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Testability and Meaning

RUDOLF CARNAP

I. INTRODUCTION
1. Our Problem: Confirmation, Testing and Meaning

Two cHier PROBLEMS of the theory of knowledge are the question of
meaning and the question of verification. The first question asks under what
conditions a sentence has meaning, in the sense of cognitive, factual mean-
ing. The second one asks how we get to know something, how we can
find out whether a given sentence is true or false. The second question
presupposes the first one. Obviously we must understand a sentence, i.e.
we must know its meaning, before we can try to find out whether it is true
or not. But, from the point of view of empiricism, there is a still closer
connection between the two problems. In a certain sense, there is only
one answer to the two questions. If we knew what it would be for a given
sentence to be found true then we would know what its meaning is. And
if for two sentences the conditions under which we would have to take
them as true are the same, then they have the same meaning. Thus the
meaning of a sentence is in a certain sense identical with the way we deter-
mine its truth or falsehood; and a sentence has meaning only if such a
determination is possible.

If by verification is meant a definitive and final establishment of truth,
then no (synthetic) sentence is ever verifiable, as we shall see. We can onl
confirm a sentence more and more. Therefore we shall speak of the problem
of confirmation rather than of the problem of verification. We distinguish
the testing of a sentence from its confirmation, thereby understanding a
procedure—e.g. the carrying out of certain experiments—which leads to
a confirmation in some degree either of the sentence itself or of its negation.
We shall call a sentence zestable if we know such a method of testing for it;
and we call it confirmable if we know under what conditions the sentence
would be confirmed. As we shall see, a sentence may be confirmable with-
out being testable; e.g. if we know that our observation of such and such a
course of events would confirm the sentence, and such and such a different
course would confirm its negation without knowing how to set up either
this or that observation.

* Reprinted, with omissions, by kind permission of the author and the editor
from Philosophy of Science, 3, 1936 and 4, 1937.
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48 THE NATURE OF SCIENTIFIC METHOD

In what follows, the problems of confirmation, testing and meaning
will be dealt with. After some preliminary discussions in this Introduction,
a logical analysis of the chief concepts connected with confirmation and
testing will be carried out in Chapter I, leading to the concept of re-
ducibility. Chapter Il contains an empirical analysis of confirmation and
testing, leading to a definition of the terms ‘confirmable’ and ‘testable’
mentioned before. The difficulties in discussions of epistemological and
methodological problems are, it seems, often due to a mixing up of logical
and empirical questions; therefore it seems desirable to separate the two
analyses as clearly as possible. Chapter III uses the concepts defined in the
preceding chapters for the construction of an empiricist language, or
rather a series of languages. Further, an attempt will be made to formulate
the principle of empiricism in a more exact way, by stating a requirement
of confirmability or testability as a criterion of meaning. Different require-
ments are discussed, correspondmg to different restrictions of the language;
the choice between them is a matter of practical decision.

* * L
2. Confirmation instead of Verification

If verification is understood as a complete and definitive establishment
of truth then a universal sentence, e.g. a so-called law of physics or biology,
can never be verified, a fact which has often been remarked. Even if each
single instance of the law were supposed to be verifiable, the number of
instances to which the law refers—e.g. the space-time-points—is infinite
and therefore can never be exhausted by our observations which are always
finite in number. We cannot verify the law, but we can test it by testing
its single instances i.e. the particular sentences which we derive from the
law and from other sentences established previously. If in the continued
series of such testing experiments no negative instance is found but the
number of positive instances increases then our confidence in the law
will grow step by step. Thus, instead of verification, we may speak here of
gradually increasing confirmation of the law.

Now a little reflection will lead us to the result that there is no funda-
mental difference between a universal sentence and a particular sentence
with regard to verifiability but only a difference in degree. Take for in-
stance the following sentence: “There is a white sheet of paper on this
table.” In order to ascertain whether this thing is paper, we may make a set
of simple observations and then, if there still remains some doubt, we may
make some physical and chemical experiments. Here as well as in the case
of the law, we try to examine sentences which we infer from the sentence
in question. These inferred sentences are predictions about future observa-
tions. The number of such predictions which we can derive from the sen-
tence given is infinite; and therefore the sentence can never be completely
verified. To be sure, in many cases we reach a practically sufficient certainty
afrer a small number of positive instances, and then we stop experimenting.
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But there is always the theoretical possibility of continuing the series of
test-observations. Therefore here also no complete verification is possible
but only a process of gradually increasing confirmation. We may, if we
wish, call a sentence disconfirmed* in a certain degree if its negation is
confirmed in that degree.

The impossibility of absolute verification has been pointed out and ex-
plained in detail by Popper.? In this point our present views are, it seems to
me, in full accordance with Lewis ® and Nagel.*

Suppose a sentence S is given, some test-observations for it have been
made, and S is confirmed by them in a certain degree. Then it is a matter
of practical decision whether we will consider that degree as high enough
for our acceptance of S, or as low enough for our rejection of §, or as
intermediate between these so that we neither accept nor reject S until
further evidence will be available. Although our decision is based upon the
observations made so far, nevertheless it is not uniquely determined by
them. There is no general rule to determine our decision. Thus the accept-
ance and the rejection of a (synthetic) sentence always contains a con-
ventional component. That does not mean that the decision—or, in other
words, the question of truth and verification—is conventional. For, in ad-
dition to the conventional component there is always the non-conventional
component—we may call it, the objective one—consisting in the observa-
tions which have been made. And it must certainly be admitted that in very
many cases this objective component is present to such an overwhelming
extent that the conventional component practically vanishes. For such a
simple sentence as e.g. “There is a white thing on this table” the degree
of confirmation, after a few observations have been made, will be so high
that we practically cannot help accepting the sentence. But even in this
case there remains still the theoretical possibility of denying the sentence.
Thus even here it is a matter of decision or convention. . .

II. LocicaL ANALYsIS oF CONFIRMATION AND TESTING
3. Some Terms and Symbols of Logic

In carrying out methodological investigations especially concerning
verification, confirmation, testing, etc., it is very important to distinguish
clearly between logical and empirical, e.g. psychological questions. The
frequent lack of such a distinction in so-called epistemological discussions
has caused a great deal of ambiguity and misunderstanding. In order to
make quite clear the meaning and nature of our definitions and explanations,
we will separate the two kinds of definitions. In this Chapter II we are
concerned with logical analysis. We shall define concepts belonging to

1 “Erschiittert,” Neurath [6].

2 Popper [1].

8 Lewis [2] p. 137, note 12: “No verification of the kind of knowledge commonly

stated in propositions is ever absolutely complete and final.”
4 Nagel [1] p. 144f.
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logic, or more precisely, to logical syntax, although the choice of the con-
cepts to be defined and of the way in which they are defined is suggested
in some respects by a consideration of empirical questions—as is often the
case in laying down logical definitions. The logical concepts defined here
will be applied later on, in Chapter III, in defining concepts of an empirical
analysis of confirmation. These descriptive, i.e. non-logical, concepts be-
long to the field of biology and psychology, namely to the theory of the use
of language as a special kind of human activity. [Note, 1950. According to
present terminology, we divide the theory of language (semiotic) into
three parts: pragmatics, semantics, and logical syntax. The descriptive con-
cepts mentioned belong to pragmatics; logical analysis belongs either to
semantics (if referring to meaning and interpretation) or to syntax (if
formalized).]

In the following logical analysis we shall make use of some few terms
of logical syntax, which may here be explained briefly.® The terms refer
to a language-system, say L, which is supposed to be given by a system of
rules of the following two kinds. The formative rules state how to con-
struct sentences of L out of the symbols of L. The transformative rules
state how to deduce a sentence from a class of sentences, the so-called
premisses, and which sentences are to be taken as true unconditionally,
1.e. without reference to premisses. The transformative rules are divided
into those which have a logico-mathematical nature; they are called logical
rules or L-rules (this ‘L-’ has nothing to do with the name ‘L’ of the
language); and those of an empirical nature, e.g. physical or biological
laws stated as postulates; they are called physical rules or P-rules.

We shall take here ‘S’, ‘Sy’, ‘S’ etc. as designations of sentences (not as
abbreviations for sentences). We use ‘~S’ as designation of the negation
of S. (Thus, in this connection, ‘~’ is not a symbol of negation but a
syntactical symbol, an abbreviation for the words ‘the negation of.) If a
sentence S can be deduced from the sentences of a class C according to the
rules of L, S is called a consequence of C; and moreover an L-consequence,
if the L-rules are sufficient for the deduction, otherwise a P-consequence.
S: and S; are called equipollent (with each other) if each is a consequence
of the other. If S can be shown to be true on the basis of the rules of L, S
is called valid in L; and moreover L-valid or analytic, if true on the basis
of the L-rules alone, otherwise P-valid. If, by application of the rules of L,
S can be shown to be false, S is called comntravalid, and L-contravalid or
contradictory, if by L-rules alone, otherwise P-contravalid. If S is neither
valid nor contravalid S is called indeterminate. If S is neither analytic nor
contradictory, in other words, if its truth or falsehood cannot be de-
termined by logic alone, but needs reference either to P-rules or to the
facts outside of language, S is called synthetic. Thus the totality of the
sentences of L is classified in the following way:

5 For more exact explanations of these terms see Carnap [4]; some of them are ex-
plained also in [5].
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~’,“V” etc. and each of which consists of a predicate with ‘x” as argument,
we allow omission of the operator and the arguments. Thus e.g. instead of
‘(x) (P,(x) D P,(x))’ we shall write shortly P, D P,’; and instead of
{(x) [Q,(x) D (Qu(x) = Qu(x)) ]’ simply ‘Q, > (Q,=Q.)". The form
‘P, D P’ is that of the simplest physical laws; it means: “If any space-time-
point has the property of P,, it has also the property of P,.” . . .

4. Definitions

By an (explicit) definition of a descriptive predicate ‘Q” with one
argument we understand a sentence of the form

(D:) Qx)=...x...

where at the place of “. .. x ...’ a sentential function — called the
definiens — stands which contains ‘%’ as the only free variable. For several
arguments the form is analogous. We will say that a definition D is based
upon the class C of predicates if every descriptive symbol occurring in the
definiens of D belongs to C. If the predicates of a class C are available in
our language we may introduce other predicates by a chain of definitions
of such a kind that each definition is based upon C and the predicates
defined by previous definitions of the chain.

Definition 9. A definition is said to have atomic (or molecular, or
generalized, or essentially generalized) form, if its definiens has atomic
(or molecular, or generalized, or essentially generalized, respectively)
form.

Theorem 5. If ‘P’ is defined by a definition D based upon C, ‘P’ is
reducible to C. If D has molecular form, ‘P’ is completely reducible to C.
If D has essentially generalized form, ‘P’ is incompletely reducible to C.

Proof. ‘P’ may be defined by ‘P(x)==. .. x . ... Then, for any b,
‘P(b)’ is equipollent to ‘. . . b . . .’ and hence in the case of molecular
form, according to Theorem z, completely reducible to C, and in the other
case, according to Theorems 3 and 4, reducible to C.

Let us consider the question whether the so-called disposition-concepts
can be defined, i.e. predicates which enunciate the disposition of a point or
body for reacting in such and such a way to such and such conditions, e.g.
‘visible’, ‘smellable’, ‘fragile’, ‘tearable’, ‘soluble’, ‘indissolubls’ etc. We
shall see that such disposition-terms cannot be defined by means of the
terms by which these conditions and reactions are described, but they can
be introduced by sentences of another form. Suppose, we wish to introduce
the predicate ‘Q,’ meaning “soluble in water.” Suppose further, that ‘Q,’
and ‘Q,’ are already defined in such a way that ‘Qi(x, t)’ means “the body
x is placed into water at the time t,” and ‘Q,(x, t)’ means “the body x dis-
solves at the time t.” Then one might perhaps think that we could define
‘soluble in water’ in the following way: “x is soluble in water” is to mean
“whenever x is put into water, x dissolves,” in symbols:

(D:) Qy(x) = () [Q, (%, t) D Q. (x,1)].
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L-conceprs: analytic synthetic contradictory
I ! | | l |
S S
P-valid P-contravalid

Y Y Y _
valid indeterminate contravalid

A sentence S, is called incompatible with S, (or with a class C of
sentences), if the negation ~§, is a consequence of S, (or of C, respec-
tively). The sentences of a class are called mutually independent if none
of them is a consequence of, or incompatible with, any other of them.

The most important kind of predicates occurring in a language of
science is that of the predicates attributed to space-time-points (or to small
space-time-regions). For the sake of simplicity we shall restrict the fol-
lowing considerations—so far as they deal with predicates—to those of this
kind. The attribution of a certain value of a physical function, e.g. of
temperature, to a certain space-time-point can obviously also be expressed
by a predicate of this kind. The following considerations, applied here to
such predicates only, can easily be extended to descriptive terms of any
other kind.

In order to be able to formulate examples in a simple and exact way
we will use the following symbols. We take ‘@’, ‘b’, etc. as names of space-
time-points (or of small space-time-regions), i.e. as abbreviations for quad-
ruples of space-time-codrdinates; we call them individual constants. ‘%,
’y’, etc. will be used as corresponding variables; we will call them individual
variables. We shall use ‘P’, ‘Py, ‘P>’ etc., and ‘Q’, ‘Q;’ etc. as predicates; if
no other indication is given, they are supposed to be predicates of the kind
described. The sentence ‘Q;(b)’ is to mean: ‘““The space-time-point b has
the property Q,.” Such a sentence consisting of a predicate followed by
one or several individual constants as arguments, will be called a full sen-
tence of that predicate.

Connective symbols: ‘~’ for ‘not’ (negation), V’ for ‘or’ (disjunc-
tion), *' for ‘and’ (conjunction), ¢ D * for ‘if — then’ (implication), ‘=’
for ‘if — then —, and if not — then not —’ (equivalence). ‘~ Q(a)’ is the
negation of a full sentence of ‘Q’; it is sometimes also called a full sentence
of the predicate ‘~ Q.

Operators: ‘(x)P(x)’ is to mean: “every point has the property P”
(universal sentence; the first ‘(x)’ is called the universal operator, and the
sentential function ‘P(x)’ its operand). ‘(3x)P(x)’ is to mean: “There is at
least one point having the property P (existential sentence; ‘(3x)’ is called
the existential operator and ‘P(x)’ its operand). (In what follows, we shal
not make use of any other operators than universal and existential opera-
tors with individual variables, as described here.) In our later examples we
shall use the following abbreviated notation for universal sentences of a cer:
tain form occurring very frequently. If the sentence ‘(x) [—~— —]’ is suct
that ‘— — —’ consists of several partial sentences which are connected by
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But this definition would not give the intended meaning of ‘Qs’. For, sup-
pose that c is a certain match which I completely burnt yesterday. As the
match was made of wood, I can rightly assert that it was not soluble in
water; hence the sentence ‘Q,(c)’ (S,) which asserts that the match c is
soluble in water, is false. But if we assume the definition D, S, becomes
equipollent with ‘(t) [Q,(c, t) D Q.(c, )]’ (8,). Now the match ¢ has
never been placed into water and on the hypothesis made never can be so
placed. Thus any sentence of the form ‘Q, (¢, t)’ is false for any value of ‘t’.
Hence S, is true, and, because of D, S, also is true, in contradiction to the
intended meaning of S,. ‘Q,’ cannot be defined by D, nor by any other
definition. But we can introduce it by the following sentence:

(R:) (x) (D) [Q,(x, 1) D (Qu(x) =Q.(x,1))],

in words: “if any thing x is put into water at any time t, then, if x is soluble
in water, x dissolves at the time t, and if x is not soluble in water, it does
not.” This sentence belongs to that kind of sentences which we shall call
reduction sentences.

5. Reduction Sentences

Suppose, we wish to introduce a new predicate ‘Q,’ into our language
and state for this purpose a pair of sentences of the following form:

(R)) Q,2(Q,0Qy

(R,) Q,0(Q;0~Qy

Here, ‘Q,’ and ‘Q,’ may describe experimental conditions which we have
to fulfill in order to find out whether or not a certain space-time-point b
has the property of Q,, i.e. whether ‘Q,(b)’ or ‘~ Q,(b)’ is true. ‘Q,” and
‘Q,’ may describe possible results of the experiments. Then R, means: if
we realize the experimental condition (Q, then, if we find the result Q,, the
point has the property Q,. By the help of R,, from ‘Q,(b)’ and ‘Q,(b)’,
‘Q,(b)’ follows. R, means: if we satisfy the condition Q, and then find Q,
the point has not the property Q,. By the help of R,, from ‘Q,(b)’ and
‘Qs(b)’, ‘~ Q,(b)’ follows. We see that the sentences R, and R, tell us
how we may determine whether or not the predicate ‘Q;’ is to be attributed
to a certain point, provided we are able to determine whether or not the
four predicates ‘Q,’, ‘Q,’, ‘Q,’; and ‘Q,’ are to be attributed to it. By the
statement of R, and R, ‘Q,’ is reduced in a certain sense to those four predi-
cates; therefore we shall call R, and R, reduction sentences for ‘Q,’ and
‘~ Qj’ respectively. Such a pair of sentences will be called a reduction
pair for ‘Q;’. By R, the property Q, is attributed to the points of the class
Q, - Q,, by R, the property ~ Q, to the points of the class Q, - Q;. If by
the rules of the language — either logical rules or physical laws — we can
show that no point belongs to either of these classes (in other words, if the
universal sentence ‘~ [(Q,-Q,) V (Q,-Q;)] is valid) then the pair of
sentences does not determine Q, nor ~ Q, for any point and therefore does
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not give a reduction for the predicate Q,. Therefore, in the definition of
‘reduction pair’ to be stated, we must exclude this case.

In special cases ‘Q,’ coincides with ‘Q,’, and ‘Q,” with ‘~ Q,’. In that
case the reduction pair is ‘Q, D (Q, D Q)" and ‘Q, D (~ Q. D ~ Q,)’;
the latter can be transformed into ‘Q, D (Q, D Q,)’. Here the pair can be
replaced by the one sentence ‘Q, D (Q,=Q,)’ which means: if we ac-
complish the condition Q,, then the point has the property Q, if and only
if we find the result Q,. This sentence may serve for determining the result
‘Q,(b)’ as well as for ‘~ Q,(b)’; we shall call it a bilateral reduction sen-
tence. It determines Q, for the points of the class Q, - Q,, and ~ Q, for
those of the class Q, - ~ Q,; it does not give a determination for the points
of the class ~ Q,. Therefore, if ‘(x) (~ Q,(x))’ is valid, the sentence does
not give any determination at all. To give an example, let ‘Q,’(b)’ mean
“the point b is both heated and not heated”, and ‘Q,”(b)’: “the point b is
illuminated by light-rays which have a speed of 400,000 km/sec”. Here
for any point ¢, ‘Q,’(c), and ‘Q,”(c)’ are contravalid — the first con-
tradictory and the second P-contravalid; therefore, ‘(x) (~ Q,’(x))’ and
‘(x) (~ Q,”(x))’ are valid — the first analytic and the second P-valid; in
other words, the conditions Q,” and Q,” are impossible, the first logically
and the second physically. In this case, a sentence of the form ‘Q,” D
(Q:=10Q,) or ‘Q,” D (Q,=1Q,)’ would not tell us anything about how
to use the predicate ‘Q;’ and therefore could not be taken as a reduction
sentence. These considerations lead to the following definitions.

Definition 10. a. A universal sentence of the form

(R) Q,2(Q,0Q)

is called a reduction sentence for ‘Q,’ provided ‘~ (Q,-Q,)’ is not valid.
b. A pair of sentences of the forms

(R,) Q,3(Q,2Qy)
(R,) Q,2(Q;>~Qy)

is called a reduction pair for ‘Q,’ provided ‘~ [(Q,-Q,) V (Q,-Q,))’
is not valid.
c. A sentence of the form

(Rb) Q] ) (QaEQz)

is called a bilateral reduction sentence for ‘Qy’ provided ‘(x) (~ Q,(x))’
is not valid.

Every statement about reduction pairs in what follows applies also
to bilateral reduction sentences, because such sentences are comprehensive
formulations of a special case of a reduction pair.

If a reduction pair for ‘Q,’ of the form given above is valid — i.e. either
laid down in order to introduce ‘Q,’ on the basis of ‘Q,’, ‘Q,’, ‘Q,’, and ‘Q,’,
or consequences of physical laws stated beforehand — then for any point
¢ ‘Qy(c)’ is a consequence of ‘Q,(c)’ and ‘Q,(c)’, and ‘~ Q,(c)’ is a con-
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sequence of ‘Q,(c)’ and ‘Q,(c)’. Hence ‘Q,’ is completely reducible to
those four predicates.

Theorem 6. 1f a reduction pair for ‘Q’ is valid, then ‘Q’ is completely
reducible to the four (or two, respectively) other predicates occurring.

We may distinguish between logical reduction and physical reduc-
tion, dependent upon the reduction sentence being analytic or P-valid, in
the latter case for instance a valid physical law. Sometimes not only the
sentence ‘Q, D (Q, = Q,)’ is valid, but also the sentence ‘Q, = Q,". (This
is e.g. the case if ‘(x)Q, (x)’ is valid.) Then for any b, ‘Q,(b)’ can be trans-
formed into the equipollent sentence ‘Q,(b)’, and thus ‘Q,’ can be elimi-
nated in any sentence whatever. If ‘Q,=Q,’ is not P-valid but analytic
it may be considered as an explicit definition for ‘Q,. Thus an explicit
definition is a special kind of a logical bilateral reduction sentence. A
logical bilateral reduction sentence which does not have this simple form,
but the general form ‘Q, D (Q,=Q,)’, may be considered as a kind of
conditional definition.

If we wish to construct a language for science we have to take some
descriptive (i.e. non-logical) terms as primitive terms. Further terms may
then be introduced not only by explicit definitions but also by other reduc-
tion sentences. The possibility of introduction by laws, i.e. by physical
reduction, is, as we shall see, very important for science, but so far not
sufficiently noticed in the logical analysis of science. On the other hand the
terms introduced in this way have the disadvantage that in general it is
not possible to eliminate them, i.e. to translate a sentence containing such
a term into a sentence containing previous terms only.

Let us suppose that the term “Q;’ does not occur so far in our language,
but ‘Q,’, ‘Q,’, ‘Q/, and ‘Q;’ do occur. Suppose further that either the fol-
lowing reduction pair R,, R, for ‘Q,’:

(R,) Q, 0 (Q,0Qy)

(Rz) Q4 > (Q5 D~ Qa)

or the following bilateral reduction sentence for ‘Qy’:
(Ry) Q, 0 (Q,=Q,)

is stated as valid in order to introduce ‘Q,’, i.e. to give meaning to this
new term of our language. Since, on the assumption made, ‘Q;’ has no
antecedent meaning, we do not assert anything about facts by the statement
of Ry, This statement is not an assertion but a convention. In other words,
the factual content of R, is empty; in this respect, R, is similar to a defi-
nition. On the other hand, the pair R,, R, has a positive content. By stating
it as valid, beside stating a convention concerning the use of the term ‘Q;’,
we assert something about facts that can be formulated in the following
wayv without the use of ‘Q,’. If a point ¢ had the property Q, - Q,-Q,- Q.,
then both ‘Q,(c)’ and ‘~ Q;(c)’ would follow. Since this is not possible
for any point, the following universal sentence S which does not contain
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‘Q,’, and which in general is synthetic, is a consequence of R, and R,:

(8:) ~(Q,-Q,-Q,- Q).

In the case of the bilateral reduction sentence R, ‘Q,’ coincides with
‘Q, and ‘Q,’ with ‘~ Q,’. Therefore in this case S degenerates to
fm~ (Q,-Q,- Q- ~ Q,) and hence becomes analytic. Thus a bilateral re-
duction sentence, in contrast to a reduction pair, has no factual content.

6. Introductive Chains

For the sake of simplicity we have considered so far only the intro-
duction of a predicate by one reduction pair or by one bilateral reduction
sentence. But in most cases a predicate will be introduced by either several
reduction pairs or several bilateral reduction sentences. If a property or
physical magnitude can be determined by different methods then we may
state one reduction pair or one bilateral reduction sentence for each
method. The intensity of an electric current can be measured for instance
by measuring the heat produced in the conductor, or the deviation of a
magnetic needle, or the quantity of silver separated out of a solution, or the
quantity of hydrogen separated out of water etc. We may state a set of
bilateral reduction sentences, one corresponding to each of these methods.
The factual content of this set is not null because it comprehends such sen-
tences as e.g. “If the deviation of a magnetic needle is such and such then
the quantity of silver separated in one minute is such and such, and vice
versa” which do not contain the term ‘intensity of electric current’, and
which obviously are synthetic.

If we establish one reduction pair (or one bilateral reduction sentence)
as valid in order to introduce a predicate ‘Q,’, the meaning of ‘Q,’ is not
established completely, but only for the casés in which the test condition
is fulfilled. In other cases, e.g. for the match in our previous example,
neither the predicate nor its negation can be attributed. We may diminish
this region of indeterminateness of the predicate by adding one or several
more laws which contain the predicate and connect it with other terms
available in our language. These further laws may have the form of re-
duction sentences (as in the example of the electric current) or a different
form. In the case of the predicate ‘soluble in water’ we may perhaps add
the law stating that two bodies of the same substance are either both soluble
or both not soluble. This law would help in the instance of the match; it
would, in accordance with common usage, lead to the result “the match ¢
is not soluble,” because other pieces of wood are found to be insolubix
on the basis of the first reduction sentence. Nevertheless, a region of in-
determinateness remains, though a smaller one. If a body b consists of such
a substance that for no body of this substance has the test-condition — in
the above example: “being placed into water” — ever been fulfilled, then
neither the predicate nor its negation can be attributed to b. This region
may then be diminished still further, step by step, by stating new laws.
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These laws do not have the conventional character that definitions have;
rather are they discovered empirically within the region of meaning which
the predicate in question received by the laws stated before. But these
laws are extended by convention into a region in which the predicate
had no meaning previously; in other words, we decided to use the predi-
cate in such a way that these laws which are tested and confirmed in
cases in which the predicate has a meaning, remain valid in other cases.

We have seen that a new predicate need not be introduced by a
definition, but may equally well be introduced by a set of reduction pairs.
(A bilateral reduction sentence may here be taken as a special form of a
reduction pair.) Consequently, instead of the usual chain of definitions,
we obtain a chain of sets of sentences, each set consisting either of one
definition or of one or several reduction pairs. By each set a new predicate
is introduced.

Definition 11. A (finite) chain of (finite) sets of sentences is called an
introductive chain based upon the class C of predicates if the following
conditions are fulfilled. Each set of the chain consists either of one defi-
nition or of one or more reduction pairs for one predicate, say ‘Q’; every
reduction pair is valid; every predicate occurring in the set, other than
‘Q’, either belongs to C or is such that one of the previous sets of the chain
is either a definition for it or a set of reduction pairs for it

Definition 12. If the last set of a given introductive chain based upon
C cither consists in a definition for ‘Q’ or in a set of reduction pairs for
‘Q’, ‘Q’ is said to be introduced by this chain on the basis of C.

For our purposes we will suppose that a reduction sentence al-
ways has the simple form ‘Q, O (Q, D Q,)’ and not the analogous but
more complicated form ‘(x) [-——x———D (... x ... D Q;(x))I
where ‘-~ —x——=-—-"and * . . x . . . indicate sentential functions of a
non-atomic form. This supposition does not restrict the generality of the
following considerations because a reduction sentence of the compound
form indicated may always be replaced by two definitions and a reduction
sentence of the simple form, namely by:

Q=
Q._,E. . X0,
Q, > (Q, > Qy-

The above supposition once made, the nature of an introductive chain
is chiefly dependent upon the form of the definitions occurring. Therefore
we define as follows.

Definition 13. An introductive chain is said to have atomic form (or
molecular form) if every definition occurring in it has atomic form (or
molecular form, respectively); it is said to have generalized form (or es-
sentially generalized form) if at least one definition of generalized form (or
essentially gcneralized form, respectively) occurs in it.

Theorem 7. If ‘P’ is introduced by an introductive chain based upon

e e



58 THE NATURE OF SCIENTIFIC METHOD

C, ‘P’ is reducible to C. If the chain has molecular form, ‘P’ is completely
reducible to C; if the chain has essentially generalized form, ‘P’ is incom-
pletely reducible to C. — This follows from Theorems 5 (§ 7) and 6 (§ 8).

We call primitive symbols those symbols of a language L which are
introduced directly, i.e. without the help of other symbols. Thus there are
the following kinds of symbols of L:

1) primitive symbols of L,

2) indirectly introduced symbols, i.e. those introduced by introduc-

tive chains based upon primitive symbols; here we distinguish:

a) defined symbols, introduced by chains of definitions,

b) reduced symbols, i.e. those introduced by introductive chains
containing at least one reduction sentence; here we may further
distinguish:

a) L-reduced symbols, whose chains contain only L-reduction
pairs,

B) P-reduced symbols, whose chains contain at least one P-
reduction pair.

Definition 14. a. An introductive chain based upon primitive predi-
cates of a language L and having atomic (or molecular, or generalized, or
essentially generalized, respectively) form is called an atomic (or molecu-
lar, or generalized, or essentially generalized, respectively) introductive
chain of L.

b. A predicate of L is called an atomic (or molecular) predicate if it
is either a primitive predicate of L or introduced by an atomic (or molecu-
lar, respectively) introductive chain of L; it is called a generalized (or
essentially generalized) predicate if it is introduced by a generalized (or
essentially generalized, respectively) introductive chain of L.

Definition t5. a. A sentence S is called an atomic sentence if S is a full
sentence of an atomic predicate. —b. § is called a molecular sentence if S
has molecular form and contains only molecular predicates. —c. S is called
a gemeralized sentence if S contains an (unrestricted) operator or a gen-
eralized predicate. — d. S is called an essentially generalized sentence if S is
a generalized sentence and is not equipollent with a molecular sentence.

It should be noticed that the term ‘atomic sentence’, as here defined,
is not at all understood to refer to ultimate facts.* Our theory does not
assume anything like ultimate facts. It is a matter of convention which
predicates are taken as primitive predicates of a certain language L; and
hence likewise, which predicates are taken as atomic predicates and which
sentences as atomic sentences.

7. Reduction and Definition

In § 8 the fact was mentioned that in some cases, for instance in the
case of a disposition-term, the reduction cannot be replaced by a definition.

8 In contradistinction to the term ‘atomic sentence’ or ‘elementary sentence’ as used
by Russell or Wittgenstgixl.



TESTABILITY AND MEANING 59

We now are in a position to see the situation more clearly. Suppose that
we introduce a predicate ‘Q’ into the language of science first by a reduc-
tion pair and that, later on, step by step, we add more such pairs for ‘Q’
as our knowledge about ‘Q’ increases with further experimental investiga-
tions. In the course of this procedure the range of indeterminateness for
‘Q’, i.e. the class of cases for which we have not yet given a meaning to
‘QQ’, becomes smaller and smaller. Now at each stage of this development
we could lay down a definition for ‘Q’ corresponding to the set of reduc-
tion pairs for ‘Q’ established up to that stage. But, in stating the definition,
we should have to make an arbitrary decision concerning the cases which
are not determined by the set of reduction pairs. A definition determines
the meaning of the new term once for all. We could either decide to at-
tribute ‘Q’ in the cases not determined by the set, or to attribute ‘~ Q’ in
these cases. Thus for instance, if a bilateral reduction sentence R of the
form ‘Q, D (Q, =Q,)’ is stated for ‘Qy’, then the predicate ‘Q,’ is to be
attributed to the points of the class Q, - Q,, and ‘~ Q,’ to those of the class
Q, - ~ Q,, while for the points of the class ~ Q, the predicate ‘Q,’ has
no meaning. Now we might state one of the following two definitions:

(D,) Q,=(Q,-Q.)
(D,) Q=(~Q,VQy)

If ¢ is a point of the undetermined class, on the basis of D, ‘Q,(c)’ is false,
and on the basis of D, it is true. Although it is possible to lay down either
D, or D,, neither procedure is in accordance with the intention of the
scientist concerning the use of the predicate ‘Q,’. The scientist wishes
neither to determine all the cases of the third class positively, nor all of
them negatively; he wishes to leave these questions open until the results
of further investigations suggest the statement of a new reduction pair;
thereby some of the cases so far undetermined become determined posi-
tively and some negatively. If we now were to state a definition, we should
have to revoke it at such a new stage of the development of science, and
to state a new definition, incompatible with the first one. If, on the other
hand, we were now to state a reduction pair, we should merely have to
add one or more reduction pairs at the new stage; and these pairs will be
compatible with the first one. In this latter case we do not correct the
determinations laid down in the previous stage but simply supplement them.

Thus, if we wish to introduce a new term into the language of science,
we have to distinguish two cases. If the situation is such that we wish to
fix the meaning of the new term once for all, then a definition is the ap-
propriate form. On the other hand, if we wish to determine the meaning
of the term at the present time for some cases only, leaving its further de-
termination for other cases to decisions which we intend to make step by
step, on the basis of empirical knowledge which we expect to obtain in
the future, then the method of reduction is the appropriate one rather than
that of a definition. A set of reduction pairs is a partial determination of
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meaning only and can therefore not be replaced by a definition. Only if
we reach, by adding more and more reduction pairs, a stage in which all
cases are determined, may we go over to the form of a definition.

We will examine in greater detail the situation in the case of several
reduction pairs for ‘Q,”:

(R)) Q, 2(Q, 0 Q)
(R,) Q, D (Q; D ~Q,)
(R,) Q,/ 2 (Q,,DQ,)
(Rz') Q4’ ) (Qs’ I~ Qs)
etc.

Then ‘Q,’ is determined by R, for the points of the class Q, - Q,, by R/’
for the class Q,"- Qy’, etc., and therefore, by the totality of reduction sen-
tences for ‘Q,’, for the class (Q,-Q,) V(Q,'-Q.)V . ... Thisclass may
shortly be designated by ‘Q,,,’. Analogously ‘~ Q,’ is determined by the
reduction sentences for ‘~ Q,’ for the points of the class (Q,-Q,) V
(Q/-Q;) V..., which we designate by ‘Q, ;. Hence ‘Q,’ is determined
either positively or negatively for the class Q,, V Q,,. Therefore the
universal sentence ‘Q, . V Q,,;’ means, that for every point either ‘Q,’ or
‘~ Q,’ is determined. If this sentence is true, the set of reduction sentences
is complete and may be replaced by the definition ‘Q, =Q, . For the
points of the class ~ (Q,.,V Q,,), ‘Q; is not determined, and hence, in
the stage in question, ‘Q,’ is without meaning for these points. If on the
basis of either logical rules or physical laws it can be shown that all points
belong to this class, in other words, if the universal sentence ‘~ (Q,.,V
Q,.;)’ is valid — either analytic or P-valid — then neither ‘Q,’ nor ‘~ Q,’
is determined for any point and hence the given set of reduction pairs does
not even partly determine the meaning of ‘Q,’ and therefore is not a suitable
means of introducing this predicate.

The given set of reduction pairs asserts that a point belonging to the
class Q, ; has the property ~ Q, and hence not the property Q,, and
therefore cannot belong to Q,,, because every point of this class has the
property Q.. What the set asserts can therefore be formulated by the uni-
versal sentence saying that no point belongs to both Q, , and Q,,, i.e. the
sentence ‘~ (Q,,;- Q,,;)". This sentence represents, so to speak, the factual
content of the set. In the case of one reduction pair this representative sen-
tence is ‘~ (Q, - Q,-Q, - Q,)’; in the case of one bilateral reduction sen-
tence this becomes ‘~ (Q,-Q,-Q,- ~ Q,) or ‘() (~ Q,(x) VQ.(x) V
~ Q,(x))’, which is analytic.

The following diagram shows the tripartition of the class of all points
by a reduction pair (or a bilateral reduction sentence, or a set of reduction
pairs, respectively). For the first class ‘Q,’ is determined, for the second
class ‘~ Q. The third class lies between them and is not yet determined:
but some of its points may be determined as belonging to Q, and some
others as belonging to ~ Q, by reduction pairs to be stated in the future.
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reduction pair: QQ ~U-WVIQUQ)] Qu-Qs
bilat. reduction sentence:  Qi-Qs ~Q Q;~
set of reduction pairs: ~(Q1,2VQu,e) Qeus

Qi)
—— %

|

_— e — —
o) not determined ~Q,

If we establish a set of reduction pairs as new valid sentences for the
introduction of a new predicate ‘Q;’, are these valid sentences analytic or
P-valid? Moreover, which other sentences containing ‘Q,’ are analytic?
The distinction between analytic and P-valid sentences refers primarily to
those sentences only in which all descriptive terms are primitive terms. In
this case the criterion is as follows: 7 a valid sentence S is analytic if and
only if every sentence S is also valid which is obtained from S when any
descriptive term wherever it occurs in S is replaced by any other term
whatever of the same type; otherwise it is P-valid. A sentence S containing
defined terms is analyrtic if the sentence S’ resulting from S by the elimina-
tion of the defined terms is analytic; otherwise it is P-valid. A definition, e.g.
‘Q(x) = ...x ... is according to this criterion, itself analytic; for,
after it has been stated as a valid sentence, by the elimination of ‘Q’ we get
fromit‘ ..x...=...x..., which is analytic.

In the case of a new descriptive term introduced by a set of reduction
pairs, the situation is not as simple as in the case of a definition because
elimination is here not possible. Let us consider the question how the
criterion is to be stated in this case. The introduction of a new term into
a language is, strictly speaking, the construction of a new language on the
basis of the original one. Suppose that we go over from the language L,,
which does not contain ‘Q’, to the language L, by introducing ‘Q’ by a set
R of reduction pairs, whose representative sentence (in the sense explained
before) may be taken to be S. Then S as not containing ‘Q’ is a sentence of
L, also; its logical character within L, does not depend upon ‘Q’ and may
therefore be supposed to be determined already. By stating the sentences
of R as valid in L,, S becomes also valid in L, because it is a conse-
quence of R in L,. If now S is analytic in L,, it is also analytic in L,;
in this case R does not assert anything about facts, and we must
therefore take its sentences as analytic. According to this, every bilateral
reduction sentence is analytic, because its representative sentence is ana-
lytic, as we have seen before. If S is either P-valid or indeterminate in L,,
it is valid and moreover P-valid in L, in consequence of our stating R as
valid in L,. In this case every sentence of R is valid; it is P-valid unless it
fulfills the general criterion of analyticity stated before (referring to all
possible replacements of the descriptive terms, see above). If S is either
P-contravalid or contradictory in L,, it has the same property in L, and

7 Carnap [4] §51,
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is simultaneously valid in L,. It may be analytic in L,, if it fulfills the general
criterion. In this case every sentence of R is both valid and contravalid, and
hence L, is inconsistent.® If S is contradictory in L, and at least one sen-
tence of R is analytic according to the general criterion, then L, is not only
inconsistent but also L-inconsistent. The results of these considerations may
be exhibited by the following table; column (1) gives a complete classifi-
cation of the sentences of a language (see the diagram in § 3).

The representative sentence S a reduction sentence 0
: : of R (inL, 2
inL, inL, (inL,)
1. analytic analytic analytic : L i
2. P-valid P-valid valid * C"gg‘rf;fs‘t‘zn(t‘) L 18
3. indeterminate | P-valid valid *
4. P-contravalid | valid and P- | valid * and P-contra- | inconsistent
contravalid valid
5. contradictory | valid and con- | valid * and contra- | inconsistent +
rradictory dictory

* analytic if fulfilling the general criterion (p. 61); otherwise P-valid.
t and moreover L-inconsistent if at least one sentence of R is analytic on the basis of
the general criterion (p. 61).

Now the complete criterion for ‘analytic’ can be stated as follows:

Nature of S Criterion for S being analytic

1. S does not contain any | S is valid.
descriptive symbol.

2. All descriptive symbols | Every sentence S” which results from S when we

of S are primitive. replace any descriptive symbol at all places
where it occurs in S by any symbol whatever of
the same type—and hence S itself also—is valid.

3. S contains a defined de- | The sentence 5’ resulting from S by the elimina-
scriptive symbol ‘Q’. tion of ‘Q’ is valid.

4. S contains a descriptive | S’ is analytic in L/, and S is an L-consequence of R

symbol ‘Q’ introduced (e.g. one of the sentences of R); in other words,
by a set R of reduc- the implication sentence containing the conjunc-
tion pairs; let L’ be the |  tion of the sentences of R as first part and S as
sub-language of L not second f];mrt: is analytic (i.e. every sentence re-
containing ‘Q’, and §’ |  sulting from this implication sentence where we
the representative sen- |  replace ‘Q’ at all places by any symbol of the
tence of R (comp. same type occurring in L’ is valid in L’).

p- 61).

8 Compare Carnap [4] §59.
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III. EmpiricAL ANALYSIS OF CONFIRMATION AND TESTING
8. Observable and Realizable Predicates

In the preceding chapter we analyzed logically the relations which
subsist among sentences or among predicates if one of them may be con-
firmed with the help of others. We defined some concepts of a syntactical
kind, based upon the concept ‘consequence’ as the chief concept of logical
syntax. In what follows we shall deal with empirical methodology. Here
also we are concerned with the questions of confirming and testing sen-
tences and predicates. These considerations belong to a theory of language
just as the logical ones do. But while the logical analysis belongs to an
analytic theory of the formal, syntactical structure of language, here we
will carry out an empirical analysis of the application of language. Our
considerations belong, strictly speaking, to a biological or psychological
theory of language as a kind of human behavior, and especially as a kind
of reaction to observations. We shall see, however, that for our purposes
we need not go into details of biological or psychological investigations.
In order to make clear what is understood by empirically testing and con-
firming a sentence and thereby to find out what is to be required for a
sentence or a predicate in a language having empirical meaning, we can
restrict ourselves to using very few concepts of the field mentioned. We
shall take two descriptive, i.e. non-logical, terms of this field as basic terms
for our following considerations, namely ‘observable’ and ‘realizable’. All
other terms, and above all the terms ‘confirmable’ and ‘testable’, which
are the chief terms of our theory, will be defined on the basis of the two
basic terms mentioned; in the definitions we shall make use of the logical
terms defined in the foregoing chapter. The two basic terms are of course,
as basic ones, not defined within our theory. Definitions for them would
have to be given within psychology, and more precisely, within the be-
havioristic theory of language. We do not attempt such definitions, but
we shall give at least some rough explanations for the terms, which will
make their meaning clear enough for our purposes.

Explanation 1. A predicate ‘P’ of a language L is called observable
for an organism (e.g. a person) N, if, for suitable arguments, e.g. ‘b’, N is
able under suitable circumstances to come to a decision with the help of
few observations about a full sentence, say P(b)’, i.e. to a confirmation of
either ‘P(b)’ or ‘~ P(b)’ of such a high degree that he will either accept
or reject ‘P(b)’.

This explanation is necessarily vague. There is no sharp line between
observable and non-observable predicates because a person will be more
or less able to decide a certain sentence quickly, i.e. he will be inclined
after a certain period of observation to accept the sentence. For the sake
of simplicity we will here draw a sharp distinction between observable
and non-observable predicates. By thus drawing an arbitrary line between
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observable and non-observable predicates in a field of continuous degrees
of observability we partly determine in advance the possible answers to
questions such as whether or not a certain predicate is observable by a
given person. Nevertheless the general philosophical, i.e. methodological
question about the nature of meaning and testability will, as we shall
see, not be distorted by our over-simplification. Even particular questions
as to whether or not a given sentence is confirmable, and whether or not it
is testable by a certain person, are affected, as we shall see, at most to a
very small degree by the choice of the boundary line for observable predi-
cates.

According to the explanation given, for example the predicate ‘red’ is
observable for a person N possessing 2 normal colour sense. For a suitable
argument, namely a space-time-point ¢ sufficiently near to N, say a spot on
the table before N, N is able under suitable circumstances — namely, if
there is sufficient light at ¢ — to come to a decision about the full sentence
“the spot ¢ is red” after few observations —namely by looking at the
table. On the other hand, the predicate ‘red’ is not observable by a colour-
blind person. And the predicate ‘an electric field of such and such an
amount’ is not observable to anybody, because, although we know how
to test a full sentence of this predicate, we cannot do it directly, i.e. by a
few observations; we have to apply certain instruments and hence to make
a great many preliminary observations in order to find out whether the
things before us are instruments of the kind required.

Explanation 2. A predicate ‘P’ of a language L is called ‘realizable’ by
N, if for a suitable argument, e.g. ‘b’, N is able under suitable circum-
stances to make the full sentence ‘P(b)’ true, i.e. to produce the property
P at the point b.

When we use the terms ‘observable’, ‘realizable’, ‘confirmable’, etc.
without explicit reference to anybody, it is to be understood that they are
meant with respect to the people who use the language L to which the
predicate in question belongs.

Examples. Let ‘P,(b)’ mean: ‘the space-time-point b has the tempera-
ture 100°C’. ‘P,’ is realizable by us because we know how to produce that
temperature at the point b, if b is accessible to us. — ‘P,(b)’ may mean:
‘there is iron at the point b’. ‘P,’ is realizable because we are able to carry
a piece of iron to the point b if b is accessible. — If ‘Py(b)’ means: ‘at the
point b is a substance whose index of light refraction is 10, ‘P’ is not
realizable by anybody at the present time, because nobody knows at
present how to produce such a substance.

9. Confirmability

In the preceding chapter we have dealt with the concept of reducibil-
ity of a predicate ‘P’ to a class C of other predicates, i.e. the logical rela-
tion which subsists between ‘P’ and C if the confirmation of ‘P’ can be
carried out by that of predicates of C. Now, if confirmation is to be feasible
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at all, this process of referring back to other predicates must terminate at
some point. The reduction must finally come to predicates for which we
can come to a confirmation directly, i.e. without reference to other predi-
cates. According to Explanation 1, the observable predicates can be used
as such a basis. This consideration leads us to the following definition of
the concept ‘confirmable’. This concept is a descriptive one, in contra-
distinction to the logical concept ‘reducible to C’ — which could be named
also ‘confirmable with respect to C'.

Definition 16. A sentence S is called confirmable (or completely con-
firmable, or incompletely confirmable) if the confirmation of S is reducible
(or completely reducible, or incompletely reducible, respectively) to that
of a class of observable predicates.

[Note, 1950. Today I should prefer to replace Def. 16 by the following definition,
based on Def. 18: A sentence S is confirmable (or . . .) if every descriptive predicate
occurring in S is confirmable (or . . .).]

Definition 17. A sentence S is called bilaterally confirmable (or bi-
laterally completely confirmable) if both S and ~ S are confirmable (or
completely confirmable, respectively).

Definition 18. A predicate ‘P’ is called confirmable (or completely
confirmable, or incompletely confirmable) if ‘P’ is reducible (or com-
pletely reducible, or incompletely reducible, respectively) to a class of
observable predicates.

Hence, if ‘P’ is confirmable (or completely confirmable) the full
sentences of ‘P’ are bilaterally confirmable (or bilaterally completely con-
firmable, respectively).

When we call a sentence S confirmable, we do not mean that it is
possible to arrive at a confirmation of S under the circumstances as they
actually exist. We rather intend this possibility under some possible cir-
cumstances, whether they be real or not. Thus e.g. because my pencil is
black and I am able to make out by visual observation that it is black and
not red, I cannot come to a positive confirmation of the sentence “M
pencil is red.” Nevertheless we call this sentence confirmable and more-
over completely confirmable for the reason that we are able to indicate
the — actually non-existent, but possible — observations which would con-
firm that sentence. Whether the real circumstances are such that the testing
of a certain sentence S leads to a positive result, i.e. to a confirmation of
S, or such that it leads to a negative result, i.e. to a confirmation of ~ S,
is irrelevant for the questions of confirmability, testability and meaning
of the sentence though decisive for the question of truth, ie. sufficient
confirmation.

Theorem 8. 1f ‘P’ is introduced on the basis of observable predicates,
‘P’ is confirmable. If the introductive chain has molecular form, ‘P’ is com-
pletely confirmable. — This follows from Theorem 7 (§ 9).

Theorem 9. If S is a sentence of molecular form and all predicates
occurring in S are confirmable (or completely confirmable) S is bilaterally
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confirmable (or bilaterally completely confirmable, respectively). — From
Theorem 2 (§ 6).

Theorem 10. If the sentence S is constructed out of confirmable predi-
cates with the help of connective symbols and universal or existential
operators, S is bilaterally confirmable. — From Theorems 2, 3, and 4 (§ 6).

10, Method of Testing

If ‘P’ is confirmable then it is not impossible that for a suitable point
b we may find a confirmation of ‘P(b)’ or of ‘~ P(b)’. But it is not neces-
sary that we know a method for finding such a confirmation. If such a
procedure can be given — we may call it a method of testing — then ‘P’ is
not only confirmable but — as we shall say later on — testable. The follow-
ing considerations will deal with the question how to formulate a method
of testing and thereby will lead to a definition of ‘testable’.

The description of a method of testing for ‘Q,’ has to contain two
other predicates of the following kinds:

1) A predicate, say ‘Q,’, describing a test-condition for ‘Q, i.e. an
experimental situation which we have to create in order to test ‘Q,’ at a
given point.

2) A predicate, say ‘Q.’, describing a truth-condition for ‘Q,’ with
respect to ‘Q,’, i.e. a possible experimental result of the test-condition Q,
at a given point b of such a kind that, if this result occurs, ‘Q,’ is to be
attributed to . Now the connection between ‘Q,’, ‘Q,’, and ‘Q,’ is ob-
viously as follows: if the test-condition is realized at the given point b
then, if the truth-condition is found to be fulfilled at b, & has the property
to be tested; and this holds for any point. Thus the method of testing for
‘Q,’ is to be formulated by the universal sentence ‘Q, O (Q, D Q,)’, in
other words, by a reduction sentence for ‘Qy’. But this sentence, beside be-
ing a reduction sentence, must tulfill the following two additional require-
ments:

1) ‘Q,’ must be realizable because, if we did not know how to produce
the test-condition, we could not say that we had a method of testing.

2) We must know beforehand how to test the truth condition Q.;
otherwise we could not test ‘Qy’ although it might be confirmable. In order
to satisfy the second requirement, ‘Q,’ must be either observable or ex-
plicitly defined on the basis of observable predicates or a method of testing
for it must have been stated. If we start from observable predicates —
which, as we know, can be tested without a description of a method of
testing being necessary — and then introduce other predicates by explicit
definitions or by such reduction sentences as fulfill the requirements stated
above and hence are descriptions of a method of testing, then we know
how to test each of these predicates. Thus we are led to the following
definitions.

Definition 19. An introductive chain based upon observable predi-
cates of such a kind that in each of its reduction sentences, say ‘Q, D
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According to the usual positivist opinion, this sentence can be translated
into the conjunction of the following conditional sentences (2) about
(possible) perceptions. (For the sake of simplicity we eliminate in this
example only the term “table” and continue to use in these sentences some
terms which are not perception terms e.g. “my room”, “eye” etc., which
by further reduction would have to be eliminated also.)

(2a) “If on May . . . somebody is in my room and looks in such and such
direction, he has a visual perception of such and such a
kind.”

(22”), (2a"), etc. Similar sentences about the other possible aspects of the
table.

(2b) “If . . . somebody is in my room and stretches out his hands in such and
such a direction, he has touch perceptions of such and such
a kind.”

(2b’), (2b"), etc. Similar sentences about the other possible touchings of the
table.

(2¢) etc.  Similar sentences about possible perceptions of other senses.

It is obvious that no single one of these sentences (2) nor even a con-
junction of some of them would suffice as a translation of (1); we have to
take the whole series containing all possible perceptions of that table. Now
the first difficulty of this customary positivistic reduction consists in the
fact that it is not certain that the series of sentences (2) is finite. If it is not,
then there exists no conjunction of them; and in this case the original
sentence (1) cannot be translated into one perception sentence. But a
more serious objection is the following one. Even the whole class of sen-
tences (2) — no matter whether it be finite or infinite — is not equipollent
with (1), because it may be the case that (1) is false, though every single
sentence of the class (2) is true. In order to construct such a case, suppose
that at the time stated there is neither a round black table in my room, nor
any observer at all. (1) is then obviously false. (2a) is a universal implica-
tion sentence:

“(x) [(xis...inmyroom and looks ... ) D (x perceives . .. )]",

which we may abbreviate in this way:

3 (x)[P(x) D Q(x)]
which can be transformed into
(4) (x)}[~ P(x) VQ(x)]

((2a) can be formulated in words in this way: “For anybody it is either
not the case that he is in my room on May . . . and looks . . . or he has
a visual perception of such and such a kind”.) Now, according to our
assumption, for every person x it is false that x is at that time in my room
and looks . . . ; in symbols:

() (x)(~ P(x)).
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Therefore (4) is true, and hence (2a) also, and analogously everv one
of the other sentences of the class (2), while (1) is false. In this way the
positivistic reduction in its customary form is shown to be invalid. The
example dealt with is a sentence about a directly perceptible thing. If we
took as examples sentences about atoms, electrons, electric field and the
like, it would be even clearer that the positivistic translation into percep-
tion terms is not possible.

Let us look at the consequences which these considerations have for
the construction of a scientific language on a positivistic basis, i.e. with
perception terms as the only primitive terms. The most important conse-
quence concerns the method of introduction of further terms. In intro-
ducing simple terms of perceptible things (e.g. ‘table’) and a fortiori the
abstract terms of scientific physics, we must not restrict the introduc-
tive method to definitions but must also use reduction. If we do this the
positivistic thesis concerning reducibility above mentioned can be shown
to be true.

Let us give the name ‘thing-language’ to that language which we use
in every-day life in speaking about the perceptible things surrounding us.
A sentence of the thing-language describes things by stating their observ-
able properties or observable relations subsisting between them. What we
have called observable predicates are predicates of the thing-language.
(They have to be clearly distinguished from what we have called percep-
tion terms; if a person sees a round red spot on the table the perception
term ‘having a visual perception of something round and red’ is ateributed
to the person while the observable predicate ‘round and red’ is attributed
to the space-time point on the table.) Those predicates of the thing-
language which are not observable, e.g. disposition terms, are reducible to
observable predicates and hence confirmable. We have seen this in the
example of the predicate ‘soluble’ (§ 7).

Let us give the name ‘physical language’ to that language which
is used in physics. It contains the thing-language and, in addition, those
terms of a scientific terminology which we need for a scientific description
of the processes in inorganic nature. While the terms of the thing-language
for the most part serve only for a qualitative description of things, the
other terms of the physical language are designed increasingly for a
quantitative description. For every term of the physical language physicists
know how to use it on the basis of their observations. Thus every such
term is reducible to observable predicates and hence confirmable. More-
over, nearly every such term is testable, because for every term — perhaps
with the exception of few terms considered as preliminary ones — physicists
possess a method of testing; for the quantitative terms this is a method of
measurement.

The so-called thesis of Physicalism® asserts that every term of the
language of science — including beside the physical language those sub-

» Comp. Neurath {11, {z], |3]; Carnap [21, [8].
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(Q.D Q) or ‘Q, D (Q;, 2 ~Q,)’, the first predicate —‘Q,’ or ‘Q,,
respectively — is realizable, is called a test chain. A reduction sentence (or
a reduction pair, or a bilateral reduction sentence) belonging to a test
chain is called 2 test sentence (or a test pair, or a bilateral test sentence,
respectively).

A test pair for ‘QQ’, and likewise a bilateral test sentence for ‘Q’, de-
scribes a method of testing for both ‘Q’ and ‘~ Q. A bilateral test sen-
tence, e.g. ‘Q, D (Q, = Q,)’ may be interpreted in words in the following
way. “If at a space-time point x the test-condition Q, (consisting perhaps
in a certain experimental situation, including suitable measuring instru-
ments) is realized then we will attribute the predicate ‘Q,’ to the point x if
and only if we find at x the state Q, (which may be a certain result of the
experiment, e.g. a certain position of the pointer on the scale)”. To give
an example, let ‘Q,(b)’ mean: “The fluid at the space-time-point b has a
temperature of 100°”; ‘Q,(b)’: “A mercury thermometer is put at b; we
wait, while stirring the liquid, until the mercury comes to a standstill”;
‘Q.(b)’: “The head of the mercury column of the thermometer at &
stands at the mark r1oo of the scale.” If here ‘Q,’ is introduced by ‘Q, D
(Q;=Q,)’ obvivusly its testability is assured. . . . .

11. A Remark about Positivism and Physicalisin

One of the fundamental theses of positivisim may perhaps be formu-
lated in this way: every term of the whole language L of science is re-
ducible to what we may call sense-data terms or perception terms. By a
perception term we understand a predicate ‘P’ such that ‘P(b)’ means:
“the person at the space-time-place b has a perception of the kind P”. (Let
us neglect here the fact that the older positivism would have referred in a
perception sentence not to a space-time-place, but to an element of “con-
sciousness”; let us here take the physicalistic formulation given above.) I
think that this thesis is true if we understand the term ‘reducible’ in the
sense in which we have defined it here. But previously reducibility was not
distinguished from definability. Positivists therefore believed that every
descriptive term of science could be defined by perception terms, and
hence, that every sentence of the language of science could be translated
into a sentence about perceptions. This opinion is also expressed in the
former publications of the Vienna Circle, including mine of 1928 (Carnap
[1]), but I now think that it is not entirely adequate. Reducibility can be
asserted, but not unrestricted possibility of elimination and re-translation;
the reason being that the method of introduction by reduction pairs is
indispensable.

Because we are here concerned with an important correction of a
widespread opinion let us examine in greater detail the reduction and
retranslation of sentences as positivists previously regarded them. Let us
take as an example a simple sentence about a physical thing:

(1) “On May 6, 1935, at 4 P.M., there is a round black table in my room.”
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languages which are used in biology, in psychology, and in social science —
is reducible to terms of the physical language. Here a remark analogous to
that about positivism has to be made. We may assert reducibility of the
terms, but not — as was done in our former publications — definability of
the terms and hence translatability of the sentences.

In former explanations of physicalism we used to refer to the physical
language as a basis of the whole language of science. It now seems to me
that what we really had in mind as such a basis was rather the thing-
language, or, even more narrowly, the observable predicates of the thing-
language. In looking for a new and more correct formulation of the thesis
of physicalism we have to consider the fact mentioned that the method of
definition is not sufficient for the introduction of new terms. Then the
question remains: can every term of the language of science be introduced
on the basis of observable terms of the thing-language by using only defi-
nitions and test-sentences, or are reduction sentences necessary which are
not test sentences? In other words, which of the following formulations
of the thesis of physicalism is true?

1. Thesis of Physicalistic Testability: “Every descriptive predicate of
the language of science is testable on the basis of observable thing-
predicates.”

2. Thesis of Physicalistic Confirmability: “Every descriptive predicate
of the language of science is confirmable on the basis of observable thing-
predicates.”

If we had been asked the question at the time when we first stated
physicalism, I am afraid we should perhaps have chosen the first formula-
tion. Today [ hesitate to do this, and I should prefer the weaker formulation
(2). The reason is that I think scientists are justified to use and actually
do use terms which are confirmable without being testable, as the example
in § 14 shows.

We have sometimes formulated the thesis of physicalism in this way:
“The language of the whole of science is a physicalistic language.” We used
to say: a language L is called a physicalistic language if it is constructed
out of the physical language by introducing new terms. (The introduction
was supposed to be made by definition; we know today that we must
employ reduction as well.) In this definition we could replace the reference
to the physical language by a reference to the thing-language or even to
the observable predicates of the thing-language. And here again we have
to decide whether to admit for the reduction only test-chains or other
reduction chains as well; in other words, whether to define ‘physicalistic
language’ as ‘a language whose descriptive terms are testable on the basis

?

of observable thing-predicates’ or ¢ . . . are confirmable . . ..

12. Sufficient Bases

A class C of descriptive predicates of a language L such that every
descriptive predicate of L is reducible to C is called a sufficient reduction
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basis of L; if in the reduction only definitions are used, C is called a suf-
ficient definition basis. If C is a sufficient reduction basis of L and the predi-
cates of C—and hence all predicates of L — are confirmable, C is called a
sufficient confirmation basis of L; and if moreover the predicates of C are
completely testable, for instance observable, and every predicate of L is
reducible to C by a test chain —and hence is testable — C is called a suf-
ficient test basis of L.

As we have seen, positivism asserts that the class of perception-terms
is a sufficient basis for the language of science; physicalism asserts the same
for the class of physical terms, or, in our stronger formulation, for the class
of observable thing-predicates. Whether positivism and physicalism are
right or not, at any rate it is clear that there can be several and even
mutually exclusive bases. The classes of terms which positivism and physi-
calism assert to be sufficient bases, are rather comprehensive. Nevertheless
even these bases are not sufficient definition bases but only sufficient re-
duction bases. Hence it is obvious that, if we wish to look for narrower
sufficient bases, they must be reduction bases. We shall find that there are
sufficient reduction bases of the language of science which have a far nar-
rower extension than the positivistic and the physicalistic bases.

Let L be the physical language. We will look for sufficient reduction
bases of L. If physicalism is right, every such basis of L is also a basis of the
total scientific language; but here we will not discuss the question of
physicalism. We have seen that the class of the observable predicates is a
sufficient reduction basis of L. In what follows we will consider only bases
consisting of observable predicates; hence they are confirmation bases of
the physical language L. Whether they are also test bases depends upon
whether all confirmable predicates of L are also testable; this question may
be left aside for the moment. The visual sense is the most important sense;
and we can easily see that it is sufficient for the confirmation of any physi-
cal property. A deaf man for instance is able to determine pitch, intensity
and timbre of a physical sound with the help of suitable instruments; a man
without the sense of smell can determine the olfactory properties of a gas
by chemical analysis; etc. That all physical functions (temperature, electric
field etc.) can be determined by the visual sense alone is obvious. Thus
we see that the predicates of the visual sense, i.e. the colour-predicates as
functions of space-time-places, are a sufficient confirmation basis of the
physical language L.

But the basis can be restricted still more. Consider 2 man who cannot
perceive colours, but only differences of brightness. Then he is able to
determine all physical properties of things or events which we can de-
termine from photographs; and that means, all properties. Thus he deter-
mines e.g. the colour of a light with the help of a spectroscope or a spectro-
graph. Hence the class of predicates which state the degree of brightness
at a space-time-place — or the class consisting of the one functor ** whose

10 Compare Carnap [4] $§3.
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value is the degree of brightness — is a sufficient basis of L.

Now imagine a man whose visual sense is still more restricted. He may
be able to distinguish neither the different colours nor the different degree
of brightness, but only the two qualities bright and dark ( = not bright)
with their distribution in the visual field. What he perceives corresponds
to a bad phototype which shows no greys but only black and white. Even
this man is able to accomplish all kinds of determinations necessary in
physics. He will determine the degree of brightness of a light by an in-
strument whose scale and pointer form a black-white-picture. Hence the
one predicate ‘bright’ is a sufficient basis of L.

But even a man who is completely blind and deaf, but is able to
determine by touching the spatial arrangements of bodies, can determine
all physical properties. He has to use instruments with palpable scale-
marks and a palpable pointer (such e.g. as watches for the blind). With
such a spectroscope he can determine the colour of a light; etc. Let ‘Solid’
be a predicate such that ‘Solid(b)’ means: “There is solid matter at the

-space-time-point b”. Then this single predicate ‘Solid’ is a sufficient basis
of L.

Thus we have found several very narrow bases which are sufficient
confirmation bases for the physical language and simultaneously sufficient
test bases for the testable predicates of the physical language. And, if
physicalism is right, they are also sufficient for the total language of science.
Some of these bases consist of one predicate only. And obviously there are
many more sufficient bases of such a small extent. This result will be
relevant for our further considerations. It may be neticed that this result
cannot at all be anticipated a priori; neither the fact of the existence of so
small sufficient bases nor the fact that just the predicates mentioned are
sufficient, is a logical necessity. Reducibility depends upon the validity of
certain universal sentences, and hence upon the system of physical laws;
thus the facts mentioned are special features of the structure of that system,
or — expressed in the material idiom — special features of the causal struc-
ture of the real world. Only after constructing a system of physics can we
determine what bases are sufficient with respect to that system.

IV. THE CoNSTRUCTION OF A LLANGUAGE-SYSTEM

13. The Problem of a Criterion of Meaning

It is not the aim of the present essay to defend the principle of empiri-
cism against apriorism or anti-empiricist metaphysics. Taking empiricism !
for granted, we wish to discuss the question, what is meaningful. The word
‘meaning’ will here be taken in its empiricist sense; an expression of lan-
guage has meaning in this sense if we know how to use it in speaking about

11 The words ‘empiricism’ and ‘empiricist’ are here understood in their widest sense,

and not in the narrower sense of traditional positivism or sensationalism or any other
doctrine restricting empirical knowledge to a certain kind of experience.
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empirical facts, either actual or possible ones. Now our problem is what
expressions are meaningful in this sense. We may restrict this question
to sentences because expressions other than sentences are meaningful if
and only if they can occur in a meaningful sentence.

Empiricists generally agree, at least in general terms, in the view that
the question whether a given sentence is meaningful is closely connected
with the questions of the possibility of verification, confirmation or testing
of that sentence. Sometimes the two questions have been regarded as iden-
tical. I believe that this identification can be accepted only as a rough first
approximation. Our real problem now is to determine the precise relation
between the two questions, or generally, to state the criterion of meaning
in terms of verification, confirmation or testing.

I need not emphasize that here we are concerned only with the prob-
lem of meaning as it occurs in methodology, epistemology or applied
logic,'? and not with the psychological question of meaning. We shall not
consider here the questions whether any images and, if so, what images
are connected with a given sentence. That these questions belong to
psychology and do not touch the methodological question of meaning
has often been emphasized.

It seems to me that the question about the criterion of meaning has
to be construed and formulated in a way different from that in which it is
usually done. In the first place we have to notice that this problem concerns
the structure of language. (In my opinion this is true for all philosophical
questions, but that is beyond our present discussion.) Hence a clear for-
mulation of the question involves reference to a certain language; the usual
formulations do not contain such a reference and hence are incomplete
and cannot be answered. Such a reference once made, we must above
all distinguish between two main kinds of questions about meaningful-
ness; to the first kind belong the questions referring to a historically given
language-system, to the second kind those referring to a language-
system which is yet to be constructed. These two kinds of questions
have an entirely different character. A question of the first kind is a
theoretical one; it asks, what is the actual state of affairs; and the answer
is either true or false. The second question is a practical one; it asks, how
shall we proceed; and the answer is not an assertion but a proposal or
decision. We shall consider the two kinds one after the other.

A question of the first kind refers to a given language-system L and
concerns an expression E of L (i.e. a finite series of symbols of L). The
question is, whether E is meaningful or not. This question can be divided
into two parts: a) “Is E a sentence of L”?, and b) “If so, does E fulfill the
empiricist criterion of meaning”? Question (a) is a formal question of

12 Qur problem of meaning belongs to the field which Tarski [1] calls Semantic;
this is the theory of the relations between the expressions of a language and things,
properties, facts etc. described in the language.

13 Comp. e.g. Schlick {41 p. 355.
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logical syntax (comp. Chapter II); question (b) belongs to the field of
methodology (comp. Chapter III). It would be advisable to avoid the
terms ‘meaningful’ and ‘meaningless’ in this and in similar discussions —
because these expressions involve so many rather vague philosophical as-
sociations — and to replace them by an expression of the form “a . .
sentence of L”; expressions of this form will then refer to a specified
language and will contain at the place . . .’ an adjective which indicates
the methodological character of the sentence, e.g. whether or not the
sentence (and its negation) is verifiable or completely or incompletely
confirmable or completely or incompletely testable and the like, according
to what is intended by ‘meaningful’.

14. The Construction of a Language-System L

A question of the second kind concerns a language-system L which is
being proposed for construction. In this case the rules of L are not given,
and the problem is how to choose them. We may construct L in whatever
way we wish. There is no question of right or wrong, but only a practical
question of convenience or inconvenience of a system form, i.e. of its suit-
ability for certain purposes. In this case a theoretical discussion is possible
only concerning the consequences which such and such a choice of rules
would have; and obviously this discussion belongs to the first kind. The
special question whether or not a given choice of rules will produce an
empiricist language, will then be contained in this set of questions.

In order to make the problem more specific and thereby more sim-
ple, let us suppose that we wish to construct L as a physical language,
though not as a language for all science. The problems connected with
specifically biological or psychological terms, though interesting in them-
selves, would complicate our present discussion unnecessarily. But the
main points of the philosophical discussions of meaning and testability al-
ready occur in this specialized case.

In order to formulate the rules of an intended language L, it is neces-
sary to use a language L’ which is already available. L” must be given at least
practically and need not be stated explicitly as a language-system, i.e. by
formulated rules. We may take as L’ the English language. In constructing
L, L’ serves for two different purposes. First, L’ is the syntax-language
in which the rules of the object-language L. are to be formulated. Secondly,
L’ may be used as a basis for comparison for L, i.e. as a first object-language
with which we compare the second object-language L, as to richness of
expressions, structure and the like. Thus we may consider the question, to
which sentences of the English language (L") do we wish to construct
corresponding sentences in L, and to which not. For example, in construct-
ing the language of Principia Mathematica, Whitehead and Russell wished
to have available translations for the English sentences of the form “There
is something which has the property y”; they therefore constructed their

1¢ Comp. Carnap [4] §1; [5], 0. 309.
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language-system so as to contain the sentence-form “(3x) -yx”. A dif-
ficulty occurs because the English language is not a language-system in the
strict sense (i.e. a system of fixed rules) so that the concept of translation
cannot be used here in its exact syntactical sense. Nevertheless this concept
is sufficiently clear for our present practical purpose. The comparison of
L with L belongs to the rather vague, preliminary considerations which
lead to decisions about the system L. Subsequently the result of these de-
cisions can be exactly formulated as rules of the system L.

It is obvious that we are not compelled to construct L so as to contain
sentences corresponding to all sentences of L. If e.g. we wish to construct
a language of economics, then its sentences correspond only to a small part
of the sentences of the English language L. But even if L. were to be a
language adequate for all science there would be many —and I among
them — who would not wish to have in L a sentence corresponding to every
sentence which usually is considered as a correct English sentence and is
used by learned people. We should not wish e.g. to have corresponding
sentences to many or perhaps most of the sentences occurring in the books
of metaphysicians. Or, to give a nonmetaphysical example, the members of
our Circle did not wish in former times to include into our scientific lan-
guage a sentence corresponding to the English sentence

S,: “This stone is now thinking about Vienna.”

But at present I should prefer to construct the scientific language in such
a way that it contains a sentence S, corresponding to S,. (Of course I
should then take S, as false, and hence ~ S, as true.) I do not say that our
former view was wrong. Our mistake was simply that we did not recognize
the question as one of decision concerning the form of the language; we
therefore expressed our view in the form of an assertion — as is customary
among philosophers — rather than in the form of a proposal. We used to
say: “S, is not false but meaningless”; but the careless use of the word
‘meaningless’ has its dangers and is the second point in which we would
like at present to modify the previous formulation.
We return to the question how we are to proceed in constructing a
physical language L, using as L’ the English physical language.
The following list shows the items which have to be decided in con-
structing a language L.
1. Formative rules ( = definition of ‘sentence in L’).
A. Atomic sentences.
1. The form of atomic sentences.
2. The atomic predicates.
a. Primitive predicates.
b. Indirectly introduced atomic predicates.
B. Formative operations of the first kind: Connections; Molecu-
lar sentences.
C. Formative operations of the second kind: Operators.
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1. Generalized sentences. (This is the critical point.)
2. Generalized predicates.
11. Transformative rules ( = definition of ‘consequence in L’).
A. L-rules. (The rules of logical deduction.)
B. P-rules. (The physical laws stated as valid.)

In the following sections we shall consider in succession items of the
kind I, i.e. the formative rules. We will choose these rules for the language
L from the point of view of empiricism; and we shall try, in constructing
this empiricist language L, to become clear about what is required for a
sentence to have meaning.

15. Atomic Sentences: Primitive Predicates

The suitable method for stating formative rules does not consist in
describing every single form of sentence which we wish to admit in L.
That is impossible because the number of these forms is infinite. The best
method consists in fixing

1. The forms of some sentences of a simple structure; we may call
them (elementary or) atomic sentences (1 A);

2. Certain operations for the formation of compound sentences
(IB, C).

1 A 1. Atomic sentences. As already mentioned, we will consider only
predicates of that type which is most important for physical language,
namely those predicates whose arguments are individual constants, i.e.
designations of space-time-points. (It may be remarked that it would be
possible and even convenient to admit also full sentences of physical func-
tors as atomic sentences of L, e.g. ‘te(a) = r’, corresponding to the sentence
of L': “The temperature at the space-time-point a is 7’. For the sake of
simplicity we will restrict the following considerations to predicate-
sentences. The results can easily be applied to functror-sentences also.) An
atomic sentence is a full sentence of an atomic predicate (Definition 15a,
§6). An atomic predicate is either primitive or introduced by an atomic
chain (Definition 14b, § 6). Therefore we have to answer the following
questions in order to determine the form of the atomic sentences of L:

I A 2. a) Which predicates shall we admit as primitive predicates
of L?

b) Which forms of atomic introductive chains shall we admit?

I A 2a: Primitive predicates. Our decision concerning question (a)
is obviously very important for the construction of L. It might be thought
that the richness of language L depends chiefly upon how rich is the selec-
tion we make of primitive predicates. If this were the case the philosophical
discussion of what sentences were to be included in L — which is usually
formulated as: what sentences are meaningful? — would reduce to this
question of the selection of primitive predicates. But in fact this is not the
case. As we shall see, the main controversy among philosophers concerns
the formation of sentences by operators (I C 1). About the selection of
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primitive predicates agreement can easily be attained, even among repre-
sentatives of the most divergent views regarding what is meaningful and
what is meaningless. This is easily understood if we remember our previous
considerations about sufficient bases. If a suitable predicate is selected as the
primitive predicate of L, all other physical predicates can be introduced
by reduction chains.

To illustrate how the selection of primitive predicates could be carried
out, let us suppose that the person N, who is constructing the language
L trusts his sense of sight more than his other senses. That may lead him
to take the colour-predicates (attributed to things or space-time-points,
not to acts of perception, compare the example given on p. 69) as primi-
tive predicates of L. Since all other physical predicates are reducible to
them, N, will not take any other primitive predicates. It is just at this point
in selecting primitive predicates, that N, has to face the question of observ-
ability. If N, possesses a normal colour sense each of the selected predicates,
e.g. ‘red’, is observable by him in the sense explained before (§ 8). Further,
if N, wishes to share the ]anouage L with other people — as is the case
in practice — N, must inquire whether the predlcates selected by him are
also observable by them; he must investigate whether they are able
to use these predxcatcs in sufficient agreement with him, — whether
it be subsequent to training by him or not. We may suppose that N, will
come to a positive result on the basis of his experience with English-
speaking people. Exact agreement, it is true, is not obtainable; but that
is not demanded. Suppose however that N, meets a completely colour-
blind man N,. N, will find that he cannot get N, to use the colour predi-
cates in sufficient agreement with him, in other words, that these predi-
cates are not observable by N.. If nevertheless N, wishes to have N,
in his language-community, N; must change his selection of primi-
tive predicates. Perhaps he will take the brightness-predicates which are
also observable by him. But there might be a completely blind man N;, for
whom not one of the primitive predicates selected by N, is observable. Is
N, now unable to take part in the total physical language of N,? No, he is
not. N, and N, might both take e.g. the predicate ‘solid’ as primitive predi-
cate for their common language L. This predicate is observable both for
N; and N,, and it is a sufficient confirmation basis for the physical language
L, as we have seen above. Or, if N, prefers to keep visual predicates as
prlmmve predicates for L, he may suggest to N, that he take ‘solid’ as
primitive predicate of N,’s language L; and then mtroduce the other predi-
cates by reduction in such a way that they agree with the predicates of
N,’s language L. Then L and L; will be completely congruent even as to
the stock of predicates, though the selections of primitive predicates are
different. How far N, will go in accepting people with restricted sensual
faculties into his language-community, is a matter of practical decision.
For our further considerations we shall suppose that only observable predi-
cates are selected as primitive predicates of L. Obviously this restriction



78 THE NATURE OF SCIENTIFIC METHOD

is not a necessary one. But, as empiricists, we want every predicate of our
scientific language to be confirmable, and we must therefore select ob-
servable predicates as primitive ones. For the following considerations we
suppose that the primitive predicates of L are observable without fixing
a particular selection.

Decision 1. Every primitive descriptive predicate of L is observable.

16. The Choice of a Psychological or a Physical Basis

In selecting the primitive predicates for the physical language L we
must pay attention to the question whether they are observable, i.e. whether
they can be directly tested by perceptions. Nevertheless we need not de-
mand the existence of sentences in L. — either atomic or other kinds — cor-
responding to perception-sentences of L’ (e.g. “I am now seeing a round,
red patch”). L may be a physical language constructed according to the
demands of empiricism, and may nevertheless contain no perception-
sentences at all. ’

If we choose a basis for the whole scientific language and if we decide
as empiricists, to choose observable predicates, two (or three) different
possibilities still remain open for specifying more completely the basis,
apart from the question of taking a narrower or wider selection. For, if we
take the concept ‘observable’ in the wide sense explained before (§ 11)
we find two quite different kinds of observable predicates, namely physical
and psychological ones.

1. Observable physical predicates of the thing-language, attributed to
perceived things of any kind or to space-time-points. All examples of primi-
tive predicates of L. mentioned before belong to this kind. Examples of full
sentences of such predicates: “This thing is brown,” “This spot is quad-
rangular,” “This space-time-point is warm,” “At this space-time-point is a
solid substance.”

2. Observable psychological predicates. Examples: “having a feeling
of anger,” “having an imagination of a red triangle,” “being in the state of
thinking about Vienna,” “remembering the city hall of Vienna.” The
perception predicates also belong to this kind, e.g. “having a perception
(sensation) of red,” “. . . of sour”; these perception predicates have to be
distinguished from the corresponding thing-predicates belonging to the
first kind (see p. 69). These predicates are observable in our sense in
so far as a person N who is in such a state can, under normal conditions, be
aware of this state and can therefore directly confirm a sentence attribut-
ing such a predicate to himself. Such an attribution is based upon that kind
of observation which psychologists call introspection or self-observation,
and which philosophers sometimes have called perception by the inner
sense. These designations are connected with and derived from certain
doctrines to which 1 do not subscribe and which will not be assumed in
the following; but the fact referred to by these designations seems to me
to be beyond discussion. Concerning these observable psychological predi-
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cates we have to distinguish two interpretations or modes of use, according
to which they are used either in a phenomenological or in a physicalistic
language.

2a. Observable psychological predicates in a phenomenological lan-
guage. Such a predicate is attributed to a so-called state of consciousness
with a temporal reference (but without spatial determination, in contra-
distinction to 2b). Examples of full sentences of such predicates (the for-
mulation varies according to the philosophy of the author): “My con-
sciousness is now in a state of anger” (or: “I am now . . .”, or simply:
“Now anger”); and analogously with “such and such an imagination”,
“. . . remembrance”, “. .. thinking”, “ .. perception”, etc. These
predicates are here interpreted as belonging to a phenomenological lan-
guage, ie. a language about conscious phenomena as nonspatial events.
However, such a language is a purely subjective one, suitable for soliloquy
only, while the intersubjective thing-language is suitable for use among
different subjects. For the construction of a subjective language predicates
of this kind may be taken as primitive predicates. Several such subjective
languages constructed by several subjects may then be combined for the
construction of an intersubjective language. But the predicates of this kind
cannot be taken directly as observable primitive predicates of an inter-
subjective language. .

2b. Observable psychological predicates in a pbysicalistic language.
Such a predicate is attributed to a person as a thing with spatio-temporal
determination. (I believe that this is the use of psychological predicates in
our language of everyday life, and that they are used or interpreted in the
phenomenological way only by philosophers.) Examples of full sentences:
“Charles was angry yesterday at noon,” “I (i.e. this person, known as John
Brown) have now a perception of red,” etc. Here the psychological predi-
cates belong to an intersubjective language. And they are intersubjectively
confirmable. N, may succeed in confirming such a sentence as “N, is now
thinking of Vienna” (§), as is constantly done in everyday life as well as
in psychological investigations in the laboratory. However, the sentence S
is confirmable by N, only incompletely, although it is completely con-
firmable by N,. [It seems to me that there is general agreement about the
fact that N, can confirm more directly than N, a sentence concerning
N,’s feelings, thoughts, etc. There is disagreement only concerning the
question whether this difference is a fundamental one or only a difference
in degree. The majority of philosophers, including some members of our
Circle in former times, hold that the difference is fundamental inasmuch
as there is a certain field of events, called the consciousness of a person,
which is absolutely inaccessible to any other person. But we now believe,
on the basis of physicalism, that the difference, although very great and
very important for practical life, is only a matter of degree and that there
are predicates for which the directness of confirmation by other persons
has intermediate degrees (e.g. ‘sour’ and ‘quadrangular’ or ‘cold’ when
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attributed to a piece of sugar in my mouth). But this difference in opinion
need not be discussed for our present purposes.] We may formulate the
fact mentioned by saying that the psychological predicates in a physi-
calistic language are intersubjectively confirmable but only subjectively
observable. [As to testing, the difference is still greater. The sentence S is
certainly not completely testable by N,; and it seems doubtful whether it
is at all testable by N,, although it is certainly confirmable by N,.] This
feature of the predicates of kind 2b is a serious disadvantage and constitutes
a reason against their choice as primitive predicates of an intersubjective
language. Nevertheless we would have to take them as primitive predicates
in a language of the whole of science if they were not reducible to predi-
cates of the kind 1, because in such a language we require them in any
case. But, if physicalism is correct they are in fact reducible and hence
dispensable as primitive predicates of the whole language of science. And
certainly for the physical language L under construction we need not take
them as primitive.

According to these considerations, it seems to be preferable to choose
the primitive predicates from the predicates of kind 1, i.e. of the observable
thing-predicates. These are the only intersubjectively observable predi-
cates. In this case, therefore, the same choice can be accepted by the
different members of the language community. We formulate our decision
concerning L, as a supplement to Decision 1:

Decision 2. Every primitive predicate of L is a thing predicate.

The choice of primitive predicates is meant here as the choice of a basis for
possible confirmation. Thus, in order to find out whether the choice of primitive
predicates of the kind 1 or 2a or 2b corresponds to the view of a certain philoso-

her, we have to examine what he takes as the basis for empirical knowledge,
or confirmation or testing. Mach, by taking the sensation elements (‘Empfind-
ungselemente’) as basis, can be interpreted as a representative of the standpoint
2a; and similarly other positivists, sensationalists and idealists. The views held in
the first period of the Vienna Circle were very much influenced by positivists
and above all by Mach, and hence also show an inclination to the view za. I my-
self took elementary experiences (‘Elementarerlebnisse’) as basis, (in [1]). Later
on, when our Circle made the step to physicalism, we abandoned the phenome-
nological language recognizing its subjective limitation.* Neurath *° requires for
the basic sentences (‘Protokollsitze’), i.e. those to which all confirmation and
testing finally goes back, the occurrence of certain psychological terms of the
kind 2b — or: of biological terms, as we may say with Neurath in order to stress
the physicalistic interpretation — namely designations of actions of perception
(as physicalistic terms). He does not admit in these basic sentences such a sim-
ple expression as e.g. “a black round table” which is observable in our sense but
requires instead “a black round table perceived (or: seen) by Otto.” This view
can perhaps be interpreted as the choice of predicates of the kind 2b as primi-
tive ones. We have seen above the disadvantages of such a choice of the basis.
Popper *7 rejects for his basic sentences reference to mental events, whether it

15 Comp. Carnap [2], §6.
1¢ Neurath {5} and [6] p. 361,
17 Popper [1] pp. 5711
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be in the introspective, phenomenological form, or in physicalistic form. He
characterizes his basic sentences with respect to their form as singular existential
sentences and with respect to their content as describing observable events; he
demands that a basic sentence must be intersubjectively testable by observation.
Thus his view is in accordance with our choice of predicates of the kind 1 as
primitive ones. He was, it seems to me, the first to hold this view. (The only in-
convenient point in his choice of basic sentences seems to me to be the fact that
the negations of his basic sentences are not basic sentences in his sense.)

I wish to emphasize the fact that I am in agreement with Neurath not only
in the general outline of empiricism and physicalism bur also in regard to the
question what is to be required for empirical confirmation. Thus 1 do not deny
—as neither Popper nor any other empiricist does, I believe—that a certain con-
nection between the basic sentences and our perceptions is required. But, it
seems to me, it is sufficient that the biological designations of perceptive activity
occur in the formulation of the methodological requirement concerning the
basic sentences — as e.g. in our formulation *“The primitive descriptive predicates
have to be observable,” where the term “observable” is a biological term refer-
ring to perceptions — and that they need not occur in the basic sentences them-
selves. Also a language restricted to physics as e.g. our language L without
containing any biological or perception terms may be an empiricist language
provided its primitive descriptive predicates are observable; it may even fulfill
the requirement of empiricism in its strictest form inasmuch as all predicates
are completely testable. And this language is in its nature quite different from
such a language as e.g. that of theoretical physics. The latter language — although
as a part of the whole language of science, it is an empiricist language because
containing only confirmable terms — does not contain observable predicates of
the thing-language and hence does not include a confirmation basis. On the other
hand, a physical language like L contains within itself its basis for confirmation
and testing. . . .

17. Incompletely Confirmable Hypotbeses in Physics

Now let us consider under what circumstances a physicist might find
it necessary or desirable to state an hypothesis in a generalized form. Let us
begin with one operator. The full sentences of a molecular predicate ‘M,’
(i.e. ‘M,(a)’, etc.) are bilaterally completely confirmable. Suppose some
of them are confirmed by observations, but not the negation of any of
them so far. This fact may suggest to the physicist the sentence ‘(x) M, (x)’
of U, as a physical law to be adopted, i.e. a hypothesis whose negation is
completely confirmable and which leads to completely confirmable predic-
tions as consequences of it (e.g. ‘M,(b)’ etc.). If more and more such
predictions are confirmed by subsequent observations, but not the negation
of any of them, we may say that the hypothesis, though never confirmed
completely, is confirmed in a higher and higher degree.

Considerations of this kind are very common; they are often used in
order to explain that the admission of not completely confirmable (“un-
verifiable”) universal hypotheses does not infringe the principle of em-
piricism. Such considerations are, I think, agreed to by all philosophers
except those who demand complete confirmability (“verifiability”) and
thereby the limitation to a molecular language.
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existential sentence and a consequence of S,. At the left side are indicated
the classes to which the sentences belong.

Let us start at the bottom of the diagram. The sentences of C, are
molecular, and hence bilaterally completely testable. Let us suppose that
a physicist confirms by his observations a good many of the sentences of
C, without finding a confirmation for the negation of any sentence of C,.
According to the customary procedure described above, these experiences
will suggest to him the adoption of S, as a well-confirmed hypothesis,
which, by further confirmation of more and more sentences of C,, may
acquire an even higher degree of confirmation. Let us suppose that like-
wise the sentences of C, are confirmed by observations, further those of C,,
etc. Then the physicist will state S,, S, etc. as well-confirmed hypotheses.
If now sentences of the form E, are admitted in L, then the first sentence of
C is a sentence of L, is also a consequence of S, and is therefore confirmed
at least to the same degree as S,. In order to make feasible the formulation
of this well-confirmed hypothesis the physicist will be inclined to admit
the sentences of E, in L. If he does so he can go one step further. He will
adopt the second sentence of C as a consequence of the stated hypothesis
S,, the third one as a consequence of S, etc. If now the sentences of a suf-
ficient number of classes of the series C,, C,, etc. are confirmed by observa-
tions, the corresponding number of sentences of the series S,, S,, etc. and
likewise of sentences of C will be stated as well-confirmed hypotheses. If
we define ‘P’ by ‘P(x) = (Iy) (z)M(x, y, z)’, we may abbreviate the sen-
tences of C by ‘P(a,)’, ‘P(a,)’, etc. The fact that these sentences are well-
confirmed hypotheses will suggest to the physicist the sentence ‘(x)P(x)’,
thatis S, as a hypothesis to be adopted provided he admits at all sentences
of the form U, in L. The statement of S as confirmed by C is quite
analogous to that of S, as confirmed by C,. If somebody asserted that
S — belonging to U, — is meaningless while the sentences of C — belonging
to E, —are meaningful, he would thereby assert that it is meaningless to
assume hypothetically that a certain condition which we have already
assumed to subsist at several points a,, a,, a,, etc. subsists at every point.
Thus no reason is to be seen for prohibiting sentences of U, if sentences
of E, are admitted.

This same procedure can be continued to higher and higher levels.
Suppose that in the definition of ‘M’ two individual constants occur, say
‘d,’ and ‘e,’; then we may write S in the form ‘(x) (3y) (z)M’'(d,, €,, %,
Yy, z)’. According to our previous supposition this is a hypothesis which is
incompletely confirmed to a certain degree by our observations, namely
by the sentences of C,, C,, etc. Then the first sentence of C’, being a con-
sequence of S, is confirmed to at least the same degree. If we define ‘P’
by ‘P’ (v) = 3w) (x) Fy) (2)M’'(v, w, X, y, z)’ we may abbreviate the
first sentence of C’ by ‘P’(d,)’. Now let us suppose that analogous sentences
for d,, d,, etc. are likewise found to be confirmed by our observations.
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Now it seems to me that a completely analogous consideration applies
to sentences with any number of operator sets, i.e. to sentences of U, or E,
for any n. The following diagram may serve as an example. A broken
arrow running from a sentence S to a class C of sentences indicates that the
confirmation of S is incompletely reducible to that of C. S is in this case
a universal sentence and C the class of its instances; each sentence of C is
therefore a consequence of S, but S is not a consequence of any finite
sub-class of C. A solid arrow running from §, to S, indicates that the
confirmation of S, is completely reducible to that of S,. In this case, S, is an
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Then by these sentences of C’ (belonging to E,) " (belonging to U,) is
incompletely confirmed.

On the basis of these considerations it seems natural and convenient
to make the following decisions.

Decision 5. Let S be a universal sentence (e.g. ‘(x)Q(x)’) — which is
being considered either for admission to or exclusion from L —and C be
the class of the corresponding full sentences (‘Q(a,)’, ‘Q(a,)’, etc.). Then
obviously the sentences of C are consequences of S, and the confirmation
of S is incompletely reducible to that of C. If the sentences of C are
admitted in L. we will admit the sentences of the form S, i.e. a class U, for
a certain n (n > 0).

Decision 6. Let S be an existential sentence (e.g. ‘(Ix)Q(x)’) —
which is being considered either for admission to or exclusion from L —
and C be the class of the corresponding full sentences (‘Q(a,)’, ‘Q(a,)’,
etc.). Then obviously S is a consequence of every sentence of C, and hence
the confirmation of S is completely reducible to that of C. If the sentences
of C are admitted in L. we will admit the sentences of the form S, i.e. a class
E, for a certain n (n > o).

The acceptance of Decisions 5 and 6 leads in the first place, as shown
by the example explained before, to the admission of U,, E,, Uy, E,, Us,
etc. in L; and it also leads to the admission of E,, U,, E,, U,, etc. Hence the
result is the choice of a language L.

As an objection to our proposal of language L, the remark will per-
haps be made that the statement of hypotheses of a high complexity, say
U,, or E,,, will never be necessary or desirable in science, and that there-
fore we need not choose L. Our reply is, that the proposal of L,, by no
means requires the statement of hypotheses of such a kind; it simply pro-
poses not to prohibit their statement a priori by the formative rules of the
language. It seems convenient to give the scientist an open field for pos-
sible formulations of hypotheses. Which of these admitted possibilities
will actually be applied, must be learned from the further evolution of
science, — it cannot be foreseen from general methodological considera-
dons.

18. The Principle of Empiricism

It seems to me that it is preferable to formulate the principle of em-
piricism not in the form of an assertion — “all knowledge is empirical” or
“all synthetic sentences that we can know are based on (or connected
with) experiences” or the like — but rather in the form of a proposal or
requirement. As empiricists, we require the language of science to be re-
stricted in a certain way; we require that descriptive predicates and hence
synthetic sentences are not to be admitted unless they have some connec-
tion with possible observations, a connection which has to be characterized
in a suitable way. By such a formulation, it seems to me, greater clarity
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will be gained both for carrying on discussion between empiricists and
anti-empiricists as well as for the reflections of empiricists.

We have seen that there are many different possibilities in framing
an empiricist language. According to our previous considerations there are
in the main four different requlrcments each of which may be taken as a
possible formulation of empiricism; we will omit here the many interme-
diate positions which have been seen to consist in drawing a rather arbitrary
boundary line.

RCT. Requirement of Complete Testability: “Every synthetic sen-
tence must be completely testable”. Le. if any synthetic sentence S is
given, we must know a method of testing for every descriptive predicate
occurring in S so that we may determine for suitable points whether or
not the predicate can be attributed to them; moreover, S must have such a
form that at least certain sentences of this form can possibly be confirmed
in the same degree as particular sentences about observable properties of
things. This is the strongest of the four requirements. If we adopt it, we

shall get a testable molecular language like L:, ie. a language restricted

to molecular sentences and to test chains as the only introductive chains,
in other words, to those reduction sentences whose first predicate is realiz-
able.

RCC. Requirement of Complete Confirmability: “Every synthetic
sentence must be completely confirmable.” Ie. if any synthetic sentence
S is given, there must be for every descriptive predicate occurring in S
the possibility of our finding out for suitable points whether or not thev
have the property desxgnated by the predlcate in question; moreover, S
must have a form such as is requu‘ed in RCT, and hence be molecular.
Thus the only difference between RCC and RCT concerns predicates.
By RCC predlcates are admitred which are introduced by the help of re-
duction sentences which are not test sentences. By the admission of the
predicates of this kind the language is enlarged to a confirmable molecular
language like L,. It seems however that there are not very many pred-
icates of this kind in the language of science and hence that the prac-
tical difference between RCT and RCC is not very great. But the difference
in the methodological character of L{ and L, may seem important to those
who wish to state RCT.

RT. Requirement of Testability: “Every synthetic sentence must be
testable.” RT is more liberal than RCT, but in another direction than
RCC. RCC and RT are incomparable inasmuch as each of them contains
predicates not admitted in the other one. RT admits incompletely testable
sentences — these are chiefly universal sentences to be confirmed incom-
pletely by their instances — and thus leads to a testable generalized language,
like L;. Here the new sentences in comparison with L} are very many;
among them are the laws of science in the form of unrestricted universal
sentences. Therefore the difference of RCT and RT, i.e. of L and L, is of
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great practical importance. The advantages of this comprehensive enlarge-
ment have been explained in § 17.

RC. Requirement of Confirmability: “Every synthetic sentence must be
confirmable”. Here both restrictions are dispensed with. Predicates which
are confirmable but not testable are admitted; and generalized sentences
are admitted. This simultaneous enlargement in both directions leads to a
confirmable generalized language like L,. L, contains not only L{ but
also L, and L% as proper sub-languages. RC is the most liberal of the four
requirements. But it suffices to exclude all sentences of a non-empirical
nature, e.g. those of transcendental metaphysics inasmuch as they are not
confirmable, not even incompletely. Therefore it seems to me that RC
suffices as a formulation of the principle of empiricism; in other words, if a
scientist chooses any language fulfilling this requirement no objection can
be raised against this choice from the point of view of empiricism. On the
other hand, that does not mean that a scientist is not allowed to choose a
more restricted language and to state one of the more restricting require-
ments for himself — though not for all scientists. There are no theoretical
objections against these requirements, that is to say, objections condemning
them as false or incorrect or meaningless or the like; but it seems to me
that there are practical objections against them as being inconvenient for
the purpose of science.

The following table shows the four requirements and their chief
consequences.

| restriction ’
| to restriction
Requirement | molecular to laaguage

:. senrences test chains

RCT: complete testability + + L

RCC: complete confirmability + - L,

RT: testability - + L

RC: confirmability - - L,

19. Confirmability of Predictions

Let us consider the nature of a prediction, a sentence about a future
event, from the point of view of empiricism, i.e. with respect to confirma-
tion and testing. Modifying our previous symbolism, we will take ‘c’ as the
name of a certain physical system, ‘X’ as a corresponding variable, ‘¢’ as the
time-variable, ‘t,’ as a value of ‘t’ designating a moment at which we have
made observations about ¢, and ‘d’ as a constant designating a certain time
interval, e.g. one day or one million years. Now let us consider the follow-
ing sentences

©)) (O [P,(c,t) D Py(c,t 4 d)]

in words: “For every instant t, if the system c has the state P, at the time t,
then it has the state P, at the time t 4+ d”:
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S) P,(c,t,)
“The system c has the state P, at the time t, (of our observation)”;
(Se) Pz(c! t + d)

“The system c will have the state P, at the time t, 4+ d”. Now let us make
the following suppositions. There is a set C of laws about physical systems
of that kind to which ¢ belongs such that S can be derived from C; the
predicates occurring in the laws of C, and among them ‘P;’ and ‘P,’, are
completely testable; the laws of C have been tested very frequently and
each tested instance had a positive result; S, is confirmed to a high degree
by observations. From these suppositions it follows, that S, and S,, having
molecular form and containing only predicates which are completely
testable, are themselves completely testable; that the laws of C are incom-
pletely testable, but (incompletely) confirmed to a rather high degree; that
S, being a consequence of C, is also confirmed to a rather high degree; that
S,, being a consequence of S and §,, is also confirmed to a rather high de-
gree. If we wait until the time t, 4 d it may happen that we shall confirm
S, by direct observations to a very high degree. But, as we have seen, a
prediction like S, may have even at the present time a rather high degree
of confirmation dependent upon the degree of confirmation of the laws
used for the derivation of the prediction. The nature of a prediction like
S, is, with respect to confirmation and testing, the same as that of a sentence
S; about a past event not observed by ourselves, and the same as that of a
sentence S* about a present event not directly observed by us, €.g. a process
now going on in the interior of a machine, or a political event in China.
S, and S, are, like S,, derived from sentences based on our direct observa-
tions with the help of laws which are incompletely confirmed to some de-
gree or other by previous observations.'®

To give an example, let ¢ be the planetary system, C the set of the
differential equations of celestial mechanics from which S may be derived
by integration, S, describing the present constellation of ¢ — the positions
and the velocities of the bodies — and d the interval of one million years.
Let ‘P,(t)’ mean: “There are no living beings in the world at the time t,”
and consider the following sentence.

(S5) Py(t, +d) D Py(c,t, 4 d)

meaning that, if in a million years there will be no living beings in the
world then at that time the constellation of the planetary system will be
P, (i.e. that which is to be calculated from the present constellation with
the help of the laws confirmed by past observations). S; may be taken as

18 Reichenbach ([3], p. 153) asks what position the Vienna Circle has taken con-
cerning the methodological nature of predictions and other sentences about events not
observed, after it gave up its earlier view influenced by Wittgenstein, The view ex-
plained above is that which my friends — especially Neurath and Frank —and I have
held since about 1931 (compare Frank (1], Neurath [3], Carnap [2al, p. 443, 464 f.;
[2b], p. 55f., g9 f.).
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a convenient formulation of the following sentence discussed by Lewis®
and Schlick.”® *If all minds (or: living beings) should disappear from the
universe, the stars would still go on in their courses”. Both Lewis and
Schlick assert that this sentence is not verifiable, This is true if ‘verifiable’
is interpreted as ‘completely confirmable’. But the sentence is confirmable
and even testable, though incompletely. We have no well-confirmed pre-
dictions about the existence or non-existence of organisms at the time
t, + d; but the laws C of celestial mechanics are quite independent of this
question. Therefore, irrespective of its first part, S; is confirmed to the
same degree as its second part, i.e. as S,, and hence, as C. Thus we see that
an indirect and incomplete testing and confirmation of S, — and thereby of
S, — is neither logically nor physically nor even practically impossible, but
has been actually carried out by astronomers. Therefore I agree with the
following conclusion of Schlick concerning the sentence mentioned above
(though not with his reasoning): “We are as sure of it as of the best
founded physical laws that science has discovered.” The sentence in ques-
tion is meaningful from the point of view of empiricism, i.e. it has to be
admitted in an empiricist language, provided generalized sentences are
admitted at all and complete confirmability is not required. The same is
true for any sentence about past, present or future events, which refers to
events other than those we have actually observed, provided it is sufficiently
connected with such events by confirmable laws.

The object of this essay is not to offer definitive solutions of problems
treated. It aims rather to stimulate further investigation by supplying more
exact definitions and formulations, and thereby to make it possible for
others to state their different views more clearly for the purposes of fruitful
discussion. Only in this way may we hope to develop convergent views and
so approach the objective of scientific empiricism as a movement compre-
hending all related groups, — the development of an increasingly scientific
philosophy.
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