1
and H2, below; the properties here demanded being quite different
from the properties of the discrete series considered in the last
chapter.

PostuLaTE H1.* If a and b are elements of the class K, and
a < b, then there is at least one dlement x in K such that a < x and
z < b.

Any series which has this property is said to be dense. Between
~—gvery two elements of a dense series there will be at least one and
therefore an infinity of other elements; so that no element has a
successor, and no element a predecessor.

PostunaTe H2. The class K is denumerable; that is, the ele-
ments of K can be put into one-to-one correspondence with the
elements of a progression (§ 37).

Any series which satisfies thesg two postulates H1 and H2 is
called a denumerable dense series, or more briefly, a rational series.

A series whose elements form a denumerable class may be called,
for brevity, a denumerable series.

2 The simplest example of a series which is both denumerable
and dense is the class of proper fractions arranged in the usual order
(see § 19, 5). For,if a = m/n and b = p/g, and a < b, then there
m-4p
n+gq’

are elements z which lie between a and b (for example, x =

* The letter H is intended to suggest the type 7 (§ 44).
t Cantor’s term is tiberall dicht. Weber uses dicht, which Russell replaces
by compact; Principles of M athematics, vol. 1, p. 271. See however, § 62a.

34

§45 " DENSE SERIES 35

reduced to its lowest terms) ; and on the other hand, if we arrange
the elements in a two-dimensional array, and then read the table
diagonally, as in § 38, we see at once that the class is denumer-
able.* (Compare § 19, 6.)

g SRR LEDEY s g S

Gl e S A

B 2 St b

S O ke o T

B e s e

R
- .

43. In every series of this sort we have to do, strictly speaking,
with two serial relations: with respect to one, the series is dense;
with respect to the other, the series is a progression.

44. The type n. All denumerable dense series, like all discrete
series, can be divided into four groups, distinguished by the pres-
ence or absence of first and last elements. All the series of any one
of these four groups are ordinally similar, as we shall prove below,
and therefore constitute a definite type of order. In particular, the
type of denumerable dense series with neither extreme is called by
Cantor the type .

The simplest example of a series of the type 7 is the class of
proper fractions in the usual order as already mentioned. BY
adding an element 0/1 at the beginning, or an element 1/1 at the
end, or both, we have an exampie of a denumerable dense series
with a first element, or a last element, or both. Other examples
will be given in § 51.

45. We now give the proof f that any two denumerable dense
series are ordinally similar, provided they agree in regard t0 .the
presence or absence of extreme elements; it will clearly be sufficient
to consider two series of the type 7, having neither extreme.

* Cantor, Crelle’s Journ. fur Math., vol. 84 (1877), p. 250.
t Cantor, Math. Ann., vol. 46 (1895), § 9, p. 504.
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Let the two given series be 4 and B} and let the terms of each,
when rearranged in the form of a progression, be denoted by

- a;, g, as, ., ., >

~

and
bl, b27 b3) 0.

In order to establish a one-to-one correspondence between A and
B in a manner preserving order, we proceed step by step, as follows,
it being understood that any step is to be omitted if the element
considered has already been assigned:

To a, assign the element b,, and to b, assign the element a;.

The elements a, and b, then divide each of the original series A
and B into two sections.

As to a3, we find in which of the two sections of A4 it belongs, and
assign to it the first of the unused &’s which belongs in the corre-
sponding section of B; and as to b, (if not already assigned), we
find in which section of B it belongs, and assign to it the first of the
unused a’s which belongs in the corresponding section of A.

The elements a; and a, then divide the series 4 into three sections
(1st, 2d, and 3d), while the elements b, and b. divide the series B
into three corresponding sections (1st, 2d, and 3d). As to as, if not
already assigned, we find in which of the three sections of A it be-
longs, and assign to it the fitst of the (unused) b’s which belongs in
the corresponding section of B. Then as to bs, if not already as-
signed, we find in which of the three sections of B it belongs, and
a8sign to it the first of the (unused) a’s which belongs in the corre-
sponding section of 4. -

And so on. After 2n steps, the first n of the a’s will have been
asg@jned and will divide 4 inton + 1 sections, and the first n of the
b’s will have been assigned and will divide B into n -+ 1 corre-
sponding sections. Then as to @ny1, If noOt already assigned, we
find in which of the n + 1 sections of 4 it belongs, and assign to it
the first of the (unused) ’s which belongs in the corresponding
section of B. And as to b,,, if not already assigned, we find in
which of the n + 1 sections of B it belongs, and assign to it the first
of the (unused) a’s which belongs to the corresponding section of
A.

b
The elements called for at each stage of this process will always
exist, since in any Series of type n there are elements before and
after any given element, and between any two given elements; and
by the theorem of mathematical induction as applied to progres-
sions no element of either class is left out in the assignment.
/
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It should be noticed that the correspondence between two series
of type n can be set up in an infinite number of ways (compare the
case of the unlimited discrete series, § 26).

Segmentsiof series /

46. In the following sections we define a few technical terms
which will be of great service in the study of dense and continuous
series. _

In any series (§ 12) a part C (§ 6) which has the following prop-
erties we shall call a fundamental segment of the series: (1) C is such
that if x is any element belonging to C, then every element that
precedes z also belongs to C; and (2) C has no last element. :

Roughly speaking, asfundamental segment is a pgrt of the series
beginning at the beginning, and taking in everything as far as it
goes, but having no last element.*

47. A segment in general may be defined as any part C of a series
having the following property: if a and b are any two elements
belonging to C, then every element that lies between a and b also
belongs to C.

eA s%gment‘(] such that if a belongs to C, then every element that

‘ . a lower segment
{ Fgﬁg‘fses } a also belongs to C, is called { AT Upper Hegment } of

the series. ; .
(1:& fund;mental segment, then, is a lower segment which has no

last element. ‘

48. It will be noticed at once that in some series no fundamental
segments are possible. For example, in a discrete series (§ 21) no
fundamental segments are possible, since every subeclass which
satisfies condition 1 of § 46 either has a last element or includes the
whole series. In other cases the number of fundamental seg-
ments may be finite. For example, in a series like this:

* Russell’s term is segment (without distinctive adjective). The n‘otion
itself, which is a modification of Dedekind’s notion of a cut (1872), was intro-
duced by M. Pasch (Differential- und Integralrechnung, 1882), under the.name
of Zahlenstrecke. The term segment was used by Peano in the Formulaire tbr
1899, p. 91, but seems to have been abandoned jin }_ater editions. -

| Russell, loc. cit., p. 271. ;
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11, 21, 31, o . ooy 12, 22, 32, e e 13, 23, 33, ol 14, 24;

only three fundamental segments are possible
In a dénse series, however, the class ]
L of fund i
iy A / amental segments is
49.. .In .cy.nnection with fundamental segments the following
deﬁmtlop 1s important: In any series, if theredg4n element such
tha.t a given fundamental segment coincides with the part of the
serllfes whlclll1 precedes x, then z is called the limit of the segment
no such element x exists, then the segment fith i Ch
e 3 gment has no limit in the
p V;Vetlxlnay tﬁen lczistinguish two kinds of fundamental segments:
Ist, those that have a limit in the given serjes: .
those that have not. ks g treRaab i i
50. The importance of this distinction between the two kinds of
fundamenta‘l segmen.ts will be clearer after the continuous series
; have been dls.cuss'ed, in the next chapter. For the present, the most
| unpgrtant thing is to see clearly that in some series fundamental
segments of the second kind actually exist. To illustrate this point
cofsider the class of proper fractions arranged in the usual ordeli
anc.l take as the subclass C the class of all the fractions m/n for
which 2m? is l.ess than 72; this subelass C will then be a, fundamental
segment having no limit in the given series.*
To prove this statement,t notice first th isfi i
tion of a fundamental segment. i B

For: (1) if m/n belongs to C, and
i p/q precedes
also belongs to C, as a brief co’mputationpwill shog'/n@ghffnﬂzz)//g
belongs to C, then there are fractions, — for example, A

(6m? + 1)/6mn, t

* In the series of all real numbers, which ; i
: , which is not under consideration at thi
p}(l)mt, the subclass C would bfa described as the class of all the rational nu.mber:
: ina.:e prece?ie V1 /2: In verifying the numerical example below, note that
m and n t 2 ’
b Sl are integers, 2m? must be less than n? by at least one ; that is,
t R. Dedekind, Stetigkes rrati :
it 5 igkeit und irrationale Zahlen, 1872 ; H. Weber, Algebra,
1 Reduced to its lowest terms,
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— which follow m/n and still belong to C, so that C has no last
element; and (3) C is neither empty nor contains the whole class,
since it contains 1/4 and does not contain 3/4.

Furthermore, there is no element z/y which can serve as the limit
of the segment. For, first, if 222 were less than 4?2, there would be
elements of C, — for example (62% + 1)/6zy,* — which came after
x/y; secondly, if 222 were greater than ¢?2, there would be elements
of the series, — for example (622 —-)/6xy,* — which preceded
z/y and yet did not belong to C; and thirdly, if 222 = 32, we should
have an equation containing the factor 2 an odd number of times
on the left hand side and an even number of times (if at all) on the
right hand side, which is impossible in view of the fact that a
natural number can be resolved into prime factors in only one way.

Hence the class C is a fundamental segment which has no limit.{

From this discussion it is clear that Dedekind’s postulate (§ 21)
is false in every seties of tyge n; for (by § 45) any series of type 9
may be replaced by the series of proper fractions in the usual order,
and if we divide this series into two parts, K; and K, so that K,
contains every fraction m/n for which 2m? < n%, and K, all the
other fractions, then there will be no element in the series which
could serve as the element X required in Dedekind’s postulate.

Exampleg of denumerable dense series

51. In this section we give a number of exaniples of denumerable
dense series; any one of these systems is sufficient to show the
consistency of the postulates 1-3, H1-H2 (compare § 19).

In every denumerable dense series all the postulates N1-N3 for
discrete series (§ 21) are false (compare § 50).

(1) The simplest example of a series of type 5 is the class of
proper fractions in the usual order, as already mentioned in § 44.

Other examples are: P

(2) The class of (absolute) rational numbers and

(3) the class of all rational numbers (positive, negative or zero),
— both being arranged in the usual order..

* Reduced to its lowest terms.
+ A simpler example of the same sort is provided by the red elements in

example 1, § 29. { t oty
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By an absolute rational number we mean an ordered pair of
natural numbers, m/fz, in which the first number, m, called the
numerator, and the second number, , called the denominator, are
relatively prime. By the usual order in this class we mean that
m/n is to precede p/qg when m X q is less than n X p.

The class of all rationals is then composed of three kinds of ele-
ments: (1) the positive rationals, which are absolute rationals
affected with the sign +; (2) the negative rationals, which are
absolute rationals affected with the sign —; and (3) an extra ele-
ment called zero. The “ usual order ” in this class is precisely
defined as follows: of two positive rationals, that one shall precede
whose absolate value would precede in the order of absolute ra-
tionals;” of two negative rationals, that one shall precede whose
absolute value would follow in the order of absolute rationals; of
two rationals having opposite signs, the negative precedes’ the
positive; and the rational 0 follows every negative rational and
precedes every positive rational.

The rationals between 0 and 1/ 1, or the absolute rationals which
precede 1/1, are the proper fractions (§ 19, 5).

If we assign to each absolute rational number p/q the proper
fraction p/(p + ¢q), we thereby establish an ordinal correspondence
between the series of absdlute rationals and the series of proper
fractions, in accordance with the theorem of § 45. This done, an
ordinal correspondence between the series of absolute rationals and
the series of all rationals can be readily established.

(4) Asanother example of a series of type », consider the class of
points lying within a one-inch square, and such that their distances,
« and y, from two sides of the square are proper fractions of an inch;
and let the points be arranged in order of magnitude of the 2’s, or
in case of equal 2’s, in order of magnitude of the 3’s.

#This system clearly satisfies all the postulates for a series of type
7; 1t ought therefore to be possible to exhibit an ordinal correspond-
ence between this system and the series of proper fractions.

This may be done as follows.* Starting with a line A B of fixed
length, mark the middle third of it ; then mark the middle third of
each of the two remaining parts, then the middle third of each of

* Compare § 52, 3, below. ‘The device is due to H. J. S. Smith, Proc. Lond.
Math. Soc., voi. 6 (1875), p. 147; cf. G. Cantor, Math. Ann., vol. 21 (1883),
p- 590, note 11, and W. H. Young, Proc. Lond. Math. Soc., vol. 34 (1902), p. 286.
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the four remaining parts; and so on. The class of marked sections
of the line is then a denumerable class, which forms a dense series
of type 7 along the line AB. Now the vertical lines in the given
square, corresponding to fractional values of z, also form a de-
numerable series of type #; hence, by §45, the class of vertical
lines can be brought immediately into ordinal correspondence
with the class of marked sections of the line AB. It remains merely
to determine on each section the class of what we may call, for the
moment, its “fractional” points, that is, the class of points whose

‘

distances from ohe end ‘of the section are fractional parts of the
length of the section; tHis class of points can t}}’en be brought
into ordinal correspondence with the “fractional” points of the
corresponding vertical line in the square by a suitable magnifica-~
tion.

The given series of points in the square is thus reduced to a dense
series of points on the line A B. i
By a double application of the same method, the  frac-
tional "’ points within a cube can be treated in a similar way.

Examples of series which are not denumerable and dense

52. The following examples of series which fail to satisfy one or
both of the postulates H1 and H2 show that these postulates are
independent of each other (compare § 20).

(1) Denwmerable series which are not dense. _ : y

(a) One example of this kind is any unlimited discrete series,

suchas 3 9 -1, 0,41, 42,43, /. ..

By adding an element —z at the beginning, or an element *z at
the end, or both, we obtain an example with a first or a*last ele-
ment, or both. Progressions and regressions are also examples.

(b) Another example is a class coniposed of two sets of proper
fractions, say red and blue, with the relation of order defined as
follows: of two elements which have unequal absolute values that
one shall precede which would precede in the usual order of proper
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fractions, regardless of color; of two elements which have the same
absolute value, the red shall precede. '

This system is built up by interpolating the elements of one
dense series between the elements of another dense series; the re-
sulting series, instead of being “ more dense,” as one might have
been tempted to expect, has lost the property of density altogether,
since every red element has an immediate successor.

2 Dense series which are not denumerable.

(@) The class of non-terminating decimal fractions arranged in
the usual order (see § 19, 9) is a dense series, which we have already
shown to be non-denumerable (8 40).

(b) Another example is obtained from example (3), below, by
omitting the ““ points of division ” that form a part of that class.

(¢) For another example, see § 64, 3, (b), footnote.

(3) A series which is neither denumerable nor dense.

A striking example of a series which 1s neither denumerable nor
dense may be constructed as follows: * Starting with a line one
inch long, mark the middle third of it; then mark the middle third
of each of the two remaining parts, then the middle third of each of
the four remaining parts, and so on (§ 51, 4); the class considered
contains (1) all the points of division, and (2) all the unmarked
points of the line; and the order of the points is the natural order
along the line. ‘

This series is clearly not dense, since if @ and b are the end-points
of one of the marked sections, there is no point of the series which
lies between them ; indeed, no segment of the series will be dense,
since every segment (§ 47) will contain a marked section of the line.
On the other hand, the class is not denumerable; the proof of this
fact (which requires a little more mathematics than is properly
assumed in this book) may be outlined as follows:

Let the distance from one end of the line to each point of the line
be represented by a ternary fraction (instead of a decimal fraction)
of an inch; that is, by a (finite or an infinite) expression of the form

. 0.aiazas .. .,

* Cf. footnote under § 51, 4.
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in which @, shows the number of thirds, a, the number of ninths,
a3 the number of twenty-sevenths, and in general a, the number of
(1/3m)ths; the digits a, as, as, etc., being allowed to take any of the
three values 0, 1,-and 2. It can then be shown, by a computation
involving only an elementary knowledge of the so-called geometric
series, that the points of the marked sections of the line (without
the points of division) correspond to precisely those ternary frac-
tions in which the digit 1 oceurs; the points of our class, therefore,
correspond to the ternary fractions in which the digits 0 and 2 only
are used; and this class can be shown to be non-denumerable by
the method employed in § 40 for the decimal fractions.

Arithmetical operations among the elements of a dense series

53. In conclugion, we notice that since the theorem of mathe-
matical inductiog does not apply to dense series, it is not possible
to give purely ordinal definitions for the sums and products of the
elements of such a series. All that we could do in this direction

would be to define the sums and products of the elements of some

particular dense series, say the series of the rational numbers in the
usual order, by the use of some extra-ordinal properties peculiar to
that series; then since all series‘of type 5 are ordinally similar, the
definitions set up in the standard series could be transferred to any
other series of the same type by a one-to-one correspondence. This
method would be wholly inadequate, however, since the ordinal
correspondence could be set up in an infinite number of ways.
Indeed, in the case of a series of type # (without extreme elements),
unless we introduce some other fundamental notion beside the
notion of order, the elements have no ordinal properties by which
we can tell them apart. It is better, therefore, to introduce addition
and multiplication as fundamental notions of thg system (compare
§ 11), and define their properties by postulates; -this problem is,
however, beyond the scope of thd present work.*

* See, for example, my two monographs cited in the introduction.

v
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ConTiNvous SERIES: ESPECIALLY THE TYPE 6 OF THE
REAL NUMBERS

Y :

64. In the preceding chapters we have considered the discrete
series (§ 21) and the dense series (§ 41); we turn now to the study
of the linear continuous series, which are the most important for
algebra.

A continuous series in general is defined as any series which satis-
fies postulates 1-3 of § 12, and also Dedekind’s postulate (C1,
below) and the postulate of density (C2); a linear continuous series
is then any continuous series which satisfies also a further condition,
which I shall call the postulate of linearity (C3).

PosturaTe C1.* (Dedekind’s postulate.) If K, and K, are any
two non-empty parts of K, such that every element of K belongs
etther to K, or to Ky and every element of K, precedes every element of
K, then there is at least one element X in K such that:

(1) any element that precedes X belongs to K, and

(2) any element that follows X belongs to K.

This is the same as postulate N1 in § 21.

PosturaTe C2. (Postulate of density.) If a and b are elements of
the class K, and a < b, then there is at least one element z in K such
thata < zand xz < b.

This is the same as postulate H1 in § 41.

PostuLaTE C3.1 (Postulate of linearity.) The class K contains
a denumerable subclass R (§ 37) in such a way that between any two
elements of the given class K there is an element of R.

* R. Dedekind, loc. cit. (1872).

1 G. Cantor, loc. cit. (1895), § 11, p. 511. O. Veblen replaces this postulate
of linearity by two other postulates which he calls the pseudo-Archimedean
postulate and the postulate of uniformity [Trans. Amer. Math. Soc., vol. 6
(1905), pp. 165-171]. See also R. E. Root, Limits in terms of order, Trans.
Amer. Math. Soc., vol. 15 (1914), pp. 51-71.
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The consistency and independence of these postulates will be
discussed in § 63 and § 64; postulate C2 is clearly redundant when-
ever postulate C3 is assumed.

65. The most familiar example of a linear continuous series is the
class of points on a line, say one inch long, the relation a < b sig-
nifying that a lies on the left of b. Dedekind’s postulate is satis-
fied in this system, since if K; and K, are two parts of the kind
described in the postulate, there will be a point of division on the
line (either the last point of K; or the first point of K,), which will
serve as the point X demanded in the postulate. The postulate of
density is also clearly satisfied, since between any two points of the
line other points can be found. Finally, to see that the postulate
of linearity holds, take as the subclass B the class of all points
of the line whose distances from one end are rational fractions of
an inch.

An example of a continuous series which is not linear is the class
of all points (z, y) of a square (including the boundaries), arranged

Y

X

in order of magnitude of the z’s, or, in case of equal z’s, in order
of magnitude of the y’s. This series is continuous (satisfying pos-
tulates C1 and C2), but no subclass B of the kind demanded in
postulate C3 is possible within it; for, if there were such a subclass
it would have to contain elements corresponding to every point of
the base of the square and therefore could not be denumerable (see
§ 58 below).

Other examples, not depending on geometric intuition, will be
given in § 63 and § 64, 3.

56. With the aid of the following definition, we may state two
theorems that hold for all continuous series.
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DErFiNITION. Let C be any non-empty subclass in any series
(K, <); if there is an element X in the series such that:

(1) there is no element of ¢ which follows X, while

(2) if Y is any element preceding X there is at least one element

of C which follows ¥: — then this element X is called the upper
limit of the subclass C.
! If the subclass ¢ happens to have a last element, this element
itself will be the upper limit of the subclass. If C has no last ele-
Iper.lt, it may or may not have an upper limit; if it has an upper
limit, then this upper limit is the element which comes next after
the subclass C in the given series.*

THEOREM 1. In any continuous serves, if C' is any subclass all of
who3e elements precede a guen element, &hen C will have an upper
limit in the series.

Briefly, this theorem tells us that in any continuous series, every
subclass which has any upper bound will have a lowest upper
bound, — the terms “ upper limit ” and “ lowest upper bound ”’
being synonymous.

The full meaning of this theorem will be clearer after g study of
the examples given in §§ 63-64 of series that are and those that are
not continuous (compare also §50); the formal proof is easily
given, as follows:

Under the conditions stated, the given series can be divided into
two non-empty subclasses, K; and K,, the first containing every
element that 1s equaled or surpassed by any element of C, and the
second containing all the other elements; f then by Dédekind’s
postulate there must be at least one element X ¢ dividing ” K,
from K,; moreover, there cannot be two such elements, for if there
were, one would be the last element of K, and the other the first
element of K,, so that no element would lie between them (contrary
to the postulate of density). This dividing element X is then the
element required in the theorem.,

3 * It.should l.)e noticed that this definition of a limit of a subclass in general
18 consistent with the definition already given for the limit of a fundamental
segment (§ 49).
T The subclass K, will not be an empty class, since by hypothesis there is at
least one el7ent in K which follows all the elements of C.
el o :
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Similarly, we may define the lower limit of a subclass, and prove
the analogous theorem:

THEOREM 2. In any continuous series, if C is any subclass all of
whose elements follow a given element, then C will have a lower limit in
the serzes.

That is, in any continuous series, every subclass which has any
lower bound will have a highest lower bound, or lower limit.

CoroLLARY. In‘any continuous series which has a first and a last
element, every subclass will have both an upper limit and a lower limit
in the sertes.

§7. The following theorem gives us another form of the defini-
tion of continuous series.

THEOREM.* In the definition of a continuous series (§ 54), Dede-
kind’s postulate may be replaced by the demand that every fundamental
segment shall have a limat (§ 49).

For, if the elements of the whole series are divided into two sub-
classes K; and K, as in the hypothesis of Dedekind’s postulate, then
K, (or K, without its last element, if it happens to have one) will be
a fundamental segment, and the limit of this segment will corre-
spond to the element X in Dedekind’s postulate.

58. The next theorem concerns the infinitude of the elements of
a continuous series.

THuEOREM. The elements of any continuous series (§ 54) form an
wnfinite class which s not denumerable (§ 37).

The proof, which is due to Cantor,t is as follows:

Suppose a given continuous series to be denumerable; then with-
out disturbing the order of the elements we may attach to each one
a definite natural number, using the notation a(n) to represent the
element corresponding to the number 7.

We may assume without loss of generality that the elements have
been so numbered that the element a(1) precedes the element a(2).

Then let p; and ¢; be the smallest numbers for which a(p:) and
a(q1) lie between a(1) and a(2), and assume that the elements have
been so numbered that a(p,) < a(gq;); then

a(1) < a(@m) < a(g) < a2).
* Cf. aremark due to Whitehead in Russell’s Principles of M. athematics, vol.

1 (1903), p. 299, footnote.
t G. Cantor, Crelle’s Journ. fir Math., vol. 77 (1874), p. 260.
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Next, let p; and ¢z be the smallest numbers for which a(p,) and
a(gz) lie between a(p;) and a(g:;) and assume a(p;) < a(gs), so that

a(l) < a(P) < alp) < alg) < alg) < a(2).

And S0 on. In general, let Pr+1 and ¢+, be the smallest numbers
for which a(pi+1) and a(guiy) lie between a(px) and a(gi), and
assume a(#i+1) < a(qrr). In this way we determine a progres-

ﬁlori of elements a(pr) and a regression of elements a(gy), such
S

a(l) < alp) <al@) < ... < ... <algp) < alqg) < a?).

Now since the series is continuous, the progression in question
ought to have an upper limit (§ 56); but there is no element a(n)
which can serve as this upper limit, for if any element a(n) is pro-
posed, we can clearly carry the processgjust indicated so far that
a(n) will lie outside the interval a(py) . . . . . . a(q.

Therefore if the series is denumerable it cannot be continuous,
and the theorem is proved.

59. The theorems of §§ 5658 hold for all continuous series; the
following theorems apply only to the linear continuous series.

TuEOREM. Every linear continuous series (§ 54) contains a sub-
class R of type 1 (§ 44), such that between any two elements of the given
series there is an element of R.

For, the denumerable subclass B whose existence is demanded in
postulate C3, or the same subclass without its extreme elements if it
has them, is clearly of type 5 (the type of the rational numbers).

This subclass R of type n may be called the skeleton, or framework,
of the given series; the elements which belong to R may be called,,
for the moment, the rational elements, and those that do not belong
to R the 7rrational elements of the series.

Since the class of all the elements of any continuous series is non-
denumerably infinite (§ 58), it is clear that the rational elements of
a linear continuous series cannot exhaust the series; in fact the
class of irrational elements in any such series will itself be non-
denumerably infinite (compare § 38).

60. The most important property of the rational elements is
given in the following theorem, which follows immediately from

56:
§ J/, i
/
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TrEOREM. In any linear continuous series, every element a (unless
it be the first) determines a fundamental segment (§ 46) of the so-called
rational elements, namely, the series of all the rationals preceding a;
and conversely, every fundamental segment of rationals determines an
element of the given series, namely, the upper lumit of the segment (§ 56).

The ratlonal elements of the given series correspond to the fun-
damental segments which have limits in the series of rationals; the
irrational elements correspond to the segments which have no
limits in the series of rationals (§§ 49, 50). The denumerable dense
series considered in the preceding chapter are not continuous, since,
as we have seen in § 50, they contain fundamental segments which
have no limits; the theorem thus brings out clearly the sense in
which the linear continuous series are ‘“ richer ”’ in elements than
the denumerable dense series.

61. The type 6. The linear continuous series, like the discrete
series or the denumerable dense series, can be divided into four
groups, distinguished by the presence or absence of extreme ele-
ments; all the series of any one group are ordinally similar (see
below), and therefore constitute a definite type of order. In parti-
cular, a linear continuous series (§ 54) which has both a first and a last
element is called by Cantor a series of the fype 6, or the type of the
linear continuum.*

The proof that any two series of type 6 are ordinally similar
follows readily from the analogous theorem in regard to series of
type 7 (§45).* For, by § 59 each of the given series of type 6 will
contain a subclass of ““ rational ”’ elements of type n; by § 45 these
subclasses of rationals can be broyght into ordinal correspondence
with each other; and by § 60 every element (except the first) of
each of the given series is uniquely determined as the limit of a
fundamental segment of rationals.

It should be noticed, however, that this correspondence can be
set up in an infinite number of ways, since not only the selection of
rational elements from the given series, but also the correspondence
between the two sets of rational elements, can be determined in an
infinite number of ways.

* . Cantor, loc. cit. (1895), § 11, p. 511. Russell, loc. cit., chap. 36.
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62. Since the definition of the type 0 here adopted differs in
manner of approach, though not in substance, from the definition
given by Cantor, I add, in this section, a statement of Cantor’s
definition in its original form.*

Every progression or regression which belongs to a given series is
called by Cantor a fundamental sequence (Fundamentalreihe); any
element which is the limit of any fundamental sequence (upper
limit in the case of a progression, lower limit in the case of regres-
‘sion), is called a principal element (Hauptelement) of the series.t If
every fundamental sequence which exists in given series has a
limit in the series, the series is saic}to be closed (abgeschlossen); if
every element of the series is the limit of some fundamental se-
quence, the series is said to be dense-in-itself (¢nsichdicht); and any
series which is both dense-in-itself and closed is said to be perfect
(perfekt). Finally, if a series is such that between any two elements
there are other elements, the series is said to be dense (tiberalldichs).

The following theorems follow at once from these definitions:

@ (1)) If a series is closed, it will satisfy Dedekind’s postulate

54).

(2) If a series satisfies Dedekind’s postulate, and has both ex-
treme elements, it will be closed.

On the other hand, the following facts should be noticed:

(3) A series may satisfy Dedekind’s postulate, and still not be
closed, as witness the series of all integers, or the series of all real
numbers.}

(4) A series may be perfect (that is, dense-in-itself and closed),
and not be dense; as witness the series discussed in § 52, 3 (with
end-points), or the series of all real numbers from 0 to 3 inclusive
with the omission of those between 1 and 2. (o

* G. Cantor, loc. cit. (1895), §§ 10-11, p. 508. An earlier definition of the
arithmetical continuum given by Cantor in Math. Ann., vol. 5 (1872), p. 123
[ef. <bid., vol. 21 (1883), pp. 572-576], involved extra-ordinal considerations,
and need not concern us here.

t This definition of a fundamental sequence is inaccurately quoted by
Veblen (loc. cit., p. 171), who leaves out the regresgions. Thus, in the series

e s e i G20 2oy
the element 1’ would be g principal element according to Cantor’s definition,
butynot according to Veblen’s. [The same word, Fundamentalreihe, has been
}sz by Cantor in another connection, in discussing irrational numbers ; Math.
“Ann., vol. 21 (1883), p. 567].

1 It is therefore perhaps unfortunate to speak of Dedekind’s postulate as the
postulate of closure.,
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(5) A series may be dense-in-itself and dense, and not be closed,
as for example the series of rational numbers (with or without
extreme elements).

(6) A series may be dense and closed and not be dense-in-itself,*
as for edample the series V + 0 =+ *V, where V denotes, for the
moment, Veblen’s, series described in § 64, 3, b, and *V the same
series in reverse order. Here the element 0 is not the limit of any
fundamental sequence, since every progression in V has a limit in
V,and every regression in *V has a limit in *V,if we admit the valid-
ity of Cantor’s reasoning in regard to the transfinite well-ordered
series (§ 83).

(7) A series may be perfect (that is, dense-in-itself and closed),
and yet have no last element and no first element, as for example
the series *V + V. Here V and *V have the meanings just
explained.t

By the aid of these definitions, Cantor defines a series of type 6
by the following two conditions:

(A) the series must be perfect (that is, dense-in-itself and closed);
and

(B) the series must contain a denumerable subclass R in such a
way that between any two elements of the given series there is an ele-
ment of R.

Every series which satisfies condition B will clearly be dense.

The agreement between this definition and that given in § 61
may be readily established by the reader. The use of Dede-
kind’s postulate instead of the postulate of closure implies the use
of fundamental segments instead of the fundamental sequences;
this modification of Cantor’s method seems to me desirable, since
every segment determines a unique element, and every element
determines a unique segment; while in the case of the sequences,
although every sequence determines a unique element, it is not true
that every element determines a unique sequence.} I have pre-
ferred Dedekind’s postulate to the postulate of § 57 merely because

(of its greater symmetry.

* Compare a question raised by Russell, loc. cit., p. 300. The series given in
the footnote on the preceding page i8 a closed series which is neither dense nor
dense-in-itself.

1 Cf. Hans Hahn, Monatshefte Sur Math. und Phys., vol. 21 (1910) , Literatur-
berichte, p. 26.

1 It can be shown, however, that the class of fundamental sequences in any
continuous series has the same “ cardinal number ”’ (§ 88) as the class of ele-
ments in the series itself (compare § 71).
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62a. To avoid possible confusion with § 62, it may be well to men-
tion here the definitions of some of the terms used in the theory of
sets of points,* which is closely related to the theory of series,

A (linear) set of points is a collection of points selected in any
manner from the points of g straight line. Any point P of the
line is called a cluster-poing (limat-point, povnt of condensation) of the
set, if in every interval which contains P as an interior point, there
are points of the set. A cluster point may or may not belong to the
set. A set is called closed (abgeschlossen) if every cluster point of
the set belongs to the set, A set 1s called dense~in-itself if every
point of the set is a cluster point of the set. A perfect set is one
which is both closed and dense-in-itself. A set is called every-
where-dense if between every two distinct points of the line there
are points of the set.

A set can be perfect and nowhere dense, as, for example, the
set described in § 92, 3. Every perfect set can be put into one-to-
one correspondence (sacrificing order) with the set of elements in
a linear continuum,

The derived set (Ablettung) of a, given set is the set composed of
all the cluster points of the given set. In the case of a perfect
set, the derived set is the same ag the given set.

A set is called compact if every subclass in the set has a cluster
point in the set. (Contrast Russell’s use of « compact ”’; § 41,
footnote.)

Ezamples of linear continuous series

63. The following examples serve to establish the consistency
of the postulates of the present chapter (§ 54; compare § 19); in all
but the first of them we avoid making any appeal to, geometric
intuition.

(1) The simplest geometric example of g linear continuous series
is the series of all points on a line, already considered in § 55.

The most important non-geometrical examples are:

(2) The class of (absolute) real numbers, arranged in the usual
order; and

(3) The class of all real numbers (positive, negative, and zero),
arranged in the usual order.

* For references to recent work in this field see R. E. Root, Trans. Amer.
Math. Soc., vol. 15 (1914), pp. 51-71; some of the standard treatises are men-
tioned in a footnote under § 73.
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By the absolute real numbers we mean the class of all fundamental
segments (§ 46) in the series of absolute rational numbers (§ 51, 2);
and by the usual order within this class we mean that a segment g
shall precede a segment b when a is g part of b.*

This System clearly satisfies the general conditions for a series
(§ 12), since if @ and b are any two distinct fundamental segments
of any dense series, one of them must be a part of the other, and
the relation of inc¢lusion is transitive, Further, the series is dense;
for, if a segment q is part of a segment b, there will always be
rationals belonging to b and not to g ; & segment x containing the
segment a and some of these rationals will then lie “ between ” the
segments @ and b. To show that Dedekind’s postulate is also
satisfied, suppose that the whole series K 1s divided in any way into

* This is the definition adopted by Russell (loc. cit., chap. 83); it was first
given in this form by M. Pasch (Differential- und Integralrechnung, 1882), his
Zahlenstrecke (fundamental segment of rationals) being a modification of
Dedekind’s Schnitt or cut (1872). Similar definitions have been given by
Dedekind (1872), Cantor (1872), Peano (1899), and others; a historical ac-
count is given by Peano in Rev. de M. ath., vol. 6 (1899), pp. 126-140. The con-
struction of the system of (absolute) real numbers may be briefly described as
follows (confining ourselves to the positive numbers): (1) the integers are the
natural numbers, assumed as known ; (2) the rationals are pairs of integers;
and (3) the reals are classes (fundamental segments) of rationals. Asa matter
of convenience in notation, a pair of integers in which the denominator is 1 is
represented by the numerator alone ; rational numbers of this form are said to
be integral, while all other rational numbers are called fractional. Again, a fun-
damental segment which has a limit in the series of rationals is represented by
the same symbol as its limit ; real numbers of this form are said to be rational,
while all other real numbers are called trrational (compare § 50). This notation,
however, should not be interpreted as meaning that the class of real numbers
includes the class of rationals, or that the class of rational numbers includes the
class of integers. On the contrary, while the “ integral number 2 ”’ means
simply the second number in the Datural series, the “rational number 2 "
means the pair of natural numbers 2 and 1, and ““ the real number 2 ” means
the class of all rational numbers which precede the rational number 2 /1. The
rules by which the sum and product of two real numbers are defined do not
concern us, in this discussion of the purely ordinal theory; see O. Stolz and
J. A. Gmeiner, Theoretische Arithmetik (1901~ ); J. Tannery, Introduction & la
théorie des fonctions (2nd edit. , 1904); H. Weber and J. Wellstein, Encyclopddie
der Elementar-Mathematik (vol. 1, 1903); E. V. Huntington, Trans. Amer.
Math. Soc., vol. 6 (1905), pp. 209-229, or the two monographs cited in the
introduction; A, Loewy, Lehrbuch der Algebra (1915).
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two parts K, and K such that every element of K, precedes every
element of K,; thenethe class of all rationals which belong to
any element of K, will be a fundamental segment in the series of
rationals, and will be the element X demanded in the postulate.
Finally, the series is a linear continuous series, since we may take
as the required subclass R all the elements of K which have limits
in the series of rationals (§ 49).

By the series of all real numbers (positive, negative, or zero) we
then mean a series built up from the series of absolute real numbers
in the same way as the series of all rationals was built up from
the series of absolute rationals in § 51, 3. Or again, all real num-
bers may be defined as fundamental segments of the series of all
rationals, just as the absolute real numbers are defined as funda-
mental segments of the series of absolute rationals.

In the series of real numbers we have thus constructed an arti-
ficial system which certainly satisfies all the conditions for a linear
continuous series (§ 54); there can therefore be no doubt that those
conditions are free from inconsistency.* If we assume as geometri-
cally evident that the series of all points on a line an inch long also
satisfies these conditions, then an ordinal correspondence can be
established between the real numbers and the points of the line, in
accordance with § 61 (taking as the ¢ rational ”’ points of the line
those points whose distances from one end of the line are proper
fractions of an inch); but in setting up this correspondence we
must recognize that the continuity of the series of points on the line
is an assumption which is not capable of direct experimental veri-
fication.

(4) Another example of a linear continuous series is the class of
all non-terminating decimal fractions, arranged in the usual order
(§19, 9; § 40).

This series is dense; for, suppose & and b are any two of the

decimals such that a < b; let B; be the first digit of b which is
greater than the corresponding digit of a, and let 8, be the first

* Cf. H. Weber, Algebra, vol. 1, p. 7, where the real numbers are defined
(after Dedekind) as ‘‘ cuts ”’ in the series of rationals, instead of as fundamental
segments of rationals. (A cut is simply a rule for dividing a series K into two
non-empty parts K; and K, such that every element of K, precedes every ele-
ment of K, while K; and K, together exhaust the series K.)
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digit beyond B which is different from 0; then any decimal z in
which the first 77— 1 digits are the same as in b, while the nth digit
is less by one than 8,, will lie between w and b. Further, the series
satisfies Dedekind’s postulate; for, if K, and K, are the given sub-
classes, we may determine the decimal X = & &é; . . . as fol-
lows: £ is the largest digit which occurs in the first place of any
decimal belonging to K;; & is the largest digit which occurs in the
second place of any decimal beginning with £ and belonging to K;;
£ is the largest digit which occurs in the third place of any decimal
beginning with £ & and belonging to K;; and go on. Finally, the
series is linear, since we may take as the subclass R the class of
those decimals in which all the places after any given place are
filled with 9’s. — The serjes, as we notice, contains a last element
(.999 . . .), but no first.

(5) As a final example we mention the series described in § 19, 8,
namely: K = the class of all possible infinite classes of the natural
numbers, no number being repeated in any one class; with the
relation < so defined that @ < b when the smallest number in a is
less than the smallest number in b, or, if the smallest n numbers of
a and b are the same, when the (n + 1)st number of @ is less than
the (n + 1)st number of b.

This series is continuous, as the reader may readily verify; and
it may be shown that it satisfies the postulate of linearity, since we
may take as the subclass R the class of all the elements in which
only a finite number of the natural numbers are absent. We notice

also that the series contains a first element (namely the class of all
the natural numbers), but no last element.

This example is particularly interesting as showing how a linear
continuous series can be built up directly from the natural numbers,
without making use of the rationals.®

Ezamples of series which are not linear continuous series

64. The examples given in this section serve to show (compare
§ 20) that postulates C1 and C2 (§ 54) are independent of each
other, and that postulate C3 is independent of both of them.
Postulate C2, on the other hand, is clea,ﬂy a consequence of postu-

late C3. g
* B. Russell, Principles of Mathematics, vol. 1, p. 299.

¥
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(1) Dense series which do not satisfy Dedekind’s postulate.

(@) Denumerable series which are dense but do not satisfy
Dedekind’s postulate are given in § 51.

(0) A non-denumerable example of the same sort is the series of
all the points on a line with the exception of some single point; or
better, the series described in §52, 2, 5.

(2) Series which satisfy Dedekind’s postulate, but are not dense.

(@) The series described in §52;, 3 (consisting of the ternary
fractions in which the digits 0 and 2 only are used) is not dense, but
can readily be shown to satisfy the postulate of Dedekind.

() Any discrete series is also an example of this kind.

(8) Continuous series which are not linear.

(@) Let K be the class of all couples (z, ), where z and Y are real
numbers from 0 to 1 inclusive; and let (@1, 1) < (22, ¥2) when
Zy < &2, or when z;, = z, and Y1 < ya. This series is a continuous
series (satisfying C1 and C2); but it is not a linear continuous series,
since no denumerable subclass B of the kind demanded in postulate
C3 is possible within it. (The same example, in geometric form,
has been mentioned already in § 55; other examples of a similar
kind will occur in §70.)

(0) Let w; (or ) be the smallest of the well-ordered series of
Cantor’s third class (see §83, below), and connect each element
with the next following element, by a linear continuous series; the
resulting series, which has been proposed by Veblen,* is continuous
but contains no denumerable subclass R of the kind demanded in
postulate C3, since every denumerable subclass in the series has
an upper limit in the series (cf. §85).

(4) A series which is not contrnuous and not dense,

As a final example of a series which is not continuous, we men-
tion a class K composed of two sets of real numbers, say red and
blue, with a relation of order defined as follows: of two elements

* O. Veblen, Trans. Amer. Math, Soc., vol. 6 (1905), p. 169. Another in-
teresting series may be made from the series @ by connecting each element
with the next following element by a series of type 5 ; this series is dense and
dense-in-itself but not denumerable and not closed (cf. § 62, 5).
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which have uhequal numerical values, that one shall precede
which would precede in the usual order of real numbers, regardless
of color; of two elements which have the same numerical value, the
red shall precede. _

This system is built up by interpolating the elements of one con-
tinuous series between the elements of another continuous series;
the resulting series, instead of being ““more continuous” as one
might have been tempted to expect, is no longer even dense, since
every red element has an immediate successor (compare § 52, 1, b).

Arithmetical operations among the elements of a continuous series

65. In the case of continuous series as in the case of dense series
1t is not possible to give purely ordinal definitions of the sums and
products of the elements; for, unless some other fundamental
notion besides the notion of order is introduced, the elements of
these series (except extreme elements) have no ordinal properties
by which we can tell them apart (compare § 53). We might, to be
sure, define sums and products of the elements of some particular
series (like the series of real numbers, in the usual order) by the use
of extra-ordinal properties peculiar to that series, and then transfer
these definitions to other series of the same type by a one-to-one
ordinal correspondence; but this method would be wholly inade-
quate, since the ordinal correspondence could be set up in an
infinite number of ways. To construct a completely determinate
continuous system it is therefore necessary to introduce some
further notions, like addition and multiplication, besides the notion
of order, as fundamental notions of the system.*

* See for example my set of postulates for ordinary complex algebra, Trans.

Amer. M. ath. Soc., vol. 6 (1905), pp. 209-229, especially § 8, or my monograph

on The Fundamental Propositions of Algebm@;cited in the introduction; or my
postulates for absolute continuous magnitude, Trans. Amer. Math. Soc.,
vol. 3 (1902), pp. 264-279.



CHAPTER VI

CoNTINUOUS SERIES OF MorE THAN OnE DimEnsion,
WITH A Note oN MuLTrpLy ORDERED CrLasses

66. In the preceding chapters we have studied various kinds of
series, or simply ordered classes (§12), — especially the linear
continuous series (§54). In the following chapter we consider
briefly some kinds of continuous series which are not linear, and
add a short note on multiply ordered classes,

Continuous series of more than one dimension.*

67. We shall use the term one-dimensional framework or skeleton
(B.) to denote a series of type 7, that is, a denumerable dense series
without extreme elements (§44). A one-dimensional, or linear,
continuous series is then any continuous series which contains a
framework R, in such a way that between any two elements of the
given series there are elements of R, (§ 59).

Again, a two-dimensional Jramework, R,, is any series formed
from & one-dimensional continuous series by replacing each element
of that series by a series of type n; and a two-dimensional continu-
0us series is any continuous series which contains g, framework R,
in the same way.

And so on. In general, an n-dimensionagl Jramework, R,, is any
series formed from an (n — 1)-dimensional continuous serieg by
replacing each element of that series by a series of type #; and an
n-dimensional continuous sertes is any continuous series which
contains a framework R, in such a way that between any two ele-
ments of the given series there are elements of R,

* The study of the multi-dimensional continuous series was proposed by
Cantor in Math, Ann., vol. 21, p. 590, note 12 (1883), but seems never to have
been carried out in detail, It would be interesting to extend the discussion to
continuous series of transfinite number of dimensions (cf. § 88).
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68. By a k-dimensional section of any continuous series we shall
mean any segment (§47) which forms by itself a k-dimensional
continuous series, but is not a part of any other such segment.*

In an n-dimensional continuous series each one-dimensional

section, unless it be the f::tt, will have a ?;:: element, and thege

elements taken in order will form an (n — 1)-dimensional continu-
ous series. And so in general: each k-dimensional section, unless it

be the ?;;t, will have a ﬁ::: (k — 1)-dimensional section, and these

(k — 1)-dimensional sections taken in order will be the elements of
an (n — k)-dimensional continuous series.

69. As already noted, there are four different types of one-
dimensional continuous series, distinguished by the presence or
absence of extreme elements ; in particular, a one-dimensional
continuous series with both a first and a last element is called a
series of type 0 (§ 61).

A two-dimensional continuous series may or may not have a first
one-dimensional section, and that section in turn may or may not
have a first element. Similarly, there may or may not be a last
one-dimensional section, which in turn may or may not have g, last
element. There are therefore nine different types of such series,
distinguished by their initial and terminal properties. In particu-
lar, a two-dimensional continuous series with both a first and a last
element we may call a series of type 6 (since it may be formed from
a series of type 6 by replacing each element by another series of
type 0).1

And so on. In general, there will be (n 4 1)? different types of
n-dimensional continuous series, distinguished by their initial and
terminal properties. In “f)articular, an n-dimensional continuous
series which has both a first and a last element may be called g
series of type 6.

* We may speak of a section of a framework R,, as well as of a section of a
continuous series. A ¢ zero-dimensional ” section would be, of course, g single
element. — If preferred, the word constituent may be used instead of section.

t Cf. Cantor's notation for the “ product ” of two well-ordered series

(§ 86).

s



60 TYPES OF SERIAL ORDER §70

The proof that any two series of the same type are ordinally
similar, and that all the types are distinct, is readily obtained by an
extension of the methods used in §§ 45 and 61.

70. An example of an n-dimensional continuous series is a class
whose elements are sets of real numbers (x;, 25, 23, . . . » ), where
Zy is any real number, and z, x;, . . . » Tn are restricted to the
interval from 0 to 1 inclusive; the elements of the class being
arranged primarily in order of the 2,’s; or in case of equal x,’s, in
order of the x;’s; or in case of equal z,’s and equal 2’8, in order of
the z3’s; ete.

If n = 1, 2, or 3, the elements of this class can be represented

geometrically: (1) by the points on a line; (2) by the points of a

plane region bounded by two parallel lines ; and (3) by the points
of a space region bounded by a square prismatic surface. If n is
greater than 3, no simple geometrical Interpretation is possible.

71. Although the various types of series just considered are all
distinet as types of order, yet it is important to notice that the class
of elements of an n-dimensional continuous series can be put into
one-to-one correspondence with the class of elements of a one-dimen-
sional continuous series, if the relation of order is sacrificed; or, in
the terminology of modern geometry, the poinis of all space (of any
number of dimensions) can be put into one-to-one correspondence with,
the points of a line. One of Cantor’s most interesting early dis-
coveries was a device for actually setting up this correspondence;
we give a sketch of the method for the case of two dimensions.*

As a preliminary step, we notice that a one-to-one correspond-
ence can be set up between the points of any two lines, of length a
and b, with or without end-points. For, each line can be divided
into a denumerable set of segments of lengths equal, say, to 4
% . . . of the length of the line ; @ one-to-one correspondence can
be established between the two sets of segments, and then (as in
§ 3) between the interior points of each segment of one set and the
interior points of the corresponding segment of the other set; and a
one-to-one correspondence can also be established between the two
sets of points of division.

* Cantor, Crelle’s Journ. fir Math., vol. 84, pp. 242-258 (1877); cof. Math.
Ann., vol. 46, p. 488 (1895).
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Consider now the points (z, y) within a square one inch on 3 side
(0<z<1,Q<y <1),andthe points £ on a line say three inches
long (0 < ¢ < 3); and divide each third of the line ¢ into a denum-
erable set of segments of lengths 3,1, % . . . ofaninch. A one-to-
one correspondence between the points of the square and the points
of the line can then be established as follows:

(1) The points (z, y) for which z and Yy are both rational form a
denumerable set, and can therefore be put into one-to-one corre-
spondence with the “ rational ”’ points of the line — that is, the
points for which ¢ is rational.

(2) The points (z, y) for which z is rational and y irrational are
the “ irrational "’ points of a denumerable set of vertical lines, and
can therefore be put into one-to-one correspondence with the
“Iirrational ”” points of the denumerable set of segments which
occupies, say, the last third of the line,

(3) Similarly the points (z, y) for which y is rational and z irra-
tional can be put into one-to-one correspondence with the “ irra-
tional ” points of the middle third of the line.

(4) Finally, the points for which z and y are both irrational can
be put into one-to-one correspondence with the “irrational ”’
points of the first third of the line. For, every irrational number a
between 0 and 1 can be expressed as a non-terminating simple con-

tinued fraction, ¢ = las, @z, a3, . . ], that is:
A 1
a + J 1
a + —
[ n e
where a,, az, as, . . . are positive integers; so that to the point
z = [m, @, @5, . . ],

Y=1ly,yys ...]
in the square we can assign the point
t i [1,‘1, Y1, T2, Y2, T3y Y3, . . ]
on the line; while inversely, to the point
Lottt ]
on the line we can assign the point
r = [tl, ta, ts, o i e ],

’ y=Ibtt, ...]
in the square.
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Thus the correspondence between the points of the square and
the points of the line is complete; and the method is easily extended
to any number of dimensions, finite or denumerably infinite.

Note on multiply ordered classes

72. A multiply ordered class is a system (§ 11) consisting of a class
K the elements of which may be ordered according to several differ-
ent serial relations.

For example, a class of musical tones may be arranged in order
according to pitch, or according to intensity, or according to
duration. Again, the class of points in space may be ordered in
various ways according to their distances from three fixed planes.

A multiply ordered class may also be called a muliiple series; but
a system of this kind is not strictly a series with respect to any one
of its ordering relations, since postulate 1 does not strictly hold
(see § 12 or § 74). A multiple series which is of type 6 with respect
to each of n serial relations is called an n-dimensional continuum.

An extended discussion of multiply ordered classes is contained
in Cantor’s memoir of 1888.*

* Cantor, Zeitschr. f. Phil. u. philos. Kritik, vol. 92, pp. 240-265 (1888).
See also F. Riesz, Math. Ann., vol. 61, pp. 406-421 (1905).

CHAPTER VII

WELL-ORDERED SERIES, WITH AN INTRODUCTION TO
CaNTOR’S TRANSFINITE NUMBERS

73. In §§ 21, 41, and 54, certain special kinds of series (“ dis-
crete,” “ dense,” “ continuous 7Y have been defined, and their
chief properties discussed. '

In this chapter a brief account is now to be given of another
special kind of series, which has proved to be of fundamental im-
portance in Cantor’s theory of the transfinite numbers, and I hope
that some readers may be led, by this brief introduction, to a
further study of that most recent development of mathematical
thought, in which many problems of fundamental interest still
await solution.

The theory of the transfinite numbers was created by Georg
Cantor in 1883, in a monograph called Grundlagen einer allgemeinen
Mannichfaltigkeiislehre; ein mathematisch-philosophischer Versuch
in der Lehre des Unendlichen. A much clearer presentation of the
subject will be found in his Beutrdge zur Begriindung der transfiniten
Mengenlehre in the Mathemalische Annalen (1895, 1897) translated
by P. E. B. Jourdain, Contributions to the Founding of the Theory of
Transfinite Numbers (Open Court Pub. Co., 1915); but many of the
speculations which were begun or suggested in the Grundlagen have
not yet been developed.*

* Among thg more recent treatises may be mentioned: A. Schonflies,
Entwickelung der Mengenlehre und shrer Anwendungen, second edition, 1913
(Teubner, Leipzig); B. Russell, Principles of Mathematics (1903); L. Cou-
turat, Les Principes des mathématiques (1905); G. Hessenberg, Grundbegriffe
der Mengenlehre (1906); W. H. and G. C. Young, The Theory of Sets of Points
(1906); J. Konig, Neue Grundlagen der Logik, Arithmetik und Mengenlehre
(1914); F. Hausdorff, Grundziige der Mengenlehre (1914); P. E. B. Jourdain,
The Development of the Theory of Transfinite Numbers, published serially in
Archiv der Math. u. Phys., ser. 3, volumes 10, 14, 16, 22 (1906-1913); and the
Principia Mathematica by Whitehead and Russell, vol. 3 (1913).
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T4. A series, or simply ordered class, has been defined in § 12 as
any system (K, <) which satisfies the following three conditions:

PosturaTE 1. If 0@ and b are distinct elements of the class K, then
etther a < borb < a.

PosturaTe 2. If a < b, then a and b are distinct.

PosturaTE 3. Ifa < band b < ¢, then a < c.

A normal series, or ““ well-ordered” series (wohlgeordnete Menge),*
is then any series which satisfies the following three conditions: t

* The earliest of Cantor’s writings which bear upon this subject will be
found in Math. Ann., vol. 5, pp. 123-182 (1872); and in Crelle’s (or Bor-
chardt’s) Journ. fir Math., vol. 77, pp. 258-262 (1874); vol. 84, pp. 242-258
(1877). Then came a series of six articles ‘ Uber unendliche, lineare Punkt-
mannichfaltigkeiten,” Math. Ann., vol. 15, pp. 1-7 (1879); vol. 17, pp. 355
358 (1880); vol. 20, pp. 113-121 (1882); vol. 21, pp. 51-58 (1883); vol. 21,
pp. 545-591 (1883); vol. 23, pp. 453-488 (1884). The fifth of these articles is
identical with the monograph published in the same year (1883) under the
title “ Grundlagen einer allgemeinen Mannichfaltigkeitslehre > — page n of
the “ Grundlagen ” corresponding to page (n + 544) of the article in the
Annalen. [All the articles mentioned thus far, or partial extracts from them,
are translated into French in the Acta Mathematica, vol. 2, 1883. The same
journal contains also some further contributions; see vol. 2, pp. 409-414
(1883); vol. 4, pp. 381-392 (1884); vol. 7, pp. 105-124 (1885).] These articles
were followed by a number of writings in defence of the new theory; see espe-
cially the Zeitschrift fir Phil. und philos. Kritik, vol. 88, pp. 224-233 (1886);
vol. 91, pp. 81-125, 252-270 (1887); vol. 92, pp. 240-265 (1888). Then came a
short but interesting note in the Jahresber. d. D. Math.-Ver., vol. 1, pp. 75-78
(1892), and finally the “ Beitrige,” etc., Math. Ann., vol. 46, pp. 481-512
(1895); vol. 49, pp. 207-246 (1897); French translation by F. Marotte (1899);
English translation by P. E. B. Jourdain (1915). Since 1897 the literature of
the subject has rapidly increased, but nothing further has been published by
Cantor himself.

1 G. Cantor, Math. Ann., vol. 21 (1883), p. 548; ibid., vol. 49 (1897), p. 207.
The name * normal series” was suggested to me by the term ‘normally
ordered class,” used by E. W. Hobson as a translation of wohlgeordnete Menge;
Proc. Lond. Math. Soc., ser. 2, vol. 3 (1905), p. 170. It would have been a
better term than ‘‘well-ordered series,” for the adjective ‘‘well-ordered”’
applies properly only to a class, not to a series, since a series is already an
ordered class, and a well-ordered class would be, as it were, a “ well ”’ series.
But the term * well-ordered ”’ is so well established in the literature that it
seemg best to retain it as the designation for this particular kind of series.
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PosturaTE 4. The series has a first element (§ 17).

PosturaTe 5. Every element, unless it be the last, has an imme-
diate successor (§ 17).

PostuLaTE 6. Every fundamental segment of the series has a
lemat.

Here a ‘ fundamental segment ”’ is any lower segment which
has no last element; the “limit” of a fundamental segment is
the element next following all the elements of the segment
(8§ 46, 49).

The consistency and independence of these postulates are estab-
lished by the examples already given in §§ 28-29.

In a well-ordered series, any element which is the limit of a fun-
damental segment (and therefore has no immediate predecessor) is
called a limiting element of the series (Grenzelement, Element der
zweiten Art*). Every element which is neither a limiting element,
nor the first element of the series, will have a predecessor.

For example, the series

11, 21, 31, e 12, 22, 32, ooy 13, 23, 33, SRR SO o 1’

is a well-ordered series in which the limiting elements (13, 15, . . .;
1’) form a progression followed by a last element 1’.

76. From postulates 1-6 it follows at once that Dedekind’s
postulate (see § 21 or § 54) will hold true in any well-ordered series;
indeed we may use Dedekind’s postulate in place of postulate 6 in the
definition of a well-ordered series;t 1 prefer postulate 6 in this case,
however, because it emphasizes the unsymmetrical character of the
well-ordered %eries.

76. Other, very convenient, forms of the definition are the
following:

(1) A well-ordered series s any series in which every subclass (§ 6)
has a first element.t

* G. Cantor, Math. Ann., vol. 49 (1897), p. 226. Jourdain uses Limes; Phil.
Mayg., ser. 6, vol. 7 (1904), p. 296. Compare § 62, above.

1 O. Veblen, Trans. Amer. Math. Soc., vol. 6 (1905), p. 170.

1 Cantor, loc. cit. (1897), p. 208.
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(2) A well-ordered series is any series which contains no subclass of
the type *w; that is, no subelass which is a regression (§ 25).*

The equivalence of each of these definitions with the definition in
§ 74 is easily verified.

Examples of well-ordered series

77. The simplest examples of well-ordered series are those which
contain only a finite number of elements; and since two finite
series are ordinally similar when and only when they have the same
number of elements, there will be a distinct type of well-ordered
series corresponding to every natural number (compare § 27).

The simplest example of a well-ordered series with an infinite
number of elements is a series of type w, that is, a progression (§ 24).

78. Other examples of well-ordered series, which will serve also
to explain the notation commonly used, are the following:

A progression of series each of which is itself of type w forms a
series of type w?:

R B VR e SRR O R e
A progression of series each of which is of type o’ forms a series of
type o®:
1,2,..]1,2,..l..||1,2,..|1,2,..l..||1,2,..]2,2,..|..H....
So in general; a progression of series each of which is of type w”
forms a series of type w+, where » is any positive integer.

Any type w” can be represented by a series of points on a line of
length a by the following device, illustrated for the case of type b,

I 1. {E—m
{ 1 1 Lo ) |

First, divide the given line into a denumerable set of intervals, as
ost conveniently by the set of points whose distances from the
right-hand end of the line are

AN VI
2 4 8 16

* Jourdain, Phil. May., ser. 6, vol. 7, p. 65 (1904).
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the points of division will form a series of type w. Next, divide
each interval into a denumerable set of intervals in a similar way;
all the points of division taken together will form a series of type
«’. Finally, repeating the same operation once again, we obtain g
series of points of type w?.

79. A series of the type called w may now be constructed as
follows: Take a line of length a, and divide it into a denumerable
set of intervals as above; in the first of these intervals insert a
series of type w, in the second a series of type o?, in the third a series
of type ?, and so on; the total collection of points thus determined
forms a series of type we.

A series of type we each of whose elements is a series of type we
forms a series of type (w)? or w?.

A series of type we each of whose elements is a series of type
w? forms a series of type wv3,

And so in general a series of type w* each of whose elements is a
series of type we” forms a series of type we(»+1),

A series of the type called w** can now be constructed as follows:
Divide a given line into a denumerable set of intervals as before;
in the first of these intervals insert a series of type w, in the second
a series of type wv?, in the third a series of type w3, and so on; the
total collection of points thus determined forms a series of type
W@ Or we*,

A series of type v+’ each of whose elements is a series of type we*
forms a series of type (w*)? or we"2,

A series of type w+* each of whose elements is a series of type
w=*? forms a series of type wv"3,

And so in general a series of type ws** may be constructed, and
hence a series of the type we« or w*, by another application of the
denumerable set of intervals.

By an extension of the same methods we can thus construct
series of each of the types originally denoted by w1, we, ws, . . .,
where W=, W= wY, w3 = W &

* Cantor, loc. cit. (1897), p. 242. It should be noted that this notation has
recently been abandoned, the subscripts under the «'s being now used for
another purpose; see § 83.
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And so on ad infinitum; but none of the well-ordered series thus
constructed will contain more than a denumerable infinity of
elements (compare § 38).

80. In order to understand one further matter of notation, con-
sider a well-ordered series of the type represented, say, by

.5+ 27 + w4 2.
Here the plus signs indicate that the series is made up of four parts,
in order from left to right; the first part consists of a series of type
«® taken five times in succession; the second part consists of a
series of type w” taken seven times in succession; the third part is

a single series of type w; and the last part is a finite series containing
two elements. — And so in general the notation

whyg + w4 L L oy,

where p is a positive integer, and the coefficients vy, #1, 1, . . ., vy
are positive integers or zero, is to be interpreted in a similar way.*

It will be noticed that in the case of a progression, or of any well-
ordered series of the types described in §§ 78-79, the whole series is
ordinally similar to each of its upper segments (§ 47); that is, if we
cut off any lower segment from the series, the type is not altered.
This is not true in the case of the well-ordered series of the types
described in the present section.

General properties of well-ordered series

81. The fundamental properties of well-ordered series are devel-
oped very carefully and clearly in Cantor’s memoir of 1897; the
following theorems may be mentioned as perhaps the most im-
portant:

(1) Every subclass in a well-ordered series is itself a well-ordered
series.

(2) If each element of a well-ordered series is replaced by a well-
ordered series, and the whole regarded as a single series, the result
will be still a well-ordered series (compare the examples in §§ 78—
79).

(These two theorems follow at once from the definition in § 76, 1.)

* Cantor, loc. cit. (1897), p. 229.
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DeriniTioN. The part of a well-ordered series preceding any
given element a is called a lower segment (Abschnitt) of the series
(compare § 47).*

(8) A well-ordered series is never ordinally similar to any one
of its lower segments, or to any part of any one of its lower
segments.

(4) If two well-ordered series are ordinally similar, the ordinal
correspondence between them can be set up in only one way (com-
pare §§ 26, 45, 61, and §§ 53, 65).

(5) Any subclass of a well-ordered series is ordinally similar to
the whole series or else to some one of its lower segments.

(6) If any two well-ordered series, F and G, are given, then either
F is ordinally similar to G, or F is ordinally similar to some definite
lower segment of @, or @ is ordinally similar to some definite lower
segment of F; and these three relations are mutually exclusive. In
the first case, F and G are of the same type; in the second case, F'
is said to be less than G; and in the third case, G is said to be less
than F.

82. By virtue of this theorem 6, the various types of well-ordered
series, when arranged ““ in the order of magnitude " (as defined in the
theorem), form a series (§ 74) with respect to the relation *‘ less than”’;
and? as Cantor has shown, this series is itself a well-ordered series.

Moreover, by theorem 2, every possible collection of types of
well-ordered series, arranged in order of magnitude, will be itself
a well-ordered series.

Classtfication of the well-ordered series

83. The classification of the well-ordered series is a characteristic
feature of Cantor’s theory; since, however, the method of pro-
cedure, when pushed to its logical extreme, has led to controversy,

* Most writers, including Russell, translate Abschnitt by segment (without
qualifying adjective); but since the word “ segment "’ is already used in several
different senses (see, for example, Veblen, Trans. Amer. Math. Soc., vol. 6, p.
166, 1905), it has seemed to me safer to use the longer term ¢ lower segment,”
about which there can be no ambiguity.
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the whole scheme is regarded with a certain measure of suspicion. *
The classification is ag follows:

First, every well-ordered series in which the number of elements is

one correspondence (§ 3) with the elements of w is said to belong to the.

SECOND crAss. In particular, the series of type w are the smallest
series of the second class,

Next, take all the types of series belonging to the second class,
and arrange them in order of magnitude ; the resulting series is a
well-ordered series of a certain type, called ¢, (or Q).

* On the paradoxes of Burali-Fort, Russell, and Richard, and other ques-
tions of mathematical logic, see, for example, C. Burali-Forti, Rend. del cire.
mat. di Palermo, vol. 11 (1897), pp. 154-164; E. Borel, Legons sur Ig théorie des
Sonctions (1898), pp. 119-122, especially the second ‘edition (1914), pp. 102-

174; also a remark in Liowville’s Journ. de Maih., ser. 5, vol, 9 (1903), p. 330;

Soc., ser. 2, vol. 3 (1905), pp. 170-188; A. Schénflies and A. Korselt, Jahresber,
d.D. Math.-Ver., vol, 15 (1906), pp. 19-25 and 215-219; P.E. B. Jourdain and
G. Peano, Rivista di M. atematica, vol. 8 ( 1906), pp. 121-136 and 136-157; G. H.
Hardy, A. C. Dixon, E. W, Hobson, B. Russell, P. E. B. Jourdain, and A, C,
Dixon, Proc. Lond. Math. Soc., ser. 2, vol, 4 (1906), pp. 10-17, 18-20, 21-28,
29-53, 266-283, and 317-319; B. Russell Rev. de Métaphys. et de Mor., vol.
14 (1906), pp. 627-650; J. Richard, Acta Mathematica, vol. 30 (1906), pp. 295—
296, and Ens. Math., vol. 9 (1907), pp. 94-98; E. B. Wilson, Bull. Amer, Mah,
Soc., vol. 14 (1908), pp. 432-443; A. Schonflies, E. Zermelo, and H. Poin-
caré, Acta Mathematica, vol, 32 (1909), pp. 177-184, 185-193, and 195-200;
A. Koyré and B. Russell, Rev. de M1 étaphys. et de Mor., vol. 20 (1912), pp. 722—
724 and 725-726; H. Dingler, Jahresber. q. D, Math-Ver., vol. 22 (1913),
pp. 307-315; N. Wiener, M, essenger of Mathematics, vol. 43 (1913), pp. 97-105;
a curious paper by H. Glause, Rend. del cire. mat. di Palermo, vol. 38 (1914),
Pp. 324-329; and the recent treatises by Schonflies, Koénig, and Hausdorff,
cited in a footnote to §73; especially Whitehead and Russell, Principia Mathe-
matica, vol. 1 (1910), pp. 63-68. On the controversy especially connected with
Zermelo’s “ multiplicative axiom,” see the references under §84. On the
problem of consistency see references under § 19.
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Then every well-ordered series whose elements can be put into one-

to-one correspondence with the elements of wi is said to belong to the
THIRD CLASS. In particular, the series of type w; are the smallest
series of the third class.

And soon. In general, every well-ordered series whose elements can
be put into one-to-one correspondence with the elements of w, (where »
is any positive integer) 7s said to belong to the (v 4+ 2)th crass ; and
the series of type w, will be the smallest series of that class.*

Moreover, by an extension of the device already employed
several times, we can define a class of well-ordered series whose
smallest type would be denoted by w., or even w, ; and so on, ad
wnfinitum; so that when we speak of the nth clas§ of well-ordered
series, n need not be a positive integer, but may itself denote the
type of any well ordered series.

84. In order to justify this classification, it is necessary to show
that the classes described are really all distinet, so that no well-
ordered series belongs to more than one class; and further, that
well-ordered series belonging to each class actually exist, so that no
class is “ empty.” Cantor has completed this investigation only
as far as the first and second classes; each of the examples men-
tioned above is a well-ordered series of the first or second class
(since the number of elements in each case is at most denumeral?le,
In view of § 38); no similar example of a series of even the th‘lrd
class has yet been satisfactorily constructed.t Problems concerning

* The notation w, for the smallest type of the (v + 2)th class was intro-
duced by Russell, Principles of Mathematics, vol. 1 (1903), p. 322; compare
Jourdain, Phil. May., ser. 6, vol. 7 (1904), p. 295. The symbols » and Q were
first used in this connection by Cantor in Math. Ann., vol. 21, pp. 577, 582
(1883). )

T The question whether every class can be arranged ag a well-ordered series,
was first proposed by Cantor in 1883 (Math. Ann., vol. 21, p. 550).' The con-
troversy centers about two papers by E. Zermelo; Beweis dass jede Menge
wohlgeordnet werden kann, Math. Ann., vol. 59 (1904), pPp. 514-516; Neuer
Beweis fir die Moglichkeit einer Wohlordnung, Math. Ann., vo.l. 65 (1907), pp.
107-128. See, for example, J. Konig, A. Schonflies, F. Bernstein, E. Borel, and
P. E. B. Jourdain, Math. Anm., vol. 60 (1905), pp. 177, 181, 187, 194, 465;
J. Hadamard, R. Baire, H. Lebesgue, and E. Borel, Bull. de la Soc. Math. de



72 TYPES OF SERIAL ORDER §85

the existence of the higher classes, and the question whether every
collection can be arranged as a well-ordered series, are still being
actively debated (see § 89).

85. The various classes of well-ordered series can also be defined
by purely ordinal postulates, as Veblen has shown how to do in his
recent memoir.*

Thus, a well-ordered series of the Jirst class is any well-ordered
series which satisfies not only the postulates 1-6 of § 74, but also
the further conditions 7, and 81, namely:

PosturaTr 7,. Every element except the first has a predecessor §17).

PosTULATE 8,. There is a last element (§ 17).

The type w is then defined by postulates 1-6 with 7, and 8,
where 8/, is the contradictory of 8,:

PosTuLaTE 8';. There is no last element.

Next, a well-ordered series of the second class is any well-ordered
series, not of the first class, which satisfies 7, and 8s, namely:

Posrurare 7,. Every element except the Jirst either has a predeces-
sor or is the upper limit of some subclass of type w (as just defined).

PosTULATE 8,. There is either last element, or a subclass of type
w which surpasses any given element of the series.t

The type w; (or Q) is then defined by postulates 1-6 with 7, and
8’5, where 8’ is the contradictory of 8,.

PosTuLATE 8'5. There is no last element; and every subclass of
type w has an upper limit in the series.

France, vol. 33 (1905), bp. 261-273; G. Peano, Rivista ds Matematica, vol. 8
(1906), p. 145; J. Konig, Math. Ann., vol. 61 (1905), pp. 156160, and vol. 63
(1906), pp. 217-221; H. Poincaré, Rev. de M. étaphys. et de Mor., vol. 14 (1906),
Pp. 294-317; H. Lebesgue, Bull. de la Soc. Math. de France, vol. 35 (1907),
Pp. 202-212; G. Vivanti, Rend. del circ. mat.di Palermo, vol. 25 (1908), pp. 205~
208; G. Hessenberg, Crelle’s Journ, Siir Math., vol. 135 (1908), pp. 81-133,
318; E. Zermelo, Math. Ann., vol, 65 (1908), pp. 261-281 ; and the recent
treatises by Schonflies, Kénig, and Hausdorff cited in a footnote to § 73, espe-
cially Whitehead and Russell, Principia M athematica, vol. 3 (1913), p. 3. For
a third proof by F. Hartogs (1915), see § 89a.

* O. Veblen, Trans. Amer. Math. Soc., vol. 6, p. 170 (1905).

T That is, if = is any element, of the given series, there is an element ¥ in the
subclass for which z < .
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Similarly, a well-ordered series of the third class is any well-
ordered series, not of the first or second class, which satisfies 7; and
83, namely:

PosturLaTE 75 Every element except the first either has a predeces-
sor, or 1s the upper limit of some subclass of type w, or is the upper
limit of some subclass of type ..

PosTuLATE 8;. There is either a last element, or a subclass of type
w which surpasses any given element, or a subclass of type w, which
surpasses any given element.

The type w, is then defined by postulates 1-6 with 73 and 8’3,
where, as before, 8’5 denotes the contradictory of 8;:

PosturaTe 8'5. There is no last element; every subclass of type w
has an upper limit in the sertes; and every subclass of type w, has an
upper limit in the series.

And so on. The establishment of definite sets of postulates like
these seems to me an essential step toward the solution of the diffi-
cult problems connected with this subject. For example, Cantor’s
proof that a series of type Q is non-denumerable is simply a dem-
onstration that no denumerable series can satisfy the eight postu-
lates here numbered 1-6, 7,, and 8',.

The transfinite ordinal numbers

[

86. It is now easy to explain what is meant by the ordinal num-
bers (Ordnungszahlen), in the generalized sense in which Cantor
now uses that term: they are simply the various types of order ex-
habited by the well-ordered series.* In other words, according to the
theory of Russell, the ordinal number corresponding to any given
well-ordered series is the class of all series which are ordinally similar
to the given series; any one of these ordinally similar series may be
taken to represent the ordinal number of the given series.t

The ordinal numbers of the first class (§ 83) are the finite ordinal
numbers, with which we have always been familiar; the ordinal

* Cantor, Zeitschrift fir Philos. und philos. Kritik, vol. 91 (1887), p. 84;
and Math. Ann., vol. 49 (1897), p. 216.
t Russell, Principles of Mathematics, vol. 1 (1903), p. 312.
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numbers of the second or higher classes are the transfinite ordinal
numbers created by Cantor, which constitute, in a certain true
sense, “ eine Fortsetzung der realen ganzen Zohlenrethe tiber das
Unendliche hinaus.” *

The smallest of the transfinite ordinals is w.

_ By the sum, a + b, of two ordinal numbers, ¢ and b, is meant
simply the type of series obtained when a series of type a is followed
by a series of type b and the whole regarded as a single series.t.
Clearly a + b will not always be the same as b 4 (for example,
1+ w = w, while w + 1isa new type); but always (a + b) + ¢ =
a4+ b+ c).

By the product, ab, of an ordinal number q multiplied by an ordi-
nal number b, is méant the type of series obtained as follows: in a
serles of type b replace each element by a series of type a, and regard
the whole as a single series; the result will be a, well-ordered series
(by §81, 2), and the type of this well-ordered series is what is
meant by ab.f Clearly ab will not always equal ba (for example,
2w = w, while .2 is a new type); but always (ab)c = a(be), and
also a(b + ¢) = ab + ac, although not (b + ¢)a = ba 4+ ca.

The definition of a?, where ¢ and b are general ordinal numbers is
too complicated to repeat in this place.§ Enough has at any rate
been said to give at least some notion of the nature of the artificial
algebra which Cantor has here so ingeniously constructed.

The transfinite cardinal numbers

87. Tor the sake of completeness I add here a brief note on the
meaning of some of the terms in Cantor’s theory of the (general-
ized) cardinal numbers.|| This theory has nothing to do with
series, or ordered classes, but is a development of the theory of
classes as such (§ 11); nevertheless the difficulties met with in this
theory are closely analogous to the difficulties we have pointed out

* Math. Ann., vol. 21 (1883), p. 545.

1 Math. Ann., vol. 21 (1883), p. 550.

I In Cantor’s earlier definition of the product ab, a was the multiplier
(loc. cit., 1883, p. 551); the order was changed in his later articles, so that a
is now the multiplicand (see loc. cit., 1887, p. 96, and 1897, pp. 217, 231).

§4Santor, Math. Ann., vol. 49 (1897), p. 231; Hausdorff, loc. cit. (1914),
p. 147.

Il The standard account of this theory is in Cantor’s article of 1895.
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in the theory of the ordinal numbers (§ 84), and it is impossible
to read the literature of either theory without some acquaintance

with the other.

88. If two classes can be brought into one-to-one correspondence
(§3), they are said to be equivalent (dquivalent). For example, the
class of rational numbers is equivalent to the class of positive
integers (compare § 19, 6); or the class of points on a line is equiv-
alent to the class of all points in space (§ 71).

The cardinal number (Mdchtigkeit) of a given class A is then
defined as the class of all those classes which are equivalent to A .*
The finite cardinal numbers are the cardinal numbers which belong
to finite classes; the éransfinite cardinals are those which belong to
infinite classes (§ 7). ‘

According to this definition, if two classes A and B are equivalent,
their cardinal numbers will clearly be identical.

If a class A is equivalent to a part of a class B, but not to the
whole, then A is said to be less than B; in this case the cardinal
number of A will be less than the cardinal number of B.

We cannot, however, affirm that all cardinal numbers can be
arranged as a series, in order of magnitude, for while postulates 2
and 3 (§ 74) clearly hold with regard to the relation “less than’’ as
just defined, postulate 1, which may be called the principle of
comparison (Vergleichbarkeit) for classes, has never been proved.
In other words, non-equivalent classes may possibly exist, neither
of which is “less than ” the other; but see § 89a.}

On the other hand, Cantor has proved that when any class is
given, a class can be constructed which shall have a greater cardi-
nal number than the given class.}

* The term Mdchéigkeit was first used by Cantor in Crelle’s Journ. fiir Math.,
vol. 84, p. 242 (1877). Power, potency, multitude, and dignity are some of the
English equivalents. The term Cardinalzahl was introduced in 1887. Cf.
Cantor, loc. cit. (1887), pp. 84 and 118. The notion of a cardinal number as a
class is emphasized by Russell; Principle of Mathematics, vol. 1 (1903), p. 312.

1 Compare E. Borel, Legons sur la théorie des fonctions (1898), pp. 102-110.

-1 Cantor, J. d. D. Math.-Ver., vol. 1 (1892), p. 77; E. Borel, loc. cit. (1898),
p. 107; C. S. Peirce, Monist, vol. 16 (1906), pp. 497-502.
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For example, let C' denote the class of elements in a linear con-
tinuum, say the class of points on a line one inch long (compare
§71); and let C' denote the class of all possible “ bi-colored rods ”
which can be constructed by painting each point of the given line
either red or blue. Then the class of rods, €, has a higher cardinal
number than the class of points, C, as may be proved as follows:

In the first place, C is equivalent to a part of C’; for example, to
the class of rods in which one point is painted red and all the other
points blue. Secondly, C is not equivalent to the whole of C’; for, if
any alleged one-to-one correspondence between the rods and the
points were proposed, we could at once define a rod which would
not be included in the scheme: namely, the rod in which the color
of each point z is opposite to the color of the point z in the rod
which is assigned to the point z of the given line; this rod would
differ from each rod of the proposed scheme in the color of at least
one point. (Cf. § 40.)

The class C” has therefore a higher cardinal number than the class
C. It is not known, however, whether there may not be other
classes whose cardinal numbers lie between the cardinal numbers of

C and C'.

89. Of special interest are the cardinal numbers of the various
types of well-ordered series; but when we speak of the cardinal
number of a seres, it must be understood that we mean the cardinal
number of the class of elements which occur in the series, without
regard to their order.

The cardinal numbers of the finite well-ordered series are the
Jfinite cardinal numbers, with which we have always been familiar.

The cardinal number of a series of type w (§ 24) is denoted by
the Hebrew letter Aleph with a subscript 0:*

No.
This y, will then be the cardinal number of any well-ordered series
of the second class (§ 83), since all the series of the second class are,
by definition, equivalent.

The cardinal number of a series of type w, (or Q) is denoted by

¥;; this will then be the cardinal number of any well—orderedv

series of the third class.
* Cantor, Math. Ann., vol. 46 (1895), p. 492.
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And so on. In general, the cardinal number of a series of type
w, is denoted by u,; this will then be the cardinal number of any
well-ordered series of the (» + 2)th class.

If we assume the series of classes of ordinal numbers (§ 84). we thus
obtain a series of cardinal numbers

Ny, Ny .., Ny e ..,

arranged in order of increasing magnitude; this series will be a
well-ordered series with respect to the relation “less than,” and
ordinally similar to the series of ordinal numbers; but all the diffi-
culties that are involved in the one series are involved in the other.
In particular, it requires proof to show that two Alephs, as &, and
N,+1, are really non-equivalent, and that no other cardinal number
lies between them. Cantor has shown merely that &, is the smallest
transfinite cardinal number, and that &, is the number next greater.*
Again, the vexed question: can the cardinal number of the linear
continuum (§ 54) be found among the Alephs ? is equivalent to the
question: can the class of elements in the continuum be arranged in
the form of a well-ordered series 2 (See § 89a.) It isusually supposed
that the cardinal number of the continuum will prove to be ;.

89a. In~this section we reproduce, in brief outline, Hartogs’s
recent proof of Zermelo’s theorem that every class can be arranged
as a well-ordered series.t

Let there be given any non-empty class, M.

First, consider all possible well-ordered series, G, H, . . . , whose
elements belong to M, and let N be the class composed of these
series, together with the null series, 0.

Next, within this class N, group together all the well-ordered
series G', G”, . . . which are similar to G into a subclass, g; group

together all the well-ordered series H’, H”, . . . which are similar
to H into a subclass, &; etc.
These subclasses, g, &, . . . (one of which is the null class) are

now to form the elements of a series, L, whose rule of order is the
following: A subclass g is said to precede a subclass & (g < h), if

* Math. Ann., vol. 21, p. 581 (1883).

t F. Hartogs, Uber das Problem der Wohlordnung, Math. Ann., vol. 76
(1915), pp. 438-443.

w'
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any one of the well-ordered series belonging to g is similar to g
lower segment of any one of the well-ordered series H belonging to
h. (It is clear that it makes no difference which @ is taken from
g, or which H is taken from &, etc., since all the (s in g are similar
to each other, and all the H’s in & are similar to each other, ete.)
From this definition it follows that if any two of the subclasses, say
g and h, are distinct, then either g < % or else < g, and not both;
also that if g, h, < are three subclasses such that g<handh < i,
then g < 4. In other words, the subclasses g, h, . . . form a series,
L, with respect to the rule of order stated.

Moreover, the series L thus constructed is a well-ordered serdes.
The proof is as follows: Let g be any element of L, and let @ be any
one of the well-ordered series belonging to g. Then the elements of
L which precede g stand in a one-to-one correspondence (preserving
order) with the lower segments of G. But the lower segments of G
form a well-ordered series; hence, no matter what element g may
be chosen, the elements of L preceding g form a well-ordered series.
From this it follows that the series I itself must be well-ordered.
For, if L were not well-ordered, it would contain at least one regres-
sion, r (§ 76), so that if ¢ is any element of r, then the elements of
7 preceding g would form a series having no first element; but this
is impossible, since the elements of r preceding g are part of the
elements of L preceding g, and hence are part of a well-ordered
series, and as such must have a first element. The whole series L
is therefore a well-ordered series.

Further, each of the well-ordered series G, H, . . . which can be
formed out of elements of M , is similar to some lower segment of
L. In particular, the well-ordered series @ is similar to that lower
segment of L which is determined by the subclass g to which G
belongs. For, as we have just noted, there is a one-to-one corre-
spondence (preserving order) between the subelasses that precede
g and the lower segments of @, and there is also a, one-to-one corre-
spondence (preserving order) between the lower segments of G and
the elements of @.

Considering now the elements of L, without regard to their order,
we see at once that the elements of L cannot be placed in one-to-one
correspondence with the elements of M. » nor with the elements of any
part of M. For, suppose the contrary; then M, or some part of M ;
would be capable of being well-ordered, so that we should have a
well-ordered series, formed out of elements of M , and similar to L;
but this is impossible, since we have proved that every such well-
ordered series is similar to some lower segment of L, and no lower
segment of L can be similar to L itself.
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i i » principle of ¢ ison between classes
Finally, if we assume the principle of comparison be

(§ 88), {?{),(‘,l‘(} is only one alternative left, namely: <t must be pos-

3 : th
ble to place the elements of M wn one-to-one correspondence wr
szlZle'(r)ng;Lg(Qf a part of L. But since L is well-ordered, every pz?rt
of L is well-ordered; hence we have the theorem that whatever
class M may be, its elements can always be so arranged as to form
1l-ordered series.* )

i vgg (\)’\;cbspo:mk next of the sums and products of the cardinal
nu’rlgl?ee Z?Jn A + B of two classes A and B which have no common
element is the class containing all the elements of A and B to-

ther.
geIf Zr and b are the cardinal numbers of two such classes 4 and B,
the sum, a -+ b, of these two cardinals is then defined as the cardinal
number of A + B. Clearly a +b=5b+a, and (¢ +b) + ¢ =

b+ c). !
i —’]i?_hEa prodq)wt, AB, of two classes A and B which have no commor;
element is the class of all couples (a, 8), where a is any element o
A, and B any element of B.

’Iafuzlz a[jld byare the cardinal numbers of two such classes, the prod-
uct, ab, of these two cardinals is then defined as the cardinal num-
ber of AB. Clearly, ab = ba, (ab)c = a(bc), and a(b +¢) =

b+ ac. )

‘ F_lipnal?y AB denotes the class of all coverings (Belegungen) of B by
A, where a « covering ”’ of B by A is any law according to which
each element of B determines uniquely an element of A (not ex-
cluding the cases in which various elements of B may determine the
lement of A).1 )

SaI’i‘lE: betinpower of )a, a?, where a and b are the cardinal numbers of
any two classes A and B, is then defined as the cardinal number of
AB. Clearly abac = ab*, (a¥)° = a*, and (ab)® = ab°. h

In this way Cantor has constructed an artificial algebra of the
cardinal numbers, analogous to the algebra of the ordinal numbers,

* Hartogs’s paper shows that the following three principl.es are equivalent:
(1) the principle of comparison between classes; (2) the prl.nc%ple'that (.everx
class can be well-ordered; and (3) the much discussed “ m.ultlphcatlve axiom
of Zermelo. See references under § 84, especially Whitehead and Russell,
Principia Mathematica, vol. 1 (1910), p. 561.

t Zeitschr. f. Phil. u. philos. Kritik, vol. 91 (1887), pp. 120-121; Math. Ann.,
vol. 46 (1895), p. 485.

1 Math. Ann., vol. 46 (1895), p. 487.

¢
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but resembling much more closely the familiar algebra of the
finite integers.

Perhaps the most famous result obtained in this algebra is the
formula *

Cc = 2“0;

where ¢ stands for the cardinal number of the continuum, and 2%,
is determined according to the rule just stated for the powers of
cardinal numbers. It becomes an important question, therefore,

to decide whether
2N = N,y
or not (compare § 89, end).

91. In conclusion, it may be well to repeat that when we speak
of a cardinal number, we always mean the cardinal number of some
given class; and when we speak of an ordinal number, we always
mean the ordinal number of some given well-ordered series.

Whether these new concepts will find important applications in
practical problems is a question for the future to decide. (The
elementary parts of Cantor’s work have already proved useful,

indeed almost indispensable, in the theory of functions of a real
variable.t)

* Math. Ann., vol. 46 (1895), p. 488,

T See, for example, R. Baire, Legons sur les fonctions discontinues (1905);
E. Borel, Lecons sur la théorie des Sfonctions, 2nd edit. (1914); E. W. Hobson,
Theory of Functions of a Real Variable (1907); J. Pierpont, Lectures on the

Theory of Functions of a Real Variable (1905, 1912); etec.; also the treatises
cited under § 73.

INDEX OF TECHNICAL TERMS

The; principal bibliographieal footnotes will be found under the introduction, and
under §§ 73-74, and §§ 83-84.

Alephs, § 89.

Between, § 17.
Binary fractions, § 30.
Bound (upper and lower), § 56.

Cardinal numbers, § 88.

Class, § 1. (See empty, null, finite,
infinite, denumerable, simply and
multiply ordered, well-ordered,
equivalent.)

Clasges of transfinites, §§ 86, 89.

Closed (series), § 62.

—— (set of points), § 62a.

Cluster point, § 62a.

'fCompact (series), § 41.

—— (set of points), § 62a.

Comparison (of classes), § 88.

Consistency (of postulates), § 19.

Continued fractions, § 71.

Continuous (series), §§ 54, 62, 67.

Continuum, §§ 61, 72.

problem, § 89.
Correspondence (of classes), § 3.
—— (of series), § 16.

Covering, § 90.

Decimal fraction, §§ 15 (9), 40, 63 (4).

Dedekind’s postulate, §§ 21, 54, 75.
Dense (series), §§ 41, 54, 62.

—— (set of points), § 62a.
Dense-in-itself (series), § 62.

—— (set of points), § 62a.

Denumerable (class), § 37.
—— (series), § 41.
Derived set, § 62a.

Digits, § 30.
Dimensionality, §§ 67-71.
Discrete (series), §§ 21, 26.
Distinct (elements), § 2.

Element (of a class), § 1. (See dis-
tinct, equal, first, last, rational,
irrational, principal, limit.)

Empty (class), § 1.

Equal (elements), § 2.

Equivalent (classes), § 88.

Finite (classes), §§ 7, 27.

- (series), § 27.

—— (numbers), §§ 86, 88.

First (element of a series), § 17.

Fraction, § 19. (See proper, decimal,
binary, ternary, continued.)

Framework (of a series), §§ 59, 67.

Fundamental (segment), § 46.

—— (sequence), § 62.

Independence (of postulates), § 20.
Induction, § 23.

Infinite (classes), §§ 7, 27.

—— (numbers), §§ 86, 88.

Integral (numbers), §§ 22, 34, 63 (3).
Irrational (elements), § 59.
(numbers), § 63 (3).
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Last (element of a series), § 17.
Less than, §§ 82, 88.

Limit (series), §§ 49, 56, 74.
(set of points), § 62a.
Linear (continuous series), § 54.

Mathematical induction, § 23.
Multiply ordered (class), § 72.
Multiplicative axiom, § 89a.

Natural numbers, §§ 19 (1), 30, 36.

Normal (series), § 74.

Normally ordered (class), § 74.

Null (class), § 1.

Numbers, § 63 (3). (See natural, inte-
gral, fractional, rational, irrational,
real, cardinal, ordinal, finite, trans-
finite.)

Numeration, § 30.

Operations, §§ 11, 53, 65.

on natural numbers, §§ 31, 35.
on transfinites, §§ 86, 90.
Order, §§ 12, 16, 72, 82.

Ordinal numbers, § 86.

Ordinally similar (series), § 16.
Origin, § 26.

Part (of a class), § 6.

Perfect (series), § 62.

(set of points), § 62a.

Point sets, § 62a.

Postulates, §§ 12, 21, 41, 54, 74, 85,
—— consistency of, § 19.

—— independence of, § 20.

Powers (of numbers). See operations.
(cardinals), § 88.

Predecessor, § 17.

Principal (element of a series), § 62.
Produets. See operations.
Progression, §§ 24, 85.

Proper fraction, §§ 19 (5), 42.

Rational (elements), § 59.
—— (numbers), §§ 51, 63 (3).
Real (numbers), §§ 63 (3).
Regression, § 25.

Relation, §§ 11, 12, 13.

Section (of a continuous series), § 68.

Segment, § 47.

(fundamental), § 46.

—— (upper and lower), § 47.

(well-ordered series), § 81.

Self-representative, § 28.

Sequence, § 62.

Series, §12. (See discrete, dense,
denumerable, continuous, linear,
finite, closed, dense-in-itself, per-
fect, well-ordered, similar. )

Sets of points, § 62a.

Similar (series), § 16.

Simply ordered (class), § 12.

Skeleton (of a series), §§ 59, 67.

Subclass, § 6.

Successor, § 17.

Sums. See operations.

System, § 11.

Ternary fractions, § 52 (3).
Transfinite numbers, §§ 86, 88.
Types of order, § 16.

Type w, §§ 24, 85.

o § 25,

*w-+ w, § 26.

—— 1, §44.

—0, §§61, 62.

—— 6, § 69.

? w®, §§ 78, 79.
— w,, §§ 79, 83, 85.
—Q, §§ 83, 85.

Well-ordered (series), §§ 74, 76.



